17. OVERVIEW OF INTERSTITIAL FLUID AND SEDIMENT GEOCHEMISTRY, SITES 1003–1007 (BAHAMAS TRANSECT)¹

Philip A. Kramer,² Peter K. Swart,² Eric H. De Carlo,³ and Neils H. Schovsbo⁴

ABSTRACT

A review of interstitial water samples collected from Sites 1003–1007 of the Bahamas Transect along with a shore-based analysis of oxygen and carbon isotopes, minor and trace elements, and sediment chemistry are presented. Results indicate that the pore-fluid profiles in the upper 100 meters below seafloor (mbsf) are marked by shifts between 20 and 40 mbsf that are thought to be caused by changes in sediment reactivity, sedimentation rates, and the influence of strong bottom currents that have been active since the late Pliocene. Pore-fluid profiles in the lower Pliocene–Miocene sequences are dominated by diffusion and do not show significant evidence of subsurface advective flow. Deeper interstitial waters are believed to be the in situ fluids that have evolved through interaction with sediments and diffusion.

Pore-fluid chemistry is strongly influenced by carbonate recrystallization processes. Increases in pore-fluid Cl^- and Na^+ with depth are interpreted to result mainly from carbonate remineralization reactions that are most active near the platform margin. A lateral gradient in detrital clay content observed along the transect, leads to an overall lower carbonate reactivity, and enhances preservation of metastable aragonite further away from the platform margin. Later stage burial diagenesis occurs at slow rates and is limited by the supply of reactive elements through diffusion.

INTRODUCTION

A primary goal of Ocean Drilling Program (ODP) Leg 166 was to examine fluid flow and carbonate diagenesis associated with the carbonate platform margin. Investigations of the pore-fluid geochemistry are useful in setting limits on the degree of diagenesis and fluid movement based on the magnitude and shape of pore-fluid profiles (Kastner et al., 1990; Swart et al., 1993; Gieskes et al., 1993). Sites 1003-1007 of Leg 166 were drilled through periplatform carbonate sediments along an off-bank transect adjacent to the western margin of the Great Bahama Bank in the Santaren Channel (Fig. 1). The five sites span a distance of 25 km with water depths ranging from 350 m at the most proximal site (Site 1005) to 658 m at the distal site (Site 1006). The deepest site (Hole 1007C) penetrated upper Oligocene sediments at a depth of 1238 meters below seafloor (mbsf). Sites 1003-1007 were drilled along an extension of a Western Geophysical seismic line, which extends from the Great Bahama Bank into the Straights of Florida (Eberli, Swart, Malone, et al., 1997). The remarkable continuity of the sedimentary sequences from the proximal to the distal sites allows for a detailed correlation of the pore-fluid chemistry profiles. In addition, the depth to which pore fluids were collected through semilithified sediments provides a particularly good data set for understanding large-scale hydrogeochemical processes within a carbonate platform margin.

The objective of this paper is to synthesize shipboard pore-fluid results for the Bahamas Transect and to integrate them with trace element and oxygen stable isotope data presented in DeCarlo and Kramer (Chap. 9, this volume) and Swart (Chap. 8, this volume). Results from solid-phase minor and trace element data for Sites 1007 and 1005 are also presented along with stable δ^{13} C data from pore-fluid dissolved inorganic carbon (DIC). An emphasis is placed on discussing fluid

Figure 1. Location of sites drilled during Leg 166 along the Bahamas Transect superimposed on a schematic cross-section of the study area.

flow and other diagenetic processes highlighted by the pore-fluid chemistry.

Sequence Stratigraphic Framework

A solid sequence stratigraphic framework is important for understanding and interpreting pore-fluid chemistry profiles.

¹Swart, P.K., Eberli, G.P., Malone, M.J., and Sarg, J.F. (Eds.), 2000. *Proc. ODP, Sci. Results*, 166: College Station TX (Ocean Drilling Program).

²Department of Marine Geology and Geophysics, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami FL 33149, USA, Correspondence author: PKramer@RSMAS.MIAMI.EDU

³Department of Oceanography, SOEST, 1000 Pope Road, University of Hawaii at Manoa, Honolulu HI 96822, USA.

⁴Geological Museum, University of Copenhagen, Oester Voldgade 5-7, DK-1350, Copenhagen K, Denmark.

The sedimentary sequences of all sites drilled during Leg 166 are strongly influenced by changes in sea level (Eberli, Swart, Malone, et al., 1997). The Neogene section of all recovered cores displays centimeter-to-meter cyclic alterations in the composition and degree of lithification. Sea-level highstands flooded the adjacent platform and resulted in a dramatic increase in platform-derived sediments and organic material (Fig. 2). Lowstands reduced the supply of platform sediments and created periods of nondeposition at the more proximal sites. At the distal sites, lowstands reduced the supply of platform material and organic matter and increased the supply of detrital material (clays) from exposed shelf areas further south. Calci-turbidites from bank tops and slope areas are observed in both highstand and lowstand periods, particularly at the toe of the slope (Site 1007). Turbidites have the effect of mixing sediments, which increases their diagenetic potential by (1) increasing their permeability through sorting, and (2) reoxidizing the turbidite sequence (Cranston and Buckley, 1990). Turbidite sequences in all cores show the highest degree of carbonate recrystallization and the lowest preservation of metastable aragonite.

The nature and magnitude of diagenetic reactions is influenced by the original composition of sediments. Sediments cored along the Bahamas Transect are composed mainly of carbonate (>90 wt%); however, important differences occur with regard to whether the carbonate is derived from neritic or pelagic sources, and in the abundance of organic and siliciclastic components (Fig. 3). These components vary among different depositional sequences and within individual sequences as a function of distance from the platform. Neritic material consists of skeletal fragments composed of metastable aragonite and high-magnesium calcite (HMC) derived from the platform during highstands. Pelagic material mainly consists of foraminifers composed of low-magnesium calcite (LMC). In general, neritic material is more common at the proximal sites, whereas pelagic material and siliciclastics are more common at the distal sites (Sites 1006 and 1007). As might be expected, diagenetic overprinting varies both as a function of distance from the platform margin and as a function of character of each lowstand or highstand deposit. The upper Pliocene-Pleistocene sequences were deposited during a rimmed platform, and have a distinctive mineralogy gradient away from the platform margin. Sediments are characterized by an abundance of aragonite (>70 wt%), with minor amounts of HMC, LMC, and dolomite (Fig. 3). The amount of deposited insoluble clays increases laterally away from the platform and is highest in the on-lapping drift deposits (Fig. 3). In contrast, the Miocene sediments were deposited in a ramp setting and show less lateral variation away from the platform (Eberli, Swart, Malone, et al., 1997).

METHODS

Pore-Fluid Chemistry

The interstitial water chemical data from Sites 1003, 1005, 1006 and 1007 discussed in this paper are mainly based on shipboard mea-

Figure 2. Sedimentation rate (shaded gray areas) and concentration of total organic carbon (TOC; solid black circles) plotted for Sites 1006, 1007, 1003, and 1005. Sedimentation rates and time lines are based on shipboard biostratigraphic data.

Figure 3. Quantitative X-ray mineralogy and insoluble weight percent of sediments for Sites 1006, 1007, 1003, and 1005 superimposed on an interpreted seismic section.

surements (Eberli, Swart, Malone, et al., 1997). The oxygen stable isotope data and some of the minor and trace element data are from other papers presented in DeCarlo and Kramer (Chap. 9, this volume) and Swart (Chap. 8, this volume). The reader is referred to these references for details on the analytical techniques. Several of the interstitial component shipboard and shore-based analyses are not discussed here, including those for lithium, fluoride, iron, and manganese. A large number of shipboard samples were processed during Leg 166 (generally >40 samples/hole) to allow for the detailed structure in the dissolved constituent profiles to be resolved. A summary of the shipboard pore-fluid results discussed in this paper is presented in Table 1.

Sediment Chemistry

The solid-phase data presented here were obtained from 190 samples collected from Sites 1007 and 1005. Approximately 200 mg of each sample was washed, crushed, dried, and weighed, and then placed in 40 mL of a 20% acetic-acid solution for 2 hr. The acid leachate was filtered through 0.2-µm preweighed filters and analyzed for Li⁺, Na⁺, Ca²⁺, Mg²⁺, Sr²⁺, Fe²⁺, Mn²⁺, and Ba²⁺ on an inductively coupled plasma-mass spectrometer (ICP-MS). Selected samples were analyzed for Ca, Mg, and Sr values using an inductively coupled plasma-optical emission spectroscope (ICP-OES). The concentration of Fe was determined using flame atomic adsorption (AA). All instruments were calibrated using a series of spiked standards in a 20% acetic-acid matrix. The filters containing insoluble residues were dried overnight at 50°C and reweighed to determine the weight percent of insoluble residue. Replicate analyses yielded results within 1 wt% for insoluble residues and within 5% for minor and trace elements.

Carbon Isotope Analysis

Carbon isotope analyses of the DIC were performed on pore-fluid samples which were fixed with HgCl, and preserved in sealed glass ampules. Samples were injected into an evacuated serum bottle containing 0.5 cm³ of H_3PO_4 . The CO₂ was removed by purging with He, and then analyzed for δ^{13} C in a continuous flow, stable isotope ratio mass spectrometer (Europa 20–20). The precision using this method was better than 0.1%.

RESULTS

Pore-Fluid Chemistry

The concentrations of the principal pore-fluid constituents for Sites 1003–1007 are presented in Table 1. Depth profiles are shown for the four principal sites of the Leg 166 transect (Sites 1003, 1005, 1006, and 1007) (Fig. 4). A brief description of the principal trends is given below for each of the main constituents.

Chlorides and Alkalides

Contents of dissolved Cl⁻ and Na⁺ have vertical gradients in the shallow Recent–Pleistocene intervals (~20–40 mbsf) at each site. Below this depth, profiles display a sharp increase in concentration that continues to increase down to the base of all holes. The increase is highest at Site 1005 and lowest at Site 1006 (Fig 4). The maximum dissolved Cl⁻ concentration occurs near the base of Site 1003 (1190 mbsf) and has a value of 1069 mM, roughly two times that of seawater. The concentrations of dissolved Na⁺ and K⁺ follow that of dissolved Cl⁻ at all sites except Site 1006.

Constituents Influenced by Organic Carbon Diagenesis

Total alkalinity profiles increase sharply below 20–40 mbsf, reaching broad maxima between 100 and 300 mbsf at all sites. The highest increases in alkalinity content (>60 mM) occur at Sites 1004 and 1005, whereas the smallest increase (7.9 mM) is observed at Site 1006. A second maximum in alkalinity content is reached below 300 mbsf at Sites 1006 and 1007.

Table 1. Summary of interstitial water chemistry, Sites 1003–1007.

Site	Depth (mbsf)	Salinity	Cl (mM)	Na ⁺ (mM)	K ⁺ (mM)	Mg ²⁺ (mM)	Ca ²⁺ (mM)	$\begin{array}{c} Sr^{2^+} \\ (\mu M) \end{array}$	Alkalinity (mM)	SO ₄ ²⁻ (mM)	HPO4 ²⁻ (µM)	$\stackrel{\rm NH_4^+}{(\mu M)}$	$\begin{array}{c} SiO_2 \\ (\mu M) \end{array}$	$\begin{array}{c} Ba^{2+} \\ (\mu M) \end{array}$	δ ¹⁸ O (‰)	δ ¹³ C (‰)
$ \begin{array}{r} 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \end{array} $	BW 1.5 3.0 4.5 6.0 8.5 10.0 11.5 15.0 24.0	36.0 36.0 36.0 36.0 36.0 36.0 36.0 36.0	578 580 577 578 578 576 576 576 575 574 575	502 497 494 498 495 491 489 496 489 491	$\begin{array}{c} 11.1 \\ 11.1 \\ 10.7 \\ 10.9 \\ 11.0 \\ 11.0 \\ 11.2 \\ 10.7 \\ 10.8 \\ 11.1 \end{array}$	56.3 55.9 55.4 55.5 55.6 55.5 55.9 55.4 55.5 55.9 55.4 55.5	$10.8 \\ 11.4 \\ 10.8 \\ 10.9 \\ 10.6 \\ 10.8 \\ 11.0 \\ 10.9 \\ 10.9 \\ 10.9 \\ 11.6 \\$	94 97 93 94 96 98 98 99 121 140	2.2 2.6 2.7 2.7 2.8 2.9 2.5 2.4 2.5	30.1 29.8 29.7 30.6 29.2 30.4 29.1 30.6 30.2 30.0	1 1 1 1 1 1 1 1	113 81 134 141 175 167 115 91 100	56 26 40 42 51 62 47 69 69		0.75 0.69 0.84 0.74 0.72 0.71 0.87 0.64 0.67	$\begin{array}{c} -1.26\\ -1.92\\ -1.66\\ -0.78\\ -0.95\\ -0.78\\ 0.20\\ 1.52\\ 0.81\end{array}$
1003 1003 1003 1003 1003 1003 1003 1003	28.8 42.9 52.4 61.5 71.4 74.9 86.2 94.8 107.5	36.0 36.5 37.0 38.5 41.0 42.0 43.0 44.0 46.0	575 582 595 620 655 666 708 721 743	487 492 501 522 568 564 585 610 616	11.3 11.2 11.6 11.8 12.9 13.5 13.1 14.2 14.3	54.9 55.3 55.8 56.4 55.9 54.2 51.5 52.4 50.2	11.3 10.7 11.2 9.9 9.6 9.5 10.3 10.8 11.6	119 239 270 409 789 851 1005 999 999	2.5 3.2 5.3 5.2 17.8 18.4 25.0 26.0 27.8	29.3 29.3 28.4 26.1 22.6 21.8 18.7 18.0 16.9	1 1 2 3 5 5 4 3	117 306 708 1305 2547 2774 3905 4530 5620	69 74 112 184 260 262 316 321 325		0.98 1.23 1.45 1.66 1.67	0.87 2.48 2.16 2.04 1.32 2.60 2.19 3.82 1.41
1003 1003 1003 1003 1003 1003 1003 1003	118.5 125.1 145.8 154.0 160.6 195.5 181.5 192.7 199.4	$\begin{array}{r} 47.0 \\ 47.0 \\ 47.5 \\ 47.0 \\ 46.0 \\ 49.5 \\ 49.5 \\ 50.0 \\ 49.0 \end{array}$	774 778 789 804 794 821 816 820 828	639 641 702 661 652 676 675 681 686	15.5 15.4 15.7 16.0 15.5 16.4 16.1 16.4 16.4	49.6 48.9 48.0 47.6 47.5 48.2 47.8 48.0 48.4	12.2 12.2 12.4 12.8 12.6 14.6 13.7 14.0 14.3	1027 1235 1136 1284 1152 1182 1187 1195 1137	25.6 28.3 26.8 27.9 27.5 29.8 30.4 29.2 27.7	17.1 17.3 16.2 16.0 16.2 15.6 15.5 15.8 16.2	3 3 2 12 11 10 7 14	5285 6814 7096 7830 7234 7818 7812 8038 8224	352 364 400 420 429 483 586 628 523		1.62 1.60 1.76 1.85 1.86 1.94 1.88	1.45 0.78 1.53 0.36 -0.07 0.87 0.03
1003 1003 1003 1003 1003 1003 1003 1003	207.6 218.7 283.2 294.3 321.6 332.8 359.6 446.4 455.2	49.5 49.5 49.0 51.5 52.5 52.0 53.5 57.0 57.0	828 823 815 854 867 855 883 928	684 677 666 703 713 716 730 778 757	16.7 16.3 15.8 16.4 17.7 17.0 17.6 17.8 17.2	48.6 49.1 52.7 52.6 53.8 54.7 54.8 53.6 55.6	14.3 14.7 18.1 20.5 22.5 22.3 23.3 31.4 31.5	1095 1098 742 796 834 800 854 708 749	27.7 25.7 18.4 20.3 20.8 19.1 17.8	16.5 16.5 23.1 22.2 22.8 24.3 23.0 24.2 27.9	13 2 2 8 14 8 5 3	8149 7663 6121 6828 6438 6020 5932 3691 3507	515 494 494 397 464 452 485 439 582		1.92 1.99 2.06 2.16 2.29 2.01 2.30 2.48 2.40	0.84 0.93 2.15 1.60
$ \begin{array}{r} 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \\ 1003 \end{array} $	433.2 466.0 504.5 658.6 684.9 737.2 759.7 773.6 820.2	57.0 58.0 45.5 60.0 62.0 60.0 59.0 61.0 62.0	907 952 744 982 995 974 964 1001 1018	809 627 823 831 813 799 848 854	17.2 17.8 13.8 17.1 16.7 18.2 16.8 18.5 18.4	55.5 49.3 58.5 62.2 55.7 54.7 53.8 54.8	31.5 34.9 25.1 43.6 45.6 41.6 41.1 43.8 43.7	749 742 383 557 530 697 791 788 771	14.2	27.9 28.4 24.5 35.2 38.7 32.1 33.0 33.0 32.2	6 1	3307 3610 1218 1587 1224 2466 2514 2892 3009	728 766 766 552 754 942 1001 997		2.40 2.57 1.88 2.64 2.51	2.26 2.55
1003 1003 1003 1003 1003 1004	910.1 1002.4 1024.1 1032.2 1083.6	60.0 58.0 57.5 57.0 62.0 36.5	1023 982 1005 974 1069 560	844 820 847 825 902 490	18.6 16.9 16.5 14.6 14.5 10.3	44.1 33.5 27.8 30.0 29.1 56.0	30.3 29.0 17.1 17.1 19.8 11.2	1384 2946 3654 3804 4380 100	2.7	9.3 4.8 2.9 4.3	1	3812 10003 13096 12263	992 936 808 777 840 41		2.89	2.13
1004 1004 1004 1004 1004 1004 1004 1004	1.5 4.5 6.7 9.7 12.7 16.2 19.2 19.2 30.2 41.2 50.7 60.2 74.2 83.7 92.7 110.4 130.4 130.4 130.4	$\begin{array}{c} 36.5\\ 36.5\\ 36.5\\ 36.5\\ 36.5\\ 36.5\\ 36.5\\ 36.5\\ 36.5\\ 36.5\\ 36.5\\ 37.0\\ 42.0\\ 43.0\\ 44.0\\ 45.5\\ 46.0\\ 46.0\\ 46.0\\ 46.5\\ 36.5\\$	560 571 575 576 575 574 562 574 562 574 579 615 662 685 680 711 728 734 739 583	490 496 499 499 492 498 498 498 498 498 504 530 577 599 605 628 640 642 652 511	$\begin{array}{c} 10.3 \\ 10.5 \\ 10.5 \\ 10.3 \\ 10.2 \\ 10.4 \\ \hline \\ 10.5 \\ 10.3 \\ 10.6 \\ 10.7 \\ 11.6 \\ 12.3 \\ 12.8 \\ 13.3 \\ 13.7 \\ 14.2 \\ 14.5 \\ 15.2 \\ 10.5 \\ \hline \end{array}$	56.0 56.2 56.2 56.3 56.1 55.3 55.9 56.1 54.5 50.9 45.4 43.0 43.1 40.8 38.8 39.0 37.7 56.9	$\begin{array}{c} 11.2 \\ 11.4 \\ 11.6 \\ 11.5 \\ 11.2 \\ 11.1 \\ 10.7 \\ 11.0 \\ 11.5 \\ 12.2 \\ 9.0 \\ 6.4 \\ 6.0 \\ 6.7 \\ 6.9 \\ 6.1 \\ 6.1 \\ 6.1 \\ 6.1 \\ 1.2 \end{array}$	100 101 96 98 101 102 101 103 115 138 262 734 1070 1190 1365 1442 1567 1647 2530	2.7 2.7 2.8 3.2 2.6 2.4 2.5 3.2 14.4 37.7 64.8 70.0 73.4 65.2 65.2 65.2 68.3 2.4	29.8 29.5 30.2 29.1 29.7 29.3 29.3 28.9 29.2 25.4 13.1 2.6 2.2 1.2 3.2 2.3 2.1 0.3	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 4 \\ 5 \\ 5 \\ 9 \\ 4 \\ 4 \\ 4 \\ 0 \\ \end{array} $	61 63 108 152 149 85 41 15 1687 1617 5131 8300 11867 13781 14912 16275 16478 19117	41 24 28 37 49 41 24 24 20 28 58 193 420 497 507 864 734 444 551	0	0.99 0.89 0.99 0.91 0.88 0.99 0.96 1.03 0.81 0.90 1.08 1.23 1.62 1.70 2.14	-1.23 -0.08 -0.67 -0.58 -1.14 -0.01 0.03 0.89 1.13 0.07 -0.83 -2.57 -0.88 0.56 0.30 1.66
1005 1005 1005 1005 1005 1005 1005 1005	4.0 6.9 9.9 13.4 23.4 23.4 23.4 57.9 42.4 57.9 68.0 68.9 74.9 87.5 94.1 122.4 150.3 164.1 178.2	$\begin{array}{c} 30.5\\ 36.5\\ 36.5\\ 36.5\\ 36.5\\ 36.5\\ 36.5\\ 37.0\\ 40.0\\ 42.0\\ 42.0\\ 42.0\\ 42.0\\ 42.0\\ 42.0\\ 45.0\\ 45.0\\ 46.5\\ 46.5\\ 46.5\\ 46.5\\ \end{array}$	580 581 586 583 580 586 607 650 679 690 702 739 758 796 769 759 742	$\begin{array}{c} 511\\ 499\\ 503\\ 503\\ 503\\ 502\\ 533\\ 502\\ 534\\ 546\\ 572\\ 579\\ 600\\ 645\\ 654\\ 668\\ 645\\ 652\\ 652\\ 645\end{array}$	$\begin{array}{c} 10.3 \\ 10.4 \\ 10.2 \\ 10.4 \\ 10.5 \\ 10.2 \\ 10.3 \\ 10.6 \\ 10.8 \\ 11.8 \\ 12.0 \\ 12.3 \\ 12.7 \\ 13.7 \\ 13.9 \\ 14.4 \\ 14.2 \\ 14.5 \\ 14.4 \end{array}$	$\begin{array}{c} 56.7\\ 56.4\\ 56.7\\ 57.1\\ 55.8\\ 56.1\\ 55.8\\ 53.1\\ 50.0\\ 49.3\\ 48.7\\ 49.8\\ 50.0\\ 59.0\\ 46.9\\ 941.3\\ 41.1\end{array}$	$\begin{array}{c} 11.2 \\ 11.2 \\ 11.3 \\ 11.5 \\ 11.3 \\ 11.5 \\ 11.3 \\ 11.2 \\ 11.8 \\ 10.8 \\ 8.6 \\ 8.1 \\ 8.0 \\ 7.6 \\ 8.5 \\ 11.2 \\ 8.9 \\ 6.3 \\ 6.1 \end{array}$	 33 100 101 95 102 122 100 139 380 633 809 910 1023 1105 1286 1231 1006 932 1097 	$\begin{array}{c} 2.4\\ 2.8\\ 3.1\\ 3.0\\ 2.6\\ 2.6\\ 2.6\\ 2.6\\ 5.8\\ 17.8\\ 33.4\\ 41.7\\ 45.8\\ 46.3\\ 48.4\\ 38.5\\ 54.1\\ 55.4\\ 60.5\\ \end{array}$	29.9 29.9 30.0 29.4 29.9 29.6 30.7 28.4 21.1 11.2 5.5 2.7 1.4 0.5 0.9 11.2 4.7 2.1 3.1	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 11 \\ 4 \\ 2 \\ 3 \\ 4 \\ 2 \\ 7 \\ 12 \\ 9 \\ 7 \\ \end{array} $	 41 93 152 149 91 66 53 581 1771 3731 4963 5761 5933 6909 7091 6797 11316 14535 15028 	33 41 45 49 62 70 37 54 87 125 168 189 202 215 237 271 784 856 748	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 1.04\\ 1.03\\ 1.14\\ 1.02\\ 1.14\\ 1.12\\ 0.99\\ 1.04\\ 1.11\\ 1.26\\ 1.53\\ 1.73\\ 1.81\\ 1.91\\ 2.03\\ 2.16\\ 1.98\\ 1.67\\ 1.81\\ 1.80\\ \end{array}$	$\begin{array}{c} -0.35 \\ -0.40 \\ -0.63 \\ -0.63 \\ -0.32 \\ 1.11 \\ 1.22 \\ 1.32 \\ 1.15 \\ 0.28 \\ 0.03 \\ 0.18 \\ 0.03 \\ 0.25 \\ -0.51 \\ -1.18 \\ 2.78 \\ 4.86 \\ 4.64 \end{array}$

Table 1	(continued).
---------	--------------

Site	Depth (mbsf)	Salinity	Cl (mM)	Na ⁺ (mM)	K ⁺ (mM)	Mg ²⁺ (mM)	Ca ²⁺ (mM)	$\frac{Sr^{2+}}{(\mu M)}$	Alkalinity (mM)	SO4 ²⁻ (mM)	HPO4 ²⁻ (µM)	NH_4^+ (μM)	$\begin{array}{c} SiO_2 \\ (\mu M) \end{array}$	Ba ²⁺ (μM)	δ ¹⁸ O (‰)	δ ¹³ C (‰)
1005 1005 1005 1005 1005 1005 1005 1005	$\begin{array}{c} 253.8\\ 263.2\\ 286.0\\ 296.0\\ 308.0\\ 308.0\\ 308.0\\ 360.9\\ 388.0\\ 405.2\\ 416.0\\ 425.5\\ 433.0\\ 460.7\\ 490.1\\ 528.3\\ 553.3\\ 565.4\\ 573.2\\ 601.0\\ 637.0\\ 637.0\\ 682.5\\ \end{array}$	$\begin{array}{c} 46.0\\ 46.5\\ 48.0\\ 48.0\\ 48.5\\ 50.0\\ 50.0\\ 50.0\\ 50.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 52.0\\ 55.0\\ 55.0\\ 56.0\\ 56.0\\ 56.0\\ 57.0\\$	756 772 771 790 793 795 831 820 846 826 823 850 878 850 878 891 846 925 922 929 924 924 924	664 669 664 677 688 693 693 693 695 676 716 749 751 685 758 756 777 782 799	$\begin{array}{c} 14.9\\ 15.3\\ 14.8\\ 15.0\\ 15.5\\ 15.2\\ 15.4\\ 15.5\\ 16.3\\ 16.4\\ 16.2\\ 15.4\\ 16.6\\ 17.3\\ 16.0\\ 14.7\\ 14.8\\ 16.3\\ 15.3\\ 17.0\\ 15.9\end{array}$	$\begin{array}{c} 34.1\\ 32.6\\ 34.5\\ 34.0\\ 35.0\\ 35.0\\ 38.2\\ 43.1\\ 47.9\\ 49.0\\ 53.8\\ 54.3\\ 56.5\\ 59.5\\ 60.9\\ 51.8\\ 52.8\\ 52.8\\ 52.6\\ 51.9\\ 51.9\\ 46.4\end{array}$	$\begin{array}{c} 6.0\\ 8.3\\ 9.7\\ 6.9\\ 9.5\\ 10.3\\ 14.0\\ 15.3\\ 15.8\\ 18.3\\ 19.1\\ 22.6\\ 24.3\\ 26.7\\ 29.8\\ 29.0\\ 30.7\\ 32.3\\ 33.7\\ 34.1\\ 32.4 \end{array}$	$\begin{array}{c} 2710\\ 2908\\ 3767\\ 3948\\ 4098\\ 4253\\ 3064\\ 1308\\ 930\\ 806\\ 631\\ 707\\ 643\\ 626\\ 592\\ 637\\ 708\\ 700\\ 797\\ \end{array}$	$\begin{array}{c} 64.0\\ 61.9\\ 57.1\\ 44.3\\ 53.3\\ 51.3\\ 40.4\\ 23.0\\ 10.4\\ 13.3\\ 9.1\\ 13.9\\ 10.1\\ 7.8\\ 8.2\\ 9.7\\ \end{array}$	$\begin{array}{c} 0.3\\ 0.4\\ 2.1\\ 0.7\\ 0.9\\ 2.5\\ 5.3\\ 12.1\\ 15.0\\ 20.5\\ 21.8\\ 23.7\\ 29.1\\ 30.3\\ 32.5\\ 26.8\\ 23.6\\ 24.2\\ 23.5\\ 25.7\\ 16.9\end{array}$	4 5 4 5 2 4 4 3 2	$\begin{array}{c} 17435\\ 17609\\ 15869\\ 16362\\ 16072\\ 14129\\ 10852\\ 7756\\ 7016\\ 5943\\ 4537\\ 35943\\ 4537\\ 3279\\ 2428\\ 2502\\ 2206\\ 3908\\ 3464\\ 3501\\ 3760\\ 3686\end{array}$	555 552 549 556 531 511 440 317 329 322 646 340 335 396 467 575 533 578 357 713	1 1 2 4 0 0 0 0 0 0 0 0 0 0 1	1.94 1.92 1.94 2.02 2.01 2.18 2.12 2.35 2.26	1.56 0.17 -1.24 -0.18 -1.83 -3.08 -2.38
$\begin{array}{c} 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\ 1006\\$	$\begin{array}{c} 2.9\\ 5.8\\ 10.0\\ 14.5\\ 19.5\\ 24.0\\ 29.0\\ 38.5\\ 48.0\\ 95.5\\ 67.0\\ 76.5\\ 86.0\\ 95.5\\ 105.0\\ 114.5\\ 124.0\\ 133.5\\ 124.0\\ 152.5\\ 162.0\\ 171.5\\ 200.0\\ 209.5\\ 219.0\\ 228.0\\ 247.5\\ 257.0\\ 238.0\\ 247.5\\ 2576.0\\ 281.8\\ 209.5\\ 219.0\\ 228.5\\ 276.0\\ 281.8\\ 209.5\\ 238.0\\ 247.5\\ 257.0\\ 3342.7\\ 370.2\\ 397.6\\ 425.7\\ 453.0\\ 425.7\\ 453.0\\ 425.7\\ 453.0\\ 481.0\\ 512.8\\ 537.2\\ 566.1\\ 595.0\\ 626.9\\ 660.9\\ 691.3\\ 710.6\\ \end{array}$	$\begin{array}{c} 35.0\\ 35.0\\ 35.0\\ 35.0\\ 35.0\\ 35.5\\ 35.0\\ 35.5\\ 36.0\\ 36.0\\ 36.0\\ 36.0\\ 36.0\\ 36.0\\ 36.0\\ 36.0\\ 36.0\\ 36.0\\ 36.0\\ 36.0\\ 36.0\\ 36.0\\ 36.0\\ 37.0\\ 37.0\\ 37.5\\ 37.5\\ 37.5\\ 37.5\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 38.0\\ 40.0\\ 40.0\\ 40.0\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\ 40.5\\$	$\begin{array}{c} 563\\ 564\\ 560\\ 563\\ 564\\ 569\\ 577\\ 589\\ 595\\ 600\\ 606\\ 618\\ 626\\ 630\\ 640\\ 641\\ 644\\ 653\\ 666\\ 668\\ 672\\ 676\\ 686\\ 699\\ 702\\ 715\\ 708\\ 726\\ 731\\ 743\\ 759\\ 783\\ 756\\ 783\\ 795\\ 783\\ 756\\ 783\\ 783\\ 815\\ 820\\ 843\\ 859\\ 843\\ 859\\ 865\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\ 839\\ 866\\$	$\begin{array}{c} 481\\ 482\\ 482\\ 482\\ 482\\ 482\\ 482\\ 530\\ 530\\ 530\\ 555\\ 530\\ 556\\ 556\\ 556\\ 556\\ 557\\ 575\\ 580\\ 556\\ 566\\ 568\\ 577\\ 575\\ 580\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 602\\ 604\\ 614\\ 602\\ 598\\ 612\\ 703\\ 671\\ 676\\ 694\\ 710\\ 682\\ 700\\ 710\\ 682\\ 700\\ 710\\ 682\\ 700\\ 700\\ 700\\ 700\\ 700\\ 700\\ 700\\ 70$	$\begin{array}{c} 10.7\\ 10.9\\ 10.2\\ 10.9\\ 11.1\\ 11.5\\ 11.0\\ 10.1\\ 10.3\\ 10.3\\ 9.8\\ 10.4\\ 9.8\\ 10.2\\ 9.9\\ 9.7\\ 9.9\\ 9.5\\ 9.7\\ 9.9\\ 9.5\\ 9.7\\ 9.9\\ 9.5\\ 9.7\\ 9.9\\ 9.5\\ 9.7\\ 9.9\\ 9.5\\ 9.7\\ 9.9\\ 9.5\\ 9.7\\ 9.9\\ 9.5\\ 9.7\\ 9.9\\ 9.5\\ 9.7\\ 9.0\\ 8.9\\ 9.3\\ 9.1\\ 9.2\\ 8.4\\ 8.6\\ 9.1\\ 9.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.5\\ 8.0\\ 8.$	53.7 53.9 54.3 54.3 54.3 54.4 54.1 51.0 48.1 45.0 41.6 39.1 35.0 34.0 32.7 32.1 31.0 32.7 32.1 31.0 32.7 32.1 31.0 32.7 32.1 31.0 32.7 32.1 31.0 32.7 32.1 31.0 32.7 32.1 31.0 32.7 32.1 32.6 25.6 25.5 25.8 28.3 26.5 25.5 25.8 28.3 26.5 27.4 27.5 32.1 32.6 25.5 25.8 28.3 26.5 27.4 27.5 32.1 32.6 25.5 25.8 28.3 26.5 27.4 27.5 33.1 33.6 33.6 35.3 35.4 35.3 35.4 35.7 37.1 32.6 35.7 37.1 33.8 35.6 35.7 37.1 33.8 35.6 35.7 32.1 32.6 32.5 25.5 25.8 28.3 26.5 31.1 33.1 33.6 35.3 35.4 35.7 37.1 35.7 37.1 37.5 37.7 37.1 37.7 37.1 37.7 37.1 37.7 37.1 37.7 37.1 37.7 37.1 37.7 37.1 37.7 37.1 37.7 37.1 37.7 37.1 37.7 37.1 37.7 37.1 37.7 37.1 37.7 37.1 37.7 37.1 37.7 37.7 37.1 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7 37.7	$\begin{array}{c} 9.4\\ 9.6\\ 9.7\\ 9.3\\ 9.5\\ 9.2\\ 8.5\\ 7.9\\ 7.7\\ 7.3\\ 7.8\\ 8.5\\ 7.9\\ 7.7\\ 7.3\\ 7.8\\ 9.2\\ 7.6\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 8.0\\ 7.9\\ 7.0\\ 7.0\\ 7.0\\ 7.0\\ 7.0\\ 7.0\\ 7.0\\ 7.0$	$\begin{array}{c} 154\\ 138\\ 174\\ 180\\ 208\\ 222\\ 455\\ 674\\ 840\\ 992\\ 1209\\ 1335\\ 1498\\ 1670\\ 1756\\ 1498\\ 1670\\ 1756\\ 1818\\ 1958\\ 2108\\ 2361\\ 2976\\ 3138\\ 3336\\ 3138\\ 3336\\ 3488\\ 3720\\ 3398\\ 2976\\ 3138\\ 3336\\ 3488\\ 3720\\ 33872\\ 4159\\ 4425\\ 4505\\ 4425\\ 4435\\ 4505\\ 4425\\ 4630\\ 5355\\ 5620\\ 6103\\ 5355\\ 5620\\ 6103\\ 6353\\ 7005\\ 5550\\ 6445\\ 5650\\ 6405\\ 6305\\ 5380\\ 4560\\ 5310\\ 4560\\ 5310\\ 4560\\ 5310\\ 4560\\ 5310\\ 4560\\ 5310\\ 4560\\ 5310\\ 4560\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 5310\\ 53$	$\begin{array}{c} 3.8\\ 3.1\\ 2.9\\ 2.8\\ 2.9\\ 3.2\\ 3.9\\ 5.5\\ 6.1\\ 7.3\\ 7.7\\ 7.2\\ 7.8\\ 7.9\\ 7.9\\ 7.2\\ 7.5\\ 6.9\\ 7.5\\ 6.2\\ 6.7\\ 6.4\\ 6.2\\ 5.9\\ 5.5\\ 5.1\\ 5.1\\ 4.8\\ 4.7\\ 4.6\\ 4.7\\ 4.9\\ 5.3\\ 5.8\\ 6.1\\ 6.5\\ 7.5\\ 7.0\\ 6.5\\ 7.0\\ 6.3\\ 6.7\\ 5.8\\ 5.8\\ 5.8\\ 5.8\\ 5.8\\ 5.8\\ 5.8\\ 5.8$	$\begin{array}{c} 27.1\\ 27.9\\ 28.4\\ 27.5\\ 28.0\\ 29.0\\ 27.4\\ 23.9\\ 20.9\\ 20.9\\ 27.4\\ 23.9\\ 20.9\\ 27.4\\ 23.9\\ 20.9\\ 27.4\\ 23.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\ 20.9\\$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	127 116 84 88 127 24 222 546 942 21158 1806 1626 2058 2346 3066 1626 2652 2292 2760 2850 2850 2850 2850 2850 2850 3192 2922 3354 3700 3534 3570 3570 3570 3984 4056 3408 4218 4056 3408 4218 4056 3408 4218 4056 3570 3984 4056 3408 4218 4056 3570 3570 3584 4056 3408 4218 4056 3570 3570 3570 3570 3570 3570 3570 3570	$\begin{array}{c} 168\\ 100\\ 60\\ 92\\ 117\\ 119\\ 134\\ 172\\ 189\\ 193\\ 193\\ 193\\ 193\\ 193\\ 193\\ 214\\ 231\\ 256\\ 231\\ 218\\ 208\\ 231\\ 248\\ 256\\ 291\\ 314\\ 469\\ 503\\ 408\\ 389\\ 374\\ 469\\ 503\\ 408\\ 389\\ 374\\ 469\\ 503\\ 365\\ 363\\ 498\\ 522\\ 449\\ 642\\ 425\\ 387\\ 373\\ 376\\ 462\\ 805\\ 373\\ 376\\ 462\\ 805\\ 853\\ 699\\ 642\\ 425\\ 853\\ 699\\ 642\\ 425\\ 853\\ 699\\ 642\\ 425\\ 853\\ 699\\ 642\\ 425\\ 853\\ 699\\ 642\\ 425\\ 853\\ 699\\ 642\\ 425\\ 853\\ 699\\ 642\\ 425\\ 853\\ 699\\ 642\\ 425\\ 853\\ 699\\ 642\\ 425\\ 853\\ 699\\ 642\\ 425\\ 853\\ 699\\ 642\\ 855\\ 853\\ 699\\ 642\\ 855\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 699\\ 853\\ 853\\ 853\\ 853\\ 853\\ 853\\ 853\\ 853$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0.15 0.12 0.11 0.08 0.22 0.60 0.57 0.70 0.61 0.63 0.46 0.45 0.39 0.27 0.31 0.25 0.22 0.23 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	
1007 1007 1007 1007 1007 1007 1007 1007	5.9 9.0 12.4 15.4 21.9 35.9 47.4 53.9 64.9 72.9 82.4 87.6 96.1 136.9	$\begin{array}{c} 35.5\\ 36.0\\ 35.0\\ 35.5\\ 35.5\\ 35.5\\ 35.5\\ 36.0\\ 39.5\\ 40.5\\ 41.0\\ 42.5\\ 43.5\\ 44.0\\ 44.5\\ 48.5\end{array}$	562 564 561 562 565 585 631 649 679 689 706 729 727 782	475 472 474 479 481 485 496 544 553 576 585 607 600 619 676	$\begin{array}{c} 10.3 \\ 10.1 \\ 10.5 \\ 10.4 \\ 10.4 \\ 10.1 \\ 11.6 \\ 11.6 \\ 11.7 \\ 11.6 \\ 11.9 \\ 12.5 \\ 12.5 \\ 13.5 \\ 13.6 \end{array}$	$\begin{array}{c} 53.6\\ 53.7\\ 52.6\\ 53.3\\ 53.8\\ 53.2\\ 53.7\\ 55.6\\ 56.1\\ 56.8\\ 57.1\\ 57.3\\ 57.0\\ 56.9\\ 60.0\\ \end{array}$	$\begin{array}{c} 10.9\\ 10.7\\ 10.6\\ 11.0\\ 10.5\\ 11.0\\ 11.1\\ 11.0\\ 10.5\\ 10.2\\ 10.0\\ 9.8\\ 9.7\\ 9.3\\ 11.4 \end{array}$	129 130 128 145 190 240 469 794 863 860 968 937 1078 1050 1071	$\begin{array}{c} 2.9\\ 2.8\\ 2.5\\ 2.7\\ 3.0\\ 3.5\\ 7.2\\ 14.2\\ 16.2\\ 19.9\\ 20.5\\ 22.1\\ 22.3\\ 20.0\\ 24.5 \end{array}$	28.2 28.4 28.4 29.0 28.0 28.3 27.3 24.5 23.0 21.4 20.9 19.6 19.9 19.8 22.1	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 0 \\ 2 \\ 4 \\ 5 \\ 4 \\ 16 \\ 5 \\ 7 \\ 4 \\ 4 \\ 4 \end{array} $	47 44 50 57 83 134 920 1718 2033 2369 2369 2369 2684 2327 2684 2327	50 44 56 58 75 125 197 228 242 286 294 294 300 294	3 1 2 0 1 1 1 1 1 1 1 1 1 1 0	$\begin{array}{c} 0.44\\ 0.35\\ 0.39\\ 0.52\\ 0.48\\ 0.60\\ 1.07\\ 1.20\\ 1.28\\ 1.32\\ 1.34\\ 1.33\\ 1.38\\ 1.46 \end{array}$	

Table 1 (continued).

Site	Depth (mbsf)	Salinity	Cl (mM)	Na ⁺ (mM)	$\begin{array}{c} K^{+} \\ (mM) \end{array}$	Mg ²⁺ (mM)	Ca ²⁺ (mM)	$\begin{array}{c} Sr^{2+} \\ (\mu M) \end{array}$	Alkalinity (mM)	SO4 ²⁻ (mM)	$\begin{array}{c}HPO_4^{\ 2-}\\(\mu M)\end{array}$	$\stackrel{NH_{4}}{(\mu M)}^{+}$	$\begin{array}{c} SiO_2 \\ (\mu M) \end{array}$	Ba ²⁺ (μM)	δ ¹⁸ O (‰)	δ ¹³ C (‰)
Site 1007 1007 1007 1007 1007 1007 1007 100	Depth (mbsf) 142.9 153.3 158.3 209.0 219.8 228.9 238.0 247.2 253.5 259.8 270.6 287.4 341.1 351.4 409.9 428.1 440.4 463.3 597.5 620.8 648.3 682.2 708.3 726.7 745.7 766.3 794.4	Salinity 49.0 49.5 49.5 53.5 54.0 54.0 54.0 54.5 55.0 55.0 55.0 55	Cl (mM) 796 796 803 858 871 885 888 871 885 888 882 894 897 905 901 897 905 901 897 917 923 934 932 931 912 923 934 934 961 925 899 911	$\begin{array}{c} Na^+ \\ (mM) \\ \hline \\ 676 \\ 674 \\ 689 \\ 729 \\ 724 \\ 743 \\ 742 \\ 743 \\ 742 \\ 743 \\ 742 \\ 743 \\ 755 \\ 754 \\ 755 \\ 754 \\ 773 \\ 769 \\ 776 \\$	$\begin{array}{c} {\rm K}^+ \\ ({\rm mM}) \\ 14.4 \\ 13.6 \\ 14.3 \\ 16.2 \\ 16.2 \\ 16.7 \\ 16.7 \\ 16.7 \\ 15.9 \\ 15.7 \\ 15.8 \\ 16.0 \\ 16.0 \\ 16.4 \\ 15.7 \\ 15.8 \\ 16.6 \\ 15.8 \\ 16.5 \\ 15.4 \\ 16.5 \\ 15.4 \\ 16.5 \\ 15.4 \\ 16.5 \\ 15.4 \\ 16.5 \\ 15.4 \\ 16.5 \\ 15.4 \\ 16.5 \\ 15.4 \\ 16.5 \\ 15.4 \\ 16.5 \\ 15.4 \\ 16.5 \\ 15.4 \\ 16.5 \\ 15.4 \\ 16.5 \\ 15.4 \\ 16.5 \\ 15.8 \\ 16.5 \\ 15.8 \\ 16.5 \\ 15.8 \\ 16.5 \\ 15.8 \\ 16.5 \\ 15.8 \\ 16.5 \\ 15.8 \\ 16.5 \\ 15.8 \\ 16.5 \\ 15.8 \\ 16.5 \\ 15.8 \\ 16.5 \\ 16.4 \\ 18.5 \\ 15.8 \\ 16.5 \\ 16$	$\begin{array}{c} Mg^{2+}\\ (mM)\\ \hline\\ 60.9\\ 61.3\\ 63.0\\ 62.5\\ 62.3\\ 61.8\\ 61.5\\ 62.0\\ 61.0\\ 60.6\\ 61.0\\ 60.6\\ 60.0\\ 60.6\\ 60.0\\ 59.4\\ 59.2\\ 59.3\\ 58.5\\ 57.1\\ 56.7\\ 54.8\\ 34.2\\ 33.6\\ 33.8\\ 29.0\\ 27.9\\ 26.3\\ 27.0\\ 27.6\\ 28.7\\ 29.9\\ 26.3\\ 27.0\\ 27.6\\ 28.7\\ 29.9\\ 31.7\\ \end{array}$	$\begin{array}{c} Ca^{2+} \\ (mM) \\ 10.9 \\ 12.1 \\ 12.0 \\ 16.8 \\ 18.8 \\ 19.9 \\ 20.5 \\ 21.5 \\ 21.5 \\ 21.5 \\ 21.5 \\ 21.7 \\ 23.1 \\ 24.0 \\ 26.3 \\ 26.4 \\ 24.1 \\ 23.1 \\ 22.5 \\ 20.4 \\ 13.8 \\ 13.8 \\ 14.8 \\ 15.4 \\ 13.4 \\ 12.1 \\ 11.5 \\ 11.8 \\ 14.1 \\ 14.7 \\ 14.4 \\ \end{array}$	$\begin{array}{c} Sr^{2+} \\ (\mu M) \\ 9999 \\ 1004 \\ 898 \\ 824 \\ 765 \\ 789 \\ 806 \\ 747 \\ 755 \\ 721 \\ 755 \\ 721 \\ 755 \\ 721 \\ 755 \\ 723 \\ 708 \\ 704 \\ 869 \\ 917 \\ 723 \\ 708 \\ 704 \\ 869 \\ 917 \\ 744 \\ 869 \\ 917 \\ 744 \\ 869 \\ 917 \\ 744 \\ 869 \\ 917 \\ 744 \\ 869 \\ 917 \\ 744 \\ 869 \\ 917 \\ 744 \\ 869 \\ 917 \\ 744 \\ 864 \\ 745 \\ 725 \\ 843 \\ 704 \\ 843 \\ 3401 \\ 3401 \\ 3401 \\ 3401 \\ 3401 \\ 3401 \\ 3401 \\ 3402 \\ 3400 \\ 3504 \\ 3402 \\ 3095 \\ 3095 \\ 3802 \\ 3960 \\ 3920 \\ \end{array}$	Alkalinity (mM) 21.3 23.6 22.9 16.5 16.4 14.8 14.3 12.5 14.6 13.0 12.7 11.7 13.9 11.1 13.5 11.3 10.3 9.8 8.4 10.5 10.2 8.2 10.8 14.0 19.1 14.7 15.4 11.2 9.6 10.9 14.4 18.1	$\begin{array}{c} SO_4^{2-} \\ (mM) \\ \hline \\ 22.4 \\ 22.5 \\ 23.1 \\ 26.1 \\ 27.0 \\ 27.4 \\ 28.2 \\ 28.0 \\ 28.4 \\ 27.9 \\ 28.4 \\ 29.4 \\ 28.4 \\ 29.4 \\ 28.4 \\ 29.4 \\ 28.7 \\ 22.8 \\ 14.8 \\ 23.3 \\ 22.2 \\ 22.8 \\ 14.8 \\ 7.1 \\ 6.4 \\ 5.7 \\ 5.3 \\ 22.1 \\ 2.2 \\ 1.5 \\ 1.2 \\ 2.2 \\ 1.3 \\ 3.2 \\ \end{array}$	$\begin{array}{c} HPO_4^{2-} \\ (\mu M) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} NH_4^+ \\ (\mu M) \\ 3335 \\ 2999 \\ 3188 \\ 3167 \\ 2894 \\ 3146 \\ 3167 \\ 2747 \\ 2432 \\ 3020 \\ 2873 \\ 2159 \\ 2285 \\ 2495 \\ 2663 \\ 3083 \\ 3272 \\ 3524 \\ 4049 \\ 5435 \\ 6170 \\ 7598 \\ 7031 \\ 6842 \\ 8228 \\ 7472 \\ 8984 \\ 7472 \\ 8984 \\ 10433 \\ 10139 \\ 9068 \\ 10034 \\ 10034 \\ 8879 \\ \end{array}$	$\begin{array}{c} \text{SiO}_2 \\ (\mu M) \\ 278 \\ 286 \\ 297 \\ 339 \\ 350 \\ 317 \\ 317 \\ 286 \\ 300 \\ 312 \\ 343 \\ 318 \\ 242 \\ 241 \\ 245 \\ 235 \\ 403 \\ 401 \\ 769 \\ 674 \\ 630 \\ 779 \\ 895 \\ 775 \\ 698 \\ 775 \\ 698 \\ 705 \\ 599 \\ 725 \\ 723 \\ 731 \\ \end{array}$	$\begin{array}{c} Ba^{2+} \\ (\mu M) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} \delta^{18}O\\(\% c)\\ 1.56\\ 1.47\\ 1.58\\ 1.86\\ 1.98\\ 1.96\\ 2.09\\ 2.11\\ 2.17\\ 2.09\\ 2.11\\ 2.17\\ 2.36\\ 2.26\\ 2.49\\ 2.38\\ 2.48\\ 2.45\\ 2.42\\ 2.42\\ 2.19\\ 2.38\\ \end{array}$	δ ¹³ C (%c)
1007 1007 1007 1007 1007 1007 1007 1007	814.8 842.1 870.5 890.1 929.0 986.4 1014.4	54.0 54.5 55.5 55.0 56.5 55.5	911 943 955 968 957 1001 971 809	700 793 820 801 786 827 820 688	10.5 17.3 17.0 15.4 15.4 14.3 12.9 10.0	31.7 31.4 30.3 30.3 27.6 27.6 22.3	14.4 15.0 15.0 14.9 14.2 15.5 15.1 14.2	 3920 4465 4095 4330 3830 4780 4300 3740 	15.3 18.2 16.7 11.5	5.2 3.5 1.7 0.8 2.5 0.7 1.8 3.5	0	6632 11131 12015 10655 12491 10281 6592	731 771 729	25 27 11 68		

Notes: BW = surface bank water; blank cells = not measured.

Ammonium (NH_4^+) profiles are similar to alkalinity profiles in the upper 200 mbsf, with a broad maximum between 4 and 15 mM obtained 20–50 m below the alkalinity peak. The occurrence of the NH_4^+ peak at greater depths than the sulfate peak is probably caused by differences in microbial end products within the sulfate reduction zone and lower methanogenic zone. Ammonium content either continues to increase to the base of the hole (Sites 1006 and 1007), decreases (Site 1005), or displays a second maximum near the base of the hole (Site 1003). The content of dissolved phosphate was very low at all sites (<6 μ M) and is limited by a strong interaction with carbonate (Kitano et al., 1978).

Sulfate (SO₄²⁻) profiles decrease sharply below 30 mbsf and reach a broad minimum between 80 and 200 mbsf at all sites. The sharpest decrease occurs at Site 1005, where SO₄²⁻ becomes undetectable (<2 mM) by a depth of 80 mbsf. At Site 1003, the minimum SO₄²⁻ concentration is 15.5 mM at a depth of 181 mbsf. Interestingly, at both Sites 1003 and 1005 the concentration of SO₄²⁻ increases further downhole in excess of bottom-water concentrations (30 mM). At Site 1003, SO₄²⁻ concentrations as high as 38.7 mM occur at a depth of 687 mbsf. (Table 1). In contrast, Sites 1006 and 1007 display a more typical SO₄²⁻ profile of decreasing concentration with depth in the upper 200 mbsf (base of sulfate reduction zone), and low to zero concentration down to the base of the hole.

Alkaline Earth Elements

Calcium (Ca²⁺) and magnesium (Mg²⁺) profiles show significant differences between sites and considerable structure within each site (Fig. 4). As with the other elements, the profiles are near vertical in the upper 20–30 m of each site, with concentrations similar to bot-tom-water values. Large changes occur below the base of this zone. Calcium concentrations range between 6 and 34 mM, with significant decreases from seawater concentrations within shallow (upper 200

mbsf) zones of active sulfate reduction, and significant increases further downhole. Magnesium concentrations range between 25 and 63 mM, and generally decrease with depth at all sites. Strontium (Sr²⁺) concentrations increase to very high values below 30 mbsf at all sites. The highest concentration (~7 mM) was recorded at a depth of 453 mbsf at Site 1006. At Sites 1003, 1005, and 1007, Sr²⁺ concentrations decrease further downhole in an inverse relationship with SO₄²⁻. Dissolved barium (Ba²⁺) ranges between 0.1 and 227 μ M, with higher concentrations measured at the more distal sites. Barium profiles similarly show an inverse relationship with respect to SO₄²⁻.

Oxygen and Carbon Stable Isotopes

The oxygen stable isotopic composition (δ^{18} O) of interstitial waters ranged from +0.05% to +0.08% in the upper 30 mbsf at all sites, becoming heavier further downhole at all sites except Site 1006. The highest δ^{18} O values (+2.8%) occurred at Site 1003 at a depth of 910 mbsf. The carbon stable isotopic composition (δ^{13} C) ranged from -2.57% to +4.86%, with a mean value of +0.17%.

Minor and Trace Element Composition of Acid Soluble Solid Samples

Minor and trace element composition of the acid soluble sediment samples at Sites 1007 and 1005 are shown in Table 2. Also included are sediment porosity data determined by pycnometer on the same samples (F. Anselmetti and J. Kenter, unpubl. data). The insoluble content at Site 1007 ranges between 0.5% and 36%, with significant cyclic variation within the Miocene sequences. At Site 1005, insoluble content ranges between 1.5% and 10.5%. Strontium concentrations vary from 500 to 12,000 ppm. Iron concentrations range from 50 to 1800 ppm, with the highest values associated with higher insoluble fractions. Manganese concentrations vary from 0 to 220 ppm,

Figure 4. Depth profiles of selected interstitial water constituents for Sites 1006, 1007, 1003, and 1005. ALK = alkalinity.

displaying clear cyclic intervals downhole. Barium concentrations vary from 4 to 274 ppm and show distinct patterns downhole that are probably related to the abundance of acid-soluble barite in the sediments.

DISCUSSION

light the significant diagenetic results of the Bahamas Transect. The discussion has been divided into four parts that cover the most intriguing hydrogeochemical features of the Transect. These are (1) the shallow pore-fluid gradient shifts, (2) the Na⁺ and Cl⁻ profiles, (3) the carbonate diagenesis, and (4) the organic matter diagenesis.

Shallow Pore-Fluid Gradient Shifts

In this section, discussion is limited to those aspects of the porefluid data that are relevant to the fluid flow objectives and that high-

Pore-fluid profiles display a dramatic shift in the upper 100 mbsf at all sites. In the upper 20-40 m, profiles of typically conservative

Site	Depth (mbsf)	Insolubles (wt%)	Porosity (%)	Mg (%)	Fe (ppm)	Na (ppm)	Mn (ppm)	Sr (ppm)	Ba (ppm)	Li (ppm)
1005 1005	128.8 138.1	2.9 3.0	21.0 30.0	1.8 1.2	128 79	3346 4570	25 19	2420 3310	7 6	
1005	138.3	2.8 4.0	31.0 34.0	1.7	40	3970 5163	14 27	2850 3470	5	
1005	454.0	2.9	23.0	4.9	122	3095	12	2030	6	
1005	387.9 425.4	3.0 2.9	38.0 29.0	0.9	88 89	4083	11	1640 1470	23	
1005	434.9	1.5	35.0	1.4	103	3095	11	1370	10	
1005	452.9 470.1	4.7 3.1	20.0 36.0	7.0	106	2406 3250	13 12	2080 2100	7	
1005	472.7	2.6	8.0	1.0	60	1234	10	1990	3	
1005	509.0 553.6	3.1 3.9	25.0 34.0	1.2	81 146	2933 3864	12 16	2170 2520	3	
1005	564.1	9.0	20.0	0.5	152	3168	53	3230	6	
1005	566.9 581.0	3.2 3.4	31.0 19.0	0.7 0.4	88 188	3213	13	2650 2970	4	
1005	591.4	8.8	36.0	0.9	323	4709	34	2600	6	
$1005 \\ 1005$	599.9 600.8	1.5 3.6	13.0 6.0	0.6 0.5	88 94	1553 1119	14 16	3410 3910	6 5	
1005	602.5	10.5	45.0	0.4	288	9204	19	3560	6	
1005	018.9	0.0 1.6	38.0	1.8	407	0410 4520	47	2020	כ ד	0
1007	132.6	3.6	40.0	0.7	137	7734	29	5687	12	9
1007 1007	142.4 145.2	3.1 3.0		0.8 0.8	47 54	3137 8301	21	3015 8591	9 7	
1007	155.1	6.4	16.1	1.4	257	2227	32	3460	11	9
1007 1007	166.1 166.5	0.8 3.9	40.0 50.2	1.5 1.3	97 275	4514 6698	27 46	3160 3222	6 6	13
1007	203.3	9.4		0.9	568	8919	113	1678	10	
1007	206.0 214.8	8.8 8.3		0.8	805 476	8627	140 92	1/16	6 4	
1007	221.4	7.3		0.9	596	9445	90	1446	21	
1007	221.6	8.5 8.3		0.8	380	8401 9462	94 97	1310	3 4	
1007	229.6	19.6		0.9	488	10818	91	1554	3	
1007	232.9	10.9	50.6	1.1	499	9043 7572	55	7410	131	
1007	241.8	4.9	51.0 44.8	1.4	592 899	7391 8546	76 64	1640 1618	4	19
1007	254.4	5.2	0	0.9	523	7333	28	1176	4	
1007 1007	258.5 268.1	5.8 6.0	51.1 39.8	1.0	406 155	5750 5610	49 29	1100 3743	5 36	
1007	272.4	4.8	5710	0.6	178	4508	24	1157	2	
$1007 \\ 1007$	277.2 288.1	4.8 6.7		0.6 0.8	312 444	6066 8752	30 90	1174 1708	3 4	
1007	295.4	5.5		0.4	245	5621	37	1254	4	
1007	332.0 342.8	6.5 4.0	42.8	0.6	185	7888 5931	42 26	1737	24	
1007	341.7	6.9 2.5	45.5	0.6	405	6098	32	1803	4	12
1007	351.2	4.6	38.0	0.8	170	5594	24	2080	2	12
1007	360.2	3.2	10.3	0.6	58 91	1603	12	2436 1882	3	
1007	302.8	0.4	43.2	0.8	81	3294	18	1660	3	11
1007	322.0	6.8 5.7	48.6	0.5	178 597	7735 5758	53 54	1663 1640	2	15
1007	330.8	4.2	10.0	0.5	79	4041	32	1673	3	15
1007 1007	342.5 353.4	8.9 4.3	43.6	0.5 0.4	527 118	7328 2465	52 23	2689 2000	7	
1007	361.5	3.4	31.1	0.5	42	2871	15	2072	4	
1007	362.6	4.7 1.9	39.8 14.8	0.5	93 161	4890 1546	21 23	1915	3 3	12
1007	372.8	4.9	42.8	0.7	187	2640	33	4178	118	
1007	389.7	6.6	72.0	0.9	356	4650	32	6505	91	
$1007 \\ 1007$	399.0 409 3	7.0	37.6 41 1	0.6 1.6	305 619	4671 6672	46 65	2206 14205	6 27	
1007	410.8	5.4	23.2	0.5	210	2685	33	2375	6	
1007 1007	419.0 428.6	4.6 12.5	44.0	0.5 0.4	221 643	2547 7913	37 60	2642 10816	8 39	
1007	427.1	4.7		0.4	218	2348	43	2580	6	
1007	408.7 389.6	6.6		0.7	594 167	4519	68 39	∠955 4619	8 42	
1007	382.6 430 2	4.8	43 5	0.6	166	1946	36 48	2338 4200	5	
1007	438.6	6.7	ч <i>э.э</i>	0.4	135	4510	40	2176	7	
$1007 \\ 1007$	448.6 448.0	9.2 5.9		0.5 0.4	179 122	8224 1930	73 47	3404 2899	9 9	
1007	460.5	7.8	28.7	0.3	512	3595	59	2935	18	
1007 1007	471.9 468.0	3.1 4.4	12.8	0.5 1.8	58 25	936 1813	38 81	1851 3770	11 13	10
1007	468.1	4.8	13.6	1.7	27	1671	91	3920	13	11
1007	468.1 468.2	5.1 8.4	13.5 20.5	1.8 2.4	37 50	1792 2428	55	3030 2250	9 7	12 14
1007	468.3	17.5	32.5	5.8	86	5774	63	2850	8	18
1007	468.5	34.0	40.3	0.2	178	11819	62	3670	13	72
1007	468.7	19.0	39.9	6.4	121	6406	74	2820	11	187

Table 2. Elemental composition of sediments, Sites 1005 and 1007.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Site	Depth (mbsf)	Insolubles (wt%)	Porosity (%)	Mg (%)	Fe (ppm)	Na (ppm)	Mn (ppm)	Sr (ppm)	Ba (ppm)	Li (ppm)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	468.8	13.6	39.3	6.7	114	6665	83	3860	24	0
1007 + 460. 3.2 + 11.6 + 1.4 + 20 + 1371 + 1 + 3.20 + 14 + 10 + 10 + 1007 + 460. 3.27 + 10.2 + 1.4 + 48 + 1364 + 68 + 3370 + 16 + 11 + 1007 + 475. 7 + 10.2 + 37.6 + 0.5 + 432 + 4895 + 65 + 2716 + 11 + 1007 + 475. 6 + 5.4 + 31.9 + 0.4 + 147 + 30.43 + 52 + 2353 + 18 + 1007 + 481.6 + 3.0 + 0.7 + 53 + 637 + 18 + 31.26 + 21 + 1007 + 495.8 + 8.6 + 0.8 + 298 + 7353 + 33 + 270 + 12 + 1007 + 495.8 + 13.8 + 0.5 + 30.4 + 6571 + 161 + 1907 + 12 + 5968 + 15 + 1007 + 495.5 + 12.8 + 0.6 + 508 + 8239 + 56 + 3394 + 11 + 1007 + 515.0 + 0.6 + 508 + 8239 + 56 + 3394 + 11 + 1007 + 515.0 + 0.6 + 508 + 3239 + 56 + 3344 + 15 + 1007 + 515.0 + 0.6 + 503 + 3249 + 56 + 3411 + 17 + 1007 + 515.6 + 67 + 20.3 + 3343 + 3289 + 56 + 3411 + 17 + 1007 + 515.6 + 67 + 20.3 + 3343 + 3948 + 66 + 5339 + 17 + 17 + 1007 + 535.8 + 76 + 0.3 + 292 + 3001 + 28 + 46 + 5339 + 17 + 1007 + 535.8 + 76 + 0.3 + 292 + 3001 + 28 + 46 + 5339 + 17 + 1007 + 537.0 + 57 + 20.4 + 0.3 + 3337 + 4389 + 16 + 1007 + 537.0 + 57 + 20.4 + 0.3 + 3337 + 4389 + 12 + 1007 + 537.0 + 57 + 20.4 + 0.3 + 3337 + 4389 + 12 + 1007 + 54.1 + 2 + 7.7 + 1.0 + 147 + 1911 + 17 + 2733 + 27 + 1007 + 54.1 + 2 + 17.7 + 1.0 + 147 + 1911 + 17 + 2733 + 27 + 1007 + 54.1 + 2 + 17.7 + 1.0 + 147 + 1911 + 17 + 2733 + 27 + 1007 + 54.1 + 2 + 17.7 + 1.0 + 147 + 1911 + 17 + 2733 + 27 + 1007 + 56.4 + 1.2 + 1.7 + 1.0 + 147 + 1911 + 17 + 2733 + 27 + 1007 + 56.4 + 1.2 + 1.7 + 1.4 + 29 + 2537 + 5 + 348 + 313 + 142 + 20 + 1007 + 78.5 + 1.5 + 3.3 + 317 + 16 + 230 + 319 + 1007 + 78.5 + 1.2 + 3.5 + 3147 + 318 + 3142 + 30 + 16 + 1007 + 78.5 + 1.2 + 3.5 + 314 + 318 + 1036 + 133 + 314 + 26 + 133 + 314 + 26 + 133 + 314 + 26 + 144 + 1007 + 18.4 + 41 + 90 + 23.5 + 334 + 130 + 114 + 29 + 2537 + 5 + 344 + 120 +	1007	468.9	4.0	13.9	1.8	48	1770	113	3260	10	13
$ 1007 + 469.3 - 2.7 - 10.2 + 1.4 + 48 + 1364 + 68 + 3970 + 16 + 11 \\ 1007 + 475.6 + 3.4 + 31.9 + 0.4 + 147 + 3043 + 35 + 2235 + 18 \\ 1007 + 485.8 + 8.6 + 0.8 + 298 + 7353 + 83 + 2701 + 12 + 1007 + 485.8 + 8.6 + 0.8 + 298 + 7353 + 83 + 2701 + 12 + 1007 + 485.8 + 8.6 + 0.8 + 298 + 7353 + 83 + 2701 + 12 + 1007 + 497.3 + 57. + 0.3 + 100 + 457 + 101 $	1007	469.0	3.7	11.5	1.5	29	1338	74	3590	13	16
$ 1007 475.7 102. 37.6 0.5 432 4895 65 2716 11 \\ 1007 481.6 3.0 0.7 53 637 18 3126 21 \\ 1007 481.6 3.0 0.7 53 637 18 3126 21 \\ 1007 485.8 13.8 0.5 304 6571 161 1907 12 \\ 1007 495.8 13.8 0.5 304 6571 161 1907 12 \\ 1007 495.8 13.8 0.5 304 6571 161 1907 12 \\ 1007 505.2 11.6 48.1 0.4 578 8770 1078 25 5931 10 \\ 1007 505.2 16.6 48.1 0.4 578 8770 1078 25 5931 10 \\ 1007 515.0 16.0 0.5 314 8340 56 3411 19 \\ 1007 515.0 16.0 0.5 314 8340 56 3411 19 \\ 1007 521.4 7.5 0.3 250 3628 31 3489 16 \\ 1007 526.1 17.7 41.0 1.1 451 9379 58 4311 17 \\ 1007 539.1 16.2 44.3 0.3 327 9393 24 2464 17 \\ 1007 539.1 16.2 44.3 0.3 327 3993 324 2464 17 \\ 1007 539.1 16.2 44.3 0.3 327 39948 44 3391 15 \\ 1007 575.3 7.7 0.5 249 3507 37 4109 30 \\ 1007 575.3 7.7 0.5 249 3507 37 4109 30 \\ 1007 575.4 1.4 2 0.6 134 2887 16 3338 37 \\ 1007 564.1 42 0.7 107 3441 131 3142 30 16 \\ 1007 661.4 42 0.7 107 374 3180 4141 26 \\ 1007 661.4 42 0.7 107 3743 3181 3744 3401 25 \\ 1007 756.3 5.2 0.6 163 1949 17 7233 27 \\ 1007 664.3 1.8 0.7 57 373 374 3480 36 23 \\ 1007 756.3 5.2 0.6 613 1949 17 7526 248 \\ 1007 765.3 5.2 0.6 613 1949 17 7526 248 \\ 1007 768.9 5.0 0.7 44.404 3077 19 44.70 32 33 \\ 19 1007 768.5 3.0 0.7 21 2054 63 369 20 20 \\ 1007 756.3 5.2 0.6 613 1949 17 16 4230 35 17 \\ 1007 698.9 5.0 0.7 44 404 307 19 44.70 32 38 \\ 1007 718.5 3.1 14.3 40.4 410 4230 31 417 410 4230 31 417 417 410 4230 31 417 417 410 4230 31 417 417 410 4230 31 417 417 417 417 417 417 417 417 417 417 417 417 417 417 $	1007	469.3	2.7	10.2	1.4	48	1364	68	3970	16	11
$ 100 + 49.6 & 3.4 & 3.1.9 & 0.4 & 147 & 3043 & 35 & 2935 & 18 \\ 1007 & 485.8 & 8.6 & 0.8 & 298 & 7337 & 88 & 2707 & 12 \\ 1007 & 485.8 & 8.6 & 0.8 & 298 & 7337 & 86 & 2707 & 12 \\ 1007 & 495.5 & 12.8 & 0.6 & 508 & 8239 & 66 & 3944 & 11 \\ 1007 & 507.2 & 9.6 & 0.5 & 518 & 8770 & 24 & 4868 & 15 \\ 1007 & 507.2 & 9.6 & 0.5 & 518 & 8770 & 24 & 4868 & 15 \\ 1007 & 516.2 & 67 & 20.3 & 0.3 & 451 & 3289 & 52 & 3563 & 12 \\ 1007 & 515.2 & 16.0 & 0.5 & 314 & 8344 & 65 & 3311 & 19 \\ 1007 & 515.2 & 67 & 0.3 & 292 & 3001 & 26 & 4401 & 18 \\ 1007 & 535.8 & 7.6 & 0.3 & 292 & 3001 & 26 & 4401 & 18 \\ 1007 & 530.7 & 6.3 & 39.2 & 0.5 & 179 & 5903 & 24 & 2464 & 19 \\ 1007 & 5370 & 16.2 & 443. & 0.3 & 3378 & 9948 & 445 & 5339 & 15 \\ 1007 & 5370 & 7.7 & 22.4 & 0.3 & 277 & 3744 & 46 & 3331 & 31 \\ 1007 & 5370 & 7.7 & 22.4 & 0.6 & 134 & 2887 & 577 & 4109 & 30 \\ 1007 & 542.6 & 9.1 & 26.4 & 0.4 & 283 & 5577 & 344 & 3890 & 22 \\ 1007 & 614.1 & 4.2 & 17.7 & 1.0 & 147 & 1911 & 7 & 2733 & 277 \\ 1007 & 614.1 & 4.2 & 0.6 & 134 & 2887 & 16 & 3888 & 377 \\ 1007 & 614.1 & 4.2 & 17.7 & 1.0 & 147 & 1911 & 7 & 2733 & 277 \\ 1007 & 641.4 & 4.2 & 17.7 & 1.0 & 147 & 1911 & 7 & 2733 & 277 \\ 1007 & 661.4 & 4.8 & 0.8 & 137 & 2355 & 12 & 3098 & 22 & 257 \\ 1007 & 667.9 & 4.8 & 0.8 & 137 & 2355 & 12 & 3098 & 22 & 257 \\ 1007 & 708.7 & 0.5 & 1.4 & 1.1 & 104 & 7739 & 8 & 2901 & 19 \\ 1007 & 708.7 & 1.5 & 3.1 & 1.4 & 3.4 & 29 & 513 & 33989 & 22 & 257 \\ 1007 & 708.5 & 3.2 & 0.6 & 61 & 13497 & 7525 & 248 \\ 1007 & 709.7 & 0.5 & 1.1.5 & 1.1 & 353 & 4317 & 32 & 4210 & 30 & 25 \\ 1007 & 708.5 & 3.1 & 1.4 & 5.4 & 204 & 7042 & 18 & 3098 & 22 & 257 \\ 1007 & 785.4 & 3.0 & -77 & 1.2 & 546 & 778 & 420 & 23 & 206 \\ 1007 & 785.4 & 3.0 & -77 & 1.2 & 546 & 778 & 420 & 23 & 3088 & 22 & 257 \\ 1007 & 785.4 & 1.6 & 3.3 & 1.7 & 78 & 3204 & 16 & 20 & 1007 \\ 778.3 & 4.6 & 16.3 & 0.4 & 164 & 22056 & 22 & 2859 & 49 & 20 & 20 \\ 1007 & 785.4 & 1.4 & 19.0 & 1.0 & 4152 & 2109 & 16 & 4170 & 177 & 19 \\ 1007 & 785.4 & 1.4 & 19.0 & 1.0 & 4164 & 2278 & 77 & 78 & 420 & 78 & 418 & 71 & 1007 \\ 787.5 & 3.$	1007	475.7	10.2	37.6	0.5	432	4895	65	2716	11	
	1007	479.6	5.4	31.9	0.4	147	3043	35	2935	18	
	1007	485.8	3.0 8.6		0.7	298	7353	83	2701	12	
$ 1007 497.2 5.7 \\ 0.3 160 1943 46 3550 16 \\ 0.07 505.2 11.6 48.1 0.4 370 11078 25 5931 10 \\ 1007 505.2 11.6 48.1 0.4 370 11078 25 5931 10 \\ 1007 515.0 16.0 0.5 314 8340 56 34411 19 \\ 1007 515.2 15. 16.0 0.5 314 8340 56 3411 19 \\ 1007 512.4 7.5 0.3 250 362.8 31 34401 18 \\ 1007 521.4 7.5 0.3 250 362.8 31 34401 18 \\ 1007 530.7 6.3 39.2 0.5 179 5903 54 244 4868 15 \\ 1007 530.7 6.3 39.2 0.5 179 5903 54 24444 19 \\ 1007 530.6 7.7 23.4 0.3 277 3734 344 3951 25 \\ 1007 575.3 7.7 0.5 249 3507 37 4109 30 \\ 1007 575.4 9.1 6.2 4.4 283 5357 37 4109 30 \\ 1007 564.1 4.2 0.6 134 2887 16 3888 37 \\ 1007 564.1 4.2 0.6 134 2887 16 3888 37 \\ 1007 564.1 4.2 0.6 134 2887 16 3888 37 \\ 1007 564.1 4.2 0.6 134 2887 16 3888 37 \\ 1007 661.4 4.2 17.7 1.0 147 1911 17 2733 27 \\ 1007 661.8 1.5 18.2 3.5 344 3180 43 4110 45 22 \\ 1007 664.8 1.5 18.2 3.5 344 3180 43 4110 45 22 \\ 1007 666.7 3.3 0.7 57 2966 11 3139 21 21 \\ 1007 668.8 1.5 18.2 3.5 344 3180 43 4110 45 22 \\ 1007 666.9 3.7 21 2066 163 1949 17 5566 22 288 \\ 1007 766.3 5.0 2.7 48 409 93 31877 16 4230 35 19 \\ 1007 669.9 5.0 2.7 4.4 809 806 3660 35 23 \\ 1007 718.5 3.0 1.4 410 4239 17 5566 22 248 \\ 1007 766.5 3.0 2.7 4.4 403 3979 19 410 32 38 \\ 1007 718.5 3.1 14.3 1.4 29 2537 5 5449 20 20 \\ 1007 745.6 3.7 0.6 94 2902 38 4266 54 30 14 \\ 1007 785.6 3.7 0.6 94 2902 38 4266 54 30 14 \\ 1007 785.6 3.7 0.6 94 2902 38 4266 54 30 14 \\ 1007 785.6 3.7 0.6 5457 7133 316 52 53 549 91 9 \\ 1007 785.6 3.7 0.5 5458 515 6168 56 4200 $	1007	495.8	13.8		0.5	304	6571	161	1907	12	
	1007	497.2	5.7		0.3	160	1943	46	3550	16	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1007	499.5	12.8	48.1	0.6	508	8239	56 25	3394	11	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1007	507.2	9.6	40.1	0.4	158	8770	23	4868	15	
1007 \$16.2 6.7 20.3 0.3 451 3289 52.3 356.3 12 1007 \$52.4 7.6 0.3 292 3001 26 4401 18 1007 \$53.6 1.7.7 41.0 1.1 451 9379 58 4311 17 1007 \$53.0 1.6.2 44.3 0.3 383 9948 46 5339 17 1007 \$53.6 7.7 2.3.4 0.3 2.77 3734 340 3991 2.5 1007 \$54.1 4.2 0.6 1.34 2.87 16 388 3914 2.6 1007 564.1 4.2 1.7.7 1.0 147 1911 17 2.733 2.7 1007 661.4 4.2 1.7.7 1.0 147 181 3.14 1.0 451 2.25 1007 661.3 1.39 2.1 1.0 1.43 1.1	1007	515.0	16.0		0.5	314	8340	56	3411	19	
	1007	516.2	6.7	20.3	0.3	451	3289	52	3563	12	
	1007	521.4	7.5		0.3	250	3628	31	3489	16	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1007	526.1	7.0 17.7	41.0	0.5	292 451	9379	20 58	4401	18	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	530.7	6.3	39.2	0.5	179	5903	24	2464	19	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1007	539.1	16.2	44.3	0.3	383	9948	46	5339	17	
$ 1007 557.0 5.3 0.3 153 2464 2c 37.1 31 \\ 1007 572.7 10.5 249 3507 37 4109 30 \\ 1007 561.4 4.2 0.6 0.8 384 10361 38 4914 26 \\ 1007 601.4 4.2 17.7 1.0 147 1911 17 2733 27 \\ 1007 601.4 4.2 17.7 1.0 147 1911 17 2733 27 \\ 1007 601.4 4.2 17.7 1.0 147 1911 17 2733 21 \\ 1007 661.3 4.3 0.7 109 2413 13 3142 30 16 \\ 1007 667.9 4.8 0.8 137 2255 12 3098 22 25 \\ 1007 667.9 4.8 0.8 137 2255 12 3098 22 25 \\ 1007 667.9 4.8 0.8 137 2254 63850 30 27 \\ 1007 668.9 5.0 0.7 21 2024 6 3869 20 \\ 1007 756.3 5.2 0.6 163 1949 17 5526 248 \\ 1007 696.9 3.9 44.8 0.9 93 1877 16 4230 35 19 \\ 1007 766.6 3.7 0.6 94 4902 3842 32 201 19 \\ 1007 696.9 3.9 44.8 0.9 93 1877 16 4230 35 19 \\ 1007 706.6 3.7 0.6 94 2902 38 4286 54 30 \\ 1007 718.5 3.1 14.3 1.4 29 2537 5 3549 20 20 \\ 1007 718.5 3.1 14.3 1.4 29 2357 5 3549 20 20 \\ 1007 745.6 3.7 0.6 94 2902 38 4286 54 30 \\ 1007 745.6 3.7 0.6 94 2902 38 4286 54 30 \\ 1007 745.7 20.9 1.5 1.1 51.3 1.4 29 2537 5 3549 20 20 \\ 1007 745.6 3.7 0.6 94 2902 38 4286 54 30 \\ 1007 745.7 10.9 39.9 1.3 290 786 31 3174 85 22 \\ 1007 782.3 1.4 15.6 0.5 451 7133 36 6450 81 21 \\ 1007 782.4 1.4 15.6 0.5 451 7133 36 6450 81 21 \\ 1007 823.9 1.4 15.6 0.5 451 7133 36 6450 81 21 \\ 1007 823.9 1.4 15.6 0.5 451 7133 36 6450 81 21 \\ 1007 814.4 4.4 19.0 0.6 145 2238 55 5000 78 17 \\ 1007 814.4 4.1 19.0 0.5 381 755 6068 76 2285 94 91 75 \\ 1007 908.2 1.3 109 105 17 7007 908.2 1.3 109 106 17 107 \\ 1007 918.1 13.3 23.0 0.5 381 755 6068 76 2243 31 31 23$	1007	536.0	7.7	23.4	0.3	277	3734	34	3951	25	
	1007	557.0	5.3		0.3	153	2464	26	3/31	31	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	542.6	9.1	26.4	0.5	249	5357	34	3890	22	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1007	564.1	4.2		0.6	134	2887	16	3838	37	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1007	572.7	16.6		0.8	384	10361	38	4914	26	
	1007	601.4	4.2	17.7	1.0	147	1911	17	2733	27	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	641.3	5.9 4 3		5.7 0.7	285	2413	13	3142	20	16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	658.8	1.5	18.2	3.5	344	3180	43	4110	45	22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	660.7	3.7		0.7	57	2966	11	3139	21	
	1007	667.9	4.8		0.8	137	2355	12	3098	22	25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	608.0	1.9		1.1	643 840	7894	50 60	3850	30	23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1007	715.6	3.0		0.7	21	2054	6	3869	20	25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	756.3	5.2		0.6	163	1949	17	5526	248	
	1007	690.6	3.7	21.0	1.1	104	2739	8	2901	19	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	696.9 709.7	3.9	44.8	0.9	353	1877	16	4230	35	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	718.5	3.1	14.3	1.4	29	2537	5	3549	20	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	719.1	3.7		6.3	28	842	3	2047	16	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	745.6	3.7	10 7	0.6	94	2902	38	4286	54	30
	1007	745.9	20.9	10.7	8.4	404 249	3097	19	4170	32	38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	778.3	4.6	16.3	0.4	168	2056	29	2859	49	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	795.5	12.6	39.6	1.0	64	2196	12	4480	30	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	822.7	10.9	39.9	1.3	290	7876	31	3174	85	22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	823.9	1.4	15.6	0.5	451	7133	36	6450 5700	81	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	844.4	41	19.0	1.0	145	2109	16	4170	117	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	842.1	6.9	45.3	0.5	414	8023	34	5410	75	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	861.8	10.9	19.5	0.8	233	3628	29	2671	88	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	851.0	14.1	24.0	3.8	351	3702	36	3481 7860	135	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	890.4	10.5	36.2	1.5	141	2013	24	3950	110	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	901.2	11.0		0.3	180	3928	41	2298	59	16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1007	900.7	10.8	40.1	0.9	95	1528	19	3850	136	25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	908.2	1.3	20.1	0.4	465	7061	28	5950	138	55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	919.9	13.3	28 3	0.5	432 515	6068	43 76	2844	104	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	921.1	11.7	41.8	1.0	870	10154	64	2273	77	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1007	927.7	18.1	44.7	0.4	248	3197	63	3043	42	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	927.5	7.2	23.3	0.6	67	1265	18	3593	85	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	938.2 938.4	4.2	15.7	0.0	728	5545	20 72	2490	97	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	962.1	7.0	21.4	0.4	223	3752	59	2693	35	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	963.3	18.0	36.5	0.4	607	8496	66	2178	62	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	971.3	19.2	41.1	0.6	392	9998	71	2322	57	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	9/6./	3.3	17.0	0.6	1/8	2405	13	3193	39 65	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	995.8	12.0	35.5	1.0	835	7188	66	1997	32	20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	999.6	14.1		0.8	434	6016	104	2147	27	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	1025.0	2.6	10.5	1.0	72	584	19	2918	38	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	1015.0	22.1	10.0	1.6	682	3009	137	2226	32	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	1019.4	23.9	21.4	1.0	633	8147	68	2392	28 28	1/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	1023.6	3.6	7.6	0.9	108	1261	24	3315	40	
$ \begin{array}{ccccccccccccccccccccccccc$	1007	1006.5	24.9		0.7	590	8738	89	2242	26	14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	1048.7	9.2		0.8	1197	3711	125	2094	14	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	1050.3	20.7 12.8	26.0	1.1	1394 547	9052 0544	98	2285	1/	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	1050.1	14.7	20.0	0.6	1501	4202	218	1771	10	20
$ \begin{array}{ccccccccccccccccccccccccc$	1007	1069.9	12.5	22.5	0.8	955	8254	72	2650	23	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	1079.1	12.6	26.9	1.0	888	3365	99	2330	21	30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1007	1096.5	22.8		0.7	1375	6987	131	2790	22	18
1007 1110.3 13.7 25.7 0.4 787 4905 175 2720 15 19	1007	11107.0	20.4		0.8	505	4964	140	2530	13	17
	1007	1110.3	13.7	25.7	0.4	787	4905	175	2720	15	19

Table 2 (continued).

Table 2 (continued).

Site	Depth (mbsf)	Insolubles (wt%)	Porosity (%)	Mg (%)	Fe (ppm)	Na (ppm)	Mn (ppm)	Sr (ppm)	Ba (ppm)	Li (ppm)
1007	1135.0	13.0		1.3	2886	9578	165	2620	18	24
1007	1133.6	13.2	17.4	0.3	1002	3287	171	2220	11	18
1007	1134.1	8.0	25.7	0.4	853	3950	185	2210	23	16
1007	1122.3	24.4	25.1	0.5	512	3860	109	1870	9	16
1007	1122.2	6.4	25.6	0.5	813	5829	62	1830	8	24
1007	1125.9	11.7	19.6	0.7	620	3034	85	2280	11	13
1007	1140.8	24.0	22.0	0.5	1707	7550	136	2330	9	23
1007	1140.9	9.4	22.8	0.5	1071	3789	161	2270	274	19
1007	1143.5	17.5	25.4	0.4	899	7665	124	2440	56	20
1007	1146.4	13.6	21.2	0.4	781	5923	142	2570	45	18
1007	1153.5	19.0		0.5	526	4519	139	2100	152	15
1007	1155.3	8.9	22.8	0.5	245	2613	104	1810	100	14
1007	1157.1	10.3		0.7	258	3825	89	2360	174	18
1007	1160.3	19.3	24.6	0.7	339	5107	85	1850	70	18
1007	1160.9	8.7		1.2	717	3395	69	2390	135	30
1007	1161.0	35.7	21.8	1.0	431	3884	98	2490	132	134
1007	1165.1	20.3	22.9	0.7	674	7107	136	2460	83	12
1007	1159.7	27.1		0.5	285	3399	87	1510	32	14
1007	1170.8	33.0	18.8	1.1	1334	6813	115	2190	104	20
1007	1174.3	1.1	23.2	0.6	599	3270	91	2200	103	16
1007	1177.8	16.6		0.7	623	6101	111	2100	38	16
1007	1188.7	5.6		0.6	377	4343	122	1760	119	17
1007	1190.5	0.9	5.9	0.8	709	6221	113	1800	73	18
1007	1198.2	3.3		0.5	308	3305	101	1570	147	15
1007	1206.8	1.9		0.6	347	3796	93	1800	156	13
1007	1208.2	3.1	31.6	0.6	796	5181	97	1920	95	13
1007	1216.9	10.6		0.4	289	3930	89	1810	169	14
1007	1218.1	2.3		1.3	749	9413	84	2560	104	25
1007	1228.0	2.6	30.8	0.7	632	6416	91	2290	122	16

Note: Blank cells = not measured.

elements (Cl⁻, Na⁺, and K⁺) as well as many nonconservative elements (SO₄²⁻, Ca²⁺, and Mg²⁺) are nearly vertical (Fig. 5). Below a depth of ~40 mbsf, sharp changes occur in the concentration of nearly all pore-fluid constituents and continue down to the base of the hole (Fig. 4). Slight gradients do exist in constituents of the uppermost sediments such as alkalinity, NH₄⁺, and HPO₄²⁻, which are most sensitive to small amounts of microbial degradation (Fig. 5). A review of other ODP drilling sites reveals that this type of pore-fluid shift in typically conservative elements is not a common occurrence. Three mechanisms which may contribute to the nature of these shallow profiles are examined here: (1) changing sedimentation rate or a hiatus, (2) active bottom water flushing, and (3) changing reactivity of the sediment.

Large differences in pore-fluid gradients for conservative elements like Cl⁻ may be explained by a sudden change in sedimentation rates, such as a period of nondeposition followed by a large input of sediment (Goldhaber and Kaplin, 1980; Aller et al., 1986). Sedimentation rates are known to have strong influences on the evolution of pore-fluid profiles by influencing the distance constituents can migrate by diffusion (Berner, 1980). Rates of sedimentation are expected to be substantially higher within the upper 20-40 mbsf if they are responsible for the vertical gradients with this zone. However, sedimentation rates based on biostratigraphic data appear nearly constant throughout the upper 100-180 m of three of the four sites, showing no hiatus or significant increase where the pore-fluid profiles change (Fig. 2). Only at Site 1007 is there a marked hiatus in deposition which roughly coincides (~40 mbsf) with the change in pore-fluid gradients (Fig. 2). Overall, sedimentation rates are higher (10-15 cm/ k.y.) in the shallow intervals of the more proximal sites (Sites 1003 and 1005) compared to the more distal sites (Sites 1006 and 1007) (5 cm/k.y.). This difference in sedimentation rate may, in part, explain why the vertical pore-fluid gradients extend to a deeper depth closer to the platform margin. So whereas differences in sedimentation rates may influence the thickness of zones with vertical gradients, they fail to explain why the change in pore-fluid shift occurs where it does.

Active bottom water flushing throughout the upper 20–40 mbsf could explain the lack of significant gradients in the uppermost sediments. Bioirrigation is known to move water through fine sediments and has been documented to produce similar profiles on a much smaller scale (Aller, 1977, 1980). During Leg 166, the term "flush

zone" was used to describe this shallow interval. However, no plausible mechanism was developed to explain the advection process. Although sediment dwellers typically influence the upper 1 m of sediment (Wetzel, 1981), it has been hypothesized that they influence profiles down to a depth of 8 m in high-productivity areas (Schulz et al., 1994). However, it is unlikely that bioirrigation mechanisms could produce movement of bottom water down to depths of 2040 m, particularly as both biostratigraphic and lithostratigraphic data indicate a relatively undisturbed sedimentation and the presence of semilithified horizons and hardgrounds (Eberli, Swart, Malone, et al., 1997). A more plausible mechanism to advect bottom water through these upper sediments would involve the strong bottom currents that sweep the western slope of the Bahamas Bank and which may have been active since the late Pliocene. Studies of the Florida Current around 27°N indicate bottom currents with velocities in the 10-20 cm/s range (Wang and Mooers, 1997). Whereas bottom currents are not known within the Santaren Channel, the overall flow through the channel is roughly 10% that of the Florida Current. By extension, Santaren bottom currents might be expected to have velocities in the 1-2 cm/s range. Currents in this range could be strong enough to entrain pore-fluids and rework surface sediments. This could have the effect of (1) enhancing exchange of pore-fluids with oxygenated bottom water and (2) increasing the degree of organic matter destruction prior to sediment burial.

A third explanation for the absence of significant chemical gradients in the upper 40 mbsf is that the upper sediments are simply less reactive compared to the sediments below. There is fairly good evidence that the upper sediments down to 20-40 mbsf are oxic to suboxic, following a depth succession of deoxygenation and denitrification. Narrow zones near ~10 mbsf at both Sites 1005 and 1003 show small but significant increases in alkalinity, NH_4^+ , and HPO_4^{2-} , but no changes in SO²⁻, indicating small amounts of organic matter oxidation probably by NO₃⁻ reduction (Fig. 5). Incubation tests done onboard JOIDES Resolution on samples taken from above 30 mbsf at Site 1007 showed no substantial change in pore-fluid constituents after 60 hr, supporting the idea that sediment reactivity is fairly low (P. Kramer and N. Schovsbo, unpubl. data). The lack of reactivity in the uppermost sediments could result from a change in sediment character (labile organic carbon, mineralogy, or grain size) compared to the sediments below. Shipboard lithostratigraphic data do not indicate a

Figure 5. Expanded depth profiles of selected interstitial water constituents for the upper 70 mbsf of Sites 1006, 1007, 1003, and 1005 showing shifts between 20 and 40 mbsf. ALK = alkalinity.

major change in the sediment grain size or mineralogy through the interval where the pore-fluid shift occurs, although partly lithified horizons of HMC are more common below 40 mbsf. Total organic carbon (TOC) concentrations do appear to increase below 40 mbsf, particularly at Sites 1003–1005 (Fig. 2). This would suggest that increases in organic content may cause a shift in sediment reactivity, which is reflected in many of the nonconservative pore-fluid constituents (SO₄²⁻, alkalinity, NH₄⁺, PO₄²⁻, Ca²⁺, Mg²⁺, and Sr²⁺). It may also explain the shift seen in Cl⁻ and Na⁺ contents if these elements are not behaving conservatively, as is explored in the next section.

Cl- and Na+ Profiles

Large (up to two-fold) increases in dissolved Cl^- and Na^+ concentrations from present bottom-water composition occur throughout the Bahamas Transect below 40 mbsf (Fig. 4). The largest gradients oc-

cur near the platform margin, whereas the smallest gradients are found at the more distal sites. The possibility that the higher salinity pore fluids were emplaced by fluid-flow advection of brines from deeper sequences is not likely for two reasons. First, the isotopic composition of dissolved strontium (87Sr/86Sr) in pore fluids at Sites 1003–1007 is in equilibrium with the contemporaneous seawater curve throughout the Pliocene-Miocene sediments (P. Swart and H. Elderfield, unpubl. data). Second, throughout the Pliocene-Miocene sections, pore-fluid constituents are dominated by diffusional gradients and appear to be in equilibrium with the surrounding sediments. For example, within Sites 1003 and 1005, celestite (SrSO₄) is mainly found in core intervals high in dissolved SO₄²⁻ and saturated with respect to celestite. At Site 1007, pore-fluid Ba2+ concentrations are elevated only in the lower intervals where significant amounts of sedimentary acid-soluble barite are present (Fig. 6). This implies that Leg 166 pore fluids are probably in situ and have evolved to their present composition through interaction with the surrounding sediments and diffusion.

Increases observed in pore-fluid Cl- and Na+ concentrations with depth along the Bahamas Transect are a relatively common occurrence along continental and bank margins. During Leg 101, a series of shallow (~<400 mbsf) holes throughout the Bahamas archipelago were drilled and similar increases in salinity at many of the sites were found (Austin, Schlager, Palmer, et al., 1986). During Leg 133, periplatform carbonate sediments drilled off the northeastern coast of Australia revealed a substantial increase in Cl- at Sites 715 and 823; the increase was interpreted to be caused by diffusion from an underlying evaporite unit (Davies, McKenzie, Palmer-Julson, et al., 1991). Similarly, Leg 150 scientists interpreted the nearly twofold increases in Cl- and Na+ content to result from upward diffusion of deeply buried Jurassic salt along the New Jersey Margin (Miller and Mountain, 1994). Triassic to Lower Jurassic sediments underlying the Bahamas/ Florida region are thought to contain evaporites (Sheridan, 1974), and deep salt diapirs are evident on seismic profiles further south. Therefore, it is likely that at Sites 1003-1007 some of the increase in salinity with depth may be caused by upward diffusion of Cl- and Na⁺. However, an examination of pore-fluid Na⁺/Cl⁻ ratios shows no significant trend with depth from bottom-water ratios (0.86) except at Site 1006, where there is probably a high degree of clay-mineral interactions involving Na⁺ (Fig. 7). The pore-fluid $\delta^{18}O$ data do show an increase by nearly 2.5% at the base of Sites 1003 and 1007, but this increase is interpreted to reflect influences of carbonate recrystallization rather than the influence of an enriched, deep-seated brine or evaporites (Swart, Chap. 8, this volume). In addition, it is not easy to explain how diffusion alone would cause the marked differences in concentration gradients for Na⁺ and Cl⁻ along the transect (Fig. 4). For example, at Site 1005 Cl- concentrations increase to 796 mM at a depth of 122.4 mbsf, then decrease to 742 mM at a depth of 178 mbsf, all within Pleistocene sediments. At Site 1006, this range of Clconcentration is not reached until a depth of ~453 mbsf within Miocene sediments.

Here, it is postulated that another possible source for the increased Na⁺ and Cl⁻ concentrations with depth might be salt inclusions contained within defects of the biogenic aragonite, HMC carbonate structure. During diagenetic recrystallization of LMC and dolomite, these salt inclusions may be excluded into the pore water. This process was documented by Malone et al. (1990) at Site 716 in the Maldives archipelago. In this case, sediments originally composed of ~25% aragonite and HMC decreased in sodium content by ~1200 ppm as a result of conversion to LMC over a period of 2.5 Ma. The effect on pore-fluid Na⁺ content cannot be determined because this constituent was not analyzed, but dissolved Cl⁻ does show some localized increases, although no systematic trend is evident.

A rough calculation can be made to determine the possible influence of sodium expulsion on pore-water concentrations. Sodium concentrations are known to be enriched in biogenic aragonite and HMC

Figure 6. Depth profiles of pore-fluid dissolved Ba²⁺ concentration and barium concentration measured in the acid soluble fraction of Site 1007 sediments.

compared to LMC (foraminifers and coccoliths) (Busenberg and Plummer, 1985). Sodium concentrations are ~4000 ppm in aragonite, whereas they are much lower in LMC (~500 ppm) (Milliman, 1974). Assuming sediments are originally 100% aragonite containing 4000 ppm sodium, complete recrystallization to 500 ppm LMC could release enough sodium to raise pore-fluid concentrations by nearly 1.5 × seawater values. Sediment porosity values can be used as a proxy indicator for the degree of carbonate recrystallization. An examination of the solid-phase data from Sites 1005 and 1007 shows that sodium concentration and sediment porosity are well correlated, particularly in samples with <30% porosity (Fig. 8). Sodium values are higher than expected, particularly for high-porosity samples, and much of the scatter probably results from incomplete removal of dried salts during sample preparation. However, the well-defined trend in samples with <30% porosity seems to support the idea that, as biogenic carbonates are recrystallized, sodium (and presumably chloride) are expelled from the mineral structure, which should cause small increases in pore-fluid salinity. This process would certainly explain why there are larger (and steeper) gradients in Cl- and Na+ near the platform margin (Site 1005), where carbonate recrystallization is more prevalent compared to the more distal sites. It could also explain why shifts around 20-40 mbsf in Cl- and Na+ contents coincide with shifts seen in other pore-fluid constituents influenced by carbonate remineralization such as Sr2+.

Carbonate Diagenesis

Lithostratigraphy and mineralogy results indicate that all sites examined along the Bahamas Transect are heavily influenced by carbonate recrystallization. In general, the more proximal sites show a

Figure 7. Depth profile of Na⁺/Cl⁻ ratios superimposed on an interpreted seismic section for Sites 1006, 1007, 1003, and 1005.

higher degree of diagenetic carbonate alteration than the more distal sites (Eberli, Swart, Malone, et al., 1997). This higher degree of alteration probably results from the fact that the diagenetic potential is higher along the platform margin as a result of (1) higher input of metastable carbonate and organic matter during highstands along the platform margin, and (2) decreased influence of clay minerals. The chemistry of interstitial waters below 40 mbsf also indicates extensive carbonate alteration, principally aragonite dissolution and calcite and dolomite precipitation.

All sites show a large increase (up to 70-fold) in dissolved Sr^{2+} derived from the recrystallization of metastable aragonite to LMC. Strontium concentrations are much higher in aragonite (12,000 ppm) than LMC (2000 ppm) (Milliman, 1974). The amount of Sr^{2+} able to remain in solution is largely controlled by the solubility of celestite (SrSO₄) and, therefore, can only be used as a measure of the degree of carbonate alteration when pore-fluid SO₄²⁻ concentrations are very low or absent (Baker and Bloomer, 1988; Swart and Guzakowski, 1988). A plot of Cl⁻ vs. Sr²⁺ for all sites shows that the two are well correlated at Site 1006, the only site where SO₄²⁻ is absent from pore fluids below 200 mbsf and where no celestite was detected in the cores (Fig. 9). Again, this seems to support the idea that dissolved chloride and sodium are influenced by carbonate remineralization.

Dolomite formation is also an important diagenetic process occurring within sediments below 40 mbsf along the Bahamas Transect. The largest increases in the Mg^{2+}/Ca^{2+} ratios appear to coincide with intermediate-depth intervals (50–200 mbsf), where extensive sulfate reduction is occurring (Fig. 10) Within these intervals, the Mg^{2+}/Ca^{2+} ratios increase on the order of 1:3 suggesting dolomite formation by recrystallization of aragonite and HMC (Baker and Kastner, 1981). Significant dolomite (up to 20%) was detected in the upper Pliocene– Pleistocene sediments near sequence boundaries (Fig. 3). In lower sediment regimes (middle Pliocene–Miocene units), there is a progressive loss of Mg^{2+} and increase in Ca^{2+} concentrations leading to a decrease in the Mg^{2+}/Ca^{2+} ratios (Fig. 10). Small amounts of dolomite (background dolomite) are probably forming throughout these intervals but are limited by the availability of Mg^{2+} supplied by carbonate recrystallization and diffusion from the overlying seawater.

Organic Matter Diagenesis

Pore-fluid chemistry and headspace analyses indicate that the remineralization of organic matter is an important process along the Bahamas Transect. Oxidation of organic matter by sulfate reduction is evident at all sites below 40 mbsf, based on the presence of H₂S gas (Eberli, Swart, Malone et al., 1997). Sulfate reduction is most pronounced in the shallow Pliocene-Recent intervals close to the platform margin, where high rates of sedimentation (15 cm/k.y.) result in the burial of substantial quantities of organic material (Fig. 2). At Site 1005, sulfate content is reduced and below the limits of detection (~1 mM) by a depth of 87 mbsf (Fig. 4). The concomitant increase in alkalinity within this zone of sulfate depletion follows a 2:1 ratio (i.e., a 2-mole increase in total alkalinity per one mole of sulfate lost), which agrees with the predicted model of microbial sulfate reduction (Berner, 1971). What is unusual about Site 1005 (along with Sites 1003 and 1007) is that rather than remain depleted, dissolved SO₄²⁻ increases in excess of bottom-water concentrations (30 mM) below this zone of sulfate reduction (Fig 4). This alternation between sulfate-reducing and non-sulfate-reducing zones is very unusual and is examined in more detail below.

Sulfate reduction is normally limited by the availability of labile organic matter and dissolved SO₄²⁻. Therefore, we might expect that sulfate-reducing intervals should have a higher abundance of labile organic matter compared to non–sulfate-reducing intervals. An examination of Figure 2 for Sites 1003 and 1005 shows a rough correspondence, but more samples need to be analyzed to test this hypothesis. The availability of dissolved SO₄²⁻ in deeper sequences (>200 mbsf) is believed to be largely limited by the presence of available dissolved Fe²⁺. Dissolved Fe²⁺ will sequester reduced sulfate (HS⁻) to form sedimentary pyrite (Berner, 1966; Canfield, 1989). Significant amounts of pyrite were observed at Sites 1006 and 1007 and below 1070 mbsf at Site 1003. The origin of the dissolved Fe²⁺ is believed to be from Fe-Mn–rich phases associated with siliciclastic clays (smectite, feldspar, quartz, and kaolinite) deposited by channel currents at the more distal sites (Eberli, Swart, Malone, et al., 1997). In contrast, Site 1005 and intervals of Site 1003 probably receive only

Figure 8. Relationship between sodium concentrations and bulk porosity for acid soluble sediments analyzed from Sites 1005 and 1007. The decrease in sodium concentration with decreasing porosity is postulated to result from the expulsion of sodium from the crystal structure during carbonate recrystal-lization.

minimal fluxes of Fe²⁺ delivered by detrital mineral phases and, correspondingly, show only trace levels of iron-sulfide formation. Sulfide produced by SO₄²⁻ reduction is built up to high concentrations thereby reducing the sediment pH (Ben-Yaakov, 1973). As levels of free hydrogen-sulfide continue to build up in the interstitial waters, reaction pathways are dominated by the oxidation of elemental sulfur back to sulfate, which further reduces the pH (Goldhaber and Kaplan, 1980; Aller, 1982). This results in enhanced carbonate dissolution (Canfield and Raiswell, 1991) and may explain why the platform margin sediments are much more reactive in terms of carbonate recrystallization than the sediments of the more distal sites. Once all labile organic material is oxidized, sulfate reduction is inhibited and all reduced forms of sulfide are gradually transformed back to dissolved SO₄²⁻, which can remain at high concentrations.

Therefore, the combined influences of availability of labile organic carbon and dissolved Fe^{2+} are believed to control the alternations between sulfate-rich and sulfate-depleted zones. Diffusion of constituents from above and below these boundaries leads to the formation of many diagenetic sulfur minerals at these interfaces, such as barite, celestite, and elemental sulfur. Figure 11 shows Sr^{2+} and SO_4^{2-} profiles for Site 1007 illustrating where celestite is forming as waters become saturated with respect to this mineral.

Degradation of organic matter by methane oxidation is also an important process along the Bahamas Transect. The high concentration of methane gas detected within the Pleistocene–Pliocene intervals of Sites 1003–1005 indicates that oxidation of organic matter by methane is occurring immediately below the sulfate-reduction zones. The peak concentrations of NH_4^+ are commonly below the alkalinity maximum and below the base of the sulfate-reduction zone, as has been observed in other settings where methanogenesis is an important process (Mackin and Aller, 1984). It is also highly probable that partial sulfate reduction may also be occurring by oxidation of upwardly migrating methane (Burns, 1998).

An examination of the pore-fluid δ^{13} C of the DIC shows behavior similar to other carbonate-dominated sites where sulfate reduction and methanogenesis occur (Swart, 1993). While DIC δ^{13} C profiles reflect these processes, they are strongly buffered by the host carbonate and consequently only display minor changes in the δ^{13} C. Surprisingly, one of the regions displaying the most negative δ^{13} C values is the upper nonreactive zone, supporting the idea that, whereas there may be small amounts of organic matter oxidation using oxygen, there is little carbonate diagenesis taking place. Near the base of the flush zone (20–40 mbsf), all DIC δ^{13} C values increase slightly to between +1‰ and +1.5‰, then show a decrease to a minimum of -1.2‰ at Site 1005, -0.8‰ at Site 1004, and +0.81‰ at Site 1003 correspond-

Figure 9. Plot of pore-fluid Cl^- vs. Sr^{2+} for Sites 1006, 1007, 1003, and 1005. The good correlation at Site 1006 is interpreted to illustrate the influence of carbonate recrystallization on both constituents in the absence of celestite (SrSO₄) formation.

Figure 10. Depth profile of Mg^{2+}/Ca^{2+} ratios superimposed on an interpreted seismic section for Sites 1006, 1007, 1003, and 1005. Dolomite formation is most favored in shallow areas where extensive sulfate reduction and carbonate dissolution leads to high Mg^{2+}/Ca^{2+} ratios.

Figure 11. Site 1005 depth profiles illustrating altenations between sulfate-reducing (shaded) and non–sulfate-reducing zones. Interfaces between these zones are important sites of dissolution/precipitation reactions. A. SO_4^{2-} and Sr^{2+} . B. Methane (C₁) measured in headspace and interstitial dissolved inorganic carbon (DIC) $\delta^{13}C$. C. Ion molar product (IMP) for celestite (SrSO₄) and interval (indicated by arrows) where significant quantities of celestite were found in cores.

ing to the loss of SO_4^{2-} . Although this minimum reflects an increasing contribution from the oxidation of organic material by sulfate, it is masked by the input of carbon from the dissolution of carbonate. The δ^{13} C values increase with increasing depth, perhaps reflecting equilibration with CO₂ produced during methanogenesis. At Site 1005, the δ^{13} C values decrease with increasing depth reflecting the reduced influence of methanogenesis below 300 mbsf (Fig. 10).

CONCLUSIONS

- The shallow, vertical pore-water gradients observed along the Bahamas Transect are thought to be influenced primarily by differences in sediment reactivity, possibly induced by changes in sedimentation rates and strong bottom currents active since the late Pliocene.
- Pore-fluid profiles in the lower Pliocene–Miocene sequences are dominated by diffusion and do not show significant evidence of subsurface advective flow. Deeper interstitial waters are believed to be the in situ fluids that have evolved mainly through interactions with sediments.
- 3. The increase in Na⁺ and Cl⁻ content observed with depth is postulated to result from the expulsion of Na⁺ and Cl⁻ into pore waters during alteration of metastable aragonite and HMC to LMC and dolomite. It is also possible that some of the increase is caused by upward diffusion of salt from Early Jurassic evaporites.
- 4. Pore-fluid chemistry is dominated by the influences of carbonate recrystallization, much of which is thought to occur soon after deposition during open exchange with bottom water. Extensive later stage burial diagenesis of carbonate is limited to zones of sulfate-reduction reactions, where enhanced carbonate dissolution occurs.
- 5. Marginal sites are characterized by alternations between sulfate-reducing and non–sulfate-reducing zones, which are controlled by the availability of labile organic matter and sulfate. Sulfate availability in deeper sediments is controlled by sulfur cycling pathways and the presence or absence of dissolved Fe²⁺. Interfaces between sulfate-reducing and non–sulfate-reducing zones are sites of ongoing reaction and precipitation of minerals such as celestite and barite.

ACKNOWLEDGMENTS

The authors would like to thank the technicians, scientists, and crew of Leg 166 for their assistance during the cruise. T. Bronk and A. Pimmel are especially thanked for their help in the chemistry lab. J. Robinson assisted with portions of the solid-phase analyses. F. Anselmetti and J. Kenter are thanked for providing bulk-porosity data. We thank Steve Burns, John Compton, and Mitch Malone for comments and suggestions that improved an earlier version of this manuscript. Portions of this research were supported by grants from JOI/USSAC (PAK, PKS, and EHD).

REFERENCES

Aller, R.C., 1977. The influence of macrobenthos on chemical diagenesis of marine sediments [Ph.D. dissertation]. Yale Univ.

—, 1980. Quantifying solute distribution in the bioturbated zone of marine sediments by defining an average microenvironment. *Geochim. Cosmochim. Acta*, 44:1955–1965.

——, 1982. Carbonate dissolution in nearshore terrigenous muds: the role of physical reworking. *J. Geol.*, 90:79–95.

Aller, R.C., Mackin, J.E., and Cox, R.T., 1986. Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones. *Cont. Shelf Res.*, 6:263–289.

- Austin, J.A., Jr., Schlager, W., Palmer, A.A., et al., 1986. Proc. ODP, Init. Repts., 101: College Station, TX (Ocean Drilling Program).
- Baker, P.A., and Bloomer, S.H., 1988. The origin of celestite in deep-sea carbonate sediments. *Geochim. Cosmochim. Acta*, 52:335–339.
- Baker, P.A., and Kastner, M., 1981. Constraints on the formation of sedimentary dolomite. *Science*, 213:215–216.
- Ben-Yaakov, S., 1973. pH buffering of pore waters of recent anoxic marine sediments. *Limnol. Oceanogr.*, 18:86–94.
- Berner, R.A., 1966. Chemical diagenesis of some modern carbonate sediments. Am. J. Sci., 264:1–36.
- Berner, R.A., 1971. *Principles of Chemical Sedimentology:* New York (McGraw-Hill).
- Berner, R.A., 1980. *Early Diagenesis: A Theoretical Approach:* Princeton, NJ (Princeton Univ. Press).
- Burns, S.J., 1998. Carbon isotopic evidence for coupled sulfate reductionmethane oxidation in Amazon Fan sediments. *Geochem. Cosmochim. Acta*, 62:797–804.
- Busenberg, E., and Plummer, L.N., 1985. Kinetic and thermodynamic factors controlling the distribution of SO₄²⁻ and Na⁺ in calcites and selected aragonites. *Geochem. Cosmochim. Acta*, 49:713–725.
- Canfield, D.E., 1989. Reactive iron in marine sediments. Geochem. Cosmochim. Acta, 53:619–632.
- Canfield, D.E., and Raiswell, R., 1991. Pyrite formation and fossil preservation. In Allison, P.A., and Briggs, D.E.G. (Eds.), Topics in Geobiology (Vol. 9): Taphonomy: Releasing the Data from the Fossil Record: New York (Plenum Press), 337–387.
- Cranston, R.E., and Buckley, D.E., 1990. Redox reactions and carbonate preservation in deep-sea sediments. *Mar. Geol.*, 94:1–8.
- Davies, P.J., McKenzie, J.A., Palmer-Julson, A., et al., 1991. Proc. ODP, Init. Repts., 133 (Pts. 1, 2): College Station, TX (Ocean Drilling Program).
- Eberli, G.P., Swart, P.K., Malone, M.J., et al., 1997. Proc. ODP, Init. Repts., 166: College Station, TX (Ocean Drilling Program).
- Gieskes, J.M., Gamo, T., and Kastner, M., 1993. Major and minor element geochemistry of interstitial waters of Site 808, Nankai Trough: an overview. *In* Hill, I.A., Taira, A., Firth, J.V., et al., *Proc. ODP, Sci. Results*, 131: College Station, TX (Ocean Drilling Program), 387–396.
- Goldhaber, M.B., and Kaplan, I.R., 1980. Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California. *Mar. Chem.*, 9:95–143.
- Kastner, M., Elderfield, H., Martin, J.B., Suess, E., Kvenvolden, K.A., and Garrison, R.E., 1990. Diagenesis and interstitial-water chemistry at the Peruvian continental margin—major constituents and strontium isotopes. *In* Suess, E., von Huene, R., et al., *Proc. ODP, Sci. Results*, 112: College Station, TX (Ocean Drilling Program), 413–440.
- Kitano, Y., Okumaura, M., and Idogak, M., 1978. Uptake of phosphate ions by calcium carbonate. *Geochem. J.*, 12:29–37.
- Mackin, J.E., and Aller, R.C., 1984. Ammonium adsorption in marine sediments. *Limnol. Oceanogr.*, 29:250–257.
- Malone, M.J., Baker, P.A., Burns, S.J., and Swart, P.K., 1990. Geochemistry of periplatform carbonate sediments, Leg 115, Site 716 (Maldives Archipelago, Indian Ocean). *In Duncan*, R.A., Backman, J., Peterson, L.C., et al., *Proc. ODP, Sci. Results*, 115: College Station, TX (Ocean Drilling Program), 647–659.
- Miller, K.G., and Mountain, G.S., 1994. Global sea-level change and the New Jersey margin. *In* Mountain, G.S., Miller, K.G., Blum, P., et al., *Proc. ODP, Init. Repts.*, 150: College Station, TX (Ocean Drilling Program), 11–20.
- Milliman, J.D., 1974. Marine Carbonates (2nd ed.): Berlin (Springer-Verlag).
- Schulz, H.D., Dahmke, A., Schinzel, U., Wallmann, K., and Zabel, M., 1994. Early diagenetic processes, fluxes, and reaction rates in sediments of the South Atlantic. *Geochim. Cosmochim. Acta*, 58:2041–2060.
- Sheridan, R.E., 1974. Atlantic continental margin of North America. In Burk, C.C., and Drake, C.L. (Eds.), Geology of Continental Margins: New York (Springer Verlag), 391–407.
- Swart, P.K., 1993. The formation of dolomite in sediments from the continental margin of northeastern Queensland. *In* McKenzie, J.A., Davies, P.J., Palmer-Julson, A., et al., *Proc. ODP, Sci. Results*, 133: College Station, TX (Ocean Drilling Program), 513–523.
- Swart, P.K., and Guzikowski, M., 1988. Interstitial-water chemistry and diagenesis of periplatform sediments from the Bahamas, ODP Leg 101. *In* Austin, J.A., Jr., Schlager, W., Palmer, A.A., et al., *Proc. ODP, Sci. Results*, 101: College Station, TX (Ocean Drilling Program), 363–380.

- Swart, P.K., Isern, A., Elderfield, H., and McKenzie, J.A., 1993. A summary of interstitial-water geochemistry of Leg 133. *In* McKenzie, J.A., Davies, P.J., Palmer-Julson, A., et al., *Proc. ODP, Sci. Results*, 133: College Station, TX (Ocean Drilling Program), 705–721.
- Wang, J., and Mooers, C.N.K., 1997. Three-dimensional perspectives of the Florida Current: transport, potential velocity, and related dynamical properties. *Dyn. Atmosph. Oceans*, 27:135–149.
- Wetzel, A., 1981. Ökologische und stratigraphische Bedeutung biogener Gefüge in quartären Sedimenten am NW-afrikanischen Kontinentalrand. "Meteor" Forschungsergeb. Reihe C, 34:1–34.

Date of initial receipt: 29 March 1999 Date of acceptance: 16 August 1999 Ms 166SR-117