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ABSTRACT

Five analyses of seismic velocity employing acoustic tomography
were conducted across the location of the sites proposed for Ocean
Drilling Program (ODP) drilling on the continental shelf of the Pacific
margin of the Antarctic Peninsula. The resulting interval velocities were
supplied to the ODP Site Survey Panel before drilling and are now pre-
sented in light of the results of ODP Leg 178 drilling, during which
three of the five proposed sites were drilled, as a tie between traveltimes
and depths at all sites, and as a tool to aid genetic interpretation of seis-
mic units in future studies. We present details of the methodology, the
five stack sections across each site, and the picked horizons used for the
velocity analysis. The results of the analysis are presented as interval to-
mographic velocity sections on a depth scale. Finally, we compare to-
mographic and stacking velocity profiles for each site location. We
summarize the main features of the velocity fields obtained in this
study in a short concluding section.

OBJECTIVE

This report provides seismic velocity information that was generated
specifically to respond to comments of the Ocean Drilling Program
(ODP) Site Survey Panel on the data set provided by proponents of ODP
drilling Proposal 452, which proposed drilling the Pacific margin of the
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Antarctic Peninsula. The velocity analyses were submitted to the ODP
Site Survey Data Bank in 1996. Because of the importance of velocity in-
formation to the interpretation of the Leg 178 drilling results and, in
general, to drilling results on glacial margins, we have assembled the
data for publication in the Leg 178 Scientific Results volume in the form
of a data report so that the results of this analytical study may become
more widely available. The information presented refers to five loca-
tions on the Leg 178 outer continental shelf transect (Shipboard Scien-
tific Party, 1999a) (Figs. F1, F2).

METHODS

Stacking velocity information (interval velocity derived using Dix’s
formula from the root-mean-square [RMS] velocity) is the prime seismic
velocity information obtainable from a multichannel seismic reflection
(MCS) survey. However, although stacking velocities are useful in data
processing (they allow correct stack and enable data migration), their
use as interval velocities to predict the subbottom depth of a target re-
flector is, in general, not recommended, especially if the available offset
is short compared to the depth of the target. In addition, semblance-ve-
locity analyses and constant-velocity-stack analyses imply that a gross
spatial average (the acquisition spread) is applied to the velocity estima-
tion and that a very simple earth model (i.e., homogeneous horizontal
layers) is assumed.

In order to obtain additional and independent velocity information
and to compare it to the stacking velocities, we have adopted reflection
tomography as described in detail by Carrion et al. (1993a, 1993b). We
briefly recall its basic concepts below.

The space is discretized by long pixels, which are zones where the
propagation velocity of seismic waves is assumed to be constant. The
pixel shape may be irregular, and the lateral boundaries are vertical
straight lines; the upper and lower boundaries coincide with the inter-
preted reflecting interfaces (see Böhm et al., 1999). The pixel shape is
dictated by the available resolution with a surface acquisition geometry
(Böhm et al., 2000) that allows good estimation of the lateral gradients
but is poor for the vertical variations between two reflectors. A verti-
cally averaged velocity is estimated between the upper and lower reflec-
tor.

Traveltimes are picked manually or in semiautomatic mode (Tini-
vella, 1998) along selected horizons on common-offset and common-
shot gathers. An iterative inversion procedure is started with any initial
model, even very far from the true solution. Rays are traced according
to Fermat’s principle (Vesnaver 1994, 1996a, 1996b) to simulate the
seismic wave propagation in that velocity field and reflector position.
Data inversion is completed according to the simultaneous iterative re-
construction technique (SIRT) (Van der Sluis and Van der Vorst, 1987;
Stewart, 1991). At each step, the velocity distribution is updated first,
obtaining an estimate of the depth location of the reflection point for
each source-receiver position and for each considered reflector. Then,
observing the pattern and the dispersion of these reflection points, a
new reflector geometry and local velocity structure are introduced,
while also considering lateral velocity gradients. The final solution is
obtained by alternately iterating these two steps until a minimum dis-
persion is obtained for all reflectors. An example of a final solution is
presented in Figure F3 (from analysis near the location of Site 1103).
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RESOLUTION

Conventional stacking velocity analysis is able to estimate the RMS
velocity with sufficient accuracy (2%–3%) if the layers are nearly hori-
zontal and if the incidence angles are small. In this case, we can simply
apply Dix’s formula to get the interval velocities, which is the informa-
tion we need to identify anomalous variations of the wave velocity.

Although the accuracy of stacking velocity is sufficient, the space
and time resolution of the velocity spectra may be quite limited. In
stacking velocity analysis, a spatial average is carried out over the acqui-
sition spread, whose length in our case is 750 m (half of the streamer
length). Consequently, we are not able to measure directly sharp lateral
velocity variations. Along the time dimension, the coherency values are
usually averaged within time windows whose length is comparable to
that of the seismic wavelets. Seismic wavelets are band-limited signals;
therefore, their direct comparison by semblance or cross-correlation
carried out in stacking velocity analysis necessarily provides a band-lim-
ited estimate.

Tomographic inversion of traveltimes is able to improve the resolu-
tion significantly for two main reasons:

1. The picking procedure transforms seismic reflections into punc-
tual events; although the picking is a spiking process, which con-
centrates an event into a single point, the picking accuracy is
limited by noise presence, interference with other events, phase
rotations at supercritical incidence angles, and so on. Therefore,
we have to consider this point in a statistical sense, which means
that averaging is still necessary for our velocity estimate.

2. There is no spatial average because each event preserves its indi-
vidual contribution to the velocity estimation during the whole
inversion procedure. We can say that the nominal spatial resolu-
tion is on the order of the trace spacing, which is 12.5 m in our
case. The actual spatial resolution, however, is affected by the
size of the Fresnel zone, whose radius is on the order of 60 m at
the seafloor with the dominant frequency of 100 Hz.

SEISMIC DATA

Multichannel seismic profile I95-152 was acquired by Programma
Nazionale di Ricerche in Antartide (PNRA) in 1995 as part of a program
that included the seismic site survey of drill sites proposed to ODP
within drilling Proposal 452. The data are described and displayed in
Shipboard Scientific Party (1999b, table 19). We list the acquisition pa-
rameters in Table T1.

RESULTS

Picking and Inversion

The five parts of the stack section analyzed are illustrated in Figure
F4. We have picked seven to nine reflectors with spacing of about 100
ms or less (Fig. F5). Purposely, we did not pick reflectors too close to the
seafloor reflector in order to avoid the interference of bubble-induced
ringing or streamer ghosts. The picking of reflectors was particularly

T1. Multichannel seismic profile, 
p. 23.
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easy in the topsets of Unit S1. In the foresets of Unit S2 and in deeper
dipping reflectors of Units S3 and S4, the coherency of reflections is
rather weak. The coherency of the reflectors was found to be highest,
particularly in common-offset gathers, in traces from 10 to 29 (offsets
from 329.5 to 567 m), and these traces have been selected for picking
on common-trace and common-offset gathers.

The tomographic inversion has been applied to one of every four
shots. As expected, the coherency of the inversion of the traveltimes is
weaker in foreset reflectors (e.g., see Fig. F3), but it has always been pos-
sible to obtain a satisfactory final solution for all picked reflectors. The
uncertainty in the velocity estimation with this method is typically a
few percent. Although we have no estimates of the uncertainty in this
application, a ±2% error was estimated in a recent application of this
method by us in an area with generally poorer reflector continuity on
the nearby South Shetland margin (Tinivella et al., 1998, fig. 8).

Continental Shelf Edge: Proposed Site APSHE-01A, 
Drilled as Site 1102

The two-dimensional (2-D) velocity structure across the location of
Site 1102 is illustrated in Figure F6A. All reflectors picked are within
Unit S1. The shelf break occurs at shotpoint (SP) 538, about 130 m sea-
ward of the site location. The upper part is divided into two topset lay-
ers of moderately increasing velocity with depth. Weak lateral velocity
changes that do not suggest significant trends are present in these up-
per layers. Within the third interval, the transition from topset reflec-
tors in the southeast to foreset reflectors in the northwest occurs. A
sharp lateral velocity change within this interval, from 1.8 to 2.7 km/s,
with increasing velocity toward the northwest, is coincident with such
a transition. All underlying intervals are composed of foreset reflectors.
Weak lateral velocity changes that do not suggest significant trends are
also present in these lower layers. A sharp velocity increase from 1.8 to
3 km/s occurs to the southeast of the site location, between the topset
reflectors of the third interval and the foreset reflectors. This coincides
with the presence of foreset reflector terminations against the topset re-
flectors.

A comparison between the tomographic velocity profile at the loca-
tion of the site and the nearest available stacking velocity profile (SP
575, 875 m southeast of the site location) is illustrated in Figure F7A.

Outer Continental Shelf: Proposed Site APSHE-02A

The 2-D velocity structure across the location of proposed Site
APSHE-02A is illustrated in Figure F6B. The topsets of Unit S1 are di-
vided into four layers of increasing velocity with depth. A sharp veloc-
ity increase occurs between the first and the second layer of the topset
unit. Weak lateral velocity changes that do not suggest significant
trends are present in this unit. The velocity increases from about 1.6 to
2.7 km/s in the upper 350 m of sediment. In foresets of Unit S2, the ve-
locity increases from 2.8 to 3.3 km/s. A sharp velocity increase occurs
between the lower boundary of the topsets and the upper boundary of
the foresets at the southeast end of the analyzed section. This coincides
with foreset reflector terminations against the topset reflectors. North-
west of the site, the velocity across the topset/foreset boundary does not
increase sharply. A sharp lateral velocity gradient, with increasing ve-
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locity to the southeast, is present within the second interval of the fore-
sets of Unit S2.

A comparison between the tomographic velocity profile at the pro-
posed site location and the nearest available stacking velocity profile
(SP 895, 175 m northwest of the site location) is illustrated in Figure
F7B.

Outer Continental Shelf: Proposed Site APSHE-03A, 
Drilled as Site 1100

The 2-D velocity structure across the location of proposed Site
APSHE-03A is illustrated in Figure F6C. Unit S1 is divided into four lay-
ers of increasing velocity with depth. Weak lateral velocity changes are
present. The velocity increases from about 1.7 to 2.7 km/s in the upper
400 m of sediment. In the foresets of Unit S2, the velocity increases
from 2.95 to 3.3 km/s. Qualitatively, the differences in the velocity dis-
tribution between topsets and foresets found at this site location are
similar to those described above for the location of proposed Site
APSHE-02A location, including lateral gradients within foresets.

Figure F7C illustrates the comparison between tomographic and
stacking velocity 700 m southeast of the site location (SP 975).

Outer Continental Shelf: Proposed Site APSHE-04A

The 2-D velocity structure across the location of proposed Site
APSHE-04 is illustrated in Figure F6D. The topsets of Unit S1 are divided
into three layers of increasing velocity with depth. Lateral velocity
changes are present in this unit: in the first layer an increase occurs
from the southeast end of the analyzed section toward the northwest;
in the third layer, an even sharper increase occurs from the northwest
end of the analyzed section toward the site, and hence, gradually de-
creases. Within this unit, the velocity increases from ~1.7 to ~2.7 km/s
in the upper 300 m of sediment. Unit S2 is divided into two layers of in-
creasing velocity with depth. Also, at this location, velocity increases
sharply at the boundary between topsets and foresets. An exception is
found directly northwest of the site location, where the velocity across
the topset/foreset boundary does not increase sharply because of the
relatively high velocity in the topset layer. A velocity decrease (velocity
inversion) occurs at the boundary between glacial reflectors of Unit S2
to “early glacial or non-glacial” reflectors of Unit S3. Within S3, the ve-
locity increases from 2.8 to about 3.5 km/s. A lateral gradient is present
in the lowest layer, with a decrease toward the outer shelf (northwest).

See Figure F7D for a comparison between the tomographic velocity
at the site location and the nearest available stacking velocity profile
(SP 1375, 125 m southeast of the site location).

Outer Continental Shelf: Proposed Site APSHE-10A, 
Drilled as Site 1103

The 2-D velocity structure across the Site 1103 location is illustrated
in Figure F6E. The topsets of Unit S1 are divided into three layers of in-
creasing velocity with depth. The velocity increases from about 1.6 to
2.5 km/s in the upper 250 m of sediment. Unit S2 is missing at this loca-
tion. Within Unit S3, the velocity increases from 2.7 to 3.0 km/s. The
sharp velocity increase below the lower boundary of Unit S1 found at
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all other outer shelf sites is not present here. The velocity increases
more gradually throughout and lateral gradients are present only in the
second layer of Unit S1, with an increase toward the inner shelf (south-
east). The only sharp increase downward is between Units S3 and S4
(from 3 to 3.4–3.5 km/s).

See Figure F7E for a comparison between the tomographic velocity
profile at the site location and the nearest available stacking velocity
profile (SP 1695, 300 m northeast of the site location).

Time-Depth Relations

According to the velocity fields presented, we have identified the
time-depth relationships for the seafloor, the bottoms of the drilled
holes at the three drilled sites, and the S1/S3 boundary at Site 1103 (Ta-
ble T2).

CONCLUSIONS

We summarize the principal aspects of our analytical work as follows
(see [N1]):

1. In the five seismic sections analyzed, we found a generally very
steep vertical velocity gradient. The steepest average gradient is
found at the continental shelf edge (see Figure F6A at southeast
end of the section, including the Site 1102 location) where a ve-
locity of 3 km/s is found at less than 200 m sub-bottom depth.
Anomalously high seismic velocity is a common feature in con-
tinental shelf sediments of Cenozoic glacial margins, as a conse-
quence of ice load and/or glacial erosion (i.e., Solheim et al.,
1991).

2. However, we have not found anomalously high velocity at the
seafloor, as may have been expected. For comparison, Cochrane
and Cooper (1991) report a velocity of 2.08 m/s at the seafloor at
Site 472 (ODP Leg 119 in Prydz Bay), a location geometrically
analogous to our Site 1100, and a velocity of 2.4 m/s at the sea-
floor at other locations on the outer and inner shelf.

3. The sharpest velocity increase downwards is found at the bound-
ary between topsets (above) and foresets (below). One partial ex-
ception to this is the Site 1103 location, where such an increase
does exist, although it is less than another increase found
deeper, between Units S3 and S4.

4. The only sharp velocity inversion occurs at the near-conform-
able boundary between Units S2 and S3 at proposed Site APSHE-
04A.

5. We encountered difficulty in picking coherent reflections in
foresets of Unit S1 at Site 1102 and in foresets of Unit S2 at Site
1100. This is due to the poor lateral continuity of reflectors with
respect to the topset units, as a consequence of the difference in
depositional environments between continental slope and con-
tinental shelf, respectively.

6. The comparison between the tomographic and stacking velocity
profiles shows that the tomographic velocity is generally lower
than the stacking velocity in the upper few hundreds of meters,
while significant but variable differences occur below. As

T2. Time-depth correlation, 
p. 24.
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expected, the tomographic velocities provide a higher-resolu-
tion, smoother profile than the stacking velocities.
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Figure F1. Location map of Leg 178 drill sites along the continental shelf transect. Sites originally selected
as drilling targets are labeled as APSHE-01A (drilled as Site 1102), APSHE-02A, APSHE-03A (drilled as Site
1100), APSHE-04A, and APSHE-10A (drilled as Site 1103), according to the labeling in the drilling proposal.
Only three of these targets were drilled during Leg 178, as shown in the figure (see also Figure F2, p. 11).
Bathymetry is after Rebesco et al. (1998). The location of Istituto Nazionale di Oceanografia e di Geofisica
Sperimentale (OGS) multichannel seismic profiles is outlined by black straight lines. The shaded patches
on the continental rise outline the inferred extent of sediment drifts.
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Figure F5. Picked reflections on common-offset gathers. In all cases, we display trace 10, corresponding to
329.5-m offset. See text for comments. A. Proposed Site APSHE-01A, drilled as Site 1102. B. Proposed Site
APSHE-02A. (Continued on next two pages.)
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Figure F5 (continued). C. Proposed Site APSHE-03A, drilled as Site 1000. D. Proposed Site APSHE-04A. 
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Figure F5 (continued). E. Proposed site APSHE-10A, drilled as Site 1103. 
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Figure F6. (continued).

elocity (km/s)

Below 1.51
1.51-1.58
1.58-1.65
1.65-1.72
1.72-1.80
1.80-1.87
1.87-1.94
1.94-2.01
2.01-2.08
2.08-2.15
2.15-2.23
2.23-2.30
2.30-2.37
2.37-2.44
2.44-2.51
2.51-2.58
2.58-2.66
2.66-2.73
2.73-2.80
2.80-2.87
2.87-2.94
2.94-3.01
3.01-3.09
3.09-3.16
Above 3.16

1.51

1.65
2.2

2.58

2.7

2.8

2.9

3.2

3.4

D
ep

th
 (

km
)

B

0.50

0.45

0.40

0.35

0.30

0.25

0
0
NW
 B. Proposed Site APSHE-02A. 

V

1.51

1.575 1.58 1.6
2.25 2.2 2.3 2.45

2.46 2.4 2.45

2.7

2.95 3 2.95

2.85
3.05 3.3

3.18
3.1

3.3

Seawater

Seafloor
APSHE-02A

Layer not modeled

0.20 0.40 0.60 0.80 1.00

Distance (km) SE



U
. T

IN
IV

E
L

L
A

 E
T A

L.
D

A
T

A
 R

E
P

O
R

T: S
E

ISM
IC V

E
L

O
C

IT
Y
 A

N
A

L
Y

SIS
1

9

Figure F6. (continue
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Figure F6. (continued).
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Figure F6. (continued
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Figure F7. Comparison between tomographic velocity on site and nearest available stacking velocity. See
text for comments. A. Proposed Site APSHE-01A, drilled as Site 1102. B. Proposed Site APSHE-02A. C. Pro-
posed Site APSHE-03A, drilled as Site 1100. D. Proposed Site APSHE-04A. E. Proposed Site APSHE-10A,
drilled as Site 1103.
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Table T1. Multichannel seismic profile I95-152,
acquisition parameters.

Note: GI = generator-injector gun type (by Seismic Systems, Inc.).

Source
Gun types: GI
Number of guns: 2
Total volume (in3): 420
Tow depth (m): 4
Shot interval (m): 25

Sensors
Number of traces: 120
Length of streamer (m): 1500
Trace interval (m): 12.5
Tow depth (m): 8
Offset of near trace (m): 217

Recording
Sampling rate (ms): 2
Record length (s): 4
Coverage: 30
Magnetic support: Tape
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Table T2. Time-depth correlation at Sites 1100, 1102, 1103.

Note: TWT = two-way traveltime.

TWT 
from sea surface

(ms)

TWT 
from seafloor 

(ms)

Depth 
from sea surface 

(m)

Depth 
from seafloor 

(mbsf)

Site 1100
Seafloor 623 0 470.0 0
Bottom of Hole 1100D 750 127 580.5 110.5

Site 1102
Seafloor 585 0 442.0 0
Bottom of Hole 1102D 602 17 456.9 14.9

Site 1103
Seafloor 667 0 505.0 0
S1/S3 848 181 742.5 237.5
Bottom of Hole 1103A 985 318 867.7 362.7
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CHAPTER NOTE*

N1. 1 June 2001—Author note: Moerz et al. (in press, this volume) present a velocity
analysis at the Site 1103 location that is based on sonic logging. The seismic
velocity analyses presented in this report and in that of Moerz and co-authors
have a degree of overlap that is not discussed in either paper. We suggest that the
interested reader take into consideration both papers for a complete understand-
ing of the velocity structure at Site 1103.
30 January 2002: Moerz et al. (Chap. 19, this volume) was published on 28
November 2001.
*Dates reflect file corrections or revisions.
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