SHORE-BASED LOG PROCESSING

HOLE 1061A

Bottom felt: 4058.0 mbrf Total penetration: 350.3 mbsf Total core recovered: 298.2 m (85.1%)

Logging Runs

Logging string 1: DIT/HLDT/APS/HNGS Logging string 2: FMS/GPIT/SDT/NGT (2 passes)

The wireline heave compensator was used to counter ship heave during the DIT/HLDT/APS/HNGS pass and during pass 2 of the FMS/GPIT/SDT/NGT.

Bottom-Hole Assembly/Pipe

The following bottom-hole assembly depths are as they appear on the logs after differential depth shift (see "Depth shift" section) and depth shift to the seafloor. As such, there might be a discrepancy with the original depths given by the drillers on board. Possible reasons for depth discrepancies are ship heave, use of wireline heave compensator, and drill string and/or wireline stretch.

DIT/HLDT/APS/HNGS: Bottom-hole assembly at ~88 mbsf FMS/GPIT/SDT/NGT: Bottom-hole assembly at ~88 mbsf (pass 1) FMS/GPIT/SDT/NGT: Recorded open-hole

DIT/HLDT/APS/HNGS: Drill pipe at ~27 mbsf

Processing

Depth shift: Original logs have been interactively depth shifted with reference to NGT from FMS/GPIT/SDT/NGT pass 1 and to the seafloor (-4046.5 m). This value corresponds to the sea-bottom depth as observed on the logs and differs 11.5 m from the drillers' "bottom felt" depth. A list of the amount of differential depth shifts applied at this hole is available upon request.

Gamma-ray processing: NGT data from the FMS/GPIT/SDT/ NGT runs have been processed to correct for borehole size and type of drilling fluid. HNGS data from the DIT/APS/HLDT/HNGS tool string were corrected in real-time during the recording.

Acoustic data processing: The array sonic tool was operated in standard depth-derived borehole compensated mode, including longspacing (8-10-10-12 ft) and short-spacing (3-5-5-7 ft) logs. Because of the extremely low quality of the sonic logs, no processing from the transit times can be performed. Sonic waveform processing is necessary to obtain meaningful results.

High-resolution data: Bulk density and neutron porosity data were recorded at a sampling rate of 2.54 and 5.08 cm, respectively. The enhanced bulk density curve is the result of Schlumberger enhanced processing technique performed on the MAXIS system on board. Whereas in normal processing short-spacing data are smoothed to match the long-spacing ones, in enhanced processing this is reversed. In a situation where there is good contact between the HLDT pad and the borehole wall (low density correction) the results are improved because the short-spacing has better vertical resolution.

Quality Control

Null value = -999.25. This value generally may replace invalid log values.

During the processing, quality control of the data is mainly performed by cross-correlation of all logging data. Large (>12 in) and/ or irregular borehole affects most recordings, particularly those that require eccentralization (APS, HLDT) and a good contact with the borehole wall. Hole deviation can also affect the data negatively; the FMS, for example, is not designed to be run in holes deviated more than 10° , as the tool weight might cause the caliper to close.

Data recorded through bottom-hole assembly should be used qualitatively only because of the attenuation on the incoming signal.

The deep resistivity reading (IDPH) from the phasor dual induction tool is invalid; it has been replaced by the deep dual induction curve (ILD).

Invalid photoelectric effect spikes were recorded at 168 and 191 mbsf.

Hole diameter was recorded by the hydraulic caliper on the HLDT tool (CALI) and on the FMS string (C1 and C2).

Additional information about the logs can be found in the "Explanatory Notes" and site chapters, ODP *Initial Reports* Volume 172. For further questions about the logs, please contact:

Cristina Broglia Phone: 914-365-8343 Fax: 914-365-3182 E-mail: chris@ldeo.columbia.edu

Hole 1061A: Natural Gamma Ray-Resistivity Logging Data

1016

Hole 1061A: Natural Gamma Ray-Resistivity Logging Data (cont.)

Hole 1061A: Natural Gamma Ray-Resistivity Logging Data (cont.)

						Med	ium Resis	tivity							
						0	Ohm-m	2	0	ppm	10				
		bsf)	Comp	uted Gamn	na Ray	De	ep Resistiv	vity		Potassium			FMS Caliper2		bsf)
	'ery	Ē	0	API units	100	0	Ohm-m	2	0	wt.%	3	8	in.	18	E)
ore	eco/	epth	Tota	l Gamma	Ray	Focu	ised Resis	tivity		Uranium			FMS Caliper1		epth
ŏ	Å	ŏ	0	API units	100	0	Ohm-m	2	0	ppm	10	8	in.	18	ă
37X		350 -	-				Prononeuty of								- 350

Hole 1061A: Natural Gamma Ray-Density-Porosity Logging Data

Hole 1061A: Natural Gamma Ray-Density-Porosity Logging Data (cont.)

	ery	(mbsf)	Caliper 11 in. 21 Computed Gamma Ray 0 API units 100	Neutron Porosity	Standoff 0 in 5	Formation Capture Cross Section	(mbsf)
Core	Recov	Depth	Total Gamma Ray0API units100	Bulk Density1g/cm³2.5	Density Correction-0.25g/cm³0.25	PhotoelectricFactor2barns/e12	Depth
20X 21X 22X 23X		- 200 -		Muning and a start of the start	Maran M. Maran M. M. Maran war and a mill	MMM W MMM MMMM MMMMMMMMMMMMMMMMMMMMMMM	- - 200 -
24X 25X 26X 27X 28X		- 250 -	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	Mun Man Mun Mun Mun Mun Mun Mun Mun Mun Mun Mu	John Marine Ma	MANN MANN MANN MANN	- 250
29X 30X 31X 32X 33X 34X 35X		300 -	$\sum_{i=1}^{n-1} \left \frac{1}{n^{n}} \right \right \right \right \right \right \right $	March Ward and March Ward and March Ward and March Ward	March Malada March March March March March	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	- - - 300 -

Hole 1061A: Natural Gamma Ray-Density-Porosity Logging Data (cont.)

				Caliper											
		_	1 1	In.	21								Formation		_
		bsf)	Compu	Ited Gamn	na Ray	Ne	eutron Porosi	ty	S	tandoff		Capt	ure Cross S	ection	bsf)
	ery	Ē.	0	API units	100	100	%	0	0	in	5	10	cu	60	۳ س
		_													_
ore	eco	epth	Total	Gamma	Ray		Bulk Density		Densit	y Corre	ction	Phot	oelectric	Factor	epth
Core	Recov	Depth	Total 0	Gamma API units	Ray 100	1	Bulk Density g/cm ³	2.5	Densit -0.25	g/cm ³	ction 0.25	Phot 2	oelectric barns/e ⁻	Factor 12	Depth

SHORE-BASED LOG PROCESSING

HOLE 1063A

Bottom felt: 4595.2 mbrf **Total penetration:** 418.4 mbsf **Total core recovered:** 400.3 m (95.7%)

Logging Runs

Logging string 1: DIT/HLDT/APS/HNGS Logging string 2: FMS/GPIT/SDT/NGT (2 passes)

The wireline heave compensator was used to counter ship heave.

Bottom-Hole Assembly

The following bottom-hole assembly depths are as they appear on the logs after differential depth shift (see "Depth shift" section) and depth shift to the seafloor. As such, there might be a discrepancy with the original depths given by the drillers on board. Possible reasons for depth discrepancies are ship heave, use of wireline heave compensator, and drill string and/or wireline stretch.

DIT/HLDT/APS/HNGS: Bottom-hole assembly at ~90 mbsf FMS/GPIT/SDT/NGT: Recorded open-hole (pass 1) FMS/GPIT/SDT/NGT: Bottom-hole assembly at ~90 mbsf (pass 2)

Processing

Depth shift: Original logs have been interactively depth shifted with reference to NGT from DIT/HLDT/APS/HNGS and to the sea-floor (-4593 m). This value corresponds to the sea-bottom depth as observed on the logs and differs 2.2 m from the drillers' "bottom felt" depth. A list of the amount of differential depth shifts applied at this hole is available upon request.

Gamma-ray processing: NGT data from the FMS/GPIT/SDT/ NGT runs have been processed to correct for borehole size and type of drilling fluid. HNGS data from the DIT/APS/HLDT/HNGS tool string were corrected in real-time during the recording.

Acoustic data processing: The array sonic tool was operated in standard depth-derived borehole compensated mode, including long-spacing (8-10-10-12 ft) and short-spacing (3-5-5-7 ft) logs. The long-spacing sonic logs from the second pass have been processed despite the poor quality of the data and a 100 μ s offset on one of the 10-ft spacing channels (LTT4). Processing has been performed in the 90–

375 mbsf interval only. The results show poor correlation with the other channels; caution is recommended when they are used for interpretation.

High-resolution data: Bulk density and neutron porosity data were recorded at a sampling rate of 2.54 and 5.08 cm, respectively. The enhanced bulk density curve is the result of Schlumberger enhanced processing technique performed on the MAXIS system on board. Whereas in normal processing short-spacing data are smoothed to match the long-spacing ones, in enhanced processing this is reversed. In a situation where there is good contact between the HLDT pad and the borehole wall (low density correction) the results are improved because the short-spacing has better vertical resolution.

Quality Control

Null value = -999.25. This value generally may replace invalid log values.

During the processing, quality control of the data is mainly performed by cross-correlation of all logging data. Large (>12 in) and/ or irregular borehole affects most recordings, particularly those that require eccentralization (APS, HLDT) and a good contact with the borehole wall. Hole deviation can also affect the data negatively; the FMS, for example, is not designed to be run in holes deviated more than 10° , because the tool weight might cause the caliper to close.

Data recorded through bottom-hole assembly should be used qualitatively only because of the attenuation on the incoming signal.

The deep resistivity reading (IDPH) from the phasor dual induction tool is invalid; it has been replaced by the deep dual induction curve (ILD).

Invalid photoelectric effect spikes were recorded at 106, 124–129, 133–134, 138, 158–160, 163, 179 216, and 247 mbsf.

Hole diameter was recorded by the hydraulic caliper on the HLDT tool (CALI) and on the FMS string (C1 and C2).

Additional information about the logs can be found in the "Explanatory Notes" and site chapters, ODP *Initial Reports* Volume 172. For further questions about the logs, please contact:

Cristina Broglia Phone: 914-365-8343 Fax: 914-365-3182 E-mail: chris@ldeo.columbia.edu

Hole 1063A: Natural Gamma Ray-Resistivity-Sonic Logging Data

Hole 1063A: Natural Gamma Ray-Resistivity-Sonic Logging Data (cont.)

Hole 1063A: Natural Gamma Ray-Resistivity-Sonic Logging Data (cont.)

						Medium Re	n 2			0	_ Thorium ppm	 10	
		bsf)	Comp	uted Gamm	a Ray	Deep Resi	stivity	Media	n Velocity		Potassium		bsf)
	/ery	Ē.	0	API units	100	0 Ohm-r	n 2	1.5	km/s 2	2.5 0	wt.%	3	<u>E</u>
ore	eco/	epth	Tota	l Gamma	Ray	Focused Re	sistivity	Mean	Velocity		Uranium		epth
ŏ	Å	طّ	0	API units	100	0 Ohm-r	m 2	1.5	km/s 2	2.5 0	ppm	10	ð
43X		400 -		Manny		Marriel Mrs	-	-			Ward of the second seco	1 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	- 400

Hole 1063A: Natural Gamma Ray-Density-Porosity Logging Data

Hole 1063A: Natural Gamma Ray-Density-Porosity Logging Data (cont.)

		sf)	20 in. 0	Neutren Deresitu	Stondoff	Formation	ef)
	Ś	gups	0 API units 100	100 % 0	0 in 5	i 0 cu 80	gm
e	COVE	pth (Total Gamma Rav	Bulk Density	Density Correction	Photoelectric Factor	bth (
S	Re	De	0 API units 100	1 g/cm ³ 2.5	-0.25 g/cm ³ 0.25	2 barns/e ⁻ 12	De
				M		$\sum \sqrt{2}$]
25X		-		<u> </u>	MM to		-
			sin S		A A	\sim	
26X		-					-
				M.			
27X		-				2	-
						5 5	
28X		250 -					- 250
					Z 2	5 3	
292		-					
207							
30X							
307		-					-
0.41					> 2		
31X		-		·{₹ < 1	≥ 5	+ * *	-
				A A		2 5	
32X		-			A AM		-
33X		300 -	The second secon	- 2 2 -			- 300
				\sim		N W	
34X		-					-
				A A A			
35X		-					Ļ
				M [™]			
36X		_				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
						man and a second	
37X						$\left \right\rangle \ge$	
		-			M AN		-
38X							
		350 -					- 350
39X				\wedge		A A	
		-		- M -			-
40X				₩\$		\$ F	
		-		WW		- × ~	F
41X			1. 5 5	AN IN		X 3	
		-	"		MMM .	 } ≸	ŀ
42X				5 <	2 3	5	

Hole 1063A: Natural Gamma Ray-Density-Porosity Logging Data (cont.)

			L	Caliper											
			20	in.	0								Formation		
		osf)	Com	puted Gamma	Ray	Neut	ron Pore	osity		Standoff		Capt	ure Cross S	ection	(Jsc
	ery	Ē	0	API units	100	100	%	0	0	in	5	0	cu	80	Ē
ore	SCOV	epth	Tot	al Gamma I	Ray	Bu	lk Dens	ity	Dens	sity Corre	ction	Phot	oelectric I	actor	epth
ö	Å	ð	0	API units	100	1	g/cm ³	2.5	-0.25	g/cm ³	0.25	2	barns/e-	12	ð
43X 44X		400 -				Mrry W W	M - www.	-	Mr Mr Mr	mon when we have		mymmy	Monday	-	- 400