Borowski, W.S., Paull, C.K., and Ussler, W., III, 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24:655-658.
Cole, D.R., Mottl, M.J., and Ohmoto, H., 1987. Isotopic exchange in mineral-fluid systems, II. Oxygen and hydrogen isotopic investigation of the experimental basalt-seawater system. Geochim. Cosmochim. Acta, 51:1523-1538.
Dickens, G.R., Paull, C.K., Wallace, P., and the ODP Leg 164 Scientific Party, 1997. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature, 385:427-428.
Dillon, W.P., and Paull, C.K., 1983. Marine gas hydrates, II. Geophysical evidence. In Cox, J.L. (Ed.), Natural Gas Hydrates: Properties, Occurrences, and Recovery: Woburn, MA (Butterworth), 73-90.
Egeberg, P.K., 1992. Brines in sedimentary environments. In Yelles, M. (Ed.), Encyclopedia of Earth System Science (Vol. 1): London (Academic Press), 395-407.
Egeberg, P.K., and Barth, T., 1998. Contribution of dissolved organic species to the carbon and energy budgets of hydrate bearing deep sea sediments (Ocean Drilling Program Site 997 Blake Ridge). Chem. Geol., 149:25-35.
Egeberg, P.K., and Dickens, G.R., 1999. Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge). Chem. Geol., 153:53-79.
Friedman, I., and Hardcastle, K., 1988. Deuterium in interstitial water from deep-sea cores. J. Geophys. Res., 96:8249-8263.
Froelich, P.N., Kvenvolden, K.A., Torres, M.E., Waseda, A., Didyk, B.M., and Lorenson, T.D., 1995. Geochemical evidence for gas hydrate in sediment near the Chile Triple Junction. In Lewis, S.D., Behrmann, J.H., Musgrave, R.J., and Cande, S.C. (Eds.), Proc. ODP, Sci. Results, 141: College Station, TX (Ocean Drilling Program), 279-286.
Gieskes, J.M., Gamo, T., and Brumsack, H., 1991. Chemical methods for interstitial water analysis aboard JOIDES Resolution. ODP Tech. Note, 15.
Gornitz, V., and Fung, I., 1994. Potential distribution of methane hydrates in the world's oceans. Global Biogeochem. Cycles, 8:335-347.
Greenspan, D., and Casulli, V., 1988. Numerical Analysis for Applied Mathematics, Science, and Engineering: Redwood City (Addison-Wesley).
Harris, K.R., and Woolf, L.A., 1980. Pressure and temperature dependence of the self diffusion coefficient of water and oxygen-18 water. J.C.S. Faraday I, 76:377-385.
Henrichs, S.M., and Reeburgh, W.S., 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. J. Geomicrobiol., 5:191-237.
Hesse, R., 1990. Pore-water anomalies in gas hydrate-bearing sediments of the deeper continental margins: facts and problems. J. Inclusion Phenom. Mol. Recognit. Chem., 8:117-138.
Hesse, R., and Harrison, W.E., 1981. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins. Earth Planet. Sci. Lett., 55:453-462.
Holbrook, W.S., Hoskins, H., Wood, W.T., Stephen, R.A., Lizzarralde, D., and the Leg 164 Science Party, 1996. Methane gas-hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science, 273:1840-1843.
Hovland, M., Gallagher, J.W., Clennell, M.B., and Lekvam, K., 1997. Gas hydrate and free gas volumes in marine sediments: example from the Niger Delta front. Mar. Pet. Geol., 14:245-255.
Hyndman, R.D., and Davis, E.E., 1992. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. J. Geophys. Res., 97:7025-7041.
Kastner, M., Elderfield, H., Martin, J.B., Suess, E., Kvenvolden, K.A., and Garrison, R.E., 1990. Diagenesis and interstitial-water chemistry at the Peruvian continental margin--major constituents and strontium isotopes. In Suess, E., von Huene, R., et al., Proc. ODP, Sci. Results, 112: College Station, TX (Ocean Drilling Program), 413-440.
Kastner, M., Kvenvolden, K.A., Whiticar, M.J., Camerlenghi, A., and Lorenson, T.D., 1995. Relation between pore fluid chemistry and gas hydrates associated with bottom-simulating reflectors at the Cascadia Margin, Sites 889 and 892. In Carson, B., Westbrook, G.K., Musgrave, R.J., and Suess, E. (Eds.), Proc. ODP, Sci. Results, 146 (Pt 1): College Station, TX (Ocean Drilling Program), 175-187.
Katzman, R., Holbrook, W.S., and Paull, C.K., 1994. A combined vertical incidence and wide-angle seismic study of a gas hydrate zone, Blake Outer Ridge. J. Geophys. Res., 99:17975-17995.
Kvenvolden, K.A., 1988. Methane hydrate--a major reservoir of carbon in the shallow geosphere? Chem. Geol., 71:41-51.
--------, 1993. Gas hydrates: geological perspective and global change. Rev. Geophys., 31:173-187.
Kvenvolden, K.A., and Kastner, M., 1990. Gas hydrates of the Peruvian outer continental margin. In Suess, E., von Huene, R., et al., Proc. ODP, Sci. Results, 112: College Station, TX (Ocean Drilling Program), 517-526.
Lawrence, J.R., and Taviani, M., 1988. Extreme hydrogen, oxygen, and carbon isotope anamolies in the pore waters and carbonates of the sediments and basalts from the Norwegian Sea: methane and hydrogen from the mantle? Geochim. Cosmochim. Acta, 52:2077-2084.
Lehmann, M., and Siegenthaler, U., 1991. Equilibrium oxygen- and hydrogen-isotope fractionation between ice and water. J. Glaciol., 37:23-26.
MacDonald, G.J., 1990. Role of methane clathrates in past and future climates. Clim. Change, 16:247-281.
Manheim, F.T., and Sayles, F.L., 1974. Composition and origin of interstitial waters of marine sediments, based on deep sea drill cores. In Goldberg, E.D. (Ed.), The Sea (Vol. 5): Marine Chemistry: The Sedimentary Cycle: New York (Wiley), 527-568.
Manheim, F.T., and Waterman, L.S., 1974. Diffusimetry (diffusion constant estimation) on sediment cores by resistivity probe. In von der Borch, C.C., Sclater, J.G., et al., Init. Repts. DSDP, 22: Washington (U.S. Govt. Printing Office), 663-670.
Martin, J.B., Kastner, M., and Egeberg, P.K., 1995. Origins of saline fluids at convergent margins. In Taylor, B., and Natland, J. (Eds.), Active Margins and Marginal Basins of the Western Pacific. Geophys. Monogr., Am. Geophys. Union, 88:219-239.
McDuff, R.E., and Ellis, R.A., 1979. Determining diffusion coefficients in marine sediments: a laboratory study of the validity of resistivity techniques. Am. J. Sci., 279:666-675.
Out, D.J.P., and Los, J.M., 1980. Viscosity of aqueous solutions of univalent electrolytes from 5 to 95°C. J. Sol. Chem., 9:19-35.
Paull, C.K., Matsumoto, R., Wallace, P.J., et al., 1996. Proc. ODP, Init. Repts., 164: College Station, TX (Ocean Drilling Program).
Paull, C.K., Ussler, W., III, and Borowski, W.A., 1994. Sources of biogenic methane to form marine gas-hydrates: in situ production or upward migration? Ann. N.Y. Acad. Sci., 715:392-409.
Paull, C.K., Ussler, W., III, Borowski, W.S., and Spiess, F.N., 1995. Methane-rich plumes on the Carolina continental rise: associations with gas hydrates. Geology, 23/1:89-92.
Rard, J.A., and Miller, D.G., 1979. The mutual diffusion coefficients of NaCl-H2O and CaCl2-H2O at 25° C from Rayleigh Interferometry. J. Sol. Chem., 8:701-716.
Shipley, T.H., Houston, M.H., Buffler, R.T., Shaub, F.J., McMillen, K.J., Ladd, J.W., and Worzel, J.L., 1979. Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. AAPG Bull., 63:2204-2213.
Sloan, E.D., 1990. Clathrate Hydrates of Natural Gases: New York (Marcel Dekker).
Soloviev, V., and Ginsburg, G.D., 1994. Formation of submarine gas hydrates. Bull. Geol. Soc. Den., 41:86-94.
Ussler, W., III, and Paull, C.K., 1995. Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition. Geo-Mar. Lett., 15:37-44.
Wood, W.T., Stoffa, P.L., and Shipley, T.H., 1994. Quantitative detection of methane hydrate through high-resolution seismic velocity analysis. J. Geophys. Res., 99:9681-9695.
Yeh, H.-W., 1980. D/H Ratios and late-stage dehydration of shales during burial. Geochim. Cosmochim. Acta, 44:341-352.
Yuan, T., Hyndman, R.D., Spence, G.D., and Desmons, B., 1996. Seismic velocity increase and deep-sea gas hydrate concentration above a bottom-simulating reflector on the northern Cascadia Continental Slope. J. Geophys. Res., 101:13655-13671.