
E.E. Davis,² D.S. Chapman,³ H. Villinger,⁴ S. Robinson,⁵ J. Grigel,⁴ A. Rosenberger,⁴ and D. Pribnow³

ABSTRACT

A series of geophysical, geochemical, and oceanographic field studies of the sedimented eastern flank of the northern Juan de Fuca Ridge has been conducted to examine the nature and consequences of hydrothermal circulation in young oceanic crust; results provided the framework for drilling during Ocean Drilling Program Leg 168. Definition of the thermal regime in this environment has been the focus of many of these studies, and as a result, a large number of seafloor heat-flow measurements have been completed. We provide a compilation of more than 1000 measurements completed through 1995, including many previously unpublished data as well as new analyses of older published data. The analyses account for probe-penetration depths of all measurements according to the in situ temperatures relative to the local bottom-water temperature. Consistent thermal conductivity/depth structures have been established in two major geographically defined areas by the total of nearly 3000 in situ conductivity measurements. Tables are provided of heat flow and of temperatures and conductivities from which the heat-flow values were derived.

INTRODUCTION

The combination of the proximity of the Juan de Fuca Ridge to the North American continental margin and the abundant supply of glacially eroded terrigenous sediment during the Pleistocene has created an environment particularly suitable for studying the thermal structure of young oceanic crust by measuring seafloor heat flow with gravity-driven probes. Reconnaissance heat-flow studies began in the late 1960s (Krogen et al., 1971; Lister, 1970). Some of the early studies in this area led to the hypothesis that hydrothermal circulation in the igneous oceanic crust was the cause of the large scatter and low average of values relative to those expected if heat were transported by pure conduction from the cooling lithosphere (e.g., Lister, 1972). Detailed studies began in the early to mid-1970s in attempts to resolve the exact nature of variability and to infer patterns and rates of fluid flow in the crust. These included studies over the ridge crest itself, where sediments fill an axial rift valley (Davis and Lister, 1977), as well as on the ridge flank (Davis et al., 1980). Later investigations included a regional transect across Cascadia Basin south of 47°N (Moran and Lister, 1987) and detailed measurement arrays in Escanaba Trough, a partially sediment-filled rift valley of the southern Gorda Ridge (Abbott, et al., 1986; Davis and Becker, 1994) and in the Middle Valley sedimented rift of the northern Juan de Fuca Ridge (Davis and Villinger, 1992; Fisher et al., 1996). Attempts have been made recently to extend heat-flow measurements to very thinly sedimented areas using a short probe deployed by a submersible vehicle (Johnson et al., 1993).

The data included in this compilation were collected along a corridor that extends from about 18 km east of the axis of the Endeavour segment of the Juan de Fuca Ridge at approximately 48°N, 128°W, to crust nearly 5 Ma in age approximately 140 km east of the axis (Figs. 1, 2; see also Fig. 5, “Introduction and Summary” chapter, back-pocket foldout). At this location on the eastern Juan de Fuca Ridge flank, the sediment cover that buries the igneous crust is particularly continuous and onlaps the crust at an unusually young age. Measurements were made along local transects of closely spaced heat-flow measurements co-located with seismic reflection profiles to examine fundamental aspects of ridge-flank hydrothermal circulation and lithospheric cooling. Most of these transects strike perpendicular to local seafloor spreading fabric as defined by local seafloor magnetic anomalies and basement structures.

Studies along this corridor began with reconnaissance surveys completed in near-ridge and off-axis environments in 1978 and 1988, respectively. These results, along with those of a joint program to investigate fluid flow through the sediment section and to estimate the composition of basement fluids carried out in 1990, were reported by Davis et al. (1989, 1992). Subsequent studies have concentrated on specific parts of the overall transect to address more thoroughly the objectives outlined below. These studies were carried out as both joint and individual, but coordinated, field observational programs by investigators at the Pacific Geoscience Centre (Geological Survey of Canada), Department of Environmental Geosciences, University of Utah, University of California, University of Bremen, Institute of Ocean Sciences (Department of Fisheries and Oceans Canada), and the Pacific Marine and Environmental Laboratory (National Oceanic and Atmospheric Administration). The field studies have been complemented by numerical modeling of convective heat transport in porous media. Design of the field experiments has also benefited greatly from insights gained from related work carried out in other ridge-flank environments, such as on the flanks of the Costa Rica Rift (Green et al., 1981; Langseth et al., 1988; Fisher et al., 1990; Mottl, 1989; Williams et al., 1974) and the Mid-Atlantic Ridge (Langseth et al., 1984, 1992).

Specific objectives of the work were to (1) determine the efficiency with which sediments blanketing the igneous crust provide a hydrologic barrier to flow, (2) document the distance over which fluid and heat are transported laterally in the upper igneous oceanic crust beneath a relatively impermeable sediment cover, (3) provide constraints on the scale and nature of cellular hydrothermal convection in the upper igneous crust, (4) examine the degree to which flow is stimulated or influenced by buried basement topography and variations in sediment thickness, (5) determine the role of basement outcrops in controlling crustal fluid flow and the advective loss of fluids and heat from the igneous oceanic crust, (6) quantify geochemical...
fluxes into and out of the crust, and consequently to identify the impact that hydrothermal fluid exchange with the oceans has on global geochemical budgets, and (7) correlate changes in hydrothermal regime to changes in the state of alteration of the crust, including its mechanical consolidation. An additional goal of determining the total heat flow from young lithosphere, through measurements made well away from known outcrops that are potential sites of advective heat exchange with the ocean, has been thwarted at this latitude by what is inferred to be a shallow layer of sand that prevents complete probe penetration. Attempts have been made at several locations between the eastern and western detailed survey areas shown in Figure 2, all without success.

Figure 1. Location map of the FlankFlux study area. Locations of the axis of the Juan de Fuca Ridge and the deformation front of the Cascadia accretionary prism are shown as heavy lines, and directions of relative plate motions across these boundaries are shown by arrows.

Figure 2. Locations of heat-flow measurements included in Table 1. Locations of the (A) western and (B) eastern areas are indicated on Figure 1. Shading indicates areas of outcropping basement.
Following preliminary programs in 1978 and 1988, progressively focused studies continued with coordinated coring, bottom photogra-
phy, dredging, water-column profiling, and detailed submersible sampling and mapping, all placed in context of basement structure and sediment-thickness variations. Many of the observations and as-
associated modeling studies have been reported previously (Davis and
Chapman, 1996; Davis et al., 1989, 1992, 1996, 1997; Fisher and
Becker, 1995; M. Mottl, unpubl. data: Rohr, 1994; Thomson et al.,
1995; Wang et al., 1997; Wheat and Mottl, 1994). We summarize
those results only briefly below; the primary objectives of this report
are to provide a description of the way the data were analyzed and an
up-to-date compilation of the heat-flow determinations. Except for
those collected in 1978, all data have been reprocessed in a consistent
manner as described below. Values are presented in tabulated form,
along with crustal ages, local sediment thickness where it is well con-
strained, and the distance of the measurement from the axis of the
Juan de Fuca Ridge (Table 1 on CD-ROM, back pocket). A few ex-
amples of coincident heat flow and seismic reflection profiles are
shown to illustrate the context in which the heat-flow variations oc-
cur.

DESCRIPTION OF DATA

Navigation

Because accurate interpretation of marine heat-flow determina-
tions depends strongly on the correspondence with the contextual in-
formation provided by seismic reflection data, good navigational
control is critical. Navigational control for the surveys described
herein varied from cruise to cruise, with the positions of the earliest
measurements determined by hyperbolic Loran-C, adjusted to occa-
sional Transit Satellite fixes. Position uncertainties in the 1978 data
may be as much as several hundred meters. Significant improvement
was realized with the use of range-range Loran-C in 1988, and again
in 1990 and 1992 when global positioning system (GPS) navigational
control was virtually continuous and reduced uncertainties of ship’s
position to less than 100 m. The greatest advance in navigational ac-
curacy and operational simplicity was afforded in 1995 through the
use of real-time differential GPS (DGPS) navigation, which allowed
precise heat-flow station-keeping and seismic shotpoint control.

The greatest uncertainties in the positions of these most recent
measurements are associated with the determination of the position
of the heat-flow instrument with respect to the ship. Almost all mea-
surements have been made along systematic transects so that the di-
rection from the ship to the instrument was reasonably well con-
strained. The distance the instrument lagged behind the average mo-
tion of the ship could be determined in many instances when
structures were crossed that could be identified both with the ship’s
echo sounder and the record of the acoustic pinger mounted 75 m
above the probe. During typical operations, this distance was 50–100
m, and it is accounted for in the positions given in Tables 1 through
3 (on CD-ROM, back pocket).

With these various sources of error in mind, we would assign nav-
giational uncertainties in the heat-flow measurement positions of
about 500 m to those measurements made in 1978, 100–200 m to those
made in 1988, 100 m to those made in 1990 and 1992, and 50–100 m
to those made in 1995. Greater accuracy was provided by long-
baseline acoustic transponder navigation for many of the measure-
ments made in 1992 in the vicinity of the small basement outcrop
near 47°43′N, 127°47′W (see Fig. 2 and discussion below).

Also included in Table 1 are distances of each measurement from the
Endeavour spreading-segment axis of the Juan de Fuca Ridge (as-
suming a strike direction of N 17° E) and basement ages calculated
assuming a constant spreading rate of 29.7 mm/yr between the Brun-
hes/Matuyama and Gauss/Gilbert magnetic epoch transitions (with
positions determined from sea-surface magnetic anomalies [Currie et
al., 1982] and the magnetic time scale of Cande and Kent [1995]; see
Figs. 2, 3, “Introduction and Summary” chapter, this volume). Sed-
m ents onlap the topography of the igneous crust at a distance from the
ridge of 18.6 km (see Fig. 2; also see Fig. 7, “Introduction and Sum-
mary” chapter, this volume).

Seismic Reflection Profiles

Nearly all heat-flow measurements have been collected along
seismic reflection profiles that constrain local basement structure and
depth function as 1988, and again
in 1990 and 1992 when global positioning system (GPS) navigational
control was virtually continuous and reduced uncertainties of ship’s
position to less than 100 m. The greatest advance in navigational ac-
curacy and operational simplicity was afforded in 1995 through the
use of real-time differential GPS (DGPS) navigation, which allowed
precise heat-flow station-keeping and seismic shotpoint control.

Two-way traveltime depths to the seafloor and to the basement
surface have been picked from all migrated seismic data. For those
heat-flow measurements that were made along these profiles, the two-
way travel times are included in the table. Conversions from travel-
time to depth functions determined at nearby sites such as at Site 888
and those drilled during ODP Leg 139 (e.g., Davis and Fisher, 1994; see
Fig. 1), although the accuracy of conversion can be improved greatly
using the site-specific information provided in this volume.

Heat-Flow Data

Much of the reason for recent success in resolving details of sea-
floor heat-flow variability, which often occurs on a scale of a few
hundred meters or less, has been the development of probes that al-

owed extended deployments with multiple, closely spaced penetra-
tions (Lister, 1979; Hyndman et al., 1979). The probes used for the
measurements reported here all follow the design of Lister (1979);
they represent three generations of instruments that are fundamental-
ly the same, differing only in ways that have improved the mechani-
ical robustness of the instruments and the dynamic range, resolution,
and absolute accuracy with which temperature gradients and conduc-
tivities are measured in situ. The instrument employed for measure-
ments in the earliest survey (1978) included a 2.5-m-long probe hav-
ing seven thermists. More recent data were collected with 2.5- and
5-m- (1988) and 3.5-m-long probes (1990 and later) containing 11
thermists. Other improvements included measurement of uni-axial
(1988) and bi-axial tilt (1995), high-resolution pressure (1988), rapid-
response bottom-water temperature (1988), and the use of ultra-stable
a/d conversion (1995). The most recent improvements have permitted
repeatability to 1 mK, a maximum resolution of 0.6 mK, and a dy-
namic range of 50 K. The physical configuration of the instrument
has remained unchanged since 1988 and is shown in Figure 3.

Although the data included in this report have been collected over
a span of 17 yr, the essential characteristics are common to all. A typ-
ical penetration record is illustrated in Figure 4A. The probe is often
logging, heat-pulse control, and low-resolution data telemetry. An 800-kg weight stand that houses the electronics and power supply for data logging, heat-pulse control, and low-resolution data telemetry.

An 8-mm-diameter sensor string that houses a heater wire and a 3-m-long chain of 11 thermistors. The instrument is driven into the seafloor with supports an 8-mm-diameter sensor (3) to allow accurate extrapolation of the 8-mm-diameter sensor) to allow accurate extrapolation of the penetration transients generated by the difference between the temperature of the penetration when it comes to rest and the surrounding sediment (Fig. 4B). This difference can be either positive or negative, depending on the amount of frictional heating generated during penetration relative to the temperature difference between the formation at any given depth and the temperature of the probe immediately prior to penetration (i.e., that of bottom water). After this equilibration period, a metered pulse of heat (600 J/m) is generated along the length of the probe; the temperature rise and rate of decay following this pulse (Fig. 4B) permits the thermal conductivity to be determined (Fig. 4C), following the method proposed by Lister (1979). The complete data reduction scheme is described in detail by Villinger and Davis (1987). Depths of penetration, and hence vertical positions of each temperature and conductivity value, were determined from plots of temperature as a function of integrated sediment thermal resistance, in particular from the temperature of the uppermost thermistor that penetrates sediment relative to bottom water measured by the water-temperature thermistor at the top of the weight stand Fig. 4C).

Because of power limitations and attempts to optimize operation time, and sometimes because operational difficulties caused early physical disturbances or required early pullouts, thermal conductivity was measured at about one-third of all penetrations. For this reason, and because the largest conductivity variability is associated with the contrast between muds and occasional thin turbidite sand layers at a very small depth scale (typically a few centimeters thick in the upper few meters of sediment), conductivity data were combined to establish an average conductivity structure. Data were divided into two geographically defined groups; finer distinctions were not justified by any systematic differences in the conductivity data with the exception of six measurements at the eastern end of Station 95-08 (see discussion at the end of this section). Conductivities for all penetrations and for each geographical group are shown as functions of depth in Figure 5. The western and eastern groups are clearly distinct; the difference is probably associated with subtle differences in porosity, which could be associated with differences in average grain size or degree of sorting, and possibly in lithology, caused, for example, by differences in quartz content, a mineral constituent having a particularly high thermal conductivity.

On average, the conductivity in the western area is higher than that in the eastern area, and high peak values are present in both areas. The high values are associated with layers of sand, as there is often large frictional heating associated with them. The layers are inferred to be thin, less than the 30-cm spacing of the thermistor sensors, on the basis of two observations: (1) The high conductivities are usually limited to single values as seen in Figures 6 and 7; conductivities immediately above and below are usually not displaced from the background trend; and (2) local temperature gradients above and below high-conductivity layers are found to be displaced by amounts that require thicknesses of high-conductivity material that range from 5 to 15 cm (Robinson, 1997). The material of these layers often appears to be mobilized by penetration of the probe, as temperatures determined at their depths commonly lie off the general trend defined by the temperatures of other thermistors, and the corresponding frictional decays often do not follow ideal cylindrical decay theory.

Although many deviations from the average trends shown in Figure 5 do not appear to be systematic, some exceptions occur where anomalies in the conductivity structure associated with a locally coherent layer can be followed for some distance. Illustrations of this are shown in Figure 6, where anomalous conductivity (relative to the average conductivity profile) is shown for a pair of stations. The plot serves to illustrate three important points: (1) As discussed above, anomalous conductivity is confined to discrete thin layers. (2) There appear to be no detectable differences between conductivities measured during different cruises, often with different instruments. This is addressed more specifically in Figure 7, where pairs of measurements made close to one another but at different times are compared. (3) The high-conductivity layers are sometimes coherent over distances of several kilometers, and in the western area, they make a clear and coherent contribution to the average conductivity structure (Fig. 5B).

Attempts were made to incorporate these details into locally defined thermal conductivity structures, but with little success in the way of improving either the quality of individual temperature vs. cu-
Cumulative thermal resistance (Bullard) fits or the coherency of local heat-flow variations. For these reasons, the average conductivity structures for the eastern and western areas were used for all heat-flow calculations in each area, with regression fits done through temperatures plotted against the site-average cumulative thermal resistance. The two conductivity/depth functions used are shown in Figure 5B and 5C; they are simply smooth polynomials fitted through harmonic mean conductivities computed for all data using 10-cm depth intervals. The heat-flow values thus derived are included in Table 1 (on CD-ROM, back pocket). All temperature data are given in Table 2 (on CD-ROM, back pocket), and all conductivity data are given in Table 3 (on CD-ROM, back pocket).

As mentioned above, there is one group of measurements where conductivities are systematically and significantly different (13% higher on average) than the average structure for the bulk of the western area. These lie at the eastern end of Station 95-08 (penetrations 95-08-02 through -27, east of 128.55°W longitude; see Fig. 2A) in a sedimentary distributary system that is distinct from the one that supplies sediment to the area farther west. Heat-flow values for these penetrations have been computed on the basis of the local average conductivity structure defined by the six penetrations of that group where conductivities were measured (see Table 3 on CD-ROM, back pocket).

Figure 4. A. Heat-flow penetration record showing temperature rises at the time of penetration and at the time the calibrated 20-s-long heat pulse is fired. Data are sampled at 10-s intervals. Anomalous frictional heating is evident at the level of thermistor 10 (numbered from the bottom), and the thermal conductivity computed at that level (see C) is anomalously high. B. Temperatures, relative to bottom-water temperature, of frictional and heat-pulse decays, plotted against parameterized time (see Villinger and Davis, 1987), used to calculate in situ temperatures and thermal conductivities. C. Temperature vs. depth, conductivity vs. depth, and temperature vs. integrated thermal resistance, calculated from the raw data shown in A.

Errors

Sources of errors can be grouped into four categories. These are discussed separately as follows:

1. Measurement errors: The smallest errors are those associated with the actual determinations of temperature and conductivity at each thermistor. Extrapolated temperatures are normally resolved to better than a few mK, and conductivities are determined to within about 1%. These uncertainties contribute little to the uncertainty of the heat-flow determinations, except in unusual cases where physical disturbances cause non-ideal decays. Highly disturbed penetrations have been eliminated from the data set. Most heat-flow values, calculated as the slope of the linear regression of temperature vs. integrated thermal resistance, are determined with an uncertainty at the 95% confidence level of less than 1%.

2. Details of lithology: Perhaps the greatest source of uncertainty arises from the incomplete knowledge of the thermal conductivity structure arising from variations in sediment lithology and porosity over the measurement intervals. The preliminary analysis discussed above suggests that high-conductivity layers are thin. By using the regional harmonic mean conductivity structure, we have assumed that their contribution is correctly represented by the large number of pen-
etritations. A minimum, but unreasonably low, thermal conductivity structure might be taken as the “mudline” profile for each of the areas. An upper limit of the heat flow would be derived by using the conductivities measured at each penetration and by assuming that each thermistor had sampled a layer equivalent in thickness to the thermistor spacing. Reasons for why this is unreasonable are given above.

3. Penetration depth: Any uncertainty in the penetration depth contributes error to the heat flow because of the general increase of conductivity with depth that is probably associated with compaction (Fig. 5). The increase with depth is greater in the eastern area; there, a 1-m uncertainty in penetration depth translates into a 6% error in average conductivity and, thus, heat flow. Actual penetration depth uncertainties are probably only a few tens of centimeters. This is attested to by the clustering of points in the conductivity/depth plots, particularly in the western area. This clustering demonstrates that, in this area, the nature of the bottom caused the instrument to stop at a consistent depth from penetration to penetration and that the depths of penetration are very well determined using the temperature vs. thermal resistance and water-temperature data.
4. Tilt: The uni-axial tilt sensor used for measurements collected from 1988 to 1992 provides only a lower limit of total instrument tilt. The sensor was usually oriented to measure tilt in the plane passing through the strength member and the sensor string. Tilts are normally caused by excessive horizontal velocity of the probe during penetration, and because of the dynamics of the instrument, which hangs on a swivel, the tilts should normally fall along this plane. Thus, the measured values probably provide reasonable estimates of the total tilt, despite being not absolutely accurate. Penetrations having tilts greater than about 7° have been eliminated from the compilation. These measurements commonly displayed non-ideal behavior indicative of physical disturbances.
SUMMARY OF PRINCIPAL CONCLUSIONS

Much has been learned through the surface ship and submersible studies carried out along this transect to date. The heat-flow data reported here have provided and are providing critical constraints for hypotheses and quantitative models of hydrothermal circulation on flanks of ocean ridges, and they were critical for locating drilling sites for Leg 168.

Inferences, including both those made on the basis of the heat-flow data reported here and on the basis of many other geophysical, geochemical, and oceanographic observations, are summarized as follows:

1. Fluid circulation in the upper oceanic crust appears to be sufficiently vigorous to homogenize temperatures and fluid compositions over distances of several kilometers, despite large variations in sediment thickness (Davis et al., 1989, 1992; M. Mottl, unpubl. data; Wheat and Mottl, 1994). This homogenization is well illustrated at several locations by the clear correlation between heat flow and buried basement topography, with the fundamental relationship being a
simple inverse one between heat flow and the total thermal resistance of the sediment section (Fig. 8).

2. The low-permeability, clay-rich turbidite sediments that bury the igneous crust in this region are very effective in forming a hydrologic seal. With the relatively small pressure gradients created by thermal buoyancy, fluid flow is reduced to rates that are thermally insignificant by sediment only a few tens of meters thick and to rates that are geochemically insignificant by sediment less than about 150 m thick (Wheat and Mottl, 1994; Snellgrove and Forster, 1996).

3. Fluid flow is strongly affected by the presence of basement topography (Fisher and Becker, 1995; Wang et al., 1997). The inferred degree of homogenization of upper basement fluid temperatures provides a strong constraint on the heat transport efficiency (Nusselt number) and the permeability of the uppermost igneous crust. Values are required to be very high, many factors higher than those observed to date in boreholes that penetrate the upper oceanic crust, suggesting that the properties that control flow at the full scale of the formation are not represented at the scale of a borehole (Davis et al., 1997).

4. Attempts to image the planform and scale of cellular hydrothermal convection in the igneous crust, and hence the penetration depth of thermally significant circulation, have been frustrated by the strong control that sediment thickness variations exert on local sea-floor heat-flow variations, by the strong control that basement topography and other hydrologic heterogeneity, such as that produced by fault zones (Yang et al., 1996), exert on fluid flow, and by the lack of sites where basement topography and sediment thickness variations are absent. An excellent candidate for imaging cellular circulation was thought to have been found in one small area along the transect described here (Davis et al., 1996), but close inspection of recent seismic profiles has shown that the subtle heat-flow variations that were first interpreted to reflect the pattern of cellular convection may be associated with intracrustal permeability structure (Davis and Chapman, 1996). Furthermore, the modeling results described above (Wang et al., 1997; Davis et al., 1997) suggest that convection in the upper crust may occur at such a high Rayleigh number that convection is chaotic and, thus, that it may not be possible to use seafloor heat-flow measurements to image temperature variations associated with cellular circulation, given the thermal time constant of a few hundred meters of sediment.

5. Isolated outcrops of igneous basement rock serve efficiently as hydrothermal “chimneys.” The potential for fluid flow is provided by the high permeability of the igneous rocks that penetrate the sediment section. The driving force must be provided by the thermal buoyancy created by the contrast between the average conditions in the section surrounding the outcrops (where fluid densities are established at a conductive geotherm) and the warm conditions created by the upflow in the crust beneath the outcrops themselves. This flow is manifest in elevated conductive heat flow in the immediate vicinity of and over the outcrops (e.g., Fig. 9; Davis et al., 1989, 1992; M. Mottl, unpubl. data) and in both diffuse and focused fluid flow through the outcrops that is evident in the geochemistry of sediment pore fluids (Davis et al., 1992; Wheat and Mottl, 1994; M. Mottl, unpubl. data), in warm springs at the seafloor (M. Mottl, unpubl. data), and in thermal, geochemical, and light-attenuation anomalies in the water column (Thomson et al., 1995).

6. Whereas there is a clear tendency for fluids to rise and discharge through the seaﬂoor at small isolated outcrops that are kept ubiquitously and perpetually warm by virtue of their small size and the consequent degree of focusing of flow, areas of extensive igneous outcrop can host both discharge and recharge and are, thus, extensively cooled by circulation of seawater. Effects of open circulation appear to be felt over distances of a few to many tens of kilometers by lateral heat and fluid transport in the upper igneous crust beneath areas sealed by relatively impermeable sediment (e.g., Fig. 10; Sclater et al., 1976; Baker et al., 1991; Davis et al., 1992; Langseth and Herman, 1981), although the details of this transport are not well understood. Heat transport could take place via highly efficient local mixing of convecting basement water or by lateral advection driven by regional pressure gradients created by buoyancy forces.

7. Seismic velocities of the uppermost igneous crust increase systematically eastward from the region of outcropping basement over a distance of a few tens of kilometers (Rohr, 1994). This increase is inferred to be associated with the transition from open to sediment-sealed hydrothermal conditions and the associated mineralization that cements fractures and other voids in the rock.

We anticipate that a quantum jump in our understanding of the physical and chemical fluid flow processes in this ridge-flank environment will be realized through the efforts of ODP Leg 168 and that many of these inferences will be confirmed, modified, or quantified. We also hope that additional analyses of the heat-flow data reported here will continue to provide new insights into lithospheric cooling and ridge-flank hydrothermal processes.

ACKNOWLEDGMENTS

Many people have provided technical and scientific help with the various cruises to the Juan de Fuca Ridge flank and with the associated navigation and data processing. In particular, we would like to thank R. Macdonald, R. Currie, M. Bone, R. Meldrum, W. Bentkowski, R. Harris, C. Forster, S. Putnam, and D. Pribynow. Much of the labor of the data reprocessing and the generation of Tables 1 through 3 (on CD-ROM, back pocket) was shouldered by S. Robinson; that work is described in detail in Robinson (1997). Operations have been supported by the captains, officers, and crews of the research vessels J.P. Tully and the Parizeau. Funding for various phases of the FlankFlux program has been provided by the Geological Survey of Canada, the National Science Foundation, the Bundesministerium für Bildung, Wissenschaft, Forschung, und Technologie (Project No. 03g052A in 1995), and by Joint Oceanographic Institutions, Inc.

REFERENCES


Davis, E.E., Chapman, D.S., Mottl, M.J., Bentkowski, W.J., Daday, K., Forster, C., Harris, R., Nagihara, K., Rohr, K., Wheat, G., and Whiticar, M.J.,
Figure 10. Heat-flow and seismic transect showing an increase of heat flow away from a region of extensive outcrop near the axis of the Juan de Fuca Ridge. Two theoretical lithospheric heat flow vs. age relationships (Lister, 1977; Parsons and Sclater, 1977) are shown for comparison. Cool seawater is inferred to circulate into the unsedimented permeable igneous crust near the ridge and advectively exchange heat laterally beneath the onlapping sediment cover. Estimated upper basement temperatures rise systematically from a few degrees near the outcrop to about 40°C about 20 km to the east.