# 14. DATA REPORT: GEOCHEMISTRY AND MINERALOGY OF PERIPLATFORM CARBONATE SEDIMENTS: SITES 1006, 1008, AND 1009<sup>1</sup>

Mitchell Malone<sup>2</sup>

#### ABSTRACT

An intensive mineralogic and geochemical investigation was conducted on sediments recovered during Ocean Drilling Program Leg 166 from the western Great Bahama Bank at Sites 1006, 1008, and 1009. Pleistocene through middle Miocene sediments recovered from Site 1006, the distal location on the Leg 166 transect, are a mixture of bank-derived and pelagic carbonates with lesser and varying amounts of siliciclastic clays. A thick sequence of Pleistocene periplatform carbonates was recovered near the platform edge at Sites 1008 and 1009. Detailed bulk mineralogic, elemental (Ca, Mg, Sr, and Na), and stable isotopic ( $\delta^{18}$ O and  $\delta^{13}$ C) analyses of sediments are presented from a total of 317 samples from all three sites.

## **INTRODUCTION**

Sites 1006, 1008, and 1009 are located on the western slope of the Great Bahama Bank (Fig. 1). Site 1006 (24°23.989'N, 79°27.451'W), the most distal site in the Bahamas Transect, is situated ~30 km from the platform edge in 658 m of water (Eberli, Swart, Malone, et al., 1997). A 717.3-m-thick Pleistocene to middle Miocene sequence of mixed pelagic and bank-derived carbonates with varying and lesser amounts of siliciclastic, clay-sized material was recovered.

Sites 1008 and 1009 are located ~100 km to the south of the main Bahamas Transect (Fig. 1). Site 1009 ( $23^{\circ}36.84'N$ ,  $79^{\circ}3.00'W$ ) is positioned ~4.5 km from the platform edge in 308 m of water. Site 1008 ( $23^{\circ}36.64'N$ ,  $70^{\circ}5.01'W$ ) is located 2.7 km more basinward than Site 1009 in 437 m of water. Thick, expanded Pleistocene sequences of periplatform sediments were recovered at both sites. Based on shipboard biostratigraphy, the age at the base of the section at Site 1009 [226.1 meters below seafloor (mbsf)] is ~1.44 Ma, and a similar age is observed at the bottom of the recovered sequence (134.5 mbsf) at Site 1008 (e.g., Eberli, Swart, Malone, et al., 1997).

Periplatform sediments are important components of both modern and ancient carbonate depositional systems (McIlreath and James, 1978; Cook and Mullins, 1983; Enos and Moore, 1983). However, relative to deep-sea oozes and neritic (platform) carbonates, we know much less about the diagenesis of periplatform sediments. In this report, I document the detailed mineralogic and geochemical analyses of sediments from these three sites. Discussion and interpretation of these results will be presented in a future publication.

# **METHODS**

Sediment samples were analyzed at a frequency of ~1.5 m from Sites 1008 and 1009 and ~10 m from Site 1006. At all three sites, selected lithified horizons were also sampled and analyzed. Before analyses, each sample was examined and classified for the relative degree of lithification. Because the sediments in the present study are not deep-sea oozes, and to be consistent with shipboard descriptions (Eberli, Swart, Malone, et al., 1997), the nongenetic descriptors unlithified, partially lithified, and lithified—are used rather than ooze, chalk, and limestone. All 317 samples were subjected to the



Figure 1. Location of sites drilled during Leg 166. Sites utilized in this report are highlighted in larger, bold type; bathymetry is shown in meters.

same cleaning and analytical procedures. The outer edge of the sample was scraped away to avoid any contamination obtained during sampling, and then approximately 1 g of bulk sediment was rinsed twice in deionized water, centrifuged and decanted, and dried overnight at  $60^{\circ}$ C. Lithified samples were crushed prior to rinsing.

A portion of each sample was analyzed by powder X-ray diffraction (XRD) using CuK $\alpha$  radiation on a Rigaku D-Max 111V-B X-ray diffractometer equipped with a graphite monochromator. Samples were ground in acetone, then smear-mounted onto glass plates and step-scanned from 20°–80° 20, collecting data every 0.03° 20 at 2 s/ step. Quantitative proportions of aragonite, high-Mg calcite (HMC), low-Mg calcite (LMC), and dolomite (normalized to 100% carbon-

<sup>&</sup>lt;sup>1</sup>Swart, P.K., Eberli, G.P., Malone, M.J., and Sarg, J.F. (Eds.), 2000. *Proc. ODP, Sci. Results*, 166: College Station TX (Ocean Drilling Program).

<sup>&</sup>lt;sup>2</sup>Ocean Drilling Program, and Department of Geology and Geophysics, Texas A&M University, 1000 Discovery Drive, College Station TX 77845, USA. malone@odpemail.tamu.edu

ate) were determined by Rietveld refinement of XRD patterns (Rietveld, 1969; Post and Bish, 1989; Bish and Post, 1993). Reported accuracy of the method for carbonate minerals is better than  $\pm 3\%$  (Bish and Post, 1993; Reid et al., 1992). Replicate analyses indicate that the precision is better than 1% when the phase is present in quantities >~40 wt%. Precision subsequently decreases with decreasing weight percent. In addition to the chemical analyses described below, Mg content of HMC and dolomite was determined from the d<sub>{10.4}</sub> shift using the idealized curve of Goldsmith and Graf (1958) after correcting for specimen displacement by Rietveld refinement. Precision determined from replicates is  $\pm 0.3$  mol% Mg.

Each sample was analyzed for stable oxygen and carbon isotopic ratios. Approximately 120 mg of powdered sample was reacted in "100%" phosphoric acid at 70°C in an online, automated Kiel device coupled to a Finnigan MAT 251 stable isotope-ratio mass spectrometer. The carbonate standard NBS-19 ( $\delta^{13}$ C = 1.95%,  $\delta^{18}$ O = -2.20%) was used to calibrate to the Peedee belemnite (PDB) standard. Repeated analyses of NBS-19 yielded reproducibility of better than 0.1% for  $\delta^{18}$ O and  $\delta^{13}$ C (*N* = 34).

For major and minor elemental compositions, ~50 mg of each sample was leached for 30 min in 25 ml of 1M acetic acid buffered with 1M ammonium acetate (pH of ~5). The buffered acetic acid was chosen to minimize contamination from noncarbonate phases. The leachate was centrifuged, decanted, and stored in HDPE bottles for analyses. After appropriate dilution, the solutions were analyzed for Ca, Mg, Sr, and Na by flame atomic absorption spectroscopy using a Perkin-Elmer Model 603 spectrophotometer. Standardization was achieved with SPEX plasma grade standards, coupled with the following internal check standards: reagent grade calcium carbonate, NBS-1C, and two previously well-characterized periplatform carbonate sediment samples from the Maldives (Malone et al., 1990; Malone, unpubl. data). Replicate analyses of samples yielded the following mean relative error for the entire procedure: <1% for mol% CaCO<sub>3</sub>, 3% for mol% MgCO<sub>3</sub>, 3% for Na, and 2% for Sr.

## RESULTS

Bulk mineralogic and geochemical data have been compiled for Sites 1006, 1008, and 1009 in Tables 1, 2, and 3, respectively. In addition to the data, the ODP sample identifier, depth (in mbsf), and degree of lithification (as defined above) of each sample analyzed are also tabulated. In Tables 2 and 3, the shipboard lithologic classification (Eberli, Swart, Malone, et al., 1997) of each sample is listed. Data are depicted graphically vs. depth in Figures 2 through 5.

#### ACKNOWLEDGMENTS

The analyses presented in this report were funded by JOI/USSSP Grant 166-F000343. I am indebted to the ODP Leg 166 technical and scientific parties, especially Co-Chief Scientists Gregor Eberli and Peter Swart. Stable isotopic analyses were performed in the Department of Geology and Geophysics, Texas A&M University, under the direction of Dr. Ethan Grossman. Dr. Andy Hajash kindly provided access to the atomic absorption spectrophotometer. I thank Jennifer Allen for the introduction to the XRD laboratory. Comments from reviewer David Budd are much appreciated.

#### REFERENCES

- Bish, D.L., and Post, J.E., 1993. Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am. Mineral., 78:932–940.
- Cook, H.E., and Mullins, H.T., 1983. Basin margin. In Scholle, P.A., Bebout, D.G., and Moore, C.H. (Eds.), Carbonate Depositional Environments. AAPG Mem., 33:539–618.
- Eberli, G.P., Swart, P.K., Malone, M.J., et al., 1997. Proc. ODP, Init. Repts., 166: College Station, TX (Ocean Drilling Program).
- Enos, P., and Moore, C., 1983. Fore-reef slope environment. *In Scholle*, P., Bebout, D., and Moore, C. (Eds.), *Carbonate Depositional Environments*. AAPG Mem., 33:507–618.
- Goldsmith, J.R., and Graf, D.L., 1958. Relations between lattice constraints and composition of the Ca-Mg carbonates. Am. Mineral., 43:84–101.
- Malone, M.J., Baker, P.A., Burns, S.J., and Swart, P.K., 1990. Geochemistry of periplatform carbonate sediments, Leg 115, Site 716 (Maldives Archipelago, Indian Ocean). *In Duncan*, R.A., Backman, J., Peterson, L.C., et al., *Proc. ODP, Sci. Results*, 115: College Station, TX (Ocean Drilling Program), 647–659.
- McIlreath, I.A., and James, N.P., 1978. Facies models, 13: carbonate slopes. Geosci. Can., 5:189–199.
- Post, J.E., and Bish, D.L., 1989. Rietveld refinement of crystal structures using powder X-ray diffraction data. *In Bish, D.L., and Post, J.E. (Eds.), Modern Powder Diffraction.* Rev. Mineral., Mineral. Soc. Am., 20:277– 308.
- Reid, R.P., MacIntyre, I.G., and Post, J.E., 1992. Micritized skeletal grains in northern Belize Lagoon: a major source of Mg-calcite mud. J. Sediment. Petrol., 62:145–156.
- Rietveld, H.M., 1969. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr., 2:65–71.

Date of initial receipt: 22 February 1998 Date of acceptance: 21 May 1999 Ms 166SR-125

| Table 1. Mineralogic, elemental, and stable isotopic comp | osition of bulk carbonate sediments, Site 1006. |
|-----------------------------------------------------------|-------------------------------------------------|
|-----------------------------------------------------------|-------------------------------------------------|

|                                |                  |               |              |              |              |            | mol% Mg | mol% Mg      |                   |                   |                 |              |                | -              |                   |
|--------------------------------|------------------|---------------|--------------|--------------|--------------|------------|---------|--------------|-------------------|-------------------|-----------------|--------------|----------------|----------------|-------------------|
| Core, section,                 | Depth            | Degree of     | Aragonite    | LMC          | HMC          | Dolomite   | HMC     | Dolomite     | CaCO <sub>3</sub> | MgCO <sub>3</sub> | Mg              | Sr           | Na             | $\delta^{13}C$ | δ <sup>18</sup> O |
| interval (cm)                  | (mbsf)           | lithification | (wt%)        | (wt%)        | (wt%)        | (wt%)      | (XRD)   | (XRD)        | (mol%)            | (mol%)            | (ppm)           | (ppm)        | (ppm)          | PDB            | PDB               |
| 166-1006A-                     | 2.25             |               | 45.0         | 20.0         | 22.2         |            | 11.0    |              | 04.47             | 2.7               | 0.070           | 5722         | 2646           | 2.49           | 0.04              |
| 1H-5, 25-27<br>1H-5, 88-90     | 5.25<br>6.88     |               | 45.8<br>35.4 | 30.9<br>21.1 | 23.5<br>43.5 |            | 11.2    |              | 94.47<br>92.29    | 5.7<br>6.2        | 9,079<br>15,124 | 5755         | 2040           | 2.48           | -0.24             |
| 2H-1, 17-19                    | 7.27             | PL            | 13.7         | 27.2         | 59.1         |            | 12.2    |              | 89.69             | 9.3               | 22,977          | 2296         | 1653           | 2.61           | 2.52              |
| 2H-5, 25-27<br>2H-5, 68-70     | 10.55            |               | 6.4          | 93.6         | 50.2         |            | 12.4    |              | 95.55<br>96.61    | 2.4               | 5,888           | 2336         | 1622           | 1.63           | -0.14             |
| 3H-3, 25-27                    | 19.85            |               | 17.8         | 82.2         |              |            |         |              | 96.41             | 1.9               | 4,574           | 3377         | 3031           | 1.37           | 0.75              |
| 4H-5, 25-27<br>4H-5, 13-15     | 32.23            | PL            | 11.2         | 88.8         |              |            |         |              | 96.81<br>96.88    | 2.3               | 5,308           | 4232<br>2614 | 1482           | 1.62           | 1.98              |
| 5H-3, 25-27                    | 38.85            |               | 55.7         | 44.3         |              |            |         |              | 95.31             | 2.1               | 5,099           | 8321         | 3739           | 3.76           | 0.87              |
| 7H-3, 25-27                    | 57.85            |               | 54.2         | 45.6         |              |            |         |              | 96.31<br>96.34    | 1.7               | 4,081           | 7895         | 2456           | 2.99           | 0.30              |
| 8H-1, 135-137<br>8H 3, 25, 27  | 65.45            | PL            | 28.0         | 72.0         |              |            |         |              | 96.48<br>96.55    | 2.2               | 5,266           | 5048<br>7821 | 1778           | 2.52           | 1.41              |
| 9H-2, 94-96                    | 76.04            | PL            | 20.0         | 80.0         |              |            |         |              | 96.96             | 2.0               | 4,792           | 4020         | 1398           | 2.15           | 1.43              |
| 9H-3, 25-27<br>10H-1 15-16     | 76.85<br>83.25   | PL.           | 54.3<br>19.2 | 43.7<br>80.8 |              | 2.0        |         | 42.5         | 95.38<br>96.99    | 2.5               | 6,140<br>4 733  | 8357<br>4260 | 2590<br>1323   | 3.56<br>2.37   | 0.81              |
| 10H-3, 25-27                   | 86.35            |               | 7.0          | 92.6         |              | 0.4        |         | 42.9         | 97.49             | 1.7               | 4,133           | 3130         | 1032           | 1.91           | 1.41              |
| 11H-1, 142-144<br>11H-3, 25-27 | 94.02<br>95.85   | PL            | 5.7<br>24.6  | 94.1<br>75.0 |              | 0.2        |         |              | 97.59<br>96.20    | 1.6<br>2.3        | 3,872<br>5,699  | 2587<br>4732 | $1202 \\ 2105$ | 2.17<br>2.04   | 1.73<br>1.12      |
| 12H-1, 78-80                   | 102.88           | PL            | 14.2         | 84.4         |              | 1.4        |         | 41.5         | 96.30             | 2.8               | 6,761           | 3778         | 1121           | 2.54           | 1.93              |
| 12H-3, 25-27<br>12H-4, 7-9     | 105.35           | PL            | 39.3<br>20.3 | 56.8<br>77.5 |              | 3.9<br>2.2 |         | 41.4<br>42.1 | 94.78<br>96.25    | 3.7<br>2.7        | 8,970<br>6,509  | 6271<br>4245 | 1891<br>1354   | $2.70 \\ 2.10$ | 1.17<br>1.63      |
| 13H-1, 131-133                 | 112.91           | PL            | 24.2         | 73.8         |              | 2.0        |         | 42.7         | 96.71             | 2.0               | 4,954           | 4987         | 1555           | 2.10           | 1.34              |
| 13H-3, 25-27<br>13H-4, 94-96   | 114.85           | PL            | 36.0<br>20.8 | 61.2<br>78.3 |              | 2.8<br>0.9 |         | 42.1         | 95.89<br>96.68    | 2.5<br>2.2        | 6,114<br>5,260  | 5982<br>4620 | 2086<br>1442   | 2.53           | 1.35              |
| 14H-3, 25-27                   | 124.35           |               | 37.3         | 61.9         |              | 0.8        |         |              | 96.11             | 2.3               | 5,554           | 6148         | 2073           | 2.31           | 0.65              |
| 14H-4, 72-74<br>15H-2, 130-132 | 120.52           | PL            | 10.4         | 83.6         |              | 1.7        |         | 42.1         | 97.07<br>96.78    | 2.0               | 4,932<br>5,214  | 3847         | 1223           | 1.95           | 1.34              |
| 15H-3, 25-27<br>16H-2, 76-78   | 133.85           | PI            | 27.9         | 70.4         |              | 1.7        |         | 42.6         | 96.52<br>96.71    | 1.9               | 4,650<br>5,288  | 5425<br>4333 | 2170<br>1432   | 2.36           | 0.67              |
| 16H-3, 25-27                   | 143.35           | 1L            | 51.3         | 48.3         |              | 0.4        |         | 45.0         | 96.64             | 1.5               | 3,724           | 9083         | 1795           | 3.61           | 0.73              |
| 17H-3, 25-27<br>18H-3, 25-27   | 152.85           |               | 20.7<br>29.1 | 79.3<br>67 9 |              | 3.0        |         | 419          | 97.18<br>96.07    | 1.6<br>2.5        | 3,820<br>6 160  | 4505<br>5540 | 1683<br>1753   | 1.33           | 0.28              |
| 19H-3, 25-27                   | 171.85           |               | 24.3         | 74.1         |              | 1.6        |         | 42.1         | 96.45             | 2.3               | 5,640           | 4993         | 1515           | 1.96           | 0.93              |
| 20H-3, 25-27<br>20H-4, 116-118 | 181.35           | PL.           | 36.1<br>8.6  | 61.4<br>89.5 |              | 2.5<br>1.9 |         | 42.5<br>42.2 | 96.28<br>96.92    | 2.1<br>2.3        | 5,171<br>5,505  | 6409<br>3565 | 1966<br>945    | 2.70           | 0.49              |
| 21H-3, 25-27                   | 190.85           |               | 31.5         | 67.6         |              | 0.9        |         | 40.1         | 96.83             | 1.6               | 3,869           | 5854         | 2075           | 1.66           | -0.12             |
| 22H-3, 25-27<br>23H-3, 25-27   | 200.35 209.85    |               | 25.9<br>15.5 | 83.5         |              | 1.4        |         | 42.1<br>42.9 | 96.63<br>96.97    | 2.1<br>2.0        | 4,982 4,872     | 4125         | 1073           | 2.02           | 0.77              |
| 24H-3, 25-27                   | 219.35           |               | 28.3         | 71.2         |              | 0.5        |         | 12.6         | 96.80             | 1.8               | 4,320           | 5280         | 1876           | 1.59           | 0.37              |
| 26H-3, 25-27                   | 238.35           |               | 14.4         | 83.6         |              | 2.0        |         | 43.9         | 90.99<br>97.09    | 1.6               | 3,920           | 3955         | 1878           | 1.30           | 0.19              |
| 27H-3, 25-27                   | 247.85           | PL            | 13.2         | 84.1<br>85.5 |              | 2.7        |         | 43.7<br>42.7 | 97.14<br>96.95    | 1.8               | 4,298           | 4006<br>4044 | 1452<br>2357   | 1.22           | 0.76              |
| 29H-2, 25-27<br>29H-2, 25-27   | 265.35           |               | 14.3         | 82.7         |              | 3.0        |         | 42.6         | 96.95<br>96.95    | 1.9               | 4,717           | 3911         | 1526           | 1.14           | 0.70              |
| 30X-1, 43-45<br>30X-2, 25-27   | 273.53           | PL            | 7.8          | 88.6<br>81.3 |              | 3.6<br>3.4 |         | 43.3<br>42.4 | 97.13<br>97.19    | 1.8               | 4,395           | 3639<br>4372 | 1492<br>1805   | 0.65           | -0.04             |
| 30X-4, 115-117                 | 278.75           | PL            | 9.0          | 89.0         |              | 2.0        |         | 43.6         | 97.31             | 1.6               | 3,862           | 3638         | 1581           | 0.75           | -0.18             |
| 31X-2, 25-27<br>31X-3, 58-60   | 280.65<br>282.48 |               | 11.4<br>18.0 | 85.5<br>79.2 |              | 3.1<br>2.8 |         | 42.8<br>41.9 | 97.26<br>97.02    | 1.6<br>1.7        | 3,779<br>4,166  | 3911<br>4525 | 1684<br>1722   | 0.81           | -0.28<br>-0.02    |
| 32X-2, 25-27                   | 286.45           | DI            | 13.5         | 85.0         |              | 1.5        |         | 42.1         | 97.47             | 1.3               | 3,227           | 4065         | 1685           | 0.97           | 0.29              |
| 33X-2, 25-27<br>33X-4, 112-115 | 295.65 299.52    | PL<br>PL      | 8.0<br>7.4   | 92.0<br>92.6 |              |            |         |              | 97.71<br>97.94    | 1.4               | 3,296 2,924     | 3326         | 1270           | 0.96           | 0.60              |
| 34X-2, 25-27                   | 304.85           | PL            | 8.2          | 90.1         |              | 1.7        |         | 43.2         | 97.64             | 1.3               | 3,265           | 3510         | 1411           | 0.94           | 0.28              |
| 34X-5, 150-152<br>34X-6, 55-57 | 311.15           | PL            | 10.0         | 90.7<br>87.7 |              | 2.3        |         | 42.6         | 97.51<br>97.55    | 1.5               | 3,579           | 3539         | 1315           | 0.38           | -0.43             |
| 35X-2, 22-24                   | 314.12           | ITU           | 6.7          | 89.9         |              | 3.4        |         | 43.0         | 97.17             | 1.7               | 4,169           | 3372         | 1668           | 1.10           | 0.40              |
| 36X-2, 25-27                   | 323.25           | PL            | 12.4         | 86.3         |              | 1.3        |         | 43.4         | 97.49<br>96.88    | 2.1               | 5,018           | 3584         | 1491           | 1.47           | 1.26              |
| 37X-2, 25-27                   | 332.35           | PL            | 2.5          | 96.5<br>96.4 |              | 1.0        |         | 42.4<br>44.3 | 97.75<br>97.90    | 1.4               | 3,321           | 2675<br>2705 | 1326           | 0.89           | 1.02              |
| 38X-2, 25-27                   | 341.55           | PL            | 12.8         | 85.8         |              | 1.4        |         | 43.1         | 97.72             | 1.1               | 2,772           | 3968         | 1562           | 0.84           | 0.07              |
| 39X-2, 25-27<br>40X-2, 25-27   | 350.65<br>359.85 | PL            | 9.7<br>7.4   | 86.9<br>90.2 |              | 3.4<br>2.4 |         | 42.9<br>43.3 | 97.70<br>97.27    | 1.3<br>1.5        | 3,045<br>3,557  | 3643<br>3252 | 1453<br>2055   | 0.69<br>0.91   | -0.10<br>0.42     |
| 41X-2, 25-27                   | 369.05           | PL            | 5.7          | 92.0         |              | 2.3        |         | 42.9         | 97.70             | 1.4               | 3,509           | 2961         | 1183           | 0.82           | 0.78              |
| 42X-2, 25-27<br>43X-CC, 25-27  | 378.15 386.35    | PL<br>PL      | 6.6<br>13.6  | 89.8<br>82.8 |              | 3.6<br>3.6 |         | 42.6<br>42.4 | 97.45<br>97.47    | 1.7<br>1.4        | 4,149<br>3,380  | 3289<br>3913 | 1081<br>1583   | 0.51 0.87      | -0.33             |
| 44X-2, 25-27                   | 396.45           | PL            | 14.6         | 82.9         |              | 2.5        |         | 42.4         | 97.61             | 1.2               | 2,998           | 3817         | 1658           | 1.15           | -0.40             |
| 45X-2, 25-27<br>46X-2, 25-27   | 405.75           | PL            | 28.5         | 62.1<br>69.7 |              | 5.5<br>1.8 |         | 42.0         | 97.02<br>96.81    | 1.6               | 3,484           | 5372         | 2615           | 1.14           | -0.77             |
| 47X-2, 25-27                   | 424.55           | PL<br>PI      | 10.8         | 87.0<br>81.5 |              | 2.2        |         | 42.0         | 97.26<br>97.33    | 1.8               | 4,254           | 3549         | 1347           | 1.59           | 0.35              |
| 48X-5, 115-117                 | 439.15           | PL            | 20.7         | 79.3         |              | 0.7        |         |              | 97.41             | 1.3               | 3,075           | 4703         | 1793           | 1.65           | 0.03              |
| 49X-2, 25-27<br>49X-2, 110-111 | 442.75<br>443.6  | PL<br>LITH    | 16.3<br>17.6 | 83.1<br>82.4 |              | 0.6        |         |              | 97.63<br>97.06    | 1.2               | 2,880<br>3,097  | 4462<br>5358 | 1537<br>2406   | 1.48<br>1.47   | 0.16              |
| 50X-2, 25-27                   | 451.8            | PL            | 27.3         | 71.9         |              | 0.8        |         |              | 97.45             | 1.1               | 2,780           | 5846         | 1770           | 1.80           | -0.47             |
| 50X-5, 134-136<br>51X-2, 25-27 | 457.44<br>461.05 | LITH<br>PL    | 12.8<br>37.0 | 86.3<br>62.3 |              | 0.9<br>0.7 |         |              | 97.79<br>97.06    | 1.3               | 3,218<br>3.020  | 4175<br>6613 | 945<br>2136    | 1.79           | -0.43<br>-0.66    |
| 51X-5, 19-22                   | 465.49           | LITH          | 12.1         | 87.9         |              | 0.4        |         |              | 97.62             | 1.4               | 3,518           | 4065         | 1078           | 1.74           | 0.39              |
| 51A-5, 116-119<br>52X-2, 25-27 | 400.46<br>470.45 | PL            | 21.8<br>33.6 | 77.8<br>65.7 |              | 0.4        |         |              | 97.44<br>97.27    | 1.3               | 5,091<br>2,837  | 5198<br>5967 | 1584<br>2005   | 1.80<br>1.53   | -0.15<br>-0.74    |
| 52X-6, 20-22                   | 476.4            | LITH          | 10.6         | 88.8         |              | 0.6        |         |              | 97.65             | 1.3               | 3,273           | 3976         | 1249           | 1.43           | 0.40              |
| 53X-1, 52-34<br>53X-2, 25-27   | 479.85           | PL            | 26.7         | 72.5         |              | 0.8        |         |              | 97.40             | 1.5               | 2,984           | 5203         | 1768           | 1.44           | -0.55             |
| 54X-2, 9-11<br>54X-5, 120, 122 | 488.79<br>494 4  | PL<br>pt      | 15.8         | 83.7         |              | 0.5        |         |              | 97.53             | 1.3               | 3,259           | 4718         | 1353           | 1.75           | 0.28              |
| 55X-2, 20-22                   | 498              | PL            | 30.8         | 68.4         |              | 0.5        |         |              | 97.11             | 1.1               | 2,754 3,110     | 6115         | 2024           | 1.76           | -0.30             |

## Table 1 (continued).

| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Degree of lithification | Aragonite<br>(wt%) | LMC<br>(wt%) | HMC<br>(wt%) | Dolomite<br>(wt%) | mol% Mg<br>HMC<br>(XRD) | mol% Mg<br>Dolomite<br>(XRD) | CaCO <sub>3</sub><br>(mol%) | MgCO <sub>3</sub><br>(mol%) | Mg<br>(ppm) | Sr<br>(ppm) | Na<br>(ppm) | δ <sup>13</sup> C<br>PDB | δ <sup>18</sup> O<br>PDB |
|---------------------------------|-----------------|-------------------------|--------------------|--------------|--------------|-------------------|-------------------------|------------------------------|-----------------------------|-----------------------------|-------------|-------------|-------------|--------------------------|--------------------------|
| 55X-4, 24-26                    | 501.04          | PL                      | 29.8               | 69.1         |              | 1.1               |                         | 42.8                         | 97.12                       | 1.3                         | 3,216       | 6060        | 1964        | 1.59                     | -0.51                    |
| 56X-2, 25-27                    | 507.15          | PL                      | 17.5               | 81.6         |              | 0.9               |                         |                              | 97.33                       | 1.5                         | 3,736       | 4504        | 1404        | 1.91                     | 0.43                     |
| 56X-4, 61-63                    | 510.51          | LITH                    | 41.4               | 57.9         |              | 0.7               |                         |                              | 96.91                       | 1.2                         | 2,874       | 7105        | 2490        | 1.78                     | -0.88                    |
| 56X-6, 94-97                    | 513.84          | LITH                    | 11.6               | 87.2         |              | 1.2               |                         | 42.9                         | 97.14                       | 1.7                         | 4,193       | 4341        | 1458        | 1.69                     | 0.58                     |
| 57X-1, 140-142                  | 516.4           | PL                      | 53.2               | 46.8         |              |                   |                         |                              | 96.65                       | 1.2                         | 2,931       | 8097        | 2767        | 1.92                     | -0.78                    |
| 57X-2, 25-27                    | 516.75          | PL                      | 27.6               | 71.3         |              | 1.1               |                         | 42.5                         | 96.73                       | 1.8                         | 4,456       | 5281        | 1907        | 1.80                     | 0.25                     |
| 58X-2, 25-27                    | 526.45          | PL                      | 27.4               | 71.4         |              | 1.2               |                         | 42.9                         | 97.21                       | 1.3                         | 3,087       | 6049        | 1881        | 1.67                     | -0.56                    |
| 59X-2, 114-116                  | 536.94          | PL                      | 31.6               | 66.9         |              | 1.5               |                         | 41.9                         | 96.95                       | 1.5                         | 3,574       | 6108        | 2001        | 1.78                     | -0.33                    |
| 60X-2, 25-27                    | 545.65          | PL                      | 27.6               | 71.8         |              | 0.6               |                         |                              | 97.15                       | 1.2                         | 2,954       | 5984        | 2180        | 1.38                     | -0.54                    |
| 60X-3, 16-18                    | 547.06          | PL                      | 20.4               | 79.2         |              | 0.4               |                         |                              | 97.48                       | 1.2                         | 2,853       | 5377        | 1669        | 1.37                     | -0.12                    |
| 61X-2, 25-27                    | 555.25          | LITH                    | 21.4               | 77.7         |              | 0.9               |                         |                              | 97.39                       | 1.3                         | 3,036       | 5667        | 1627        | 1.27                     | -0.72                    |
| 61X-5, 98-100                   | 560.48          | LITH                    | 7.6                | 91.3         |              | 1.1               |                         | 42.9                         | 97.58                       | 1.4                         | 3,505       | 4223        | 1131        | 1.18                     | 0.07                     |
| 62X-2, 25-27                    | 564.95          | LITH                    | 24.8               | 74.2         |              | 1.0               |                         | 42.8                         | 96.91                       | 1.4                         | 3,461       | 5819        | 2280        | 1.17                     | -0.67                    |
| 62X-2, 63-65                    | 565.33          | PL                      | 11.4               | 87.2         |              | 1.4               |                         | 42.7                         | 97.66                       | 1.2                         | 3,006       | 4036        | 1458        | 0.87                     | -0.41                    |
| 63X-2, 25-27                    | 574.55          | PL                      |                    | 99.1         |              | 0.9               |                         |                              | 97.70                       | 1.6                         | 3,936       | 3321        | 687         | 1.42                     | 0.39                     |
| 63X-5, 54-56                    | 579.34          | LITH                    | 14.8               | 85.2         |              |                   |                         |                              | 95.99                       | 1.0                         | 2,401       | 5367        | 5515        | 1.06                     | -0.61                    |
| 63X-5, 61-63                    | 579.41          | PL                      | 14.8               | 85.2         |              |                   |                         |                              | 97.52                       | 0.9                         | 2,141       | 4537        | 2470        | 1.21                     | -0.59                    |
| 64X-2, 25-27                    | 584.15          | PL                      | 9.1                | 90.3         |              | 0.6               |                         |                              | 97.35                       | 1.6                         | 3,998       | 3835        | 1305        | 1.49                     | 0.63                     |
| 64X-CC, 30-32                   | 589.88          | LITH                    | 2.5                | 97.5         |              |                   |                         |                              | 98.04                       | 1.2                         | 2,811       | 3630        | 879         | 1.26                     | 0.43                     |
| 65X-4, 103-105                  | 597.63          | PL                      | 4.2                | 95.3         |              | 0.5               |                         |                              | 97.40                       | 1.2                         | 3,000       | 3025        | 2332        | 1.34                     | 0.39                     |
| 65X-6, 26-28                    | 599.86          | PL                      | 26.1               | 73.9         |              |                   |                         |                              | 96.64                       | 1.0                         | 2,353       | 5713        | 3984        | 0.83                     | -1.01                    |
| 68X-2, 25-27                    | 622.75          | PL                      | 26.0               | 71.0         |              | 3.0               |                         | 42.9                         | 96.49                       | 1.7                         | 4,175       | 5194        | 2737        | 1.66                     | -0.36                    |
| 77X-3, 62-64                    | 711.3           | PL                      | 4.5                | 94.6         |              | 0.9               |                         |                              | 97.72                       | 1.0                         | 2,348       | 3231        | 2173        | 1.54                     | -0.86                    |
| 77X-4, 4-6                      | 712.24          | PL                      |                    | 100.0        |              |                   |                         |                              | 97.94                       | 0.8                         | 1,843       | 2983        | 2204        | 1.64                     | -0.50                    |

Notes: LMC = low-Mg calcite, HMC = high-Mg calcite, XRD = X-ray diffraction, PDB = Peedee belemnite standard. Degree of lithification column abbreviations: PL = partially lithified, LITH = lithified, unmarked areas = unlithified. See text for method of lithification classification.

## This table also appears on the volume CD-ROM.

## Table 2. Mineralogic, elemental, and stable isotopic composition of bulk carbonate sediments, Site 1008.

|                             |        |                         |               |           |       |       |          | mol% Mg | mol% Mg  |                   |                   |        |       |         |                |                |
|-----------------------------|--------|-------------------------|---------------|-----------|-------|-------|----------|---------|----------|-------------------|-------------------|--------|-------|---------|----------------|----------------|
| Core, section,              | Depth  | Shipboard               | Degree of     | Aragonite | HMC   | LMC   | Dolomite | HMC     | Dolomite | CaCO <sub>3</sub> | MgCO <sub>3</sub> | Mg     | Na    | Sr      | $\delta^{13}C$ | $\delta^{18}O$ |
| interval (cm)               | (mbsf) | lithology               | lithification | (wt%)     | (wt%) | (wt%) | (wt%)    | (XRD)   | (XRD)    | (mol%)            | (mol%)            | (ppm)  | (ppm) | (ppm)   | PDB            | PDB            |
|                             |        |                         |               |           |       |       |          |         |          |                   |                   |        |       |         |                |                |
| 166-1008A-                  |        |                         |               |           |       |       |          |         |          |                   |                   |        |       |         |                |                |
| 1H-1, 26-28                 | 0.26   | ul pel foram wack       |               | 62.6      | 27.7  | 9.8   | 0        | 11.6    |          | 93.13             | 4.5               | 10,999 | 3320  | 7,990   | 3.90           | -0.35          |
| 1H-2, 29-31                 | 1.79   | ul pel foram wack       |               | 68.2      | 24.2  | 7.6   | 0        | 12.5    |          | 93.71             | 3.6               | 8,761  | 3719  | 9,281   | 4.16           | -0.25          |
| 1H-3, 29-31                 | 3.29   | ul pel foram wack       |               | 80.4      | 13.3  | 6.3   | 0        | 12.4    |          | 93.67             | 2.8               | 6,848  | 4713  | 12,560  | 4.51           | -0.26          |
| 1H-4, 29-31                 | 4.79   | ul mud-wack             |               | 88.8      | 7.2   | 4.0   | 0        | 11.5    |          | 94.59             | 1.5               | 3,651  | 6027  | 10,949  | 4.88           | -0.24          |
| 1H-5, 43-45                 | 6.43   | pl floatstone           | LITH          | 6.9       | 83.5  | 9.6   | 0        | 12.7    |          | 86.88             | 12.2              | 30,116 | 1718  | 1,828   | 2.98           | 2.86           |
| 2H-1, 29-31                 | 6.89   | pl floatsone w/nodules  | PL            | 19.1      | 64.0  | 16.9  | 0        | 12.6    |          | 89.77             | 9.0               | 22,131 | 2094  | 2,924   | 3.21           | 2.12           |
| 2H-2, 29-31                 | 8.39   | ul pel wackestone       |               | 84.1      | 10.0  | 5.9   | 0        | 11.5    |          | 95.16             | 1.7               | 4,021  | 4695  | 9,854   | 4.34           | -0.18          |
| 2H-3, 29-31                 | 9.89   | ul mud-wackestone       |               | 77.8      | 15.5  | 6.7   | 0        | 12.4    |          | 94.51             | 2.8               | 6,679  | 3975  | 8,750   | 4.32           | -0.02          |
| 2H-3, 98-101                | 10.58  | pl packstone w/hard     | LITH          | 3.9       | 87.7  | 8.4   | 0        | 13.1    |          | 87.33             | 11.5              | 28,304 | 2375  | 1,667   | 3.52           | 3.62           |
|                             |        | layers                  |               |           |       |       |          |         |          |                   |                   |        |       |         |                |                |
| 2H-4, 29-31                 | 11.39  | pl floatstone w/hard    | PL            | 4.3       | 73.9  | 21.8  | 0        | 12.5    |          | 86.40             | 12.5              | 30,851 | 2119  | 1,952   | 3.08           | 3.27           |
| ,                           |        | lavers                  |               |           |       |       |          |         |          |                   |                   | ,      |       | ,       |                |                |
| 2H-5 29-31                  | 12.89  | ul foram pel wackestone |               | 52.4      | 33.6  | 14.0  | 0        | 11.9    |          | 92.16             | 53                | 12.849 | 4191  | 6 580   | 3 89           | 0 44           |
| 2H-6, 29-31                 | 14 39  | ul foram wackestone     |               | 69.3      | 17.9  | 12.8  | ŏ        | 12.0    |          | 94 39             | 3.1               | 7 636  | 3348  | 8,806   | 4 26           | 0.29           |
| 2H-7 29-31                  | 15.89  | ul pel wackestone       |               | 66.7      | 19.6  | 13.7  | ŏ        | 11.8    |          | 94 24             | 3.2               | 7 833  | 3548  | 8 642   | 4 27           | 0.22           |
| 3H-1 29-31                  | 16 39  | ul foram wackestone     |               | 74.1      | 12.7  | 13.2  | ŏ        | 12.1    |          | 95.07             | 2.6               | 6 292  | 2819  | 9,639   | 4 37           | 0.34           |
| 3H-2 29-31                  | 17.89  | ul pteropod for wack-   |               | 62.1      | 23.8  | 14.1  | ŏ        | 12.1    |          | 93.01             | 41                | 9,999  | 4401  | 8,390   | 3.95           | 0.28           |
| 511 2, 27 51                | 17.07  | no preference for where |               | 02.1      | 25.0  | 1     | 0        | 12.2    |          | 25.01             |                   | ,,,,,  | 1101  | 0,570   | 5.75           | 0.20           |
| 3H 3 20 31                  | 10 30  | ul foram nel wackestone |               | 823       | 7.0   | 0.8   | 0        | 12.0    |          | 05.60             | 1.6               | 3 878  | 3862  | 9.640   | 1 12           | 0.14           |
| 211-3, 29-51                | 20.20  | nl bio pools wools      | DI            | 12.2      | 50.2  | 28.5  | 0        | 12.0    |          | 07.59             | 1.0               | 2 209  | 1866  | 2 1 4 2 | 2.42           | 2 27           |
| 21 4 20 21                  | 20.29  | pi bio pack-wack        | ГL            | 517       | 26.0  | 20.5  | 0        | 12.5    |          | 97.50             | 1.4               | 10,669 | 2102  | 5 091   | 2.40           | 0.70           |
| 21 5 20 21                  | 20.69  | ul for week w/poppos    |               | 51.7      | 20.9  | 10.2  | 0        | 11.9    |          | 93.99             | 4.4               | 11,000 | 2195  | 6.074   | 2 22           | 0.70           |
| 211 6 20 21                 | 22.39  | ul forem week           |               | 67.5      | 29.4  | 19.2  | 0        | 11.0    |          | 95.05             | 4.0               | 7 7 45 | 2257  | 0,074   | 2.22           | -0.08          |
| 211 7 20 21                 | 25.09  | ul foldill wack         |               | 71.6      | 14.4  | 11.2  | 0        | 12.5    |          | 94.29             | 2.4               | 6 220  | 2024  | 9,205   | 2.65           | -0.39          |
| JH-7, 29-31                 | 25.59  | ul pel wack             |               | 71.0      | 14.4  | 14.0  | 0        | 11.5    |          | 95.15             | 2.0               | 4 227  | 2001  | 0,795   | 5.05           | -0.19          |
| 411-1, 29-31                | 25.09  | ui pei wack             | DI            | 70.5      | 25.0  | 51.0  | 0        | 12.1    |          | 93.93             | 1.0               | 12 220 | 1601  | 2 1 4 7 | 2.05           | 1.26           |
| 411-1, 156-140              | 20.98  | noulle w/black grains   | PL            | 23.0      | 23.0  | 25.0  | 0        | 12.1    |          | 95.80             | 5.1               | 12,338 | 1081  | 5,147   | 2.00           | 1.50           |
| 4H-2, 29-31<br>4H-2, 20, 21 | 27.39  | nanno ooze w/forams     |               | 43.4      | 31.0  | 25.0  | 0        | 12.2    |          | 92.74             | 5.4               | 13,155 | 2607  | 5 701   | 3.42           | 0.50           |
| 411-5, 29-51                | 20.09  | nanno ooze              |               | 45.0      | 20.5  | 20.5  | 0        | 11.9    |          | 92.50             | 5.9               | 14,570 | 2559  | 5,701   | 3.70           | -0.14          |
| 4H-4, 29-31                 | 30.39  | nanno ooze              |               | 48.7      | 32.8  | 18.5  | 0        | 12.5    |          | 92.48             | 5.7               | 13,890 | 2620  | 0,007   | 3.73           | -0.10          |
| 4H-5, 29-31                 | 31.89  | nanno ooze              |               | 51.8      | 32.6  | 15.0  | 0        | 12.7    |          | 92.90             | 5.2               | 12,/0/ | 2649  | 6,489   | 3.68           | -0.10          |
| 4H-0, 29-31                 | 33.39  | nanno ooze              |               | 04.2      | 19.5  | 10.5  | 0        | 12.0    |          | 94.57             | 3.4               | 8,130  | 2012  | 8,210   | 4.03           | 0.01           |
| 4H-7, 29-31                 | 34.89  | nanno ooze              |               | 19.2      | 9.7   | 11.1  | 0        | 12.0    |          | 95.39             | 2.1               | 5,125  | 3011  | 10,317  | 4.40           | -0.14          |
| 5H-1, 29-31                 | 35.39  | ul pel wack             |               | 83.7      | 1.3   | 9.0   | 0        | 12.0    |          | 96.01             | 1.5               | 3,6/1  | 2950  | 10,278  | 4.60           | 0.33           |
| 5H-2, 29-31                 | 36.89  | ul pel wack             | DI            | 80.2      | 9.7   | 10.1  | 0        | 11.9    |          | 95.75             | 2.0               | 4,780  | 2/10  | 9,551   | 4.68           | 0.33           |
| 5H-3, 29-31                 | 38.39  | nanno ooze w/nodules    | PL            | 24.6      | 50.5  | 24.9  | 0        | 12.4    |          | 91.47             | 1.4               | 18,160 | 1/94  | 3,060   | 2.87           | 2.03           |
| 6H-1, 29-31                 | 40.49  | ul foram wack           |               | 37.7      | 23.9  | 38.4  | 0        | 12.4    |          | 93.89             | 4.8               | 11,640 | 1910  | 4,457   | 2.87           | 1.06           |
| 6H-2, 29-31                 | 41.99  | ul pel wack             |               | 9.6       | 54.6  | 35.8  | 0        | 12.6    |          | 90.72             | 8.5               | 20,907 | 1291  | 1,901   | 2.59           | 2.52           |
| 6H-2, 74-76                 | 42.44  | ul pel wack             | PL            | 9.7       | 57.9  | 32.4  | 0        | 12.5    |          | 89.45             | 9.6               | 23,549 | 1722  | 2,158   | 3.07           | 2.75           |
| 6H-3, 29-31                 | 43.49  | ul pel mud-wack         |               | 74.6      | 9.8   | 15.6  | 0        | 11.7    |          | 95.25             | 2.1               | 5,199  | 3538  | 9,232   | 4.65           | 0.78           |
| 6H-4, 29-31                 | 44.99  | ul-pl pel wack          |               | 57.3      | 17.3  | 25.4  | 0        | 12.8    |          | 94.20             | 4.0               | 9,703  | 2287  | 7,133   | 4.11           | 1.09           |
| 6H-5, 29-31                 | 46.49  | ul pel wack             |               | 68.5      | 8.0   | 23.5  | 0        | 12.2    |          | 95.83             | 2.2               | 5,438  | 2305  | 8,104   | 4.52           | 0.69           |
| 6H-6, 29-31                 | 47.99  | ul pel wack             |               | 83.7      | 4.0   | 12.3  | 0        | 12.7    |          | 96.49             | 1.3               | 3,168  | 2411  | 9,981   | 4.88           | 0.33           |
| 6H-7, 29-31                 | 49.49  | ul pel wack-mud         |               | 77.2      | 3.6   | 19.2  | 0        | 11.9    |          | 95.82             | 1.7               | 4,130  | 2986  | 10,208  | 4.74           | 0.16           |
| 7H-1, 29-31                 | 49.99  | ul pel wack-mud         |               | 77.5      | 5.0   | 17.5  | 0        | 13.0    |          | 95.93             | 1.7               | 4,152  | 2847  | 9,673   | 4.72           | 0.19           |
| 7H-2, 29-31                 | 51.49  | ul pel wack-mud         |               | 80.6      | 6.6   | 12.8  | 0        | 11.0    |          | 94.99             | 2.2               | 5,376  | 3174  | 12,240  | 5.05           | 0.13           |
| 7H-3, 29-31                 | 52.99  | ul pel wack             |               | 77.1      | 4.7   | 17.8  | 0.5      | 11.7    |          | 95.80             | 1.8               | 4,446  | 2861  | 9,740   | 4.63           | 0.25           |
| 7H-4, 29-31                 | 54.49  | ul pel mud-wack         |               | 81.0      | 6.1   | 12.6  | 0.3      | 12.4    |          | 95.71             | 1.9               | 4,693  | 2965  | 9,226   | 4.63           | 0.17           |

Table 2 (continued).

| Core, section,<br>interval (cm)                                              | Depth<br>(mbsf)                                | Shipboard<br>lithology                                                     | Degree of lithification | Aragonite<br>(wt%)                   | HMC<br>(wt%)                    | LMC<br>(wt%)                         | Dolomite<br>(wt%)                                                                                | mol% Mg<br>HMC<br>(XRD)      | mol% Mg<br>Dolomite<br>(XRD) | CaCO <sub>3</sub><br>(mol%)               | MgCO <sub>3</sub><br>(mol%)     | Mg<br>(ppm)                          | Na<br>(ppm)                          | Sr<br>(ppm)                                  | δ <sup>13</sup> C<br>PDB             | δ <sup>18</sup> O<br>PDB             |
|------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|-------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|------------------------------|-------------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|
| 7H-5, 29-31<br>7H-5, 112-114<br>7H-6, 6-8                                    | 55.99<br>56.82<br>57.26                        | ul pel mud-wack<br>nanno ooze w/forams<br>nanno w/forams,<br>nodules       | PL<br>LITH              | 77.7<br>15.0<br>15.8                 | 4.6<br>12.5<br>25.7             | 17.1<br>72.5<br>58.5                 | 0.6<br>0<br>0                                                                                    | 12.4<br>11.1<br>11.7         |                              | 95.59<br>94.98<br>93.18                   | 2.0<br>4.0<br>5.9               | 4,910<br>9,806<br>14,476             | 3079<br>1655<br>1432                 | 9,048<br>2,524<br>2,512                      | 4.59<br>1.82<br>2.26                 | 0.30<br>1.43<br>1.53                 |
| 7H-6, 29-31<br>7H-7, 22-24<br>8H-1, 29-31<br>8H-2, 29-31                     | 57.49<br>58.92<br>59.49<br>60.99               | nanno w/forams<br>ul pel wack-mud<br>ul pel mud-wack<br>ul pel wack        |                         | 23.3<br>59.6<br>62.9<br>54.7         | 21.4<br>5.8<br>5.2<br>10.0      | 55.3<br>33.1<br>30.7<br>33.7         | 0<br>1.5<br>1.2<br>1.6                                                                           | 11.3<br>11.8<br>10.7<br>5.7  | 40.5<br>41.4<br>41           | 94.27<br>94.63<br>95.35<br>95.30          | 4.6<br>3.1<br>2.8<br>3.0        | 11,306<br>7,606<br>6,687<br>7,196    | 1668<br>3160<br>2383<br>2273         | 3,291<br>7,521<br>7,481<br>6,551             | 2.43<br>4.29<br>4.19<br>3.80         | 1.17<br>0.86<br>0.49<br>0.57         |
| 8H-2, 137-139<br>8H-3, 29-31<br>8H-4, 29-31<br>8H-5, 29-31                   | 62.07<br>62.49<br>63.99<br>65.49               | nodule<br>ul-pl floatstone<br>ul pel wack<br>ul pel wack-pack              | LITH<br>PL              | 24.5<br>36.7<br>40.9<br>69.8         | 26.9<br>20.0<br>23.9<br>10.4    | 46.6<br>41.6<br>35.2<br>19.1         | 2<br>1.7<br>0<br>0.7                                                                             | 11.3<br>11.9<br>11.6<br>12.4 | 41.7<br>40.7<br>43.9         | 92.28<br>93.35<br>93.50<br>95.20          | 6.8<br>5.2<br>4.8<br>3.0        | 16,538<br>12,719<br>11,659<br>7,236  | 1257<br>2060<br>2608<br>1981         | 3,703<br>4,850<br>5,197<br>8,393             | 3.20<br>3.63<br>3.57<br>4.62         | 1.76<br>1.13<br>0.60<br>0.78         |
| 8H-5, 121-123<br>8H-6, 29-31<br>8H-7, 29-31<br>8H-CC, 29-31                  | 66.41<br>66.99<br>68.26<br>68.88               | foram wack<br>ul pel wack<br>ul pel wack<br>ul pel wack                    | LITH                    | 16.9<br>37.8<br>37.4<br>41.4         | 56.8<br>17.2<br>25.4<br>24.0    | 26.3<br>45.0<br>37.2<br>34.8         | 0<br>0<br>0<br>0                                                                                 | 13.0<br>11.2<br>11.5<br>11.6 |                              | 88.80<br>93.68<br>93.40<br>93.39          | 10.3<br>4.4<br>5.0<br>5.0       | 25,252<br>10,651<br>12,262<br>12,192 | 1464<br>2824<br>2339<br>2320         | 2,828<br>6,292<br>4,969<br>5,303             | 3.47<br>3.53<br>3.64<br>3.54         | 2.68<br>1.01<br>0.97<br>0.66         |
| 9H-1, 29-31<br>9H-2, 29-31<br>9H-3, 29-31<br>9H-4, 29-31                     | 68.99<br>70.49<br>71.99<br>73.42               | ul pel wack-biowack<br>ul pel wack<br>ul pel mud-wack<br>ul pel mud-wack   |                         | 63.6<br>43.6<br>36.1<br>55.1         | 14.5<br>23.4<br>21.4<br>15.3    | 19.4<br>33.0<br>42.5<br>28.9         | 2.5<br>0<br>0<br>0.7                                                                             | 12.2<br>11.5<br>11.8<br>11.8 | 40.6<br>40.9                 | 93.34<br>93.39<br>93.71<br>90.85          | 4.6<br>4.8<br>4.9<br>7.5        | 11,123<br>11,678<br>11,864<br>18,254 | 2668<br>2736<br>1986<br>2083         | 8,159<br>5,519<br>4,998<br>6,968             | 4.13<br>3.66<br>3.54<br>3.96         | 0.93<br>0.78<br>0.84<br>0.52         |
| 9H-5, 29-31<br>9H-6, 29-31<br>9H-6, 123-125<br>10H-1, 25-27                  | 74.99<br>76.49<br>77.43<br>78.45               | ul pel mud-wack<br>ul pel mud-wack<br>lithoclast wack<br>ul bio-floatstone | LITH                    | 60.7<br>65.6<br>5.7<br>31.9          | 10.7<br>9.2<br>65.1<br>18.0     | 28.6<br>23.6<br>29.2<br>50.1         | $     \begin{array}{c}       0 \\       1.6 \\       0 \\       0 \\       1.2     \end{array} $ | 11.5<br>11.7<br>12.9<br>11.7 | 40.4                         | 95.25<br>95.01<br>88.04<br>94.18          | 3.0<br>3.2<br>11.2<br>4.6       | 7,242<br>7,739<br>27,619<br>11,279   | 2045<br>1892<br>1353<br>1568         | 7,680<br>8,580<br>1,713<br>4,520             | 3.81<br>4.51<br>3.33<br>3.28         | 0.51<br>0.93<br>2.89<br>1.26         |
| 11X-1, 28-30<br>11X-2, 28-30<br>15X-1, 28-30                                 | 80.48<br>116.38                                | ul litho float (debris<br>flow)<br>ul lithoclast floatstone<br>ul biowack  |                         | 53.2<br>64.4                         | 17.5<br>13.5                    | 27.7<br>22.1                         | 1.3<br>1.6<br>0                                                                                  | 12.4<br>12.6<br>12.3         | 40.9<br>41.4                 | 92.52<br>94.05<br>94.72                   | 4.3<br>3.3                      | 10,433<br>8,067                      | 1789<br>1898<br>2209                 | 5,191<br>7,394<br>8,708                      | 3.53<br>3.98<br>4.26                 | 0.80<br>0.66                         |
| 15X-2, 29-31<br>15X-3, 29-31<br>15X-4, 29-31<br>15X-5, 29-31<br>15X-5, 49-52 | 117.89<br>119.39<br>120.89<br>122.39<br>122.59 | ul pel wack<br>ul pel wack<br>ul pel wack<br>ul pel wack<br>biopack        | LITH                    | 69.5<br>77.6<br>79.2<br>81.2<br>25.0 | 8.1<br>3.7<br>4.9<br>5.1<br>0.0 | 22.4<br>18.7<br>15.9<br>13.7<br>75.0 | 0<br>0<br>0<br>0                                                                                 | 11.2<br>12.2<br>12.1<br>11.9 |                              | 95.08<br>96.08<br>96.04<br>96.17<br>97.41 | 2.3<br>1.6<br>1.7<br>1.6<br>1.6 | 3,918<br>4,172<br>3,799<br>3,995     | 2059<br>2447<br>2254<br>2241<br>1185 | 9,411<br>10,732<br>10,926<br>11,169<br>3,772 | 4.78<br>4.60<br>4.68<br>4.83<br>2.60 | 0.94<br>0.94<br>0.97<br>0.82<br>1.30 |

Notes: HMC = high-Mg calcite, LMC = low-Mg calcite, XRD = X-ray diffraction, PDB = Peedee belemnite standard. Shipboard lithologic descriptions are abbreviations of the Dunham classification (Eberli, Swart, Malone, et al., 1997): ul = unlithified, pl = partially lithified, pel = peloidal, bio = bioclastic, wack = wackestone, pack = packstone, mud = mudstone; forams = foraminifers, nannos = nannofossils. Degree of lithification column abbreviations: PL = partially lithified, LITH = lithified, unmarked areas = unlithified. See text for method of lithification classification.

## This table also appears on the volume CD-ROM.

Table 3. Mineralogic, elemental, and stable isotopic composition of bulk carbonate sediments, Site 1009.

| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Shipboard<br>lithology | Degree of lithification | Aragonite<br>(wt%) | LMC<br>(wt%) | HMC<br>(wt%) | Dolomite<br>(wt%) | mol% Mg<br>HMC<br>(XRD) | mol% Mg<br>Dolomite<br>(XRD) | CaCO <sub>3</sub><br>(mol%) | MgCO <sub>3</sub><br>(mol%) | Mg<br>(ppm) | Na<br>(ppm) | Sr<br>(ppm) | δ <sup>13</sup> C<br>PDB | δ <sup>18</sup> O<br>PDB |
|---------------------------------|-----------------|------------------------|-------------------------|--------------------|--------------|--------------|-------------------|-------------------------|------------------------------|-----------------------------|-----------------------------|-------------|-------------|-------------|--------------------------|--------------------------|
| 166-1009A-                      |                 |                        |                         |                    |              |              |                   |                         |                              |                             |                             |             |             |             |                          |                          |
| 1H-1, 29-31                     | 0.29            | ul pel, bio wack       |                         | 59.3               | 33.0         | 7.7          | 0                 | 11.7                    |                              | 92.82                       | 4.9                         | 11,856      | 3375        | 7,444       | 4.04                     | -0.49                    |
| 1H-2, 29-31                     | 1.79            | ul pel wack            |                         | 76.9               | 19.4         | 3.7          | 0                 | 11.6                    |                              | 94.19                       | 3.5                         | 8,554       | 2912        | 8,937       | 4.34                     | -0.39                    |
| 1H-3, 29-31                     | 3.29            | ul pel wack            |                         | 78.6               | 17.5         | 3.9          | 0                 | 11.8                    |                              | 95.28                       | 2.4                         | 5,919       | 2721        | 9,498       | 4.49                     | -0.40                    |
| 2H-1, 29-31                     | 5.09            | ul pel wack            |                         | 81.7               | 14.8         | 3.5          | 0                 | 11.6                    |                              | 95.35                       | 2.4                         | 5,812       | 2682        | 9,430       | 4.83                     | 0.04                     |
| 2H-2, 29-31                     | 6.59            | ul pel wack            |                         | 84.3               | 12.0         | 3.7          | 0                 | 11.8                    |                              | 95.95                       | 1.8                         | 4,353       | 2610        | 9,720       | 4.76                     | -0.28                    |
| 2H-3, 29-31                     | 8.09            | ul pel bio wack        |                         | 89.3               | 6.2          | 4.5          | 0                 | 10.3                    |                              | 96.55                       | 1.1                         | 2,620       | 2694        | 10,370      | 4.87                     | -0.12                    |
| 2H-4, 29-31                     | 9.59            | ul pel bio wack        |                         | 92.0               | 5.5          | 2.5          | 0                 | 11.9                    |                              | 96.61                       | 0.9                         | 2,273       | 2841        | 10,539      | 4.96                     | -0.14                    |
| 2H-6, 29-31                     | 12.59           | ul pel mud-wack        |                         | 88.8               | 8.2          | 3.0          | 0                 | 12.3                    |                              | 96.41                       | 1.3                         | 3,241       | 2537        | 9,937       | 4.92                     | -0.22                    |
| 3H-1, 29-31                     | 14.59           | ul pel wack-mud        |                         | 92.2               | 5.3          | 2.5          | 0                 | 12.3                    |                              | 96.79                       | 0.9                         | 2,199       | 2479        | 10,558      | 5.01                     | -0.19                    |
| 3H-2, 29-31                     | 16.09           | ul pel mud             |                         | 93.4               | 4.9          | 1.7          | 0                 | 11.8                    |                              | 96.60                       | 0.9                         | 2,291       | 2763        | 10,836      | 4.94                     | -0.08                    |
| 3H-3, 29-31                     | 17.59           | ul pel mud             |                         | 92.8               | 5.1          | 2.1          | 0                 | 11.6                    |                              | 96.84                       | 0.9                         | 2,215       | 2419        | 10,292      | 5.02                     | -0.18                    |
| 3H-4, 29-31                     | 19.09           | ul pel mud             |                         | 92.0               | 5.8          | 2.2          | 0                 | 12.1                    |                              | 96.77                       | 1.0                         | 2,484       | 2369        | 10,131      | 4.91                     | -0.33                    |
| 3H-5, 29-31                     | 20.59           | ul pel mud             |                         | 88.9               | 8.0          | 3.1          | 0                 | 11.9                    |                              | 96.25                       | 1.5                         | 3,614       | 2453        | 10,364      | 4.96                     | -0.23                    |
| 3H-6, 29-31                     | 22.09           | packestone             | PL                      | 25.2               | 61.9         | 12.9         | 0                 | 13.0                    |                              | 89.22                       | 9.5                         | 23,391      | 2087        | 3,320       | 2.92                     | 1.63                     |
| 4H-1, 29-31                     | 24.09           | ul pel wack-pack       |                         | 43.2               | 44.9         | 11.9         | 0                 | 12.9                    |                              | 91.85                       | 6.6                         | 16,178      | 2255        | 4,948       | 3.66                     | 0.05                     |
| 4H-2, 29-31                     | 25.59           | ul pel wack            |                         | 78.3               | 15.4         | 6.3          | 0                 | 11.8                    |                              | 95.72                       | 2.2                         | 5,315       | 2479        | 8,821       | 4.21                     | -0.35                    |
| 4H-3, 29-31                     | 27.09           | ul pel wack            |                         | 78.4               | 14.7         | 6.9          | 0                 | 12.5                    |                              | 95.41                       | 2.4                         | 5,791       | 2547        | 9,523       | 4.05                     | 0.17                     |
| 4H-CC, 29-31                    | 28.32           | ul pel mud-wack        |                         | 85.1               | 9.8          | 5.1          | 0                 | 12.1                    |                              | 96.05                       | 1.7                         | 4,005       | 2608        | 10,048      | 4.27                     | -0.26                    |
| 5H-1, 29-31                     | 33.59           | ul mud wack            |                         | 90.3               | 5.7          | 4.0          | 0                 | 12.2                    |                              | 96.53                       | 1.1                         | 2,648       | 2614        | 10,718      | 4.52                     | -0.21                    |
| 5H-2, 29-31                     | 35.09           | ul mud-wack            |                         | 93.1               | 4.6          | 2.3          | 0                 | 12.4                    |                              | 97.04                       | 0.8                         | 2,013       | 2228        | 10,072      | 4.54                     | -0.26                    |
| 5H-3, 29-31                     | 36.59           | ul pel mud-wack        |                         | 86.9               | 9.9          | 3.2          | 0                 | 12.6                    |                              | 95.81                       | 1.8                         | 4,236       | 2876        | 10,308      | 4.53                     | -0.15                    |
| 6H-1, 29-31                     | 38.58           | floatstone             | PL                      | 23.2               | 65.0         | 11.8         | 0                 | 12.9                    |                              | 89.05                       | 9.7                         | 23,984      | 1908        | 3,370       | 3.35                     | 1.60                     |
| 6H-1, 84-85                     | 39.14           | wackestone             | LITH                    | 6.1                | 80.1         | 13.8         | 0                 | 13.1                    |                              | 85.47                       | 13.6                        | 33,647      | 1776        | 1,745       | 3.54                     | 2.90                     |
| 7H-1, 29-31                     | 42.59           | ul pel wack-pack       |                         | 52.4               | 37.4         | 10.2         | 0                 | 12.4                    |                              | 92.52                       | 5.6                         | 13,729      | 2524        | 6,675       | 3.66                     | 0.30                     |
| 7H-2, 29-31                     | 44.09           | ul pel wack            |                         | 52.7               | 35.3         | 12.0         | 0                 | 12.0                    |                              | 92.53                       | 5.6                         | 13,564      | 2645        | 6,723       | 3.79                     | 0.54                     |
| 7H-3, 29-31                     | 45.59           | ul for pel wack        |                         | 62.4               | 27.6         | 10.0         | 0                 | 12.2                    |                              | 93.27                       | 4.7                         | 11,362      | 2733        | 7,713       | 4.09                     | 0.03                     |
| 7H-4, 29-31                     | 47.09           | ul pel wack            |                         | 61.0               | 28.6         | 10.4         | 0                 | 12.0                    |                              | 93.54                       | 4.5                         | 10,830      | 2574        | 7,846       | 4.04                     | 0.12                     |
| 7H-5, 29-31                     | 48.59           | ul pel wack            |                         | 76.3               | 16.0         | 7.7          | 0                 | 12.1                    |                              | 95.27                       | 2.7                         | 6,463       | 2418        | 8,851       | 4.17                     | -0.31                    |
| 7H-6, 29-31                     | 50.09           | ul pel wack            |                         | 78.8               | 13.4         | 7.8          | 0                 | 12.3                    |                              | 95.49                       | 2.3                         | 5,543       | 2565        | 9,642       | 4.58                     | 0.17                     |
| 8H-1, 29-31                     | 52.09           | ul pel mud-wack        |                         | 82.3               | 9.5          | 8.2          | 0                 | 12.6                    |                              | 95.63                       | 1.9                         | 4,675       | 2886        | 10,282      | 4.59                     | -0.07                    |
| 8H-1, 29-31                     | 53.59           | ul pel mud-wack        |                         | 86.0               | 8.5          | 5.5          | 0                 | 11.8                    |                              | 96.19                       | 1.6                         | 3,761       | 2606        | 9,775       | 4.67                     | 0.14                     |
| 8H-3, 29-31                     | 55.09           | ul pel mud-wack        |                         | 85.9               | 9.2          | 4.9          | 0                 | 11.5                    |                              | 96.11                       | 1.7                         | 4,217       | 2292        | 10,018      | 4.72                     | 0.15                     |
| 8H-4, 29-31                     | 56.59           | ul pel wack            |                         | 66.0               | 24.6         | 9.4          | 0                 | 12.4                    |                              | 93.59                       | 4.3                         | 10,459      | 2730        | 8,134       | 4.27                     | 0.25                     |
| 8H-5, 29-31                     | 58.09           | ul pel wack            |                         | 82.3               | 11.1         | 6.6          | 0                 | 12.0                    |                              | 95.37                       | 2.4                         | 5,729       | 2649        | 9,709       | 4.79                     | 0.24                     |
| 8H-1, 29-31                     | 59.59           | ul pel wack            |                         | 63.2               | 23.3         | 13.5         | 0                 | 12.2                    |                              | 94.23                       | 3.8                         | 9,275       | 2459        | 7,725       | 4.14                     | 0.24                     |
| 8H-7, 29-31                     | 61.09           | ul pel wack            |                         | 81.1               | 11.6         | 7.3          | 0                 | 12.3                    |                              | 95.41                       | 2.0                         | 4,955       | 3218        | 9,930       | 4.56                     | 0.09                     |

Table 3 (continued).

| Corra constion                                                                                                                                                                                                                                                                                                                                                                                                                              | Donth                                                                                                                                       | Shinhoord                                                                                                                                                                                                                                     | Deeree of                                                | Anoconito                                                                                                                             | IMC                                                                                                                           | IIMC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dolomito                                                                                    | mol% Mg                                                                                                                              | mol% Mg              | C+C0                                                                                                                                                   | MacO                                                                                                                  | Ma                                                                                                                                                    | No                                                                                                           | S.                                                                                                                                       | \$130                                                                                                                                | \$180                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| interval (cm)                                                                                                                                                                                                                                                                                                                                                                                                                               | (mbsf)                                                                                                                                      | lithology                                                                                                                                                                                                                                     | lithification                                            | (wt%)                                                                                                                                 | (wt%)                                                                                                                         | (wt%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (wt%)                                                                                       | (XRD)                                                                                                                                | (XRD)                | (mol%)                                                                                                                                                 | (mol%)                                                                                                                | (ppm)                                                                                                                                                 | (ppm)                                                                                                        | Sr<br>(ppm)                                                                                                                              | PDB                                                                                                                                  | PDB                                                                                                                                    |
| $\begin{array}{c} 9H\text{-}1, 29\text{-}31\\ 9H\text{-}2, 29\text{-}31\\ 9H\text{-}3, 29\text{-}31\\ 9H\text{-}3, 84\text{-}85\\ 9H\text{-}4, 29\text{-}31\\ 9H\text{-}5, 29\text{-}31\\ 9H\text{-}5, 29\text{-}31\\ 9H\text{-}7, 29\text{-}31\\ 10H\text{-}1, 29\text{-}31\\ 11H\text{-}1, 29\text{-}31\\ 11H\text{-}1, 29\text{-}31\\ 11H\text{-}4, 29\text{-}31\\ 11H\text{-}4, 29\text{-}31\\ 11H\text{-}5, 127\text{-}\\ \end{array}$ | $\begin{array}{c} 61.59\\ 63.09\\ 64.59\\ 65.14\\ 66.09\\ 67.59\\ 70.59\\ 71.09\\ 74.09\\ 75.59\\ 77.09\\ 78.59\\ 79.89\\ 80.87\end{array}$ | ul pel mud-wack<br>ul pel mud-wack<br>ul biowack<br>floatstone<br>ul pel mud-wack<br>ul pel mud<br>ul pel mud<br>ul pel mud<br>ul pel mud<br>ul pel wack<br>ul pel wack<br>ul pel wack<br>ul pel wack<br>ul pel wack<br>ul pel wack<br>nodule | LITH                                                     | $\begin{array}{c} 81.0\\ 76.0\\ 63.1\\ 10.7\\ 86.9\\ 86.5\\ 87.2\\ 83.8\\ 73.7\\ 76.1\\ 80.8\\ 83.4\\ 87.4\\ 88.3\\ 89.2 \end{array}$ | $\begin{array}{c} 12.3\\ 17.5\\ 27.8\\ 53.4\\ 8.2\\ 7.6\\ 7.8\\ 10.8\\ 18.9\\ 17.5\\ 11.4\\ 8.1\\ 5.1\\ 5.3\\ 5.6\end{array}$ | $\begin{array}{c} 6.7 \\ 6.5 \\ 9.1 \\ 35.9 \\ 4.9 \\ 5.9 \\ 5.0 \\ 5.4 \\ 7.4 \\ 6.4 \\ 7.8 \\ 8.5 \\ 7.5 \\ 6.4 \\ 5.2 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | $\begin{array}{c} 12.6\\ 12.5\\ 12.6\\ 12.7\\ 11.2\\ 12.4\\ 11.7\\ 11.6\\ 12.0\\ 12.1\\ 11.6\\ 11.5\\ 11.7\\ 11.6\\ 11.9\end{array}$ |                      | $\begin{array}{c} 95.46\\ 94.75\\ 92.77\\ 89.67\\ 96.38\\ 96.09\\ 96.33\\ 95.87\\ 94.20\\ 95.11\\ 96.00\\ 96.27\\ 96.55\\ 96.63\\ 96.72\\ \end{array}$ | $\begin{array}{c} 2.0\\ 2.9\\ 4.7\\ 9.5\\ 1.4\\ 1.5\\ 1.5\\ 1.7\\ 3.6\\ 2.8\\ 1.9\\ 1.5\\ 1.0\\ 1.0\\ 1.2\end{array}$ | $\begin{array}{c} 4,912\\ 6,975\\ 11,431\\ 23,360\\ 3,356\\ 3,617\\ 3,532\\ 4,186\\ 8,755\\ 6,850\\ 4,563\\ 3,522\\ 2,443\\ 2,534\\ 2,858\end{array}$ | 3188<br>3091<br>3831<br>1414<br>2475<br>2835<br>2835<br>2760<br>2433<br>2400<br>2662<br>2931<br>2542<br>1917 | 9,806<br>9,021<br>7,630<br>2,059<br>10,033<br>10,249<br>8,744<br>8,792<br>9,331<br>9,688<br>10,087<br>10,545<br>10,960                   | $\begin{array}{c} 4.52\\ 4.55\\ 4.18\\ 2.79\\ 4.71\\ 4.67\\ 4.88\\ 4.79\\ 4.48\\ 3.98\\ 4.13\\ 4.26\\ 4.55\\ 4.62\\ 4.40\end{array}$ | $\begin{array}{c} 0.11\\ 0.11\\ 0.01\\ 2.10\\ 0.25\\ 0.00\\ -0.01\\ 0.01\\ -0.27\\ -0.28\\ -0.22\\ -0.23\\ -0.13\\ 0.43\\ \end{array}$ |
| $\begin{array}{c} 129\\ 11H-6, 29-31\\ 12H-1, 29-31\\ 13H-1, 29-31\\ 13H-2, 29-31\\ 13H-3, 29-31\\ 13H-4, 29-31\\ 13H-6, 29-31\\ 13H-6, 29-31\\ 13H-7, 29-31\\ 14H-2, 29-31\\ 14H-3, 29-31\\ 14H-3, 29-31\\ 14H-4, 29-31\\ \end{array}$                                                                                                                                                                                                     | 81.39<br>83.59<br>86.59<br>88.09<br>91.09<br>92.59<br>94.09<br>95.59<br>97.59<br>99.09<br>99.54<br>100.59                                   | ul pel wack<br>ul pack<br>ul pack<br>ul pack<br>ul foram pel pack<br>ul pack-wack<br>ul pel wack<br>ul pel wack-mud<br>ul pel wack-mud<br>nanno ooze<br>ul bio pack w/lith<br>hardground<br>bio grainstone                                    | LITH                                                     | $\begin{array}{c} 87.7\\ 43.3\\ 57.1\\ 56.4\\ 70.9\\ 80.6\\ 87.1\\ 88.5\\ 89.3\\ 75.1\\ 16.3\\ 5.6\\ 57.8\end{array}$                 | $\begin{array}{c} 6.5\\ 29.1\\ 29.7\\ 30.2\\ 18.3\\ 12.3\\ 6.5\\ 5.6\\ 5.9\\ 16.1\\ 11.1\\ 82.8\\ 23.2 \end{array}$           | $5.8 \\ 27.6 \\ 13.2 \\ 13.4 \\ 10.8 \\ 7.1 \\ 6.4 \\ 5.9 \\ 4.8 \\ 8.8 \\ 72.6 \\ 11.6 \\ 19.0 \\ 19.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\ 10.0 \\$ | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 12.3<br>11.9<br>12.1<br>11.8<br>11.5<br>11.6<br>12.1<br>12.0<br>11.6<br>12.1<br>12.0<br>11.6<br>12.1<br>12.8<br>12.6                 |                      | 96.32<br>92.91<br>93.06<br>93.34<br>95.04<br>95.61<br>96.22<br>96.37<br>96.61<br>95.01<br>95.24<br>86.85<br>93.35                                      | $1.4 \\ 5.6 \\ 5.0 \\ 4.6 \\ 2.8 \\ 2.1 \\ 1.3 \\ 1.1 \\ 1.1 \\ 2.8 \\ 3.7 \\ 12.3 \\ 4.9 \\$                         | 3,340<br>13,566<br>12,265<br>11,297<br>6,814<br>5,073<br>3,143<br>2,729<br>2,674<br>6,906<br>9,048<br>30,507<br>12,026                                | 2528<br>2125<br>2651<br>2775<br>2612<br>2642<br>2861<br>2932<br>2404<br>2568<br>1615<br>1478<br>2173         | $\begin{array}{c} 10,392\\ 5,401\\ 6,687\\ 7,198\\ 8,887\\ 9,934\\ 10,631\\ 10,631\\ 10,722\\ 8,967\\ 3,023\\ 1,611\\ 6,764 \end{array}$ | 4.70<br>3.69<br>3.68<br>ND<br>4.51<br>4.62<br>4.64<br>4.79<br>4.83<br>4.53<br>1.84<br>3.22<br>3.92                                   | 0.00<br>0.13<br>-0.61<br>ND<br>-0.26<br>-0.22<br>-0.27<br>-0.12<br>-0.10<br>1.07<br>2.98<br>-0.01                                      |
| 14H-5, 29-31<br>14H-6, 29-31<br>15H-1, 29-31<br>15H-2, 29-31<br>15H-3, 29-31<br>15H-4, 29-31<br>15H-5, 29-31<br>16H-C, 27-25<br>17X-1, 29-31<br>17X-2, 29-31                                                                                                                                                                                                                                                                                | 102.09<br>103.59<br>105.59<br>107.09<br>108.59<br>110.09<br>111.58<br>111.98<br>113.57<br>114.09<br>115.59                                  | (uro)<br>ul pel wack<br>ul pel wack<br>ul pel wack<br>ul pel mud-wack<br>ul pel wack<br>ul pel wack<br>hardground<br>ul pel wack<br>ul floatstone<br>ul float/ul wack                                                                         | LITH                                                     | 65.1<br>53.4<br>79.4<br>86.1<br>86.3<br>76.2<br>26.0<br>76.7<br>86.7<br>78.9                                                          | $\begin{array}{c} 24.3\\ 30.4\\ 6.2\\ 3.6\\ 4.1\\ 21.0\\ 12.7\\ 19.4\\ 15.7\\ 4.5\\ 6.3 \end{array}$                          | $10.6 \\ 16.2 \\ 14.4 \\ 10.3 \\ 9.6 \\ 14.7 \\ 11.1 \\ 54.6 \\ 7.6 \\ 8.8 \\ 14.8 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 11.9<br>11.4<br>11.7<br>11.7<br>11.6<br>11.1<br>11.4<br>11.7<br>11.7<br>11.7<br>12.2<br>12.0                                         |                      | 93.16<br>93.09<br>96.34<br>96.39<br>96.50<br>94.43<br>95.40<br>93.96<br>94.97<br>96.29<br>96.13                                                        | $\begin{array}{c} 4.3 \\ 5.0 \\ 1.5 \\ 1.1 \\ 1.1 \\ 3.4 \\ 2.5 \\ 4.9 \\ 3.0 \\ 1.4 \\ 1.7 \end{array}$              | $\begin{array}{c} 10,508\\ 12,207\\ 3,562\\ 2,570\\ 2,635\\ 8,347\\ 6,024\\ 12,036\\ 7,196\\ 3,443\\ 4,194 \end{array}$                               | 3518<br>2534<br>2399<br>2943<br>2674<br>2668<br>2374<br>1481<br>2294<br>2340<br>2237                         | 8,628<br>7,045<br>9,932<br>10,970<br>10,782<br>8,544<br>9,414<br>4,095<br>9,271<br>10,986<br>10,140                                      | $\begin{array}{c} 4.74\\ 3.87\\ 4.58\\ 4.59\\ 4.76\\ 4.02\\ 4.30\\ 2.88\\ 4.77\\ 5.08\\ 4.67\end{array}$                             | $\begin{array}{c} 0.30 \\ -0.10 \\ -0.18 \\ -0.20 \\ -0.17 \\ -0.41 \\ -0.09 \\ 1.15 \\ 0.28 \\ -0.12 \\ 0.04 \end{array}$             |
| 17X-3, 29-31<br>17X-4, 29-31<br>17X-5, 29-31<br>18X-1, 29-31<br>18X-2, 29-31<br>19X-2, 29-31<br>19X-2, 29-31<br>19X-3, 29-31<br>19X-3, 72-74<br>19X-4, 29-31<br>19X-4, 112-                                                                                                                                                                                                                                                                 | 117.09<br>118.59<br>120.09<br>123.79<br>125.29<br>133.19<br>134.69<br>136.62<br>137.69<br>138.52                                            | w/hth<br>ul wack-float<br>ul bio wack-float<br>ul bio wack-float<br>ul bio wack<br>pl bio wack                                                      | PL<br>PL<br>PL<br>PL<br>PL<br>PL<br>PL                   | 81.4<br>86.5<br>82.7<br>65.7<br>55.9<br>33.5<br>33.7<br>38.7<br>37.9<br>41.5<br>57.3                                                  | 5.2<br>5.2<br>6.8<br>9.0<br>9.8<br>25.9<br>22.3<br>26.6<br>22.3<br>22.4<br>5.1                                                | $13.4 \\ 8.3 \\ 10.5 \\ 23.9 \\ 32.2 \\ 40.6 \\ 44.0 \\ 34.7 \\ 39.8 \\ 36.1 \\ 36.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $egin{array}{c} 0 \\ 0 \\ 0 \\ 1.4 \\ 2.1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1.4 \end{array}$ | 12.2<br>12.2<br>11.7<br>10.1<br>9.3<br>11.5<br>11.7<br>12.1<br>11.9<br>11.1<br>11.5                                                  | 38.5<br>41.1<br>41.9 | 96.11<br>96.38<br>96.09<br>95.12<br>95.02<br>92.81<br>93.26<br>93.00<br>93.35<br>93.89<br>95.21                                                        | $ \begin{array}{c} 1.5\\ 1.3\\ 1.6\\ 3.0\\ 3.2\\ 5.6\\ 5.3\\ 5.4\\ 5.1\\ 4.6\\ 3.1\\ \end{array} $                    | 3,680<br>3,081<br>3,980<br>7,168<br>7,866<br>13,757<br>13,002<br>13,133<br>12,474<br>11,214<br>7,532                                                  | 2656<br>2488<br>2409<br>2331<br>2175<br>2325<br>2011<br>2331<br>2195<br>2008<br>1983                         | $\begin{array}{c} 10,494\\ 10,980\\ 10,585\\ 7,957\\ 7,010\\ 4,810\\ 4,816\\ 5,324\\ 5,125\\ 5,580\\ 7,279\end{array}$                   | $\begin{array}{c} 4.78\\ 5.10\\ 4.68\\ 4.28\\ 3.80\\ 3.65\\ 3.72\\ 3.71\\ 3.64\\ 3.68\\ 4.01\end{array}$                             | $\begin{array}{c} -0.10\\ 0.15\\ 0.03\\ 0.22\\ 0.35\\ 0.80\\ 0.94\\ 0.53\\ 0.71\\ 0.46\\ 0.76\end{array}$                              |
| 114<br>19X-5, 29-31<br>20X-1, 29-30<br>20X-2, 28-30                                                                                                                                                                                                                                                                                                                                                                                         | 139.19<br>142.79<br>144.28                                                                                                                  | ul pl mud-wack<br>ul pel wack-mud<br>ul foram wack-                                                                                                                                                                                           |                                                          | 63.5<br>73.0<br>71.2                                                                                                                  | 10.1<br>8.0<br>11.0                                                                                                           | 26.4<br>16.5<br>14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>2.5<br>2.9                                                                             | 10.7<br>11.7<br>10.7                                                                                                                 | 40.7<br>40.4         | 95.19<br>94.57<br>93.89                                                                                                                                | 3.0<br>3.4<br>3.8                                                                                                     | 7,368<br>8,319<br>9,220                                                                                                                               | 1938<br>2171<br>3022                                                                                         | 8,191<br>9,259<br>8,753                                                                                                                  | 4.55<br>4.88<br>4.83                                                                                                                 | 0.90<br>0.79<br>0.84                                                                                                                   |
| 20X-3, 28-30<br>22X-1, 29-31<br>22X-2, 29-31<br>22X-3, 29-31<br>22X-4, 29-31<br>23X-1, 29-31<br>23X-2, 29-31<br>23X-2, 29-31<br>23X-4, 29-31<br>23X-5, 29-31                                                                                                                                                                                                                                                                                | $\begin{array}{c} 145.78\\ 161.79\\ 163.29\\ 164.79\\ 166.29\\ 171.09\\ 172.59\\ 174.09\\ 175.59\\ 177.09\\ 178.59\end{array}$              | nud<br>pl wack<br>pl bio wack<br>pl bio wack<br>pl pel wack<br>pl pel wack-pack<br>ul pel wack<br>ul-pl pel wack<br>pl pel wack<br>pl pel wack<br>pl bio float-pel                                                                            | PL<br>PL<br>PL<br>PL<br>PL<br>PL<br>PL<br>PL<br>PL<br>PL | 74.9<br>44.1<br>50.1<br>50.6<br>73.0<br>70.8<br>83.9<br>82.0<br>74.4<br>68.4<br>54.1                                                  | $\begin{array}{c} 8.2 \\ 27.9 \\ 27.2 \\ 9.1 \\ 3.5 \\ 0.7 \\ 1.9 \\ 4.8 \\ 0.2 \\ 6.6 \\ 16.5 \end{array}$                   | $16.9 \\ 28.0 \\ 22.7 \\ 40.3 \\ 23.5 \\ 28.5 \\ 14.2 \\ 13.2 \\ 24.0 \\ 21.6 \\ 29.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $egin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1.4 \\ 3.4 \end{array}$                  | 12.3<br>11.7<br>11.3<br>10.8<br>10.7<br>10.0<br>10.4<br>11.6<br>11.4                                                                 | 43.2<br>40.9         | 95.59<br>93.20<br>93.50<br>95.60<br>96.50<br>96.35<br>96.35<br>96.54<br>96.39<br>96.16<br>94.25<br>94.63                                               | $\begin{array}{c} 2.2 \\ 5.0 \\ 4.6 \\ 2.7 \\ 1.5 \\ 1.7 \\ 1.3 \\ 1.4 \\ 1.8 \\ 3.8 \\ 3.5 \end{array}$              | 5,405<br>12,307<br>11,131<br>6,595<br>3,673<br>4,143<br>3,075<br>3,338<br>4,428<br>9,232<br>8,506                                                     | 2492<br>2509<br>2734<br>2160<br>2085<br>2118<br>2274<br>2295<br>2164<br>2252<br>2310                         | 9,494<br>5,832<br>6,517<br>6,490<br>9,347<br>8,846<br>10,433<br>10,664<br>9,295<br>8,496<br>7,589                                        | $\begin{array}{c} 4.59\\ 3.10\\ 3.29\\ 4.21\\ 4.85\\ 4.97\\ 5.03\\ 5.09\\ 4.70\\ 4.41\\ 4.32\end{array}$                             | $\begin{array}{c} 0.04\\ 0.41\\ 0.06\\ 1.12\\ 0.95\\ 1.04\\ 0.45\\ 0.61\\ 0.35\\ 0.67\\ 1.03\\ \end{array}$                            |
| 24X-1, 29-31                                                                                                                                                                                                                                                                                                                                                                                                                                | 180.39                                                                                                                                      | wack<br>ul-pl pel bio mud                                                                                                                                                                                                                     | PL                                                       | 59.5                                                                                                                                  | 8.8                                                                                                                           | 31.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                           | 10.0                                                                                                                                 |                      | 95.56                                                                                                                                                  | 2.5                                                                                                                   | 6,144                                                                                                                                                 | 2159                                                                                                         | 8,483                                                                                                                                    | 4.70                                                                                                                                 | 1.10                                                                                                                                   |
| 24X-2, 29-31                                                                                                                                                                                                                                                                                                                                                                                                                                | 181.89                                                                                                                                      | wack<br>ul-pl pel bio mud                                                                                                                                                                                                                     |                                                          | 66.6                                                                                                                                  | 8.3                                                                                                                           | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                           | 10.8                                                                                                                                 |                      | 95.36                                                                                                                                                  | 2.5                                                                                                                   | 6,037                                                                                                                                                 | 2452                                                                                                         | 9,475                                                                                                                                    | 4.85                                                                                                                                 | 0.93                                                                                                                                   |
| 24X-3, 29-31<br>24X-4, 29-31                                                                                                                                                                                                                                                                                                                                                                                                                | 183.39<br>184.89                                                                                                                            | ul-pl mud-wack<br>ul-pl pel bio mud                                                                                                                                                                                                           | PL<br>PL                                                 | 66.4<br>57.6                                                                                                                          | 9.3<br>5.5                                                                                                                    | 24.3<br>36.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>0                                                                                      | 10.7<br>10.9                                                                                                                         |                      | 95.52<br>95.48                                                                                                                                         | 2.5<br>2.7                                                                                                            | 6,020<br>6,438                                                                                                                                        | 2195<br>1922                                                                                                 | 9,061<br>9,004                                                                                                                           | 4.89<br>4.93                                                                                                                         | 0.86<br>1.29                                                                                                                           |
| 24X-5, 29-31                                                                                                                                                                                                                                                                                                                                                                                                                                | 186.39                                                                                                                                      | wack<br>pl bio pel mud-<br>wack                                                                                                                                                                                                               | PL                                                       | 62.0                                                                                                                                  | 6.7                                                                                                                           | 31.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                           | 11.0                                                                                                                                 |                      | 95.63                                                                                                                                                  | 2.5                                                                                                                   | 6,101                                                                                                                                                 | 1922                                                                                                         | 8,899                                                                                                                                    | 4.86                                                                                                                                 | 0.96                                                                                                                                   |
| 24X-6, 29-31                                                                                                                                                                                                                                                                                                                                                                                                                                | 187.89                                                                                                                                      | pl bio pel mud-<br>wack                                                                                                                                                                                                                       | PL                                                       | 73.2                                                                                                                                  | 12.4                                                                                                                          | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                           | 11.2                                                                                                                                 |                      | 95.66                                                                                                                                                  | 2.3                                                                                                                   | 5,522                                                                                                                                                 | 2119                                                                                                         | 9,931                                                                                                                                    | 4.83                                                                                                                                 | 0.50                                                                                                                                   |
| 24X-7, 29-31<br>25X-1, 29-31<br>25X-2, 29-31<br>25X-3, 29-31<br>25X-4, 29-31<br>25X-5, 29-31                                                                                                                                                                                                                                                                                                                                                | 189.39<br>189.69<br>191.19<br>192.69<br>194.19<br>195.69                                                                                    | pl bio wack<br>pl bio wack<br>pl bio mud-wack<br>pl pel bio wack<br>pl bio mud-wack<br>pl bio wack                                                                                                                                            | PL<br>PL<br>PL<br>PL<br>PL<br>PL                         | 47.6<br>63.8<br>71.0<br>70.6<br>56.3<br>64.9                                                                                          | 1.0<br>5.6<br>9.1<br>6.3<br>2.3<br>5.3                                                                                        | 51.4<br>30.6<br>19.9<br>23.1<br>41.4<br>29.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 13.1<br>12.0<br>11.3<br>11.4<br>9.3<br>10.7                                                                                          |                      | 95.84<br>95.72<br>95.78<br>95.83<br>95.87<br>95.84                                                                                                     | 2.7<br>2.4<br>2.2<br>2.1<br>2.5<br>2.2                                                                                | 6,642<br>5,809<br>5,400<br>4,970<br>5,979<br>5,367                                                                                                    | 1380<br>1917<br>1997<br>2171<br>1695<br>1995                                                                 | 7,174<br>9,118<br>9,763<br>10,233<br>8,076<br>9,428                                                                                      | 4.81<br>4.97<br>5.12<br>4.99<br>4.89<br>4.96                                                                                         | $1.41 \\ 1.16 \\ 0.54 \\ 0.87 \\ 1.30 \\ 1.03$                                                                                         |

## Table 3 (continued).

| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Shipboard<br>lithology | Degree of lithification | Aragonite<br>(wt%) | LMC<br>(wt%) | HMC<br>(wt%) | Dolomite<br>(wt%) | mol% Mg<br>HMC<br>(XRD) | mol% Mg<br>Dolomite<br>(XRD) | CaCO <sub>3</sub><br>(mol%) | MgCO <sub>3</sub><br>(mol%) | Mg<br>(ppm) | Na<br>(ppm) | Sr<br>(ppm) | δ <sup>13</sup> C<br>PDB | δ <sup>18</sup> O<br>PDB |
|---------------------------------|-----------------|------------------------|-------------------------|--------------------|--------------|--------------|-------------------|-------------------------|------------------------------|-----------------------------|-----------------------------|-------------|-------------|-------------|--------------------------|--------------------------|
| 25X-6, 29-31                    | 197.19          | pl bio wack            | PL                      | 65.3               | 5.9          | 28.8         | 0                 | 11.9                    |                              | 95.93                       | 2.2                         | 5,348       | 1945        | 8,877       | 4.96                     | 0.99                     |
| 25X-7, 29-31                    | 198.69          | pl bio mud-wack        | PL                      | 69.0               | 7.4          | 23.6         | 0                 | 11.1                    |                              | 96.00                       | 2.1                         | 5,125       | 1934        | 9,101       | 4.88                     | 0.79                     |
| 26X-1, 29-31                    | 198.79          | pl pel bio wack        | PL                      | 68.6               | 7.4          | 24.0         | 0                 | 11.1                    |                              | 95.88                       | 2.1                         | 5,208       | 1985        | 9,662       | 4.93                     | 0.83                     |
| 26X-2, 29-31                    | 200.29          | pl bio wack            | PL                      | 69.2               | 8.7          | 22.1         | 0                 | 11.2                    |                              | 95.53                       | 2.5                         | 6,030       | 1994        | 9,722       | 4.94                     | 0.66                     |
| 26X-3, 29-31                    | 201.79          | pl bio wack            | PL                      | 70.4               | 9.4          | 20.2         | 0                 | 10.6                    |                              | 95.72                       | 2.3                         | 5,464       | 2135        | 9,593       | 4.99                     | 0.76                     |
| 26X-4, 29-31                    | 203.29          | pl bio wack            | PL                      | 71.1               | 10.2         | 18.7         | 0                 | 11.8                    |                              | 95.55                       | 2.4                         | 5,724       | 2169        | 9,961       | 4.84                     | 0.57                     |
| 26X-5, 29-31                    | 204.79          | pl bio wack            | PL                      | 72.1               | 10.8         | 17.1         | 0                 | 11.0                    |                              | 95.41                       | 2.4                         | 5,732       | 2438        | 10,173      | 4.92                     | 0.56                     |
| 27X-1, 29-31                    | 207.89          | pl bio wack            | PL                      | 67.4               | 11.2         | 21.4         | 0                 | 11.2                    |                              | 95.57                       | 2.5                         | 6,085       | 1960        | 9,323       | 4.81                     | 0.80                     |
| 27X-2, 29-31                    | 209.39          | pl bio wack            | PL                      | 70.9               | 10.0         | 19.1         | 0                 | 11.3                    |                              | 95.70                       | 2.3                         | 5,592       | 1943        | 10,023      | 4.81                     | 0.63                     |
| 27X-3, 29-31                    | 210.89          | pl wack mud            | PL                      | 71.3               | 12.6         | 16.1         | 0                 | 11.5                    |                              | 95.43                       | 2.5                         | 6,029       | 2128        | 10,079      | 4.79                     | 0.75                     |
| 27X-4, 29-31                    | 212.39          | pl bio mud-wack        | PL                      | 73.0               | 11.5         | 15.5         | 0                 | 11.6                    |                              | 95.45                       | 2.3                         | 5,664       | 2433        | 10,050      | 4.90                     | 0.55                     |
| 27X-5, 29-31                    | 213.89          | pl bio mud wack        | PL                      | 72.1               | 10.6         | 17.3         | 0                 | 11.4                    |                              | 95.73                       | 2.3                         | 5,564       | 1942        | 9,879       | 5.01                     | 0.85                     |
| 27X-6, 29-31                    | 215.39          | pl bio mud wack        | PL                      | 75.9               | 13.2         | 10.9         | 0                 | 11.8                    |                              | 95.48                       | 2.4                         | 5,793       | 2129        | 10,493      | 4.93                     | 0.52                     |
| 27X-7, 29-31                    | 216.89          | pl bio mud             | PL                      | 78.2               | 10.6         | 11.2         | 0                 | 11.7                    |                              | 95.87                       | 2.0                         | 4,858       | 2158        | 10,297      | 4.96                     | 0.51                     |
| 28X-1, 29-31                    | 216.99          | pl wack                | PL                      | 71.0               | 4.0          | 24.4         | 0.6               | 11.8                    | 46.6                         | 96.20                       | 2.0                         | 4,761       | 1802        | 9,128       | 4.97                     | 0.96                     |
| 28X-2, 29-31                    | 218.49          | pl wack                | PL                      | 69.5               | 4.4          | 23.8         | 2.3               | 10.3                    | 41.6                         | 95.32                       | 2.7                         | 6,597       | 2084        | 9,166       | 4.95                     | 0.91                     |
| 28X-3, 29-31                    | 219.99          | pl bio wack            | PL                      | 50.9               | 14.8         | 29.9         | 4.4               | 12.1                    | 42.3                         | 92.60                       | 5.8                         | 14,147      | 1847        | 7.073       | 4.16                     | 1.00                     |
| 28X-4, 29-31                    | 221.49          | pl pel mud wack        | PL.                     | 77.8               | 3.1          | 17.3         | 1.8               | 11.3                    | 41.6                         | 95.66                       | 2.2                         | 5.256       | 2233        | 10.397      | 5.01                     | 0.39                     |
| 28X-5, 29-31                    | 222.99          | pl bio mud wack        | PL                      | 81.5               | 4.5          | 12.9         | 1.1               | 12.8                    | 45.4                         | 95.57                       | 2.1                         | 5,200       | 2363        | 10,916      | 4.92                     | 0.43                     |

Notes: HMC = high-Mg calcite, LMC = low-Mg calcite, XRD = X-ray diffraction, PDB = Peedee belemnite standard. Shipboard lithologic descriptions are abbreviations of the Dunham classification (Eberli, Swart, Malone, et al., 1997): ul = unlithified, pl = partially lithified, pel = peloidal, bio = bioclastic, wack = wackestone, pack = packstone, mud = mudstone; forams = foraminifers, nannos = nannofossils. Degree of lithification column abbreviations: PL = partially lithified, LITH = lithified, unmarked areas = unlithified. ND = not determined. See text for method of lithification classification.

#### This table also appears on the volume CD-ROM.



Figure 2. Bulk, cumulative carbonate mineralogy vs. depth. Relative degree of lithification is also shown for Holes 1009A and 1008A.



Figure 3. Geochemical data from Site 1006 vs. depth. Open squares = unlithified, crosses = partially lithified, and solid circles = lithified, PDB = Peedee belemnite standard.



Figure 4. Geochemical data from Site 1008 vs. depth. Open squares = unlithified, crosses = partially lithified, and solid circles = lithified, PDB = Peedee belemnite standard.



Figure 5. Geochemical data from Site 1009 vs. depth. Open squares = unlithified, crosses = partially lithified, and solid circles = lithified, PDB = Peedee belemnite standard.