1. **DATA REPORT: DOWNCORE VARIATION OF SITE 1068 BRECCIA MATRIX MINERALOGY**

Kristen E.K. St. John

INTRODUCTION

Mass-wasting deposits characterize the Upper Jurassic(?) to Lower Cretaceous sedimentary record of the Iberia Abyssal Plain. These deposits include olistostromes at Site 897 (Shipboard Scientific Party, 1994a; Comas et al., 1996), olistostromes and/or possible rock-fall deposits at Site 899 (Shipboard Scientific Party, 1994b; Comas et al., 1996; Gibson et al., 1996), a breccia succession at Site 1068, slumped and fractured deposits at Site 1069, and a breccia succession at Site 1070 (Whitmarsh, Beslier, Wallace, et al., 1998). Whereas the exact origin of these deposits is uncertain, the regional common occurrence of middle to upper Mesozoic mass-wasting deposits suggests that they record the early rifting evolution of the west Iberia margin.

In order to better understand the sedimentological and tectonic processes active during the early rifting evolution of the west Iberia margin, Leg 173 shipboard and postcruise studies (e.g., this study; Beard and Hopkinson, in press) have focused on characterizing the 42-m breccia succession at Site 1068. Designated lithostratigraphic Unit IV, the breccia succession was subdivided into three subunits based on qualitative downcore variations in matrix composition, brittle deformation characteristics, and the degree of hydrothermal overprint. A complete description of the subunits can be found in Shipboard Scientific Party (1998). It was recognized aboard ship that the breccia matrix at Site 1068 is not uniform throughout the breccia succession. Based on color differences and shipboard mineralogical analyses it was clear that the matrix of Subunit IVA was compositionally distinct from the matrix of Subunits IVB and IVc and from macroscopic clasts within Subunit IVA.

2Department of Geology, Appalachian State University, Boone NC 29608, USA. stjohnke@appstate.edu

Initial receipt: 12 October 1999
Acceptance: 7 June 2000
Web publication: 3 October 2000
Ms 173SR-009
K.E.K. St. John
Data Report: Variation of Breccia Matrix Mineralogy

However, it was not clear if the finer grained material between larger clasts (i.e., the matrix) in Subunits IVB and IVC was compositionally distinct from the larger clasts, nor was it clear to what degree the matrix was hydrothermally altered along the breccia’s vertical extent. Mineralogical analyses made aboard ship could not address these questions because, except in those cases where the matrix-to-clast ratio in the breccia was relatively high (e.g., interval 173-1068A-16R-3, 70–90 cm), X-ray diffraction (XRD) analyses were performed on powdered samples of combined matrix material (finer grained particles and cement) plus adjacent macroscopic clasts. The result of those analyses was downcore estimates of the bulk mineral composition of the Site 1068 breccia succession.

This data report presents both qualitative and semiquantitative results from XRD analyses of the breccia matrix at Site 1068. In this study the matrix is defined as the fine-grained particles (as viewed through a binocular microscope) plus cement. Results are based on analytical methods that aimed to isolate the desired matrix from larger clast contamination prior to XRD analyses. In addition, the breccia was sampled at a higher resolution than was conducted aboard ship, producing a more complete description of downcore matrix mineralogical changes. The data presented here may be used to (1) further justify the subunit designation of Unit IV made aboard ship, (2) help determine to what degree the matrix and the larger clasts (studied in thin section aboard ship; Shipboard Scientific Party, 1998) are compositionally distinct, (3) help identify the extent of hydrothermal fluid migration in the breccia, and (4) support the proposed shipboard hypothesis that the Site 1068 breccia succession resulted from multiple mass-wasting events (see “Lithostratigraphy” section in Shipboard Scientific Party, 1998).

Materials and Methods

Sample locations were selected based on the following criteria: (1) to maximize the matrix volume per core sample, (2) to sample where major matrix color change occurs in the core (presumably indicating mineralogical differences), and (3) to provide at least one sample per 1.5 m of core. Forty-seven samples were analyzed from the 42-m breccia succession in Hole 1068A (Fig. F1). Of these, 15 were from Subunit IVA, 23 from Subunit IVB, and 9 from Subunit IVC. In addition, one sample was taken from the very base of the overlying Unit II sediments (note: there is no Unit III at Site 1068), in order to show the compositional change between the pelagic/hemipelagic sediments of Unit II and the breccia of Unit IV. Each sample was between ~5 and ~20 cm³ in volume, depending on the relative proportion of matrix to clasts in the sample.

XRD of the matrix material required both that the matrix be isolated from the embedded clasts and that the matrix be powdered (Bish and Reynolds, 1989). Both of these goals were achieved by using a handheld vibrating drill (similar to a dental drill) to carefully powder and separate the desired matrix material from the remaining well-lithified, clast-rich breccia. Such fine-scale, detailed work was enabled by viewing the particular drilling area on each core sample through a binocular microscope. Drilling of each sample ceased when ~0.5 g of powdered matrix had been collected.

To obtain semiquantitative results, an internal standard of 10 wt% of boehmite (an aluminum oxyhydroxide) was added to each powdered matrix sample. Boehmite was mixed with each sample by gently grind-

1. Distribution of matrix mineralogy, Site 1068, p. 7.
ing the mixture in acetone with a mortar and pestle and then air drying. Samples were backloaded into sample holders to obtain a random orientation of the mineral grains. If the volume of sample was insufficient to fill the sample holder, powdered gelatin was added as a backing. Because boehmite was added to each sample in a constant proportion, the integrated intensity ratio (i.e., peak area ratio) of a single mineral peak to the 6.11-Å boehmite peak can be used as an indicator of that mineral's abundance in the sample (Gibbs, 1967; Scheidegger and Krissek, 1982; Krissek, 1984, 1989; Krissek and Clemens, 1991; Krissek and Janecek, 1993). If samples were of uniform grain size and uniform composition, then calibration curves could be constructed to calculate mineral abundances from mineral/boehmite peak area ratios (Gibbs, 1967; Scheidegger and Krissek, 1982). The pressed powder samples of the breccia matrix at Site 1068, however, do not meet either of these conditions. Thus, calibration curves could not be constructed and the mineral/boehmite peak area ratios have not been converted to mineral abundances. Rather, downcore variations in the abundance of a single mineral (e.g., calcite) are described using downcore changes in the integrated intensity ratios of that mineral. This method does not allow for comparison of the absolute abundances of two or more different minerals.

Analytical precision was evaluated by analyzing five randomly selected replicate samples. The reproducibility estimates of the major mineral suite in the breccia matrix at Site 1068 are as follows (given as absolute mineral/boehmite peak area ratios): calcite (±0.11), quartz (±0.16), plagioclase (±0.03), chlorite (±0.33), hornblende (±0.01), and serpentine (±0.01). A previous study (Scheidegger and Krissek, 1982) has shown that absolute mineral abundances determined from mineral/boehmite peak area ratios using calibration curves are accurate at ±1% for quartz and plagioclase and at ±2% for chlorite. Mineral abundances inferred from peak area ratios measured in this study would have a lower accuracy than that cited above because of grain-size variations and the particular mineral suite present in each sample.

Samples were analyzed on a Shimadzu XRD-6000 X-ray diffractometer. Powder mounts were scanned at a rate of 0.5°/min with CuKα radiation. Radiation was filtered using a 1° divergence slit, a 1° scatter slit, and a 0.15-mm receiving slit. Machine settings were 40 kV and 50 mA for all analyses. The generated raw data files were then computer processed to smooth data points (9-point smooth), remove amorphous background scatter, and remove the Kα2 analytical spectrum component. Integrated intensities (i.e., peak areas) were calculated using a Shimadzu profile-fitting software package that performs mathematical modeling of the diffractogram pattern.

RESULTS

The downcore presence or absence of each mineral, or mineral group, identified from the diffractogram patterns is shown in Figure F1. Example diffractogram patterns of six samples are shown in Figure F2. Mineral peaks were generally sharp and well defined. The occurrence of broader peaks, such as at 5°–7°2θ, reflect the presence of various expandable clays, and at 32°–37°2θ, reflect the presence of serpentine minerals. The minerals present in the Site 1068 breccia matrix include: calcite, quartz, expandable clays, illite, plagioclase, chlorite, hornblende, apatite, analcime, serpentine, and andradite garnet. Distin-
guishing among albite and anorthite varieties of plagioclase was not possible given their similar 2θ peak positions. Clinohlore is the variety of chlorite that generally best matches the diffractogram pattern; however, the blue ferriferous chloride mineral aerinite was identified in Sample 173-1068A-20R-7, 24–26 cm. Hornblende varieties include ferromilitite and ferropargasite. Apatite is the F-rich variety, fluorapatite. Serpentine varieties include lizardite and chrysotile. In addition, although the presence of the mineral brucite was indicated from shipboard XRD analyses (Unit I; Shipboard Scientific Party, 1998), it could not be identified in this study with any certainty because of an overlap in peak position with the higher 2θ boehmite peaks. A comparison between downcore trends in breccia matrix mineralogy determined from this study and the downcore trends in breccia bulk mineralogy as determined aboard ship are given in Table T1.

Downcore clay mineral abundance could not be quantified given the difficulty in distinguishing among the many possible clay mineral varieties when the clay minerals are not oriented, as is the case with pressed-powder samples. Further complicating the identification and quantification of clay minerals based on diffractogram patterns is the fact that the 14-Å chlorite peak lies at ~6.1°2θ, partially overlapping clay peaks with similarly high d-spacings. However, downcore changes in the shape of the 5°–7°2θ peak(s) indicate that a variety of clay types exist in the breccia matrix and that their abundance varies downcore. Figure F3 shows a sampling of the downcore change in the shape of the 5°–7°2θ peak and also the presence (or absence) of the 10-Å illite peak (8.8°2θ). Based on the position and shape of the 5°–7°2θ peak, montmorillonite (smectite) group minerals including, but not restricted to, 15-Å saponite and 15-Å nontronite are probably present in the matrix (Carroll, 1970). Saponite and nontronite can be produced from the hydrothermal alteration of mafic and ultramafic rocks including lherzolite (Velde, 1995), of which the basement rock underlying the breccia succession is partially composed (Shipboard Scientific Party, 1998). Alternatively, saponite and nontronite can form diagenetically (Velde, 1995).

Relative variations in mineral abundances of the 3.04-Å calcite, 4.26-Å quartz, 4.03-Å plagioclase, 7.12-Å chlorite, 8.5-Å hornblende, 2.80-Å apatite, 5.6-Å analcime, 7.27-Å serpentine, and 3.06-Å garnet peaks are listed in Table T2. The mineral/boehmite peak area ratios for these minerals are plotted as a function of depth downcore in Figure F4. Matrix calcite generally decreases in abundance downcore, whereas the siliciclastic minerals (quartz and plagioclase), and minerals of diagenetic or hydrothermal origin (chlorite, analcime, and serpentine) show an increase in downcore abundance within the breccia matrix. The downcore transition from Maastrichtian Unit IIA marine sediments to the top of the Lower Cretaceous Unit IVA breccia (at 853 meters below seafloor [mbsf]) is marked by a sharp decrease in quartz, plagioclase, and chlorite abundances and a sharp increase in the abundance of calcite. Subunit IVA is generally characterized by a matrix with high calcite abundances and moderate abundances of quartz.

A change to generally lower and more variable calcite abundances, along with an increase in the noncalcareous minerals, occurs below 864 mbsf. This abundance change in the matrix mineralogy corresponds to (1) the transition from Subunit IVA to IVB, (2) an increase in fine rock fragments in the matrix (Shipboard Scientific Party, 1998), and (3) a color change of the powdered breccia matrix from predominantly moderate orange pink to variable browns, oranges, and grays (see Table T2). Apatite was present in only one sample (173-1068A-17R-2, 106–107
cm) (see the middle photo in Fig. F1 and also Fig. F2C) taken from a uniquely clast-poor, moderately sorted, 5-cm reddish brown to light brown layer within Subunit IVB that has a graded contact with the breccias above and below it. The clasts that are present in this interval are silt- to sand-size rounded grains (Shipboard Scientific Party, 1998). The lithologic characteristics of the interval in which apatite is present do not support a hydrothermal origin for this mineral; shipboard description does not indicate the presence of a mineral vein from which the apatite could be derived.

Matrix chlorite, plagioclase, and quartz abundances are variable but generally increase downcore within Subunit IVB. The presence of these minerals may be attributed to hydrothermal alteration of the breccia matrix that increases in intensity with depth downcore. Alternatively, some portion of these minerals may be attributed to the inclusion of small rock fragments within the matrix or may have formed during diagenesis.

The downcore transition into Subunit IVC at 885 mbsf is marked by a decrease in quartz and plagioclase abundances. Other minerals do not show distinct abundance trends at this subunit boundary. However, below ~889.5 mbsf, a new suite of matrix minerals are present: analcime, serpentine, and andradite garnet. Analcime is a sodic zeolite of hydrothermal or diagenetic origin and the only zeolite stable in deeper, older rocks (Velde, 1995). Serpentine and garnet were identified shipboard in serpentinized peridotite immediately underlying the breccia succession (Shipboard Scientific Party, 1998). This study shows, however, that these minerals are also present in the deepest portion of the Subunit IVC breccia matrix.

ACKNOWLEDGMENTS

I sincerely appreciate Laura Combs’ assistance with sample preparation. A helpful and constructive review was provided by Kitty Milliken. This work was funded by a JOI-USSSP postcruise research grant.
REFERENCES

Figure F1. Downcore distribution of matrix mineralogy, Site 1068. Core photo examples of lithostratigraphic Subunits IVA (interval 173-1068A-17R-2, 85–108 cm), IVB (interval 173-1068A-16R-3, 70–90 cm), and IVC (interval 173-1068A-15R-1, 58–75 cm) are provided to the left of the qualitative mineralogical profile (core photos from Shipboard Scientific Party, 1998).
Figure F2. Example XRD profiles of six Site 1068 breccia matrix samples. A. Base of lithostratigraphic Unit II (851.55 mbsf). B. Subunit IVA (858.78 mbsf). C. Anomalous brown horizon within Subunit IVB (868.01 mbsf). I = peak intensity. Mineral identification is labeled above the corresponding peak. Note the difference in intensity scale between Figure F2 (A–C), p.8, and Figure F2 (D–F), p.9. Ch = chlorite, Cl = expandable clays, I = illite, B = boehmite, Q = quartz, P = plagioclase, Ca = calcite, H = hornblende, and Ap = apatite. cps = counts per second. (Continued on next page.)
Figure F2 (continued). D. Subunit IVB (876.94 mbsf). E. Subunit IVC (890.08 mbsf). F. Subunit IVC (893.13 mbsf). An = analcime, S = serpentine, And = andradite.
Figure F3. Example of the downcore variation in the shape of the 5°–7°2θ peak and the presence (or absence) of the 10-Å illite peak (8.8°2θ). The downcore variation in peak shape reflects a downcore variation in the type and abundance of expandable clay minerals in the breccia matrix. A. Lithostratigraphic Subunit IVA (859.32 mbsf). B. Subunit IVB (874.23 mbsf). C. Subunit IVB (878.80 mbsf). D. Subunit IVB (879.51 mbsf). E. Subunit IVB (882.33 mbsf). F. Subunit IVC (885.16 mbsf). G. Subunit IVC (886.72 mbsf). H. Subunit IVC (887.87 mbsf). I. Subunit IVC (992.46 mbsf).
Figure F4. Mineral abundance data (mineral/boehmte integrated intensity ratios) for Site 1068 matrix minerals: calcite, quartz, plagioclase, chlorite, hornblende, apatite, analcime, serpentine, and andradite garnet, plotted as a function of downcore depth in meters below seafloor.
Table T1. Comparison between the bulk composition of the breccia subunits* and the results of this study.

<table>
<thead>
<tr>
<th>Lithostratigraphic subunit</th>
<th>Bulk composition*</th>
<th>Matrix composition**</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVA</td>
<td>Calcite</td>
<td>Calcite</td>
</tr>
<tr>
<td></td>
<td>Plagioclase</td>
<td>Plagioclase</td>
</tr>
<tr>
<td></td>
<td>Chlorite</td>
<td>Chlorite</td>
</tr>
<tr>
<td></td>
<td>Sericite?</td>
<td>Quartz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Illite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expandable clays</td>
</tr>
<tr>
<td>IVB</td>
<td>Calcite</td>
<td>Calcite</td>
</tr>
<tr>
<td></td>
<td>Plagioclase</td>
<td>Plagioclase</td>
</tr>
<tr>
<td></td>
<td>Chlorite</td>
<td>Chlorite</td>
</tr>
<tr>
<td></td>
<td>Amphibole</td>
<td>Quartz</td>
</tr>
<tr>
<td></td>
<td>Quartz</td>
<td>Illite</td>
</tr>
<tr>
<td></td>
<td>Goethite</td>
<td>Expandable clays</td>
</tr>
<tr>
<td></td>
<td>Ankerite</td>
<td>Hornblende</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apatite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serpentine?</td>
</tr>
<tr>
<td>IVC</td>
<td>Calcite</td>
<td>Calcite</td>
</tr>
<tr>
<td></td>
<td>Plagioclase</td>
<td>Plagioclase</td>
</tr>
<tr>
<td></td>
<td>Chlorite</td>
<td>Chlorite</td>
</tr>
<tr>
<td></td>
<td>Quartz</td>
<td>Quartz</td>
</tr>
<tr>
<td></td>
<td>Analcime</td>
<td>Illite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expandable clays</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hornblende</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serpentine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analcime</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Andradite</td>
</tr>
</tbody>
</table>

Note: * = Shipboard Scientific Party, 1998; ** = this study.
Table T2. Integrated intensity (peak area) data for identified Site 1068 matrix minerals and for the internal standard, boehmite. (See table notes. Continued on next page.)

<table>
<thead>
<tr>
<th>Core, section, interval (cm)</th>
<th>Depth (mbsf)</th>
<th>Munsell color</th>
<th>Powdered matrix color</th>
<th>Integrated intensities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

173-1068A-
15R-5, 13-15 851.55 SYR 5/6 Light brown 21,279 6,575 20,156 2,712 8,279
15R-5, 20-22 851.62 SYR 8/4 Moderate orange pink 11,348 176,352 tr
15R-5, 84-86 852.26 SYR 8/4 Moderate orange pink 18,770 154,422 7,659
15R-6, 20-22 852.82 10YR 8/2 Very pale orange 15,980 203,166 5,458
15R-6, 35-37 852.97 10YR 8/2 Very pale orange 15,975 163,175 3,605 tr
16R-1, 36-37 856.26 10YR 8/6 Pale yellowish orange 17,377 172,527 4,004
16R-1, 138-139 857.28 10YR 8/2 Very pale orange 11,116 124,874 2,216
16R-2, 51-53 857.91 SYR 8/4 Moderate orange pink 21,870 160,717 5,450
16R-2, 138-140 858.78 10YR 8/2 Very pale orange 17,953 152,407 1,912
16R-3, 42-44 859.32 SYR 8/4 Moderate orange pink 15,833 196,233 3,522
16R-3, 84-86 859.74 SYR 8/4 Moderate orange pink 18,196 183,723 3,940
16R-4, 54-55 860.56 SYR 8/4 Moderate orange pink 15,273 183,905
16R-4, 127-129 861.29 SYR 8/4 Moderate orange pink 17,445 191,796 2,873
16R-5, 69-71 862.21 SYR 8/4 Moderate orange pink 16,681 183,821 2,732
16R-5, 126-127 862.78 SYR 8/4 Moderate orange pink 15,683 175,980 tr
16R-6, 58-61 863.60 10YR 8/2 Very pale orange 13,000 230,880
17R-1, 10-14 865.70 10YR 6/2 Pale yellowish brown 9,268 68,377 1,633 1,634 8,337 4,384
17R-1, 94-97 866.54 SY 7/2 Yellowish gray 9,272 59,864 1,521 5,112 1,651
17R-2, 106-107 868.01 SYR 5/6 Light brown 17,315 16,211 tr 5,049 7,102 1,100 1,3452
17R-4, 146-149 869.00 10YR 7/4 Grayish orange 8,669 66,249 2,489 1,600 4,925 5,420
18R-1, 18-20 869.38 SYR 6/4 Light brown 5,872 25,907 966 1,510 3,430 4,690
18R-1, 71-74 869.91 10YR 8/6 Pale yellowish orange 11,463 178,770 1,957
18R-2, 1-2 870.53 10YR 8/6 Pale yellowish orange 10,756 115,192 1,622
18R-2, 9-13 870.61 SY 7/2 Yellowish gray 10,194 126,662
18R-3, 75-78 872.77 SY 5/2 Light olive gray 8,496 3,298 3,152 2,337 7,386 503
18R-4, 52-55 873.89 SY 5/6 Light olive brown 14,960 63,346 6,480 9,954 1,283
18R-4, 86-88 874.23 SYR 6/4 Light brown 13,348 87,779 3,333 3,541 14,103 3,778
19R-1, 29-31 875.49 10YR 7/4 Grayish orange 5,134 32,903 4,143 2,327 5,604 tr
19R-1, 91-93 876.11 SY 7/2 Yellowish gray 10,924 59,639 2,751 2,412 12,290
19R-2, 54-58 876.94 SY 7/2 Yellowish gray 17,549 8,462 6,487 12,442 12,150 4,661
19R-2, 100-102 877.40 10YR 6/6 Dark yellowish orange 12,355 36,454 12,856 1,127
19R-3, 96-98 878.54 10YR 7/4 Grayish orange 9,544 84,617 3,369 2,076
19R-3, 122-123 878.80 10YR 8/2 Very pale orange 13,148 40,343 2,591 5,319
19R-4, 43-45 879.51 SY 7/2 Yellowish gray 16,035 42,912 tr 6,910
19R-4, 106-108 885.14 SY 7/2 Yellowish gray 12,056 73,063 1,877 1,132 11,873
19R-5, 44-46 880.98 10YR 7/4 Grayish orange 7,446 52,542 3,215 1,040 2,222 2,411
19R-5, 111-113 881.65 10YR 6/6 Dark yellowish orange 11,721 32,967 8,028 1,440 11,642
19R-6, 16-17 881.92 10YR 6/6 Dark yellowish orange 9,361 41,568 1,991 1,044 5,139 2,291
19R-6, 57-59 882.33 SY 7/2 Yellowish gray 10,781 11,509 9,651 22,743
20R-1, 26-28 885.15 10Y 8/2 Pale greenish yellow 13,946 8,437 6,948 3,775 14,255
20R-2, 13-15 885.88 10Y 8/2 Pale greenish yellow 6,634 23,558 3,635 1,711 8,011
20R-3, 5-8 886.72 SY 7/2 Yellowish gray 14,538 36,680 845 84,31 4,247
20R-4, 15-16 887.87 SY 7/2 Yellowish gray 23,958 32,570 14,097
20R-4, 12-116 888.84 N9 White 11,728 102,080 2,900 1,305 4,843
20R-5, 34-36 889.56 SY 8/4 Grayish yellow 7,911 54,799 2,406 1,036 9,820
16,619
Table T2 (continued).

<table>
<thead>
<tr>
<th>Core, section, interval (cm)</th>
<th>Depth (mbsf)</th>
<th>Munsell color</th>
<th>Powdered matrix color</th>
<th>2θ: d-spacing: Mineral</th>
<th>Integrated intensities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Boehmite</td>
</tr>
<tr>
<td>20R-5, 86-89</td>
<td>890.08</td>
<td>SB 9/1</td>
<td>Blush white</td>
<td>14.4° 6.11 Å</td>
<td>13,204 47,067 1,791 13,740 21,614</td>
</tr>
<tr>
<td>20R-7, 24-26</td>
<td>892.46</td>
<td>SGY 8/1</td>
<td>Light greenish gray</td>
<td>29.4° 3.04 Å</td>
<td>18,416 ? 1,791 13,740</td>
</tr>
<tr>
<td>20R-7, 91-92</td>
<td>893.13</td>
<td>SGY 8/1</td>
<td>Light greenish gray</td>
<td>20.8° 4.26 Å</td>
<td>20,416 ? 62,919</td>
</tr>
</tbody>
</table>

Notes: Depth in meters below seafloor (mbsf) indicates top of sample. Peaks that were identified but were too small to calculate their integrated intensities are labeled as occurring in trace amounts (tr).