791

_			_		_			
Meter	Graphic Lith.	Section	Age	Structure	Disturb	Sample	Color	Description
1		1		& • v			5Y 7/3	UNLITHIFIED PELOIDAL WACKESTONE and UNLITHIFIED MUDSTONE TO WACKESTONE Major Lithologies: This core contains pale yellow (5Y 7/3) very fine- to fine-grained, UNLITHIFIED PELOIDAL
2 - 2 - - - - - - 3 -		2	Э	1^{∞}		ı	5Y 7/2	WACKESTONE to white (5Y 8/1) UNLITHIFIED MUDSTONE TO- WACKESTONE. Grains identified include peloids, pteropods, echinoderm spines, benthic foraminifers, planktonicic foraminifers, bioclasts, ostracodes,
4		3	Pleistocene	• *** • *** • ***			5Y 7/2 To 5Y 7/1	sponge spicules and serpulid worm tubes. The clay- to silt-sized fraction contains micrite, aragonite needles, and nannofossils. Minor Lithologies: Two minor lithologies occur. The
5	๛๛๛๛๛ ๛๛๛๛๛๛๛	4					5Y 7/1 To 5Y 8/1	first, is a light olive gray (5Y 6/2) UNLITHIFIED PTEROPOD FORAMINIFER GRAINSTONE. The major components in the pebble- to fine sand-size are pteropod casts, clean pteropods, planktonic foraminifers, echinoderm spines, and
6 <u>-</u>	6,6,6,6,6,6 RRRRR F.F.F.F.F.			→ V © ~		PI	5Y 6/2 5Y	gray colored clasts. The second is a light gray (5Y 7/1) PARTIALLY LITHIFIED FLOATSTONE. The
-	[FFFFF]	CC				M	7/2	cobbles present contain planktonic foraminifers and pteropods. General Description: The floatstone interval in Section 5, 23 cm to 1H-CC, 13 cm contains well-cemented parts which may be parts of an entire layer. Serpulid worm tubes are present on the top of a hardground in Section 5, 35 cm.

SITE 1008 HOLE A CORE 2H

CORED 6.6 - 16.1 mbsf

Meter	Graphic Lith.	Section	Age	Structure	Disturb	Sample	Color	Description
1 2 2 3 3 4 4 5 5 7 7 9 9 9 9 9		1 2 3 3 5 6 6 7	Pleistocene			I S I P	2.5Y 8/2 To 2.5Y 7/4	UNLITHIFIED PELOIDAL WACKESTONE Major Lithology: This core consists of light gray to pale yellow (2.5Y 8/2 to 2.5Y 7/4) UNLITHIFIED PELOIDAL WACKESTONE. In addition to peloids, fine sand-sized grains include planktonic foraminifers, benthic foraminifers, bioclasts, pteropods, shell fragments, intraclasts, ostracodes, echinoderm spines, and phosphatic grains. Minor Lithology: A light gray to pale yellow (2.5Y 8/2 to 2.5Y 7/4) PARTIALLY LITHIFIED FORAMINIFER PACKSTONE occurs in Section 3, 110 cm through Section 4, 120 cm. The sediment is moderately sorted. Major allochems include benthic foraminifers, planktonic foraminifers, pteropods, bioclasts, bivalve fragments, and echinoderm spines. General Description: The sediments are slightly to moderately bioturbated. Bioturbation appears as grayish mottling.
10	MTMTMTMTMTMT MTMTMTMTMTMTMTMTMTMTMTMTMT	CC		• **		мS	8/4	

SITE 1008 HOLE A CORE 4H

CORED 25.6 - 35.1 mbsf

Graphic Lith. Structure Gundal Structure	Description
1	allochems include planktonic foraminifers, benthic foraminifers, pteropods, bioclasts, lithoclasts, echinoderm debris, and minor fish debris. Minor Lithology: Section 3, 5-56 cm contains a pale yellow (5Y 8/2) NANNOFOSSIL CHALK. Interbedded in the chalk, two pieces of packstones with foraminifers, gastropods, and echinoderm spines occur (Section 3, 10 and 20 cm). Section 3, 56-103 cm consists of a pale yellow (2.5Y 8/2) UNLITHIFIED FLOATSTONE with Halimeda. In addition to this dominating component,
	echinoderm spines, peloids, foraminifers, and bioclasts occur. At the bottom of Section 3, 104-106 cm, a FLOATSTONE with Halimeda occurs.
	General Description: Deposits of Section 1 through Section 2 are moderately bioturbated. Bioturbation appears as mottling.

SITE 1008	НС	LE	A COR	-			CORED 40.2 - 49.7 mbsf
Graphic Lith.	Section	Age	Structure	Disturb	Sample	Color	Description
	1		**************************************	0000000	Р	5Y 8/1 To 5Y 7/1	UNLITHIFIED PELOIDAL WACKESTONE and UNLITHIFIED PELOIDAL WACKESTONE TO MUDSTONE Major Lithologies: Light gray to pale yellow (5Y 7/1 to 2.5Y 8/2) UNLITHIFIED PELOIDAL WACKESTONE and UNLITHIFIED PELOIDAL WACKESTONE TO MUDSTONE. In addition to peloids,
-			• *** & ***				major sand-sized allochems include benthic foraminifers, planktonic foraminifers, bioclasts, echinoderm debris, and blackened grains.
10000000000000000000000000000000000000	3		••• • 8 4 ••8		S	2.5Y 8/2	Minor Lithologies: Section 1, 40-50 cm contains a light gray (5Y 7/1) UNLITHIFIED FLOATSTONE with Halimeda debris and lithoclasts. Lithoclasts are rudstones to grainstones with peloids,
6	4	Pleistocene	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		P	5,2	echinoderm debris, planktonic foraminifers, benthic foraminifers, coral debris, bryozoans, and serpulids. General Description: With exception of the unlithified floatstone interval, deposits are slightly to moderately bioturbated. Bioturbation
7 - M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M	5						appears as mottling.
MUUUUU MUUUUU MUUUUU MUUUUU MUUUUU MUUUUU MUUUUU MUUUUU MUUUUU	6		• *** *** ***		I	5Y 8/1 To 5Y 8/2	
WM m m m m m m m m m m m m m m m m m m	7 CC		• ** • **		S M		

SI	TE 1008	HC	LE	A COR	E			CORED 49.7 - 59.2 mbsf
Meter		Section	Age	Structure	Disturb	Sample	Color	Description
3	000 MM 00	3	Pleistocene			S	2.5Y 8/2	UNLITHIFIED PELOIDAL MUDSTONE TO WACKESTONE Major Lithology: Pale yellow (2.5Y 8/2) UNLITHIFIED PELOIDAL MUDSTONE TO WACKESTONE. In addition to peloids, silt- to very fine sand-sized allochems are represented by bioclasts, planktonic foraminifers, benthic foraminifers, and tunicate spines. Minor Lithology: A light gray (5Y 7/1) NANNOFOSSIL OOZE with planktonic foraminifers, and minor benthic foraminifers occurs in Section 5, 80 cm through Section 6, 70 cm. In Section 5, the nannofossil ooze is separated from the overlying deposits by a 2 cm interval which is richer in clay. General Description: The sediments are slightly to strongly bioturbated. Bioturbation occurs as mottling.
7		5		8 %	•	ı P		
8 - - - - - -	WWWWW	6		• **		S	5Y 7/1 To 5Y 8/2	
9 <u>-</u>	MMMIMMI MMMIMMI MMMIMMI MMMIMMI	7 CC		& *** • ***		S M		

SIT	E 1008	НС	LE	A COR				CORED 59.2 - 68.7 mbsf
Meter	Graphic Lith.	Section	Age	Structure	Disturb	Sample	Color	Description
1		1 2		•			5Y 8/2	UNLITHIFIED PELOIDAL WACKESTONE and UNLITHIFIED PELOIDAL MUDSTONE TO WACKESTONE Major Lithologies: Light greenish gray to pale yellow (5Y 8/1 to 5Y 8/2) UNLITHIFIED PELOIDAL WACKESTONE and UNLITHIFIED PELOIDAL MUDSTONE TO WACKESTONE. In addition to peloids, silt- to fine sand-sized
3_	MMMMI MMMMI MMMMI MMMMI MMMMI MMMMI MMMMI MMMMI MMMMI MMI MMMI MI			• **			5Y 8/1	allochems are represented by planktonic foraminifers, benthic foraminifers, and bioclasts.
	F.F.E.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F	3 4 5			1	P	5Y 8/2 To 5Y 7/2	Minor Lithologies: Section 3, 10-65 cm contains a pale yellow (5Y 8/2) UNLITHIFIED TO PARTIALLY LITHIFIED FLOATSTONE with Halimeda debris, bivalve fragments, lithoclasts, peloids, and bioclasts. In Section 5, 0-40, 45-50, 75- 79, 90-113, and 115-150 cm, layers of pale yellow (5Y 8/2) UNLITHIFIED PELOIDAL WACKESTONE TO PACKSTONE occur. General Description: The deposits are slightly to moderately bioturbated. Bioturbation occurs as mottling, but also as well defined burrows (e.g., Section 5, 62 cm).
8	M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.	6		•		I		
9		7 CC				P S M	5Y 7/2	

SIT	SITE 1008 HOLE A CORE 9H							CORED 68.7 - 78.2 mbsf				
Meter		Section	Age	Structu	ıre	Disturb	Sample	Color	Description			
-	0_0_0_0 0_0_0_0 0_0_0_0 0_0_0_0 0_0_0_0 0_0_0_0 0_0_0_0	1		• • • •	% % % % % %		s	2.5Y 7/2	UNLITHIFIED PELOIDAL WACKESTONE and UNLITHIFIED PELOIDAL MUDSTONE TO WACKESTONE			
2		2		0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		S	5Y	Major Lithologies: Very pale olive (5Y 7/3) to pale yellow (5Y 8/2) UNLITHIFIED PELOIDAL WACKESTONE and UNLITHIFIED PELOIDAL MUDSTONE TO WACKESTONE. Other allochems in the sediments include planktonic foraminifers, benthic foraminifers,			
3	MIMIONO MIMION	3		•	, , , , , , ,			7/3	echinoderm debris, bioclasts, and minor sponge spicules. The pale yellow deposits are richer in aragonite needles than the olive colored where micrite dominates the matrix.			
4	WWWWWWW WWWWWWW WWWWWWWW WWWWWWW		Pleistocene	& • •	**************************************				Minor Lithologies: In Section 4, 30 cm, a piece of PACKSTONE TO FLOATSTONE with shallow water elements, such as			
5	wwmmm wwmmm wwmmm wwmmm wwmmm wwmmm	4	Pleis	• ▼	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$				amphisteginid foraminifers, occurs. General Description: In Section 4, 60 cm through Section 6, 115 cm, the pale olive and the pale yellow sediments alternate in a			
6	MMMMMM MMMMMM MMMMMMMMMMMMMMMMMMMMMMMM	5		&	33		I	5Y 7/3	layering with variable thickness (1-15 cm). Contacts between both lithologies are well defined. The remainder of the core does not display primary sedimentary structures. It is			
7 <u>-</u>	MMMMMM MMMMMMM MMMMMMMMMMMMMMMMMMMMMMM			•				To 5Y 8/3	moderately bioturbated.			
8 - - - - -	WWWWWW WWWWWW WWWWWWW WWWWWWW	6		&		**						
9_	MMMMMM MMMMMM MMMMMMMMMMMMMMMMMMMMMMMM	7 CC		1 5	}} }}		M					

SIT	E 1008	HC	LE	A COR	Е	10H		CORED 78.2 - 78.7 mbsf
Meter	Graphic Lith. So Structure Di Structure O O O O O O O O O O O O O O O O O O O					Sample	Description	
		1 CC	\perp	♦ 🗞 🗷	*	М	5Y 8/1	UNLITHIFIED LITHOCLASTIC FLOATSTONE
			Pleistocene —					Major Lithology: White (5Y 8/1) UNLITHIFIED LITHOCLASTIC FLOATSTONE. Silt- to sand-sized allochems include planktonic foraminifers (many of which are overgrown), shell fragments, and bioclasts. Large (>2 mm) lithoclasts are common within the core.

CORED 78.7 - 88.1 mbsf SITE 1008 HOLE A CORE 11X Structure Oisturb Sample Color Graphic Description Lith. UNLITHIFIED LITHOCLASTIC **FLOATSTONE** Major Lithology: Light gray (5Y 8/2) UNLITHIFIED F_F_F_F_F F_F_F_F_F LITHOCLASTIC FLOATSTONE. Sand-sized allochems include benthic foraminifers, pteropods, and blackened grains. Larger constituents include large lithoclasts of foraminifer wackestone. Minor Lithologies: Section 2, 14-29 cm contains several layers of PARTIALLY LITHIFIED PÉLOIDAL MUDSTONE TO WACKESTONE.

1008A-12X NO RECOVERY

1008A-13X NO RECOVERY

SIT	E 1008	HOI	LE	A COR	CORED 106.8 - 116.1 mbsf			
Meter	Graphic Lith. Section Structure Sample Color							Description
		CC						General Description: Only rubble in core catcher (downhole contamination) .

SI	ΓE 1008	HC	LE	A COR	E	15X		CORED 116.1 - 125.3 mbsf
Meter	Graphic Lith.	Section	Age	Structure	Disturb	Sample	Color	Description
-		1		♦ }		S		UNLITHIFIED BIOCLASTIC WACKESTONE and UNLITHIFIED PELOIDAL WACKESTONE
2		2	Pleistocene	★↑1123456888		S	2.5Y 8/2	Major Lithologies: Pale yellow (2.5Y 8/2) UNLITHIFIED PELOIDAL WACKESTONE and light gray (2.5Y 7/2) UNLITHIFIED BIOCLASTIC WACKESTONE. Allochems include silt- to sand-sized peloids, planktonic and benthic foraminifers, shell fragments, and bioclasts. The clay- to silt-size fraction, which comprises the matrix, consists primarily of micrite and aragonite needles, with minor amounts of calcareous nannofossils. Aragonite needles dominate in unlithified peloidal wackestone, while micrite dominates in unlithified bioclastic wackestone.
5				• }		ı		Minor Lithologies: Light gray (2.5Y 7/2) BIOCLASTIC PACKSTONE occurs in Section 5, 45 - 60 cm and in the Core Catcher, 0 - 12
6_		4		&	3	s	5Y 7/2 To 2.5Y	cm. This entire interval is slightly dolomitized. Dominant allochems are blackened benthic and planktonic foraminifers, and recrystallized skeletal grains.
	, D D D D D , D D D D D , h h h h h , h m m m n	5 CC		& } &	j I I	M	8/2	General Description: Section 1 of this core contains large lithoclasts of partially lithified mudstone
								and bioclastic wackestone. The clasts of the bioclastic wackestone contains Halimeda, coral fragments, and recrystallized skeletal grains. Halimeda grains and smaller lithoclasts also occur within the surrounding sediment. Below 34 cm in Section 1, the abundance of grains larger than 2 mm decreases. In Section 4, 55-134 cm, distorted beds occur in light gray unlithified bioclastic wackestone, and intercalated with overlying pale yellow unlithified peloidal wackestone.

1008A-16X NO RECOVERY

Figure 1 (Chapter 4). Key to lithologic symbols used in graphic lithology column on core description forms.

Figure 2 (Chapter 4). Symbols showing drilling disturbance and sedimentary structures used for core descriptions.

ICBCI	iptions.						
Drill	ing disturbance symbols	Sedi	mentary structures		Bioturbation		Secondary features
	-		Contacts	3	Bioturbation, minor (<30% surface area)	(P)	Pyrite nodule/concretion
	Soft sediments	_	Sharp contact	33	Bioturbation, moderate (30%–60% surface area)	P	Disseminated pyrite
	Slightly disturbed		Gradational contact	333	Bioturbation, strong (>60% surface area)	Mn	Disseminated manganese
		₹	Marine hardground	>>>	Discrete Zoophycos	(G)	Glauconite
	Moderately disturbed		Firmground	///	trace fossil		Carbonate nodule
			Scoured, sharp contact		Other primary features	(C)	concretion
 	Highly disturbed	••••	Scoured contact with graded beds	6	Shell (complete)	V	Vugs
0	0		Sequences, Intervals	x	Shell fragments		Deformation
00	Soupy	↑	Interval over which primary sedimentary structures occur	6	Fossils, general (megafossils)	φ C	Brecciated
	Hard sediments	↑ _F	Fining-upward sequence	8	Bivalves	·:	Microfault (normal)
	Slightly fractured	↑ ↑c			Pteropods	7/2	Microfault (thrust)
	Moderately fractured	1			Gastropods	-/-	Macrofault
İ	Moderately fractured		Graded interval (normal)		Echinoderms	×	Fracture
	Highly fragmented	∇	Graded interval (reversed)	&	Planktonic foraminifers	%	Mineral-filled fracture
\times			Bedding	•	Benthic foraminifers	<i>1 </i>	Injection Probable compaction
×	Drilling breccia		Planar laminae	\$	Coral debris	×	fracture Totally fractured
	l	-M	Cross laminae (including climbing ripples)	₩	Solitary coral	××.	Tension gashes
		₩ ₩	Wavy lamination/beds Wedge-planar laminae/beds	₩R	Red algae		Slump blocks or slump folds
		77	Cross bedding	₹A	Bryozoan		,
		•••	Graded bedding (normal)	Ø	Fish debris		Load casts
		-	Graded bedding (reversed)	0	Ooids	2	Contorted slump
		5	Flaser bedding		Pellets	<	Vein
		0	Lenticular bedding	0	Peloids	19	Water-escape pipe
		WW USU	Convoluted and contorted bedding Current ripples	•	Lithoclast		Scour
		\mathbb{Z}	Cross stratification	\Diamond	Isolated pebbles cobbles/dropstones		
				4	Plant debris		
				3	Serpulid		