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12. LATE QUATERNARY RECORDS OF ORGANIC CARBON, CALCIUM CARBONATE, AND 
BIOMARKERS FROM SITE 1016 OFF POINT CONCEPTION, CALIFORNIA MARGIN1

Masanobu Yamamoto,2 Masumi Yamamuro,3 and Ryuji Tada4

ABSTRACT

Total organic carbon (TOC) and calcium carbonate (CaCO3) concentrations were determined for 304 samples, and biomar-
kers were analyzed for 101 samples from Core 167-1016C-1H. TOC varies between 1% and 2%, and CaCO3 is typically 1%–
4%, with peaks reaching 14%.

Paleotemperature estimated from  varies from 8.5° to 17.5°C. The  variation implies that Core 167-1016C-1H cov-
ers oxygen isotope Stages 1–6. 

Peaks of diatom-derived C25:1 HBI alkene concentrations occur during warming intervals, suggesting intensified upwelling
during deglaciation. The concentrations of haptophyte-derived alkenones and diatom-derived C25:1 HBI alkene vary out of
phase, which presumably resulted from the changes in the mode of nutrient supply to surface mixed layer. 

Maximal CaCO3 contents (>10%) were observed in both warming and cooling intervals. The peak in cooling interval
relates to an alkenone maximum, whereas the peaks in warming intervals do not. This implies that carbonate production is not
the only factor controlling carbonate compensation depth at this site, and it suggests considering the changes in North Pacific
deep-water chemistry. 

Petroleum-type compounds are present in Site 1016 sediments. Their concentrations are maximized in the warming inter-
vals that correspond to the timing of destruction of a huge tar mound off Point Conception. The tarry material was presumably
transported by the Arguello Fan system to Site 1016. 
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INTRODUCTION

Ocean Drilling Program (ODP) Site 1016 (34°32′N, 122°17′W) is
located about 150 km west of Point Conception, California, on an
abyssal hill in water 3835 m deep (Fig. 1). Although the Monterey
Fan and the Arguello Fan extend to the north and south, respectively,
of this abyssal hill (Chase et al., 1981), this site is covered with hemi-
pelagic sediments. The core of southward flow of the California Cur-
rent is located near this site (Hickey, 1979; Lynn and Simpson, 1987).
The site is, therefore, suitable for reconstructing sea-surface tempera-
ture (SST) of the California Current and the intensity of its associated
upwelling. The SST of the California Current is the result of mixing
the West Wind Drift subarctic water and the North Pacific Current
subtropical water (Hickey, 1979), and it is possibly sensitive to cli-
mate changes in the North Pacific Ocean and the surrounding areas.
The coastal upwelling is induced by northerly winds along the Cali-
fornia margin (Huyer, 1983), and the changes in its intensity affect
primary productivity and the ecosystem (e.g., Parsons et al., 1984;
Roemmich and McGown, 1995). Thus the assessments of paleo-sea-
surface temperature (paleo-SST), primary productivity, and the ma-
rine ecosystem provide a clue to understanding the responses of the
California Current system to Quaternary climate changes. 

Many investigations have been conducted on the paleoenviron-
mental changes along the California margin, and most of them fo-
cused on the changes during the last 30,000 yr. ODP Site 893 pro-
vided 197-m-long core of sediments from the Santa Barbara Basin for
high-resolution late Quaternary paleoenvironmental studies (Shore-
based Scientific Party, 1994). During Leg 167, we drilled Sites 1016
(3846 m water depth) and 1017 (967 m water depth) at the open-
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Figure 1. Location of Site 1016 off Point Conception.
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ocean side of the Santa Barbara Basin. The location of Site 1016 is a
hemipelagic, deep-sea site; therefore, the sediments record sensi-
tively the changes of marine surface environment and carbonate com-
pensation depth.

Assessments of paleo-SST were conducted using proxies of alk-
enones, foraminifers, radiolarians, and pollens during the last 30,000
yr at many locations along the California margin and during the last
160,000 yr at Site 893. Along the northern California margin, the
paleo-SST estimated using  (Prahl et al., 1995; Doose et al., 1997)
agrees with those estimated using radiolarian assemblages (Prahl et
al., 1995) and foraminiferal δ18O and their assemblages (Ortiz et al.,
1997), and both indicate about 4°C lower SST in the last glacial max-
imum (LGM; Stage 2) than the Holocene (Stage 1). In contrast, in the
California Borderland, -derived SST disagrees with foraminiferal
and pollen-derived SST during LGM. The -SST estimates indi-
cate that LGM was 0°–2°C cooler than Holocene (Herbert et al.,
1995; Hinrichs et al., 1997), whereas the SST estimations using sin-
istral/dextral ratio of N. pachyderma, δ18O of planktonic foramini-
fers, and foraminiferal assemblages indicate that LGM was more
than 5°C cooler than Holocene (Kahn et al., 1981; Kennett and In-
gram, 1995; Kennett and Venz, 1995; Thunell and Mortyn, 1995;
Mortyn et al., 1996). Pollen assemblages at Site 893 agreed with for-
aminiferal SST estimation (Heusser, 1995). 

Primary productivity changes along the California margin were
assessed based on the contents and accumulation rates of organic car-
bon, calcium carbonate, trace elements, and opaline skeletons. Along
the northern California margin, changes in the organic carbon and di-
atom accumulation rates and trace metal concentrations suggest that
the productivity during LGM was lower than Holocene (Lyle et al.,
1992; Sancetta et al., 1992; Ortiz et al., 1997; Dean et al., 1997; Gard-
ner et al., 1997), which was attributed to weaker coastal-upwelling–
favorable northerly winds off northern California and Oregon during
LGM (Lyle et al., 1992; Sancetta et al., 1992). The weaker upwelling
during LGM was also indicated by Doose et al. (1997), who
suggested the decreased intensity of the California Current during
LGM, based on the increased SST gradient along the California mar-
gin. In the California Borderland, lower productivity during LGM
than Holocene was suggested in the Santa Barbara Basin (Berger et
al., 1997), whereas higher productivity was suggested in several
other basins (Mortyn and Thunell, 1997). Mortyn and Thunell (1997)
suggested that southerly migration of the North Pacific High resulted
in upwelling intensification and increased productivity during LGM.
In the Santa Barbara Basin, the studies of cores from Site 893 dem-
onstrated the higher organic accumulation rates at Substages 5a, 5c,
and 5e (Gardner and Dartnell, 1995: Stein and Rack, 1995), which
was attributed to higher productivity at these periods (Stein and Rack,
1995).

The changes of carbonate compensation depth (CCD) in the last
300,000-yr were examined in the range 2700–4300 m deep along the
northern California and Oregon margins, and it was suggested that
the CCD has migrated more than 1800 m between glacial and inter-
glacial times (Karlin et al., 1992). This large carbonate fluctuation
was attributed to regional mechanisms, such as the glacial deep-water
formation in the northern Pacific Ocean or the enhanced dissolution
due to interglacial noncarbonate productivity related to coastal up-
welling (Karlin et al., 1992). On the other hand, Gardner et al. (1997)
found a carbonate preservation event at 10 ka in cores from the north-
ern California margin and attributed it to the global mechanism, hy-
pothesized by Broecker et al. (1993), that the expansion of boreal for-
ests in the northern hemisphere removed CO2 from the atmosphere
and the surface water of the ocean, and in turn increased alkalinity of
ocean water, which should have resulted in greater preservation of
calcium carbonate.

The origin of organic matter in California and Oregon margin sed-
iments was investigated in detail using various organic geochemical
indicators including C/N value and Rock-Eval parameters (e.g., Rull-
kötter et al., 1981; Stein and Rack, 1995), lignin concentration (e.g.,
Hedges and Mann, 1979), and biomarker concentrations (e.g., Simo-
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neit, 1977; Simoneit and Kaplan, 1980; Venkatesan et al., 1980;
McEvoy et al., 1981; Louda and Baker, 1981; Simoneit and Mazurek,
1981; Rullkötter et al., 1981; Prahl and Carpenter, 1984; Venkatesan
et al., 1990; Kennedy and Brassell, 1992; Hinrichs et al., 1995). Sed-
iment trap samples were also examined for the biomarkers associated
with sinking particles in the California Borderland (e.g., Crisp et al.,
1979; Venkatesan and Kaplan, 1992). These studies indicate the con-
tributions of marine algae, bacteria, and higher plants to the organic
matter in California and Oregon margin sediments. In addition, petro-
leum-type components were characteristically observed in recent
sediments (Simoneit and Kaplan, 1980; Venkatesan et al., 1980), late
Pleistocene sediments (Hinrichs et al., 1995), and sinking particles
(Crisp et al., 1979; Venkatesan and Kaplan, 1992) from the Califor-
nia Borderland, and their source was hypothesized to be anthropo-
genic pollution, submarine seep oils, and weathered matured petro-
leum source rocks. 

In this preliminary study, we examine the changes of organic car-
bon and calcium carbonate contents, alkenone unsaturation indices,
and biomarker concentrations in Core 167-1016C-1H, and discuss
the responses of the marine ecosystem to climate changes during the
late Quaternary, carbonate dissolution changes, and the origin of pe-
troleum-type components in the sediments.

SAMPLES AND METHODS 

Samples

The sediments of Core 167-1016C-1H (0–9.2 mbsf) consist of
gradationally interbedded dark gray to dark greenish gray diatom
ooze with clay, grayish olive diatom clay, clayey diatom ooze, and
light greenish yellow to light olive gray diatom nannofossil ooze with
clay. Smear-slide observation indicates that diatom frustules com-
pose 36%–60% of the sediments (Shipboard Scientific Party, 1997a).
Our observation using soft X-ray radiographs reveals that burrows
occur throughout the whole range of this core, indicating constantly
oxic depositional environment (Fig. 2).

Core 167-1016C-1H was sealed in a N2-filled oxygen-imperme-
able plastic bag immediately after the recovery and stored in a refrig-
erator for three months until shore-based sampling. Samples of ~20
cm3 in volume were taken every 3 cm and immediately frozen in N2-
filled Kapack bags. 

Analytical Method

Three hundred-four freeze-dried sediment samples at 3-cm inter-
vals were analyzed for total organic carbon (TOC), total carbon (TC),
and total nitrogen (TN) using a Yanaco MT-5 elemental analyzer. To
remove carbonate carbon, the samples were acidified following the
method of Yamamuro and Kayanne (1995). Inorganic carbon (IC)
and calcium carbonate (CaCO3) contents were calculated according
to the following equations: 

IC = TC – TOC, and

CaCO3 = IC × 8.333.

One hundred and one freeze-dried sediment samples (1 g) taken
at 9-cm intervals were extracted by ultrasonification with 10 mL of
dichloromethane/methanol (6/4 v/v) for 5 min three times. The lipid
extract was separated into five fractions (F1: 3 mL of hexane; F2: 3
mL of hexane/toluene (3/1 v/v); F3: 4 mL of toluene; F4: 3 mL of tol-
uene/methanol (3/1 v/v); and F5: 3 mL of methanol) by column chro-
matography (SiO2 with 5% distilled water, i.d. 5.5 mm, 45 mm long).
n-C24D50 and n-C36H74 were added as internal standards into the F1
and F3 fractions, respectively.

Gas chromatography was conducted using a Hewlett Packard
5890 series II gas chromatograph (GC) with on-column injection and
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Figure 2. Core 167-1016C-1H columnar section based on visual observation
and soft X-ray radiograph.
electronic pressure control systems and a flame ionization detector.
The F1 (hydrocarbon) fraction was analyzed using a capillary column
coated with Chrompack CP-Sil5CB (30 m long, i.d. 0.25 mm, 0.25
µm thick). The oven temperature was programmed from 70° to 130°C
at 20°C/min, from 130° to 310°C at 4°C/min., and then held at 310°C
for 15 min. The F3 (alkenone) fraction was analyzed using a capillary
column coated with Chrompack CP-Sil5CB (60 m, i.d. 0.25 mm,
0.25 µm thick). The oven temperature was programmed from 70° to
310°C at 20°C/min and then held at 310°C for 60 min. Helium was
used as a carrier gas, and the flow velocity was maintained at 30 cm/s.

Gas chromatography-mass spectrometry was conducted using a
Hewlett Packard 5973 gas chromatograph-mass selective detector
with on-column injection and electronic pressure control systems and
quadrupole mass spectrometer. The GC column for F3 analysis and
oven temperature and carrier pressure programs are the same as
above. For F1 analysis, 60-m-long CP-Sil5CB (i.d. 0.25 mm, 0.25 µm
thick) was used instead of 30-m-long column. The mass spectrometer
was run in the full scan ion monitoring mode (m/z 50–650). Electron
impact spectra were obtained at 70 eV. Identification of compounds
was achieved by comparison of their mass spectra and retention times
with those in the literature.

The alkenone unsaturation index  was calculated from the con-
centrations of di- and tri-unsaturated C37 alken-2-ones (C37MK) using
the expression (Brassell et al., 1986)

 = [C37:2MK]/([C37:2MK] + [C37:3MK]). 

The calculation of temperature was conducted according to the
equation:  = 0.034T + 0.039 (T = temperature [°C]), based on an
experimental result for cultured strain 55a of Emiliania huxleyi (Prahl
et al., 1988) with an estimated analytical accuracy of 0.5°C (Prahl
and Wakeham, 1987). The additional unsaturation indices,  and
K37:4/K37, were calculated using the following equations, respectively
(Prahl et al., 1995): 

 = [C36:2ME]/([C36:2ME] + [C36:3ME]), 

where [C36ME] is the concentration of C36 fatty acid-methyl ester,
and 

K37:4/K37 = [C37:4MK]/([C37:2MK] + [C37:3MK] + [C37:4MK]).

RESULTS

Alkenone Unsaturation Indices

Figure 3 illustrates the variations of alkenone unsaturation indices.
Paleotemperature estimated from  varies from 8.5° to 17.5°C. The
temperature of the top 54 cm of core ranges between 13.8° and
14.5°C, which agrees with the present mean annual SST at this site
(Robinson, 1976). This result is concordant with the recent observa-
tion that core-top -derived temperatures represent the mean annual
SST along the California margin (Herbert et al., 1998). 

The variations of  and K37:4/K37 are very similar to that of .
A good correlation (r = 0.92) exists between  and . This sug-
gests a single source of C37:2-4 alken-2-one and C37:2-3 methylalk-
enoates in Core 167-1016C-1H. 

The variation of  at Site 1016 is also similar to both δ18O pro-
files of planktonic and benthic foraminifers (Kennett et al., Chap. 21,
this volume) and  variation (Shipboard Scientific Party, 1997b) at
the adjacent shallower Site 1017. Comparison with the oxygen iso-
tope stratigraphy of Site 1017 (Kennett et al., Chap. 21, this volume)
enables us to make a preliminary -based stratigraphy of Site
1016, as shown in Figure 3. This preliminary age-depth model im-
plies that Core 167-1016C-1H covers oxygen isotope Stages 1–6,
with the average linear sedimentation rate of 6.4 cm/k.y. The precise
age-depth model needs future investigations such as the analyses of
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14C of foraminifers, radioactive elements, and amino acid racemiza-
tion. 

Total Organic Carbon, Total Nitrogen, and
Calcium Carbonate Contents

Figure 4 illustrates the variations of total organic carbon (TOC),
total nitrogen (TN), and calcium carbonate (CaCO3) contents, and the
TOC/TN value of Core 167-1016C-1H. 

TOC varies between 0.8% and 2.3%, with an average of 1.3%.
High TOC contents (>1.5%) occur in the core-top interval (0–0.12
mbsf), at 5.1–6.2 mbsf (Peaks D, E, and F in Fig. 4), 7.3 mbsf (Peak
G), and 8.2 mbsf (Peak H). TOC/TN values range between 5.4 and
10.0, with an average of 7.5, indicating predominantly marine origin
of the organic matter supplied to this site. CaCO3 content varies be-
tween 0% and 13.7%, with an average of 2.5%. Maxima of CaCO3
content (>10%) occur around 0.5 mbsf (Peak I in Fig. 4), 5.2 mbsf
(Peak J), and 7.2 mbsf (Peak K). The background value of CaCO3
contents is nearly 0%, which indicates the dissolution of calcium car-
bonate below the carbonate compensation depth.

Biomarkers

The F1 (hydrocarbon) and F3 (alkenone) fractions were analyzed
by gas chromatography and gas chromatography–mass spectrometry.
Figures 5 and 6 illustrate the reconstructed ion chromatograms and
mass fragmentograms of the F1 fraction from representative samples.
Figure 7 illustrates the reconstructed ion chromatograms of the F3
fraction. The compounds identified in Core 167-1016C-1H are listed
in Tables 1 and 2, and most of them were already reported by previ-
ous workers including Venkatesan et al. (1980), McEvoy et al.
(1981), Simoneit and Manzurek (1981), Rullkötter et al. (1981), and
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Hinrichs et al. (1995). Concentrations of selected biomarkers and in-
dices are shown in Appendixes A, and C through E.

Higher Plant-Derived Compounds

Long-chain n-alkanes (LNAs) occur as a major component of the
F1 fraction in all investigated samples and maximize at C29 (Fig. 5).
Their homologous distribution is typical of terrestrial higher plant
waxes (Eglinton and Hamilton, 1967). The concentration of LNAs
(n-C25, n-C27, n-C29, and n-C31) varies between 0.94 and 1.83 µg/g
sediment, with an average of 1.43 µg/g sediment (Fig. 8). The varia-
tion with depth is small, but concentration minima occur at the warm-
ing intervals (0.6 and 8 mbsf). Their odd/even carbon number prefer-
ence index (CPI) values (Bray and Evans, 1961) vary between 3.5
and 8.2, with an average of 5.4. The ratio of C31/C27 of n-alkanes
ranges between 1.3 and 2.7, with an average of 1.8. The small
changes in CPI and C31/C27 ratio suggest a homogenous source of n-
alkanes.

According to the method of Prahl and Carpenter (1984), terrestrial
organic carbon content (TROC) was calculated from LNA (n-C25, n-
C27, n-C29, and n-C31) concentration (µg/g) using the following ex-
pression: TROC = LNA/(LNAr/TOCr), where LNAr and TOCr are
the LNA and TOC of riverine sediments, respectively, that sourced
terrigenous organic matter to the site. Because there are no available
data for the LNAr/TOCr ratio of riverine sediments near Point Con-
ception, we used the values from the Columbia River (Prahl and Car-
penter, 1984). Based on this assumption, TROC (%) was expressed
as LNA/2.77. Marine organic carbon content (MROC) was obtained
by subtracting TROC from TOC. The estimated TROC is almost con-
stant around 0.5%, whereas MROC varies between 0.4% and 2%
(Fig. 8). The MROC decreases rapidly with depth in the top 9 cm,
which reflects the degradation of metabolizable marine organic mat-
ter. MROC percentage of TOC ranges between 44.6% and 81.9%,
with an average of 59.8%, which agrees with the low TOC/TN values
of this core. 

Diatom-Derived Compounds

C25:4 and C25:1 highly branched isoprenoid (HBI) alkenes were
found in the F1 fraction. They were identified by comparison of their
mass spectra and retention times (Requejo and Quinn, 1983). C25 HBI
alkenes were identified in a marine diatom Haslea ostrearia (Volk-
man et al., 1994), and the compounds in sediments are thought to de-
rive from diatoms. 

C25:4 HBI alkene decreases rapidly with increasing depth within
top 60 cm of the core and is under the detection limit in the underly-
ing horizons (Fig. 9). This implies that the C25:4 HBI alkene is highly
unstable during early diagenesis (Requejo and Quinn, 1983). In con-
trast, the C25:1 HBI alkene seems more stable in the sediment column
and has maximal concentrations in warming intervals (0.8 and 8
mbsf).

Haptophyte-Derived Compounds

C37–C39 alkenones and C37–C38 alkenoates (C36 fatty acid-methyl
and ethyl esters) were found in the F3 fraction (Fig. 7), and C37–C38
alkatrienes were found in the F1 fraction (Fig. 5). All of these in nor-
mal marine sediments are thought to derive from Genera Gephyro-
capsa and Emiliania, Family Gephyrocasaceae, Class Haptophyceae
(Marlowe et al., 1990). 

Alkenones are most abundant in lipids extracted from Core 167-
1016C-1H. Their concentrations vary between 2.0 and 16.5 µg/g sed-
iment, with an average of 5.8 µg/g sediment, and have maximal
values at 5.2, 6.2, and 7.4 mbsf (Fig. 10). Alkenoates have a similar
variation with alkenones. Alkatrienes show a different variation with
alkenones and alkenoates, and their concentrations are higher in a
cooling interval (3.8–5.2 mbsf). Conte et al. (1994) compiled pub-
lished and unpublished data for lipids in various strains of Emiliania
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huxleyi and found that the occurrence of alkatrienes is restricted to
several strains from northern subarctic Oceans such as the northeast
Pacific Ocean and the English Channel. This suggests that the alk-
atrienes from Site 1016 reflect the contribution of Emiliania and/or
Gephyrocapsa species of subarctic origin. 

Prokaryote-Derived Compounds

In the F1 fraction, diploptene, neohop-13(18)-ene, and fern-7-ene
were found, and hop-21(22)-ene and hop-17(21)-ene were detected
in trace amounts (Fig. 6). All of these are thought to derive from eu-
bacteria or cyanobacteria (Ourrison et al., 1979). Brassell et al.
(1980) proposed a diagenetic isomerization of diploptene (hop-
22(29)-ene) to neohop-13(18)-ene through hop-21(22)-ene and hop-
17(21)-ene. There seems a trend that the relative abundance of neo-
hop-13(18)-ene to diploptene increases with increasing depth (Fig.
9), which is consistent with the Brassell hypothesis. Both diploptene
and neohop-13(18)-ene show similar variations with depth, but the
amplitude is much higher in the variation of neohop-13(18)-ene con-
centration.

Petroleum-Type Compounds

Hopanes, steranes, and C-ring monoaromatic (MA) steroids were
observed in the F1 fraction (Fig. 6). Their identification was achieved
by comparison of their mass spectra and retention times (Philp, 1995;
Moldowan and Fago, 1986; Schouten et al., 1994). Their isomeric
pattern (e.g., the presence of thermally stable 22S- and 17α(H),

40 50

40 50

40 50

40 50

B

C

D

E

F
GH

I

J

K L

A

B

C

D

E

F
G

H I

J
K L

A

B

C

D

E

F

G H
I

J
K L

B

C

D

E

F

G H

I

J

K L

Retention time (min)

1H-1, 9-12 cm

0.09 mbsf

1H-2, 30-33 cm

1.80 mbsf

1H-3, 78-81 cm

3.78 mbsf

1H-6, 42-45 cm

7.92 mbsf

Figure 7. Partial reconstructed ion chromatograms of ketone (F3) fraction
from Samples 167-1016C-1H-1, 9–12 cm, 167-1016C-1H-2, 30–33 cm, 167-
1016C-1H-3, 78–81 cm, and 167-1016C-1H-6, 42–45 cm. See Table 2 for a
list of identified compounds.
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Table 1. Compounds identified in hydrocarbon (F1) fraction from Core
167-1016C-1H sediments.

Notes: MA = monoaromatic. The symbols refer to Figures 5 and 6.

Symbol Compound

Pr Pristane
Ph Phytane
21PUA C21 poly-unsaturated alkene
C25:4HBI C25:4 highly branched isoprenoid alkene
C25:1HBI C25:1 highly branched isoprenoid alkene
37:3 Heptatriacontatriene
38:3 Octatriacontatriene
A 17α(H),21β(H)-28,30-dinorhopane
B 17α(H),21β(H)-30-norhopane
C 17β(H),21α(H)-30-norhopane
D Oleanane?
E 17α(H),21β(H)-hopane
F Neohop-13(18)-ene
G 17β(H),21β(H)-30-norhopane
H 17β(H),21α(H)-hopane
I Fern-7-ene
J 22S-17α(H),21β(H)-homohopane
K 22R-17α(H),21β(H)-homohopane
L 17β(H),21β(H)-hopane
M Diploptene
N 22S-17α(H),21β(H)-bishomohopane
O 22R-17α(H),21β(H)-bishomohopane
P 17β(H),21β(H)-homohopane
Q 22S-17α(H),21β(H)-trishomohopane
R 22R-17α(H),21β(H)-trishomohopane
S 22S-17α(H),21β(H)-tetrakishomohopane
T 22R-17α(H),21β(H)-tetrakishomohopane
U 22S-17α(H),21β(H)-pentakishomohopane
V 22R-17α(H),21β(H)-pentakishomohopane
a 20S-5α(H),14α(H),17α(H)-cholestane
b 20R-5α(H),14β(H),17β(H)-cholestane
c 20S-5α(H),14β(H),17β(H)-cholestane
d 20R-5α(H),14α(H),17α(H)-cholestane
e 5α(H)-27-methyl-24-norcholestane
f 20S-5α(H),14α(H),17α(H)-24-methylcholestane
g 20R-5α(H),14β(H),17β(H)-24-methylcholestane
h 20S-5α(H),14β(H),17β(H)-24-methylcholestane
i 20R-5α(H),14α(H),17α(H)-24-methylcholestane
j 20S-5α(H),14α(H),17α(H)-24-ethylcholestane
k 20R-5α(H),14β(H),17β(H)-24-ethylcholestane
l 20S-5α(H),14β(H),17β(H)-24-ethylcholestane
m 20R-5α(H),14α(H),17α(H)-24-ethylcholestane
n 20S-5β(H),10β(CH3)-C27 C-ring MA steroid
o 20S-5β(CH3),10β(H)-C27 C-ring MA diasteroid
p 20R-5β(H),10β(CH3)-C27 C-ring MA steroid
q 20S-5β(CH3),10β(H)-C27 C-ring MA diasteroid

20S-5α(H),10β(CH3)-C27 C-ring MA steroid
r 20S-5β(H),10β(CH3)-C28 C-ring MA steroid

20S-5β(CH3),10β(H)-C28 C-ring MA diasteroid
s 20R-5α(H),10β(CH3)-C27 C-ring MA steroid
t 20S-5α(H),10β(CH3)-C28 C-ring MA steroid
u 20R-5β(H),10β(CH3)-C28 C-ring MA steroid

20R-5β(CH3),10β(H)-C28 C-ring MA diasteroid
v 20S-5β(H),10β(CH3)-C29 C-ring MA steroid

20S-5β(CH3),10β(H)-C29 C-ring MA diasteroid
w 20S-5α(H),10β(CH3)-C29 C-ring MA steroid
x 20R-5α(H),10β(CH3)-C28 C-ring MA steroid
y 20R-5β(H),10β(CH3)-C29 C-ring MA steroid

20R-5β(CH3),10β(H)-C29 C-ring MA diasteroid
z 20R-5α(H),10β(CH3)-C29 C-ring MA steroid

Table 2. Compounds identified in ketone (F3) fraction from Core 167-
1016C-1H sediments.

Note: The symbols refer to Figure 7.

Symbol Compound Abbreviation

A Heptatriaconta-8E,15E,22E,29E-tetraen-2-one C37:4MK
B Heptatriaconta-8E,15E,22E-trien-2-one C37:3MK
C Methylhexatriacontatrienoate C36:3ME
D Heptatriaconta-15E,22E-dien-2-one C37:2MK
E Methylhexatriacontadienoate C36:2ME
F Ethylhexatriacontadienoate C36:2EE
G Octatriaconta-9,16,23-trien-3-one C38:3EK
H Octatriacontatrien-2-one C38:3MK
I Octatriaconta-16,23-dien-3-one C38:2EK
J Octatriacontadien-2-one C38:2MK
K Nonatriacontatrien-3-one C39:3EK
L Nonatriacontadien-3-one C39:2EK



ORGANIC CARBON, CALCIUM CARBONATE, AND BIOMARKERS
21β(H)-hopanes and 20S- and 5α(H), 14β(H), 17β(H)-steranes) is
typical of matured organic matter (Seifert and Moldowan, 1980), and
the presence of 28, 30-dinorhopane (Seifert et al., 1978) implies that
their source is a weathered Miocene Monterey Formation source rock
and/or Monterey oil. Figure 11 demonstrates the variations in the
concentrations of these petroleum-type compounds. All of these
show parallel variations in concentration, and they are most abundant
in warming intervals at 0.8 and 8.2 mbsf. The concentration of 28,30-
dinorhopane ranges between 3 and 13 µg/g TOC, which is in the same
order as that in Site 893 sediments in Santa Barbara Basin (10–42 µg/
g TOC; Hinrichs et al., 1995).

DISCUSSION

Marine Ecological Responses to Climate Changes

The variations of TOC and CaCO3 contents and biomarker con-
centrations appear to respond to glacial-interglacial changes. In this
study, we used C25:1 HBI alkene, alkenones, and neohop-13(18)-ene
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as the markers of diatoms, haptophytes, and prokaryotes, respe-
ctively, for assessing the marine ecological responses to climate
changes.

The preservation degree of biomarkers in sediments depends both
on the dissolved oxygen concentration near the water-sediment inter-
face and sedimentation rate. A comparison of alkenone fluxes of sed-
iment trap samples with those of sediments indicates that the preser-
vation degree of alkenones is 0.25%–22% in oxic surface sediments
off Oregon (Prahl et al., 1993). The biomarkers used in the present
study are relatively stable, but even they could have suffered severe
degradation in the water and sediment columns. Burrows were ob-
served in whole range of Core 167-1016C-1H (Fig. 2), suggesting a
constantly oxic environment during deposition. The sedimentation
rates estimated from our preliminary -based age-depth model are
almost constant throughout the core. The little changes of bioturba-
tion and constant sedimentation rate suggest that only small varia-
tions occurred in the degree of preservation of biomarkers during the
deposition of the core. It is, therefore, possible to use the relative
abundance of the biomarkers for paleoenvironmental assessment.

Uk´
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A comparison of TOC and CaCO3 contents with selected biomar-
ker concentrations is shown in Figure 12. C25:1 HBI alkene of diatom
origin has the highest concentrations in warming intervals (Peaks A
and H in Fig. 12). Pike et al. (unpubl. data) point out the increase of
diatom productivity at deglaciation (Termination I) at Site 1019 off
Oregon, based on the diatom assemblages and the mode of lamina-
tion. This is concordant with the high C25:1 HBI alkene concentrations
during warming intervals at Site 1016, implying the regional increase
of diatom productivity at deglaciation along the California and Ore-
gon margins. The high diatom productivity (high concentration of
C25:1 HBI alkene) was presumably related to intensified coastal up-
welling and accounts for major peaks of TOC contents (Peaks A and
H). 

Alkenones of haptophyte origin, in contrast, have maximal concen-
trations in the cooling intervals of the warm period (Peaks D, F, and G
in Fig. 12). The alkenone maxima correspond to the maximal peaks of
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Figure 10. Concentrations of haptophyte-derived alkenones, alkenoates, and
alkatrienes in Core 167-1016C-1H sediments.  profile is shown in com-
parison. Data are listed in Appendix A.
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TOC contents. This implies that alkenone-producing haptophyte al-
gae, in addition to diatoms, are major sources of marine organic car-
bon. It is interesting to note that the concentrations of alkenones and
C25:1 HBI alkene vary out of phase in a warm interval (5–8 mbsf). Be-
cause diatoms tend to dominate in a highly nutrient-fluctuating envi-
ronment (Turpin and Harrison, 1979), the out-of-phase variations pre-
sumably resulted from the changes in the mode of nutrient supply to
surface mixed layer, such as the changes of the intensity, seasonality,
frequency, or duration of upwelling. 

Neohop-13(18)-ene of prokaryote origin has maximal concentra-
tions mostly at the maximal intervals of diatom-derived C25:1 HBI
alkene and haptophyte-derived alkenone concentrations (Fig. 12).
Because neohop-13(18)-ene derives from bacteria or cyanobacteria,
its concentration reflects either heterotrophic eubacterial activity or
productivity of cyanobacteria and/or autotrophic eubacteria. The syn-
chronous variation of neohop-13(18)-ene with C25:1 HBI alkene and
alkenones, therefore, suggests that this compound reflects het-
erotrophic eubacterial activity associated with the primary produc-
tion by diatoms and haptophytes. The possibility of autotrophic ori-
gin, however, cannot be neglected at present, and therefore a future
investigation on its carbon isotopic composition is desirable to iden-
tify its source.

Carbonate Dissolution Changes

Maximal CaCO3 contents (>10%) were observed in warming in-
tervals (Peaks I and K in Fig. 12) and a cooling interval (Peak J).
There is no biomarker that varies in phase with carbonate Peaks I and
K in the warming intervals. On the other hand, Peak J of the cooling
interval corresponds to an alkenone maximum, implying that high
haptophyte productivity is related to carbonate maxima. These sug-
gest that the processes that regulate the formation of carbonate peaks
are different between warming and cooling intervals.

The background value of CaCO3 contents is nearly 0%, which
suggests routine dissolution of calcium carbonate below the CCD.
The changes of CCD are controlled mainly both by the changes of
North Pacific deep-water chemistry and local flux of calcium carbon-
ate. The out-of-phase responses of the Atlantic and Pacific carbonate
records to climate change were attributed to a global mechanism (i.e.,
an increased contribution of less corrosive southern source water and
decreased input of corrosive North Atlantic Deep Water during gla-
cial periods [Berger, 1970]). Karlin et al. (1992), however, suggested
that the CCD has migrated more than 1800 m between glacial and in-
terglacial times, and they attributed this large carbonate fluctuation to
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some regional mechanisms, such as the glacial deep-water formation
in the northern Pacific Ocean or the enhanced dissolution caused by
interglacial noncarbonate productivity related to coastal upwelling.
Gardner et al. (1997) found a carbonate preservation event at 10 ka in
cores from the northern California margin, and they attributed it to
the global mechanism, which was hypothesized by Broecker et al.
(1993), that the expansion of boreal forests in northern hemisphere
removed CO2 from the atmosphere and the surface water of the
ocean, and in turn increased alkalinity of ocean water, which should
have resulted in greater preservation of calcium carbonate.

On the other hand, the local flux of calcium carbonate can be ex-
amined based on the alkenone profile. Because alkenone-producing
species compose more than 70% of total coccoliths at the adjacent
Site 1017 (Tanaka and Tada, Chap. 27, this volume), it is reasonable
to use alkenone concentrations to estimate the flux of calcium car-
bonate. Carbonate Peak J corresponds to an alkenone maximum (Fig.
12), which is concordant with the hypothesis that increased calcium
carbonate production enhances its preservation. However, during the
older cooling intervals (6–8 mbsf), there is no carbonate maximum
that corresponds to alkenone maxima, implying that the production is
not the only factor controlling CCD at this site. 

According to the model of Archer (1991), the dissolution of cal-
cium carbonate is controlled by organic carbon/carbonate carbon ra-
tio of sinking particles, and this implies that the production of non-
carbonate organisms such as diatoms tends to decrease the preserva-
tion of calcium carbonate. At Site 1016, both TOC content and C25:1
HBI alkene concentration are low at carbonate maxima (>10%), and
this does not disagree with the Archer hypothesis.

Lyle et al. (Chap. 11, this volume) report the synchronous changes
in calcium carbonate contents and accumulation rates in various wa-
ter depths at northern sites of Leg 167 and suggest that the carbonate
profiles are affected by carbonate production rather than dissolution.
Site 1017, adjacent to Site 1016, shows a maximum of total coccolith
abundance during early Holocene (Tanaka and Tada, Chap. 27, this
volume). This might suggest that calcium carbonate production con-
trols its preservation in the Sites 1016–1017 transect too. However,
alkenones have no maximal concentration at carbonate maxima
(Peaks I and K) of Site 1016 (Fig. 12): the alkenone profile of Site
1016 provides no concrete evidence that carbonate production main-
ly affects carbonate profile. To answer this question, a future investi-
gation is needed about the alkenone profile at Site 1017. 
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We therefore still need to consider the regional factors at a north-
ern Pacific scale (Karlin et al., 1992) or the global factors (Broecker
et al., 1993). It is interesting to note that the calcium carbonate profile
of a deep-sea core (4402 m deep) from the Caroline Basin, the west-
ern equatorial Pacific Ocean (Kawahata et al., 1998), somewhat re-
sembles that of Site 1016. This suggests the importance of under-
standing the changes of deep-water chemistry of the northern Pacific
Ocean to account for CCD changes in the California margin. 

Sources and Transportation
of Petroleum-Type Compounds

Petroleum-type compounds have been widely observed in recent
sediments of the California Borderland, and they have been attributed
to anthropogenic petroleum pollution as well as to input from natural
sources such as submarine seep oil and weathered Monterey shales
(Simoneit and Kaplan, 1980; Venkatesan et al., 1980). They were
also detected in sinking particles taken by sediment traps settled in
the California Borderland (Crisp et al., 1979; Venkatesan and Ka-
plan, 1992). A 3-cm-thick tar layer and small tar fragments were ob-
served in Site 893 cores from the Santa Barbara Basin (Shore-based
Scientific Party, 1994). Hinrichs et al. (1995) found petroleum-type
compounds in late Pleistocene sediments (since 160 ka) from Site
893, and it indicated that they are solely of natural origin in older sed-
iments. 

Petroleum-type compounds were observed in Site 1016 sediments
in this study, indicating that the occurrence of petroleum-type com-
pounds of natural origin is not restricted to coastal sediments but ex-
tends to hemipelagic deep-sea sediments. The generation of petro-
leum in deeper parts of Site 1016 is very unlikely because of the low
TOC contents (0.5%–1%) in the underlying sediments (Shipboard
Scientific Party, 1997a). The presence of compounds characteristic
of Monterey shales and Monterey oils indicates that their potential
sources are Miocene Monterey shales exposed along the California
coastal area (Pisciotto and Garrison, 1981) and/or natural seep oil in
the California Borderland (Vernon and Slater, 1963). 

The variation of long-chain n-alkane concentrations at Site 1016
indicates relatively low contribution of terrigenous organic matter in
warming intervals (Fig. 8). On the other hand, the concentrations of
petroleum-type compounds are higher in warming intervals (Fig. 11).
This observation disagrees with the idea of terrestrial origin of petro-
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leum-type compounds such as weathered Monterey shales on land.
Therefore, a submarine origin is more likely.

Submarine petroleum seepages were recognized on the continen-
tal shelves of the California Borderland (e.g., Wilson et al., 1974).
Natural seeps off Coal Oil Point introduce about 50 to 70 barrels of
oil per day into the Santa Barbara Basin (Allen et al., 1970). There are
three huge tar mounds that resulted from the accumulation of altered
seep oil in the Santa Barbara Basin (Vernon and Slater, 1963). The
tar mounds, built on land during the last glacial period, were washed
away once by wave activities during transgression and then rebuilt in
water during the Holocene (Vernon and Slater, 1963). Therefore, it is
proposed that a huge amount of tar was scattered to the surrounding
areas by the destruction of tar mounds during transgression. The tim-
ing of destruction of tar mounds corresponds to the periods of maxi-
mum input of petroleum-type compounds into Site 1016. The biggest
tar mound is located off Point Conception (Vernon and Slater, 1963),
and this area is very close to the Arguello Canyon, which sources sed-
iments to the Arguello Fan (Chase et al., 1981). Because the lobe of
the Arguello Fan extends to the south of Site 1016, a turbidity current
is a possible candidate for transporting tarry materials to deep seaf-
loor, and the deposition of the tarry turbidite sediments presumably
contributed to the accumulation of petroleum-type compounds at Site
1016. Although the other transportation mechanisms such as diffu-
sion and floating cannot be neglected, the same level of their concen-
trations in Site 1016 as in the Santa Barbara Basin suggests that the
transportation by turbidity currents is more likely. 

CONCLUSIONS

TOC and CaCO3 contents were determined for 304 samples, and
biomarkers were analyzed for 101 samples from Core 167-1016C-
1H.

Paleotemperature estimated from  varies from 8.5° to 17.5°C.
The  variation implies that Core 167-1016C-1H covers oxygen
isotope Stages 1–6, with an average linear sedimentation rate of 6.4
cm/k.y.

The responses of marine ecosystem to glacial-interglacial climate
changes are evident in the variations of TOC, CaCO3, and biomarker
concentrations. Peaks of diatom-derived C25:1 HBI alkene concentra-
tions occur during warming intervals, suggesting intensified up-
welling during deglaciation. The concentrations of haptophyte-
derived alkenones and diatom-derived C25:1 HBI alkene vary out of
phase, which presumably resulted from the changes in the mode of
nutrient supply to surface mixed layer, such as the changes of the in-
tensity, seasonality, frequency, or duration of upwelling. 

Maximal CaCO3 contents (>10%) were observed in both warming
and cooling intervals. The peak in cooling interval relates to an alk-
enone maximum, whereas the peaks in warming intervals do not.
This implies that carbonate production is not the only factor control-
ling CCD at this site and suggests considering the importance of
changes of North Pacific deep-water chemistry. 

Petroleum-type compounds are present in Site 1016 sediments, in-
dicating that their occurrence is not restricted to coastal sediments,
but extends to hemipelagic deep-sea sediments. The concentrations
of petroleum-type compounds maximize in the warming intervals
that correspond to the timing of destruction of a huge tar mound off
Point Conception. They were presumably transported by the Arguello
Fan system to Site 1016. 
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Appendix A. Concentrations and unsaturation indices of alkenones and alkenoates in Core 167-1016C-1H sediments.

This is a sample of the table that appears on the volume CD-ROM.

Core, section, 
interval (cm)

Depth 
(mbsf)

SST 
(°C) K37:4/K37

Alkenones 
(µg/g)

Alkenoates 
(µg/g)

Alkatrienes 
(µg/g)

167-1016C-
1H-1, 0-3 0.00 0.53 14.5 0.85 0.000 6.19 1.41 0.094
1H-1, 9-12 0.09 0.55 15.2 0.85 0.000 6.70 1.45 0.168
1H-1, 18-21 0.18 0.51 13.9 0.83 0.000 4.40 0.89 0.102
1H-1, 27-30 0.27 0.51 13.8 0.84 0.000 3.92 0.78 0.106
1H-1, 36-39 0.36 0.52 14.2 0.85 0.000 3.58 0.72 0.081
1H-1, 45-48 0.45 0.51 13.8 0.85 0.010 4.57 0.84 0.082
1H-1, 54-57 0.54 0.53 14.3 0.85 0.011 3.33 0.59 0.065
1H-1, 63-66 0.63 0.41 10.8 0.78 0.036 3.19 0.65 0.106
1H-1, 72-75 0.72 0.48 13.0 0.81 0.026 2.01 0.42 0.095
1H-1, 81-84 0.81 0.40 10.8 0.76 0.049 4.36 0.76 0.262

U37
K´

U36
me
Appendix B. Total carbon, total organic carbon, inorganic carbon, total
nitrogen, and calcium carbonate contents and TOC/TN ratio of Core
167-1016C-1H sediments.

Note: TC = Total carbon, TOC = total organic carbon, IC = inorganic carbon, TN = total
nitrogen, and CaCO3 = calcium carbonate.

This is a sample of the table that appears on the volume CD-ROM.

Core, section, 
interval (cm)

Depth 
(mbsf) 

TC 
(%)

TOC
(%)

IC
(%)

CaCO3
(%)

TN
(%) TOC/TN

167-1016C-
1H-1, 0-3 0.00 2.08 2.08 0.03 0.24 0.29 7.25
1H-1, 3-6 0.03 2.04 2.04 0.07 0.62 0.27 7.47
1H-1, 6-9 0.06 2.19 2.19 0.04 0.33 0.28 7.84
1H-1, 9-12 0.09 2.34 2.34 0.06 0.50 0.30 7.81
1H-1, 12-15 0.12 2.07 2.07 0.13 1.09 0.26 7.85
1H-1, 15-18 0.15 1.76 1.76 0.13 1.11 0.24 7.30
1H-1, 18-21 0.18 1.65 1.65 0.14 1.17 0.23 7.17
1H-1, 21-24 0.21 1.66 1.66 0.13 1.11 0.23 7.23
1H-1, 24-27 0.24 1.56 1.56 0.20 1.70 0.22 7.09
1H-1, 27-30 0.27 1.49 1.49 0.23 1.90 0.21 7.26

Appendix C. Concentrations, odd/even carbon preference index, C31/C27
ratio of long-chain n-alkanes, and estimated terrestrial and marine
organic carbon contents of Core 167-1016C-1H sediments.

Note: LNA = long-chain n-alkanes, TROC = terrestrial organic matter, and MROC =
marine organic matter.

This is a sample of the table that appears on the volume CD-ROM.

Core, section, 
interval (cm)

Depth 
(mbsf)

LNA 
(mg/g) CPI

n-Alkane
C31/C27

TROC 
(%)

MROC
(%)

 

167-1016C-
1H-1, 0-3 0.00 1.235 5.07 1.61 0.45 1.64
1H-1, 9-12 0.09 1.177 5.89 1.60 0.42 1.92
1H-1, 18-21 0.18 1.098 5.53 1.47 0.40 1.26
1H-1, 27-30 0.27 1.039 4.69 1.41 0.38 1.11
1H-1, 36-39 0.36 1.131 4.85 1.43 0.41 1.02
1H-1, 45-48 0.45 1.087 3.67 1.87 0.39 1.10
1H-1, 54-57 0.54 0.944 3.53 1.74 0.34 1.10
1H-1, 63-66 0.63 1.165 3.57 1.45 0.42 0.98
1H-1, 72-75 0.72 1.237 3.81 1.69 0.45 0.96
1H-1, 81-84 0.81 1.406 3.59 1.58 0.51 1.10
Appendix D. Concentrations of diatom- and prokaryote-derived com-
pounds in Core 167-1016C-1H sediments.

Note: HBIA = highly branched isoprenoid alkene.

This is a sample of the table that appears on the volume CD-ROM.

Core, section, 
interval (cm)

Depth 
(mbsf)

C25:4 
HBIA
(µg/g)

C25:1 
HBIA
(µg/g)

Diploptene
(µg/g)

Neohop-13(18)-ene
(µg/g)

Fern-7-ene
(µg/g)

167-1016C-
1H-1, 0-3 0.00 0.232 0.036 0.183 0.042 0.072
1H-1, 9-12 0.09 0.496 0.036 0.216 0.046 0.091
1H-1, 18-21 0.18 0.232 0.030 0.118 0.034 0.064
1H-1, 27-30 0.27 0.129 0.019 0.096 0.025 0.053
1H-1, 36-39 0.36 0.136 0.030 0.100 0.028 0.056
1H-1, 45-48 0.45 0.017 0.032 0.157 0.042 0.102
1H-1, 54-57 0.54 0.013 0.038 0.097 0.031 0.072
1H-1, 63-66 0.63 0.000 0.042 0.106 0.039 0.078
1H-1, 72-75 0.72 0.000 0.051 0.113 0.037 0.085
1H-1, 81-84 0.81 0.000 0.053 0.136 0.057 0.117

Appendix E. Concentrations of petroleum-type compounds in Core 167-
1016C-1H sediments.

Note: DNH = 17α(H),21β(H)-28,30-dinorhopane. 

This is a sample of the table that appears on the volume CD-ROM.

Core, section, 
interval (cm)

Depth
(mbsf)

DNH
(µg/g)

αβS-Homohopane
(µg/g)

αβR-Homohopane
(µg/g)

ββ-Homohopane
(µg/g)

167-1016C-
1H-1, 0-3 0.00 0.092 0.032 0.027 0.054
1H-1, 9-12 0.09 0.095 0.025 0.025 0.069
1H-1, 18-21 0.18 0.099 0.025 0.021 0.043
1H-1, 27-30 0.27 0.082 0.024 0.019 0.036
1H-1, 36-39 0.36 0.084 0.024 0.020 0.041
1H-1, 45-48 0.45 0.074 0.033 0.044 0.055
1H-1, 54-57 0.54 0.070 0.024 0.032 0.046
1H-1, 63-66 0.63 0.099 0.032 0.043 0.060
1H-1, 72-75 0.72 0.105 0.035 0.044 0.066
1H-1, 81-84 0.81 0.137 0.045 0.043 0.071
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