9. DATA REPORT: TRACE ELEMENTS AND ISOTOPES IN PORE WATER FROM SITES 1023 THROUGH 1032, EASTERN FLANK OF THE JUAN DE FUCA RIDGE¹

Michael J. Mottl,² C. Geoffrey Wheat,³ Christophe Monnin,⁴ and Harry Elderfield⁵

INTRODUCTION

Pore water was collected from each of 10 sites during Ocean Drilling Program (ODP) Leg 168 on the eastern flank of the Juan de Fuca Ridge. These ten sites delineate a transect perpendicular to the present ridge axis and span a crustal age of 0.86–3.59 Ma. At nine of the ten sites the entire sediment section, which ranged from 41.3 to 613.8 m thick, was cored and attempts were made to recover at least one whole round of sediment per section of core for extraction of pore water. Several (2–5) whole-round sediment samples were taken from the uppermost and lowermost cores to constrain the chemical gradient near the sediment/water and sediment/basalt interfaces, respectively.

Pore water was extracted from whole-round sediment core sections by squeezing only the most pristine sediment in a titanium squeezer designed by Manheim and Sayles (1974). Two additional water samples were collected in situ using the water-sampler temperature probe (WSTP; Barnes, 1988). Both of these samples were collected in the cased section of the open borehole from ODP Hole 1026B. Formation fluids were flowing up the cased hole into the overlying deep seawater (Fisher et al., 1997). Detailed descriptions of the sampling methods that were used to collect fluids are given by the Shipboard Scientific Party (Davis, Fisher, Firth, et al., 1997).

An additional composition listed is that of the Baby Bare springs. Baby Bare is a basement bathymetric high that penetrates the thick turbidite sediment and rises 80 m above the surrounding turbidite plain. It is located about 6.5 km south-southwest of ODP Site 1026 (Wheat and Mottl, 1994; Mottl et al., 1998). The spring composition is a composite of 39 samples from several springs on the outcrop and extrapolated to the end-member fluid, which contained virtually no magnesium (Wheat and Mottl, in press).

We present chemical analyses for Li, Rb, F, B, Mn, Fe, Sr, and Ba, and the isotopic composition of Sr, O, H, and S in pore water from Leg 168 (Table 1; Figs. 1–3). Radiocarbon measurements are reported by Elderfield et al. (1999).

ANALYTICAL METHODS

Li and Rb were determined by flame emission spectrometry using a standard addition method similar to that of Stoffyn-Egli (1982) on a five-fold dilution of an unacidified aliquot. We measured Li at 671.0 nm and Rb at 779.4 nm, using a 0.2-nm slit. To account for spectral interference, we measured the background intensity 0.4 nm above and below the peak intensity. The average background intensity was then subtracted from the peak intensity. Precision on replicate analyses of the International Association for the Physical Sciences of the Ocean (IAPSO) standard is 1.3% for Li and 3.8% for Rb.

B, Mn, Fe, Sr, and Ba were determined at the University of Hawaii by inductively coupled plasma-atomic emission spectrometry (ICP-AES) on acidified samples, with a precision of 2%–5%. These samples were acidified with 40 µL of sub-boiled hydrochloric acid (6 N) per 10 mL of sample. Samples were then diluted five times with 1% sub-boiled nitric acid before being injected. Sr and Ba were also determined at Universite Paul Sabatier in Toulouse by inductively coupled plasma-mass spectrometer (ICP-MS) using Indium as an internal standard, with a precision of 3% (Freydier et al., 1995). Agreement between the two methods was generally within the stated uncertainties; values reported are means.

Fluoride was determined using a modified form of the electrode method described by Froelich et al. (1983). A fluoride-ion-selective electrode was immersed in 0.2 mL of sample that was mixed with 0.2 mL of TISAB II (Orion #94-09-09) buffer. This method suffers from an interference by magnesium. Because concentrations of magnesium differ from about 0 to 52 mmol/kg in these samples, we determined the empirical relationship between the concentration of magnesium and the extent of the interference for the entire range of magnesium concentrations. This relationship was then applied to each of the samples using the concentration of magnesium that was determined shipboard. Precision was 2%.

Sr isotopic analyses were performed at the University of Cambridge (Oyun et al., 1995). O, H, and S isotopic analyses were performed by NERC Scientific Services (NIGL Keyworth and SURRC East Kilbride/University of Arizona), using standard methods.

ACKNOWLEDGMENTS

This research was supported by the Ocean Drilling Program and by a grant from the Joint Oceanographic Institutions U.S. Science Support Program. This is contribution number 5224 from the School of Oceanography and Earth Science and Technology of the University of Hawaii.

REFERENCES

- Barnes, R.O., 1988. ODP in situ fluid sampling and measurement: a new wireline tool. *In* Mascle, A., Moore, J.C., et al., *Proc. ODP, Init. Repts.*, 110: College Station, TX (Ocean Drilling Program), 55–63.
- Butterfield, D.A., Nelson, B.K., Wheat, C.G., Mottl, M.J., and Roe, K.K., in press. Evidence for volcanogenic Sr in mid-ocean ridge-flank hydrothermal systems and implications for the global oceanic Sr isotopic balance. *Geochim. Cosmochim. Acta.*
- Davis, E.E., Fisher, A.T., Firth, J.V., et al., 1997. Proc. ODP, Init. Repts., 168: College Station, TX (Ocean Drilling Program).

¹Fisher, A., Davis, E.E., and Escutia, C. (Eds.), 2000. Proc. ODP, Sci. Results, 168: College Station TX (Ocean Drilling Program).

²Department of Oceanography, SOEST, 1000 Pope Road, University of Hawaii, Honolulu HI 96822, USA. mmottl@soest.hawaii.edu

³Institute of Marine Sciences, University of Alaska Fairbanks, PO Box 475, Moss Landing CA 95039, USA.

⁴Laboratoire de Geochimie, CNRS/UPS, 38 rue des Trente Six Ponts, 31400 Toulouse, France.

⁵Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom.

- Elderfield, H., Wheat, C.G., Mottl, M.J., Monnin, C., and Spiro, B., 1999. Fluid and geochemical transport through oceanic crust: a transect across the eastern flank of the Juan de Fuca Ridge. *Earth Planet. Sci. Lett.* 172:151–165.
- Fisher, A.T., Becker, K., and Davis, E.E., 1997. The permeability of young oceanic crust east of Juan de Fuca Ridge determined using borehole thermal measurements. *Geophys. Res. Lett.*, 24:1311–1314.
- Freydier, R., Dupre, B., and Polve, M., 1995. Analyses by inductively coupled plasma mass spectrometry of Ba concentrations in water and rock samples: comparison between isotope dilution and external calibration with or without internal standard. *Eur. Mass Spectr.*, 1:283–291.
- Froelich, P.N., Kim, K.K., Jahnke, R.J., Burnett, W.R., and Soutar, A., Deakin, M., 1983. Pore water fluoride in Peru continental margin sediments: uptake from seawater. *Geochim. Cosmochim. Acta*, 47:1605– 1612.
- Manheim, F.T., and Sayles, F.L., 1974. Composition and origin of interstitial waters of marine sediments, based on deep sea drill cores. *In* Goldberg, E.D. (Ed.), *The Sea* (Vol. 5): *Marine Chemistry: The Sedimentary Cycle:* New York (Wiley), 527–568.
- Mottl, M.J., Wheat, C.G., Baker, E., Becker, N., Davis, E., Feely, R., Grehan, A., Kadko, D., Lilley, M., Massoth, G., Moyer, C., and Sansone, F., 1998. Warm springs discovered on 3.5 Ma oceanic crust, eastern flank of the Juan de Fuca Ridge. *Geology*, 26:51–54.

- Oyun, S., Elderfield, H., and Klinkhammer, G.P., 1995. Strontium isotopes in pore waters of east equatorial Pacific sediments: indicators of seawater advection through oceanic crust and sediments. *In Pisias*, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), *Proc. ODP, Sci. Results*, 138: College Station, TX (Ocean Drilling Program), 813–819.
- Stoffyn-Egli, P., 1982. Conservative behavior of dissolved lithium in estuarine waters. *Estuarine Coastal Shelf Sci.*, 14:577–587.
- Wheat, C.G., and Mottl, M.G., 1994. Hydrothermal circulation, Juan de Fuca Ridge eastern flank: factors controlling basement water composition. J. Geophys. Res., 99:3067–3080.
- _____, 2000. Composition of pore and spring waters from Baby Bare: global implications of geochemical fluxes from a ridge flank hydrothermal system. *Geochim. Cosmochim. Acta*, 64:629–642.

Date of initial receipt: 11 December 1998 Date of acceptance: 11 November 1999 Ms 168SR-019

Table 1. Composition o	f pore water from	Sites 1023 through 1032.
------------------------	-------------------	--------------------------

Core, section,	Depth	Li	Rb	F	В	Mn	Fe	Sr	Ba		δ^{18} O	δD	$\delta^{34}S$
interval (cm)	(mbsf)	(mmol/kg)	(mmol/kg)	(mmol/kg)	(µmol/kg)	(mmol/kg)	(mmol/kg)	(µmol/kg)	(mmol/kg)	87Sr/86Sr	(per mil)	(per mil)	(per mil)
168-1023A-													
1H-1, 140-150	1.45	23.1	1.93	51.9	479	139.5	7.9	87.8	3.4				
1H-2, 140-150	2.95			39.8	492	97.6	4.7	86.4	2.9				
1H-3, 140-150	4.45	13.7	1.51	33.2	491	83.5	16.8	85.0	1.7				
1H-4, 140-150	5.95			28.8	498	37.1	32.4	86.9	1.7				
1H-5, 140-150	7.45		1.58	30.6	447	0.0	0.0	76.8	1.5				
2H-1, 140-150	10.75			35.2	482	25.0	10.2	84.8	1.7				
2H-5, 140-150	16.75	14.5	1.43	37.9	487	33.2	9.3	83.1	5.5				
3H-5, 140-150	26.25			24.7	484	26.9	9.5	79.0	7.7				
4H-5, 140-150	35.75	14.2	1.10	16.9	490	14.0	6.0	79.3	2.9				
5H-5, 140-150	45.25			13.0	451	7.9	6.5	83.8	13.0				
6H-5, 140-150	54.75	10.6	0.94	14.4	420	4.7	7.5	95.9	40.7				
7H-5, 140-150	64.25			16.6	442	5.2	4.8	95.6	30.3				
8H-5, 140-150	73.75	10.2	0.83	12.0	428	7.8	6.8	95.1	40.6				
9H-5, 140-150	82.85			7.0	426	5.0	3.5	94.3	41.0				
10H-5, 140-150	92.75	9.9	0.93	10.3	389	12.2	6.5	98.4	52.3				
11H-5, 140-150	102.25			8.5	427	7.1	9.8	98.1	38.8				
12H-5, 140-150	111.75	10.3	0.88	5.9	414	11.3	7.2	98.8	45.4				
13H-5, 140-150	121.25			7.1	345	4.5	5.3	95.3	52.3				
14H-4, 140-150	129.25	9.9	0.54	7.1	422	6.2	6.1	96.1	40.2				
15X-2, 135-150	132.93	10.2	0.59	6.9	367	4.2	1.4	93.2	31.1				
16X-3, 135-150	137.13		0.44	3.9	339	9.8	5.2	89.4	35.4				
17X-3, 135-150	146.73	11.6	0.64	3.4	307	9.3	10.5	94.2	37.2				
18X-4, 135-150	157.83	167	0.07	4.6	326	4.1	2.3	91.1	7.2				
19X-2, 135-150	164.53	16.7	0.87	4.2	294	10.1	5.7	91.0	3.0				
20X-4, 135-150	1/7.13	24.7	1 1 1	6.5	378	16.5	5.6	91.1	3.3				
21X-3, 135-150	185.23	24.7	1.11	11.0	326	21.8	3.7	92.8	2.9				
21X-4, 135-150	180.75	22.0	1.29	13.8	305	21.4	3.0	91.0	3.0				
21X-5, 110-125	187.98	23.9	1.28	12.4	382	21.4	4.0	88.8	1.5				
21A-0, 75-85	189.10	23.9	1.32	14.5	375	24.8	9.1	90.2	1.0				
22X-1, 00-105	191.50	24.5	1.30	17.4	242	20.5	4.7	90.1	2.0				
22 X- 2, 47-62	191.98	24.3	1.27	10.2	342	26.0	0.0	90.0	4.0				
168-1024A-													
1H-1, 115-125	1.20			58.4	520	126.0	22.9	85.9	1.0				
1H-2, 140-150	2.80			48.5	483	94.4	20.1	86.4	0.7				
1H-3, 140-150	4.30			39.2	491	64.5	20.8	86.2	0.7				
1H-4, 140-150	5.80			36.8		5.1							
1H-5, 140-150	7.30			40.3	495	51.9	17.2	83.5	0.9				
1H-6, 140-150	8.80			37.8	517	45.2	17.3	84.8	1.8				
168-1024B-													
1H-1, 140-150	1.45		1.84	55.9		92.8		87.9	0.6				
1H-2, 140-150	2.95	18.6	1.65	44.4	489	109.2	7.4	88.4	0.6				
1H-3, 140-150	4.45			35.1	513	85.6	4.8		4.0				
1H-5, 140-150	7.33	8.8	1.31	36.0	530	70.3	32.2	85.9	2.6				
2H-2, 140-150	10.55			26.7	520	57.8	11.4	82.5	1.3				
2H-5, 140-150	15.05	14.3	1.37	34.9	514	47.0	17.0	85.2	0.8				
3H-5, 140-150	24.55			26.3		41.3		83.3	0.8				
4H-5, 140-150	34.05	15.9	1.18	17.5	511	15.0	4.8	79.5	2.9				
5H-5, 140-150	43.55			9.3		0.7		79.4	3.5				
6H-5, 140-150	53.05	11.0	1.04	6.7		3.3		82.0	1.6				
7H-5, 140-150	62.55			4.2		9.3		79.5	2.5				
8H-5, 140-150	72.05	14.6	1.15	5.6	100	5.5		82.2	8.7				
9H-5, 140-150	81.55	10.5	0.00	5.1	406	13.3	4.7	96.4	45.7				
10H-5, 135-150	91.03	13.6	0.89	3.5	399	8.7	4.9	98.4	66.3				
11H-5, 135-150	100.53	16.0	0.04	3.4	362	9.2	6.0	95.3	61.1				
12H-5, 135-150	110.03	16.9	0.84	6.2		11.8		101.4	38.9				

Core, section, interval (cm)	Depth (mbsf)	Li (mmol/kg)	Rb (mmol/kg)	F (mmol/kg)	B (µmol/kg)	Mn) (mmol/kg)	Fe (mmol/kg)	Sr (µmol/kg)	Ba (mmol/kg)	⁸⁷ Sr/ ⁸⁶ Sr	δ^{18} O (per mil)	δD (per mil)	δ ³⁴ S (per mil)
13H-5, 135-150	119.53	18.6	0.82	2.4		0.5		101.7	7.5				
15X-5, 135-150	138.63	10.5	0.90	5.4	364	24.5	8.1	102.0	1.6				
16X-5, 135-150 17X-5, 135-150	148.23 157.83	29.0 30.8	0.82	6.3 9.6	363	0.7 41.4	93	101.7 97.1	3.2 1.0				
18X-1, 135-150	161.43	31.3	1.07	13.0	505		, .	97.8	2.4				
18X-2, 135-150 18X-3, 135-150	162.93	30.5	1.22	15.0 15.8	315 315	45.0 38.2	5.4 2.7	96.1 93.6	1.1 0.9				
18X-4, 135-150	165.93	29.4	0.97	14.3	313	34.0	10.4	93.8	0.6				
168 1025 4	107.45	26.1	1.24	14.1	515	20.0	2.2	91.7	1.5				
1H-1, 140-50	1.45			56.3	486	108.6	11.5	87.1	1.4		-0.09	-1.65	22.2
1H-2, 140-150 1H-3, 140-150	2.95 4 4 5			40.1	483 485	72.1	24.3 4 9	86.3 87.1	0.8		0.19	-2.02	30.4
168-1025B-	1.15			27.7	105	55.1	1.9	07.1	1.0		0.17	2.02	50.1
1H-1, 140-150	1.45	22.9	1.80	52.8	170	74.3	10.2	92.6	0.5		0.10	1.50	24.4
1H-2, 140-150 1H-3, 140-150	2.95 4.45	12.5	1.39	39.4 29.1	476	75.6 37.6	23.6	90.3 91.0	0.5		-0.10	-1.58	24.4
2H-1, 140-150 2H-2, 140-150	6.45 7.95	83	0.97	19.0 15.3	499 486	25.8 23.2	24.3 13.6	87.8 86.3	1.0		0.04	-0.68	43.1
2H-3, 140-150	9.45	0.5	0.97	14.1		25.2	15.0	87.6	0.9		0.09	2.14	58.5
2H-4, 140-150 3H-5, 140-150	$10.95 \\ 21.95$	9.5	0.97	12.6 12.7	510	17.3 0.4	17.4	87.6 91.8	0.8 0.9		0.38	2.81	
4H-5, 140-150	31.45	17.5	1.04	6.9		0.4		104.1	1.2		0.56	2.00	
6H-5, 140-150	50.45	21.1	0.98	3.1	433	14.4	6.7	116.4	1.4		0.50	2.99	
7H-5, 140-150 8H-5, 140-150	59.95 69.45	39.8	0.96	4.2 4 9	415 348	34.3 27.3	5.6 3.5	116.8 114 9	0.8 1.6		0.64	4.14	36.2
10X-1, 135-150	82.53	48.1	0.78	11.2	307	81.7	5.3	108.9	0.8		0.32	1.55	24.1
10X-5, 135-150 11X-2, 135-150	88.5 <i>3</i> 93.63	42.7 34.8	0.79	13.8	332 327	79.5 71.8	4.7	105.4 99.9	0.8		0.04	0.90	
11X-3, 135-150	95.13 96.63	32.0	0.88	9.9 9.1	318 307	64.4 46.9	3.9	100.8	1.0		-0.02	1.05	21.7
168-1026A-	90.05	20.9	0.92	9.1	507	40.9	5.2	90.0	0.8		-0.07	0.27	21.7
1H-1, 140-150	1.45	24.9	1.88	47.9	504	79.2	3.7	107.9	4.7	0.709076	-0.16	-1.36	
1H-2, 140-150 1H-3, 140-150	2.95 4.45	19.1	1.67	37.1 29.5	464 477	28.6 33.3	5.1 6.7	87.4 88.7	0.9 0.6	0.709076	-0.16 -0.20	-1.81 -0.51	
2H-2, 140-150	8.35	10.0	1 10	17.7	447	8.9	0.0	88.9	1.0	0.708650	-0.16	-0.04	
2H-5, 140-150 2H-5, 140-150	12.85	10.8	1.16	13.8	433	6.5	4.9	80.0 79.4	0.5	0.708387	-0.18 -0.15	0.97	
3H-5, 140-150 4H-5, 140-150	22.35 31.85	5.8	0.60	29.2 36.7	349 362	6.8 4 9	2.7	81.8	2.5	0 707795	-0.02	1.67	
5H-5, 140-150	41.35	5.0	0.48	8.7	367	6.5	4.1	83.5	7.1	0.707938	0.29	5.00	
6H-1, 140-150 7H-5, 140-150	44.85 60.35	7.1	0.46	10.5 5.5	382 368	3.8 8.6	2.5 5.0	87.2 86.4	7.6	0.708039	0.21 0.31	3.19 2.80	
8H-6, 140-150 9H 4, 140, 150	71.35	6.5	0.43	3.8	374	3.9	4.1	97.5	9.9 15.3	0.708114	0.38	3.29	
10H-5, 140-150	88.85	0.5	0.45	1.7	400	6.1	14.8	116.0	14.5	0.708044	0.39	2.93	
11H-5, 140-150	98.35	7.6	0.41	1.5	430	4.8	11.4	120.1	18.4	0.708025	0.60	3.07	
168-1026B- WSTP-1 prime	256	7.3	0.92	79.4	540	5.6	10.5	112.8	0.7	0.707392			
Overflow*	256	286.9	1.01	50.4	476	12.8	0.6	102.3	1.7				
Overflow*	256 256	39.2	1.01	50.4	554	6.8	0.8	111.8	1.5				
Baby Bare Springs [†]		9.0	1.13	9.4	567	7.8	0.1	110		0.7074			
168-1026C-	114 71	28.2	0.41	6.0		5 5		152.0	27.1	0 707709	0.51	2 40	
4R-1, 45-128 5R-1, 135-150	114.71 124.53	28.2	0.41	6.0 6.4	487	20.3	4.8	155.9	27.1 55.4	0.707798	0.51	2.40 4.32	
7R-1, 128-148 8R-1, 63-78	143.68 152.71	54.8	0.69	6.1 5.8		21.1		148.6 150.2	6.2 3.1	0.707554	0.26	2.36	
9R-1, 135-150	163.03	70.5	0.41	5.6	455	21.7	3.5	160.9	3.3	0.707207	0.04	0.89	
10R-2, 135-150 10R-5, 135-150	174.13 178.63	75.1	0.25	8.9 12.6	400	18.1 14.7	1.2	180.4 188.4	3.4 4.0	0.707068	-0.16 -0.26	-0.43	
12R-1, 130-150	191.90	75.1	0.21	19.3	318	37.4	0.9	183.6	2.3	0.707079	-0.37	1.75	
14R-4, 130-150	215.60	65.1	0.21	20.0		66.4		161.5	2.4	0.707121	-0.58 -0.59	2.34	
15R-1, 81-104 15R-2, 66-86	220.23 221.56	60.1	0.26	30.1 43.4	143	54.4 26.9	1.1	160.3 160.2	2.4 2.1	0.707242	-0.48 -0.59	-0.90 -0.60	
15R-3, 59-79	222.99	52.5	0.25	35.7	200	35.9		157.4	2.8	0.707210	-0.59	-0.73	
15R-4, 130-150 15R-5, 45-65	225.20 225.85	51.8 50.4	0.26 0.32	27.7 28.7	200	50.9 34.8	1.4	155.9 153.0	1.8 1.2	0.707261 0.707270	-0.60 -0.65	-0.53	
15R-6, 70-90	227.60	45.3	0.25	25.5	195 176	27.9	2.0	156.3	1.3	0 707260	-0.60	-0.53	
168-1027B-	228.05	44.0	0.22	24.7	170	21.5	1.1	150.1	5.0	0.707200			
1H-1, 140-150	1.45	25.1	1.84	46.0	40.5	59.0	<i>~</i> .	83.7	1.6	0.709112	0.01	0.31	
1H-2, 140-150 3H-1, 140-150	2.95		1.81	34.8 20.7	496	50.7 8.4	5.4	81.9 94.8	0.9 0.8		0.07	1.65	
3H-2, 140-150	16.65	6.6	0.75	30.0	378	14.6	8.4	88.3	1.3	0 707000			
3H-4, 140-150 3H-4, 140-150	18.15	5.8	0.60	32.2 31.4	373	10.2	12.0	99.6 100.6	1.4	0.707988	0.07	0.58	
3H-5, 140-150 4H-3, 140-150	21.15 27.65	3.0	0.46	34.2 33.1	388	7.2	9.0	97.5 94.6	1.5	0.707882	0.33	1.02	
5H-2, 140-150	35.65		0.10	31.5	349	4.0	5.7	95.4	1.1	0.707685	0.37	3.19	
он-5, 140-150 7H-3, 0-18	49.65 54.79	6.5	0.57	21.4 16.1	394	5.8 13.5	5.2	92.0 102.8	1.2	0.707787	0.45	1.57	
8H-1, 140-150 17X-2 130-140	62.65	7.3	0.43	11.1 11.6		0.2		87 5	0.8	0 708051	0.35	0.07	
1/11 2, 100-140	1 10.33	11./	0.55	11.0		0.4		51.5	1.4	0.700001	0.55	0.27	

Table 1 (continued).

9H-1, 140-130 10H-1, 140-150 11H-2, 140-150 12H-3, 140-150 13X-2, 135-150

16X-2, 135-150

Core, section.	Depth	Li	Rb	F	В	Mn	Fe	Sr	Ba		δ^{18} O	δD	$\delta^{34}S$
interval (cm)	(mbsf)	(mmol/kg)	(mmol/kg)	(mmol/kg)	(µmol/kg)	(mmol/kg)	(mmol/kg)	(µmol/kg)	(mmol/kg)	87Sr/86Sr	(per mil)	(per mil)	(per mil)
	(,	((· · · 8/	(Q	(0.00	Q			a ,	<i>a</i> ,	a ,
19X-2, 0-12	166.26			5.2		4.4		86.4	28.5				
22X-1, 135-150	194.93	23.8	0.76	5.1	206	4.2	5.2	93.3	52.6	0.708559	0.21	1.04	
22X-3, 135-150 23X-1 85-100	204.13			3.3	390	5.5 3.1	5.5	99.4	50.8 42.8	0.708558	_0.03	0.37	
25X-1, 135-150	223.83	21.8	0.84	1.0		3.6		109.5	75.3	0.708558	-0.05	0.57	
26X-2, 135-150	234.93			0.8	389	5.5	6.0	115.2	64.1	0.708476	-0.12	0.95	
27X-1, 135-150	243.03	34.8	0.81	1.5		0.9		115.5	97.6				
28X-4, 135-150	257.23	12.1	0.70	1.7	408	5.2	6.1	119.0	119.8	0.708409	-0.31	0.85	
29X-5, 135-150	268.33	42.4	0.79	2.0	300	7.0	5.8	116.7	10.5	0.708270	0.41	0.01	
31X-5, 135-150	287.53	45.1	0.09	2.6	390	0.4	5.0	119.3	7.0	0.708270	-0.41	-0.01	
32X-5, 135-150	297.23	51.0	0.62	3.4	360	5.9	6.9	127.1	35.3	0.708124	-0.53	-0.50	
33X-5, 130-150	306.80			2.8		0.5			63.9				
34X-5, 135-150	316.53	48.2	0.47	3.3	413	13.6	4.9	130.1	60.7	0.708001	-0.49	-1.47	
35X-2, 130-150 36X 5, 130, 150	321.60	44.5	0.21	4.1	238	5.5	2.1	134.3	63.2 86.4	0 707050	0.76	0.40	
37X-5, 130-150	345 40	44.5	0.21	0.3 7 4	238	14.6	4.8	153.0	24.4	0.707959	-0.70	-0.49	
38X-5, 130-150	355.10	48.2	0.38	8.9	200	18.2	1.0	149.8	100.4	0.707965	-0.66	-0.69	
39X-5, 125-150	364.68			8.6	280	12.3	4.8	160.9	107.3				
40X-5, 125-150	374.38	43.7	0.29	8.9		14.2		165.5	75.8		-0.85	-0.11	
41X-2, 125-150	379.48	42.4	0.21	8.6	336	15.5	5.2	173.6	229.6	0.707777	0.65	1 77	
42X-5, 125-150 43X-5, 125-150	393.38 403.18	42.4	0.21	9.7	263	11.5	37	201.9	233.2	0.707743	-0.05	-1.//	
44X-5, 125-150	412.78	67.5	0.34	13.1	205	21.5	5.7	172.0	291.2	0.707782	-0.80	-0.66	
45X-5, 125-150	422.38			13.8	315	34.3	2.5	201.2	151.0		0100		
46X-3, 125-150	428.98	85.0	0.28	16.2		27.3		183.3	89.3	0.707746	-0.88	-0.51	
47X-5, 125-150	441.58	(2.5	0.22	16.5	362	23.6	2.9	198.6	351.7	0 707520	0.01	1.20	
48X-5, 125-150 40X 5, 125, 150	451.28	03.5	0.23	13.1	301	13.3	35	201.5	310.1	0.707539	-0.91	-1.39	
50X-5 125-150	470.38	51.0	0.27	10.4	501	13.8	5.5	213.7	310.0	0.707317	-0.90	-1.71	
51X-5, 125-150	479.98	0110	0.27	11.1	350	18.9	3.3	220.5	53.2	01101011	0170	1.7.1	
52X-5, 125-150	489.58	52.5	0.25	11.5		16.7		246.0	134.7		-0.74	-1.37	
53X-5, 125-150	499.08	122.2	0.22	13.1	348	17.7	3.4	222.6	17.9	0.707051	0.54	1 70	
54X-5, 125-150	518.08	133.3	0.33	1.2	208	5.5	2.0	276.8	28.8	0.706962	-0.54	-1./8	
56X-5, 125-150	527.98	47.2	0.25	9.2	308	13.1	3.9	344.8	51.9	0 706683	-0.68	-1.93	
57X-2, 125-150	533.18	17.2	0.25	7.1	294	22.3	4.2	286.3	19.0	0.700005	-0.72	-1.77	
57X-6, 125-150	539.18	42.8	0.28	12.6	213	10.5	0.4	253.2	5.2	0.706686			
58X-5, 125-150	547.28	40.7	0.28	16.1	102	13.7		276.4	9.5	0.50000	-0.70	-1.44	
59X-5, 125-150	556.88	46.2	0.23	12.8	193	10.1	2.4	252.8	6.3	0.706838		-1.90	
60X-2, 125-150 60X-3, 125-150	563.48	40.2	0.50	13.8	212	23.5	28	220.8	3.9 4 3	0 707060	_0.58	_1.09	
60X-4, 125-150	564.98	39.3	0.33	17.4	143	16.5	2.0	227.2	4.0	0.707000	-0.50	-1.07	
60X-5, 125-150	566.48	36.0	0.31	17.3	144	22.5	2.0	230.4	5.5		-0.48	-1.60	
60X-6, 125-150	567.98	42.9	0.30	12.5		35.3		227.5	3.7	0.707168			
168-1027C-													
1R-6, 117-131	591.75	44.9	0.47	39.4		44.2		201.0	1.9		-0.12	-2.26	
2R-2, 130-150	596.36	38.5	0.45	54.9		17.3		182.2	1.7		-0.09	-1.65	
2R-4, 130-150 2R-6, 125, 150	599.36	37.8	0.44	52.5		12.2		188.4	2.9		-0.13	-0.61	
3R-1 86-100	605.03	50.0	0.40	09.1		4./		101.5	1.9		-0.20	-1.24	
160 1020 4	000.00												
108-1028A- 1H-1 140-150	1.45	25.1	1.89	50.5		96.5		85.4	0.6				
1H-2, 140-150	2.95	23.1	1.09	39.7	473	68.6	10.1	84.6	1.1				
2H-3, 150-160	8.25	9.8	1.21	19.0		14.0		77.0	0.8				
3H-2, 140-150	16.15	11.1	1.04	17.0	546	13.5	5.2	72.0	1.1				
4H-5, 140-150	30.15	21.5	1.16	19.1	552	19.0	11.7	85.9	3.9				
6H-5, 140-150	39.03 49.15	20.2	0.93	9.0 4 5	435	22.3	41	00.9 93.6	2.8				
7H-5, 140-150	58.65	20.2	0.55	3.4	100	8.8		101.8	2.6				
8H-5, 140-150	68.15	31.6	0.74	3.3	396	6.6	3.2	111.6	2.5				
9H-5, 135-150	77.63	60 Q		3.4		24.1		118.6	2.3				
10H-5, 135-150	87.13	68.9	0.52	7.4	410	32.7	3.5	129.0	1.8				
12H-3, 135-150	90.05	92.2	0.51	15.1	384	54.4 72.5	55	135.3	1.2				
13X-2, 135-150	111.13	89.5	0.46	15.7	379	66.5	4.4	133.8	1.3				
13X-5, 122-137	115.50	96.9	0.45	16.9		71.8		136.6	1.0				
15X-1, 135-150	125.23	80.1	0.48	18.8	280	50.9	3.6	140.3	2.3				
15X-2, 135-150	126.73	76.6	0.57	17.8	240	45.3	()	141.5	0.7				
13A-3, 133-130 15X-4 135-150	128.23	/0.0	0.57	21.8 18.5	249 207	29.1 42 0	0.2	141.2	2.0				
15X-6, 0-15	131.38	69.8	0.47	18.9	271	21.1	2.7	137.7	0.7				
168 1020 4													
100-1029A- 1H-2 140-150	2 05	17.2	1 48	37.1	484	68 3	19.6	85.5	0.8		0.00	_3 40	
2H-2, 140-150	2.95	11.4	1.40	21.6	503	15.7	8.5	81.1	0.7		0.09	-5.47	
2H-5, 140-150	11.95	9.4	1.12	26.4	506	12.6	22.5	83.5	1.3		0.26	1.04	
3H-5, 140-150	21.45			4.0 -		11.5		88.0	0.0				
4H-5, 140-150	30.95	14.6	0.94	18.3	519	23.7	5.7	93.8	4.0		0.39	3.05	
5H-4, 140-150 6H-5, 140-150	38.93 40.05	13 3	0.07	15.0	402 452	8.0 0.5	δ.1 67	107.9	7.0 105.6		0.47	4 57	
7H-2, 140-150	54.95	15.5	0.97	6.2	489	9.5 6.7	6.1	124.1	68.2		0.47	ч.37	
8H-1, 140-150	62.95	15.3	1.00	5.7	453	17.4	8.4	130.9	96.6		0.46	4.80	
9H-1, 140-150	72.45			5.3	445	8.0	8.2	134.0	97.7				
10H-1 140-150	81.95	20.5	0.93	34	444	47	6.6	135.6	97.6		0.43	2.41	

444

446 430

390

416

9.3 6.7 17.4 8.0 4.7 8.7 15.5

16.3

23.1

6.6 5.5 6.4 7.3

3.3

20.5

28.2

32.6

45.1

81.95 92.95 103.95

111.93

133.33

0.93

0.78

0.78

0.36

 $\begin{array}{c} 13.0\\ 9.2\\ 6.2\\ 5.7\\ 5.3\\ 3.4\\ 3.5\\ 4.5\\ 5.2\\ 4.4 \end{array}$

Table 1 (continued).

0.43

0.43

0.19

97.6

118.1 123.6 7.7 24.7

135.6

138.7 144.8

138.8

168.5

2.41

2.85

2.39

Core, section,	Depth	Li	Rb	F	В	Mn	Fe	Sr	Ва		δ^{18} O	δD	$\delta^{34}S$
interval (cm)	(mbsf)	(mmol/kg)	(mmol/kg)	(mmol/kg)	(µmol/kg)	(mmol/kg)	(mmol/kg)	(µmol/kg)	(mmol/kg)	87Sr/86Sr	(per mil)	(per mil)	(per mil)
17X-2 130-150	142.90			5.5	428	26.6	2.9	179.3	6.8				
18X-2, 130-150	152.50	53.4	0.27	7.0	422	38.2	2.8	196.4	5.5		0.01	2.72	
19X-2, 130-150	162.10			6.7	391	32.5	3.4	205.2	3.3				
20X-2, 130-150	171.70	63.4	0.26	8.0	384	44.1	3.3	208.3	2.8		-0.03	1.93	
21X-2, 130-150 22X-2, 130-150	181.50	69.4	0.28	10.8	389	60.7 70.9	1.0	198.1	1.9		_0.04	3.04	
22X-2, 130-150 22X-6, 130-150	196.90	09.4	0.20	15.7	300	73.2	2.0	199.2	2.3		-0.04	5.04	
23X-2, 130-150	200.50	67.9	0.30	16.7	291	82.8	4.8	185.6	1.2		-0.13	1.15	
23X-6, 130-150	206.50	63.9	0.36	16.4	280	94.8	2.8	169.9	1.3		0.00	1.10	
24X-5, 125-150 24X 5, 125, 150	213.10	56.4 54.0	0.50	22.2	197	07.9	4.0	155.3	1.5		-0.08	1.43	
24X-6, 125-150	214.00	53.9	0.30	17.4	185	95.8	3.2	157.9	0.9		-0.05	3.35	
25X-1, 125-150	218.20	45.4	0.59	13.7	205	67.9	4.9	134.9	0.8		0100	0.00	
25X-2, 125-150	219.70	42.8	0.60	14.3	205	80.3	2.9	136.5	2.8		-0.27	1.40	
168-1030B-													
1H-1, 140-150	1.45	20.3	1.97	38.5		61.8	- -	93.4	0.6				
1H-2, 140-150	2.95	13.2	1.50	21.1	529	50.0	9.7	99.9	0.7				
2H-1 140-150	5.79	12.1	1.38	13.8	571	45.0	45	100.1	0.5				
2H-2, 140-150	6.95	15.7	1.42	8.9	571	46.1	1.0	107.2	0.8				
2H-3, 140-150	8.45	18.1	1.38	9.2	576	48.4	6.9	108.4	0.6				
2H-4, 140-150	9.95	21.9	1.23	9.5	514	51.6	7.6	108.0	0.6				
2H-5, 140-150	11.45	23.2	1.29	11.3	500	45.9	15.1	109.1	0.6				
2H-0, 140-130 2H-7, 62-72	12.95	24.8	1.21	11.8	500	52.0 54.7	13.1	108.5	0.5				
3H-2, 140-150	16.45	2.110		10.1	555	58.4	9.1	107.8	0.8				
3H-4, 140-150	19.45	29.1	1.16	9.6		66.7		110.8	0.7				
3H-6, 140-150	22.45	07.0	0.00	11.8	477	80.5	4.1	109.0	0.9				
4H-2, 140-150 4H-4, 140-150	25.95	27.3	0.92	15.7	468	86.7 81.8	72	108.6	0.5				
4H-6, 140-150	31.95	30.4	0.78	18.2	400	77.5	1.2	109.7	0.6				
5H-2, 140-150	35.45	28.9	0.90	20.3	424	58.3	1.6	110.4	1.1				
5H-4, 140-150	38.45	24.6	0.50	19.8		36.3		109.4	0.7				
5H-6, 140-150	41.45	24.6	0.72	18.0	412	37.9	3.3	110.1	0.7				
0X-CC, 0-20	41.05	22.0	0.09	17.1		51.0		109.1	0.7				
168-1031A-	1.45	27.6	1 79	27.5	402	50.6	12.2	104.2	0.4	0 707007	0.05	1.74	
1H-2, 140-150	2.95	29.2	1.78	33.7	492	55.6	8.8	104.2	0.4	0.707783	0.05	2.01	
1H-3, 140-150	4.45	30.1	1.54	31.9	511	63.5	5.2	108.1	0.4	0.707661	0.19	0.80	
1H-4, 140-150	5.95	30.5	1.60	31.1	475	62.6	8.4	109.6	0.5	0.707621	0.32	1.59	
1H-5, 140-150	7.45	30.9	1.48	29.1	483	67.1	10.4	111.2	0.4	0.707526	0.37	1.61	
2H-2, 140-150 2H-5, 130-150	16.20	31.0	1.25	27.0	487	90.1	5.7 8.5	115.5	0.6	0.707499	0.34	3.48	
3H-5, 140-150	25.75	33.1	0.92	31.6	399	50.5	2.4	111.6	0.0	0.707448	0.08	1.70	
4H-2, 140-150	30.75	27.5	0.83	34.0	342	23.7	2.2	111.6	0.7	0.707473	-0.06	1.66	
4H-5, 140-150	35.25	21.2	0.78	21.1	353	26.7	1.6	111.6	0.8	0.707398	-0.09	2.74	
5H-1, 140-150 5H 2, 140, 150	38.75	15.5	0.74	12.7	3//	16.2	2.3	113.1	0.8	0.707350	-0.18		
160,10224	40.23	12.5	0.74	0.4	329	9.0	0.7	114.5	0.7	0.707558	-0.17		
168-1032A- 2P 1 120 150	105 50	16.2	0.38	0.4	294	20.6	5.6	161.4	2.2				
3R-1, 130-150	205.10	47.2	0.37	8.2	360	16.1	4.6	182.2	9.9				
5R-2, 130-150	225.80			9.5	400	25.1	6.1	207.2	11.0				
6R-2, 130-150	235.40	51.1	0.27	12.2	371	41.3	2.1	198.9	4.9				
7R-2, 130-150 8P 2, 130, 150	245.00	51 7	0.29	11.1	316	42.7	1.9	206.1	2.8				
10R-1 43-63	254.00	54.9	0.28	23.3	270	20.0 64.6	5.4	194.9	2.9				
10R-2, 88-108	273.48	51.7	0.25	23.6	237	71.1	5.9	180.7	0.8				
10R-3, 130-150	275.40	56.5	0.28	25.4	228	68.3	1.3	179.9	1.5				
10R-4, 30-50	275.90	50.7	0.31	37.3	161	30.6	1.5	176.5	1.6				
11R-1, 150-150 11R-2, 130-150	282.00	4/.1	0.24	29.9	202	99.0 82.6	-0.2	169.0	1.5				
11R-3, 130-150	285.00	28.0	0.26	23.2	156	20.3	2.2	156.4	1.0				

Table 1 (continued).

Notes: * = aliquot from overflow chamber; values have been corrected to the chlorinity of the prime aliquot, from the titanium coil. † = trace element data from Wheat and Mottl (2000); Sr isotopic data from Butterfield et al. (in press).

Figure 1. Composition of pore water from cores at Sites 1023 (open circles), 1024 (open squares), 1025 (open triangles), 1026 (×'s), 1028 (solid circles), 1029 (solid squares), and 1032 (solid triangles), compared with water sampled from 256 m depth within the basement section of the open borehole in Hole 1026B (×'s at bottom) and with spring waters sampled from Baby Bare summit (diamonds). BHW = borehole water.

Figure 1 (continued).

Figure 2. Composition of pore water from cores at Sites 1026 (×'s) and 1027 (solid circles), compared with water sampled from 256 m depth within the basement section of the open borehole in Hole 1026B (×'s at bottom) and with spring waters sampled from Baby Bare summit (diamonds). BHW = borehole water.

Figure 2 (continued).

Figure 3. Composition of pore water from cores at Sites 1030 (open circles) and 1031 (solid squares).

Figure 3 (continued).