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ABSTRACT

Site 1095 is the most distal of three continental rise sites drilled dur-
ing Ocean Drilling Program Leg 178. A long (600 m), near-continuous
section extends from the Holocene down to nearly 10-Ma sediments,
comprising fine-grained turbidites, hemipelagites, and muddy contour-
ites. Meter-scale lithologic cyclicity is seen in sediment facies, physical
properties, composition, and grain size in the upper 300 m of the sec-
tion, representing 0–7 Ma. The diatom content of the sediments sug-
gests sea ice was a significant limitation on productivity only during the
Pleistocene. Fine grain size implies that bottom currents were never sig-
nificantly stronger that at present during the last 7 m.y. The presence of
ice-rafted debris implies the Antarctic Peninsula was not deglaciated for
any significant period during the “warm Pliocene” (3.2–4.5 Ma). Inter-
mittent supply of fine terrigenous sediment to the rise is consistent
with published depositional models showing the ice sheet grounded to
the shelf edge during glacial periods. At some times, particularly during
the late Miocene, processes related to submarine channel switching and
lobe progradation may have masked climatic control on deposition at
this site.
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INTRODUCTION

This paper is a contribution to the Neogene history of Antarctic Pen-
insula glaciation, as recorded in sediments of the continental rise,
drilled during Ocean Drilling Program (ODP) Leg 178. The overall aims
of the leg were given by Barker and Camerlenghi (1999). The continen-
tal rise was considered a particularly important province to drill because
its fine-grained sediments contain a record of glacial history much
more continuous than that on the continental shelf, which has been
overridden and partly eroded many times by grounded ice. Prior to
ODP drilling, the rise west of the Antarctic Peninsula had been thor-
oughly surveyed using single- and multichannel seismic reflection pro-
files, 3.5-kHz and TOPAS acoustic profiles, and piston cores up to 11 m
long (Rebesco et al., 1997, 1998; Canals et al., 1998; Pudsey and Camer-
lenghi, 1998; Pudsey, 2000). Oceanographic data including results from
three near-bottom current meter moorings were also available (Camer-
lenghi et al., 1997; A. Camerlenghi and A. Crise, unpubl. data).

The continental rise includes a number of large mounds interpreted
as sediment drifts (Rebesco et al., 1997) deposited under the influence
of weak southwest-flowing bottom currents. Site 1095 on Drift 7 is the
most distal of the continental rise sites, some 180 km from the base of
the slope and only 100 m above the floor of the adjacent channel (Fig.
F1) (Shipboard Scientific Party, 1999). A long (600 m), near-continuous
section was recovered from the Holocene down to nearly 10-Ma sedi-
ments at the base. These sediments were composed of a mixture of fine-
grained turbidites, hemipelagites, and muddy contourites (Shipboard
Scientific Party, 1999). During shipboard core description, meter-scale
lithologic cyclicity was evident within many cores and some long-term
depositional trends were noted over tens to hundreds of meters. Spe-
cific questions to be addressed at Site 1095 (Barker and Camerlenghi,
1999) included the following:

1. Is the present depositional system, documented from work on
piston cores, a plausible analog for the older depositional envi-
ronment reflected within the cored section?

2. Was deposition cyclic within the lower part of the drift section?
If so, what are the cycle frequencies? And what does this cyclicity
represent?

3. Can the onset of the present stage of continental glaciation (in-
volving regular ice sheet excursions to the shelf edge) be recog-
nized in the drift sediments? Is there a relationship between drift
development and continental glacial history?

In this paper, I describe and interpret sediment composition (propor-
tion of biogenic silica) and texture (sand percentage and grain size of the
fine fraction) in the upper 300 m of the cored section in Drift 7, repre-
senting 0–7 Ma. The magnetostratigraphy measured during the cruise
(table T38 in Shipboard Scientific Party, 1999) is used as a timescale. It is
recognized that the dating for Site 1095 may improve with the comple-
tion of a magneto-biostratigraphic synthesis, but this was not available
at the time of writing. Long-term trends (over several million years) and
shorter-term cycles (at approximately orbital frequencies) in sediments
are discussed. Although lithologic cyclicity (particularly as reflected in
physical properties) includes all the sediment types recovered, sampling
concentrated on the hemipelagic and contouritic parts of the section.

F1. Location map of Site 1095, 
p. 15.
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Evidence is thus adduced for paleoceanographic conditions as well as
the state of glaciation of the continent.

METHODS

The cores were sampled approximately every 1.5 m (one sample per
section). Selected intervals, where there was obvious meter-scale litho-
logic cyclicity, were sampled more closely (every 0.2 to 0.4 m). For this
study, cyclicity was delineated using a combination of shipboard core
descriptions, core photographs, and physical properties, particularly
magnetic susceptibility and color reflectance (Shipboard Scientific
Party, 1999). As far as possible, sampling was confined to massive or
bioturbated (hemipelagic) intervals, avoiding laminated sands, silts,
and silty clays attributed to turbidite deposition (see below).

Sample preparation (sample size = 10 cm3) was carried out at the Brit-
ish Antarctic Survey. Biogenic silica (in the form of diatoms, radiolari-
ans, and rare silicoflagellates) was measured by point-counting a smear
slide made from each sample. This method is quick, but tends to over-
estimate silica compared with the true weight percentage (Pudsey, 1993;
see Hillenbrand and Fütterer, Chap. 23, this volume). For textural anal-
ysis, each dried sample of ~5 g was wet-sieved at 63 µm (4 φ) to measure
sand percentage, and the sand fraction was weighed and retained. A few
strewn sand-fraction slides were made to check for the presence of the
radiolarian Stylatractus universus (a marker for Stage 11) in upper Qua-
ternary sediments.

Fine fraction size distribution from 63 to 0.5 µm (4–11 φ) was mea-
sured on a Sedigraph 5100 particle size analyzer at Royal Holloway and
Bedford New College, University of London. The Sedigraph determines
equivalent settling diameter; bulk sediment was measured, without
removal of biogenic silica, so diatoms are treated as part of the sedi-
ment. Because of their low density and porous structure, they behave
hydrodynamically like grains of smaller diameter. The chosen Sedi-
graph output was the weight percentage within each 0.25-φ interval
from 4 to 11 φ. The very high clay content of most samples (commonly
>70% finer than 8 φ [4 µm] and >40% finer than the measurement limit
of 11 φ) necessitated extrapolation of the fine end of the cumulative fre-
quency curves to obtain values of φ16 to calculate the standard grain-size
parameters of sorting (σG) and skewness (SkG) (Folk, 1974). The sand
fractions were visually inspected to assess the degree of sorting, and a
few representative sands were dry-sieved at 1-φ intervals.

The data for the whole recovered section are plotted against age. The
data for the shorter cycles are plotted against depth as well as age, since
the linear age interpolations may not be very accurate at the meter
scale. The raw data are given in a data report by Pudsey (Chap. 12, this
volume).

Spectral analysis was carried out on three parts of the section that
showed reasonably clear (to the human eye) cyclicity in lithology and
physical properties. Power spectral routines in the package MATLAB 6.1
were used; these are based on Welch’s periodogram method (Welch,
1967).
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SEDIMENT DESCRIPTION AND INTERPRETATION

This section is summarized from Shipboard Scientific Party (1999).
Three lithostratigraphic units were identified at Site 1095 (Fig. F2). Unit
I (Holocene to late Pliocene, 0–1.77 Ma; 0.0–49.3 meters below seafloor
[mbsf]) is composed of clays and silty clays, which are locally biogenic
rich, contain scattered ice-rafted debris (IRD), and alternate in color be-
tween gray and brown. Unit II (late Pliocene to late Miocene, 1.77–8.93
Ma; 49.3–435.5 mbsf) is characterized by thick and repetitive sequences
of greenish gray laminated silt and mud. IRD is scattered throughout
Unit II and appears concentrated within bioturbated intervals. Unit III
(late Miocene, 8.93–10.1 Ma; 435.5–570.2 mbsf) is mainly composed of
dark greenish gray laminated claystone. Unit III will not be discussed
further, as the present study only covers Unit I and part of Unit II.

Unit I

Description

Unit I is mainly composed of fine-grained brown and dark gray dia-
tom-bearing silty clay, silty clay, and clay, with minor siliceous ooze.
The sediments are indistinctly laminated and extensively bioturbated.
Subunit IA consists of alternating diatom-bearing silty clay (intergla-
cials; 0.1–0.7 m thick) and clay (glacials; 0.9–1.7 m thick), extending
from the present back to marine oxygen isotope Stage 11 at ~8 mbsf.
Subunit IB consists of alternating massive silty clay with sand grains
(interglacials; 0.5–2.1 m thick), and clay with silt laminae (glacials; 1.3–
4.0 m thick), down to the top of a coarse-grained unit at 49.3 mbsf.

Interpretation

Unit I records deposition from suspension in a low-energy environ-
ment, as indicated by the fine grain size, lack of sorting, and absence of
sedimentary structures indicating current winnowing. Slow sedimenta-
tion of the biogenic-rich facies in Subunit IA and the massive silty clay
in Subunit IB allowed complete reworking by benthic burrowing organ-
isms. In the terrigenous facies of Subunit IA, the diffuse nature of the
lamination and the absence of silt laminae or graded-laminated facies
suggest an origin as hemipelagites, which have been influenced by
weak bottom currents (Pudsey and Camerlenghi, 1998). Dispersed sand
grains and granules were transported by ice rafting.

Rare sharp-based, parallel-laminated silt laminae in Unit I are inter-
preted as distal turbidites.

The contact between Unit I and Unit II occurs over a 10-m-thick
transitional zone, including thin layers of massive, matrix-supported
diamict (Fig. F2).

Unit II

Description

Unit II is characterized by sharp-based, graded, variably laminated
fine sands and silts and laminated silty clays, interbedded with massive
units. Three laminated facies (L1, L2, and L3) are distinguished by the
presence and abundance of very fine sand and silt laminae. A massive
facies (M) is characterized by the absence of primary sedimentary struc-

L2

L1

L2

L1

L1

FIRST-ORDER CYCLES

10

20

30

40

50

60

70

80

90

Low

Relative depositional energy
identified from dominant facies

High

210

220

230

240

250

260

270

280

290

L2

L1

L2

L2

L2

L2

L2 L3

Low High

 Repetitively bedded with
 sharp-based, graded silt

laminae and weakly
laminated silty clays.

L1

L2

L1

L2

L1

L2

L1

L2

110

120

130

140

150

160

170

180

190

Low High

UNIT I 
Interbedded weakly
laminated, massive

and commonly bioturbated
 diatom-bearing oozes

and silty clays.
Contourites and muddy
turbidites with glacial-

interglacial cycles,
low terrigenous input.

Transitional facies,
massive silty clay

interbedded with diamict and
laminated silts and muds.

Facies L
2 

UNIT II
Muddy distal turbidites,
silty clays dominated by
laminated, graded, and

 sharp-based silty
laminae. 

D
ep

th
 (

m
bs

f)

Relative depositional energy Relative depositional energy

100 200 300

L2

F2. Schematic lithostratigraphy of 
Site 1095, p. 16.



C.J. PUDSEY
NEOGENE GLACIATION RECORD 5
tures, except for diffuse grading, and results from hemipelagic sedimen-
tation and intense bioturbation. Unit II shows a cyclic alternation of
facies at scales from a few meters (L and M alternations) to many tens of
meters (predominance of more or less silty/sandy L facies) (Fig. F2).

Facies L1, cross-laminated sand, silt, and silty clay, comprises ~10%
of the thickness of Unit II. It consists of repetitive sequences of lami-
nated to very thin-bedded fine sand and silt that grade up into lami-
nated and massive diatom-bearing silty clay. The bases of sequences are
conformable or erosional and are composed of cross-laminated very
fine sand/silt, with a sharp upper contact with parallel-laminated silt
and mud. This passes upward into laminated/graded silty mud, in turn
overlain by massive silty clay. In some cases, muds contain sufficient
diatoms to be classified as oozes. The massive silty clay shows varying
degrees of bioturbation, from intense, where primary structure has been
destroyed, to absent. IRD is concentrated in bioturbated bed tops.

Facies L2, parallel-laminated silt and silty clay, accounts for ~70% of
the total thickness of Unit II. It consists of repetitive sequences of paral-
lel-laminated silt and mud, passing upward into laminated/graded silty
mud, in turn overlain by massive diatom-bearing silty clay. Bioturba-
tion is limited to the upper few centimeters of bed tops.

Facies L3, laminated silty clays, forms ~10% of the thickness of Unit
II. It consists of repetitive sequences of the thinly laminated and mas-
sive diatom-bearing silty clay that are present in the upper parts of Fa-
cies L1 and L2. Color banding is common, and upward transitions from
dark to light hues within the depositional sequences suggest subtle size
grading. The degree of bioturbation varies from minimal to moderate.

Facies M, massive, bioturbated, diatom-bearing sandy silty clay, lacks
any distinct internal structure as a result of intense bioturbation. This
facies accounts for ~10% of Unit II. In contrast to the rather thin hemi-
pelagic intervals of the laminated facies, the massive facies forms beds
up to 1 m thick and is generally grayish green, in comparison with the
dark greenish gray of other Unit II facies. Subtle gradations in texture
are present, and beds may show a gradual upward coarsening or upward
fining. IRD is common in Facies M. Bed tops are typically sharp; lower
contacts are locally blurred by burrowing (typically by Planolites).

Interpretation

Sediments resembling laminated sand, silt, and mud sequences of Fa-
cies L1, L2, and L3 are well described in the literature as “parallel silt-
laminated mud” (Stow and Piper, 1984), “mud turbidite” (Stow and
Townsend, 1990), and “thin-bedded turbidites.” These facies are charac-
teristic of deep-sea depositional environments dominated by muddy
sediment gravity flows (Pickering et al., 1988; Alonso and Maldonado,
1990). Consequently, L1, L2, and L3 are all interpreted as turbidites.

Facies M probably results from slow hemipelagic settling of fine-
grained particles derived from various sources such as low-density tur-
bid flows, sediment plumes following the pycnocline and transported
by geostrophic flows, and biogenic productivity. Intense bioturbation
indicates low deposition rates and sufficient time to allow infauna to
completely mix seafloor sediments. The low carbonate and organic
matter content of these sediments indicates well-oxygenated bottom-
water conditions and deposition below the carbonate compensation
depth. IRD is a more conspicuous component of Facies M than Facies
L1 to L3. This may be attributed either to a reduction in the rate of sup-
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ply of fine-grained sediment relative to the influx of IRD or to an in-
crease in the flux of IRD.

The massive diamict beds at the top of Unit II are interbedded with
laminated sediments. They may record episodes of enhanced deposi-
tion of debris from floating ice relative to background deposition of
mud, or they may have originated as debris flows produced by the local
resedimentation and mixing of IRD and silty clay.

The stratigraphic distribution of Facies L1, L2, and L3 shows some
long-term trends, both coarsening-upward (L1 → L2 → L3; e.g., 160–
120 m and 300–200 m) (Fig. F2) and fining-upward cycles. Facies L1 in-
dicates higher-energy conditions or a more proximal setting to the sedi-
ment source (continental margin or local channel). Those parts of a
cycle dominated by more fine-grained TD–E turbidites record a more dis-
tal setting. Provisionally, first-order cycles of several tens of meters can
be interpreted as recording long-term (0.5–1.5 m.y.) phases of enhanced
sediment deposition, reflecting sediment supply trends and changing
position and dimensions of feeder channels or lobes along the margin
of the Antarctic Peninsula.

Ice-Rafted Debris

IRD is a ubiquitous component of Units I and II and locally a sub-
stantial part of the flux of terrigenous sediment to the site (see also
Cowan, Chap. 10, this volume; Hassler and Cowan, Chap. 11, this vol-
ume). It occurs as scattered sand grains and granules, as isolated peb-
bles, and as lenses of granules and sand. IRD lithologies include
volcanic (rhyolite and basalt), volcaniclastic, plutonic (granite and gra-
nodiorite), and low-grade metavolcanic rocks, which can be matched to
Antarctic Peninsula sources (Hassler and Cowan, Chap. 11, this vol-
ume).

Scattered sand grains and granules are common in Unit I from 2
mbsf downward. Pebbles up to 5 cm in diameter include a variety of
volcanic and acid to intermediate plutonic rocks, with rare, low-grade
metasedimentary rocks. Most pebbles are subrounded to subangular,
the largest being rounded. In general, the number of ice-rafted pebbles
(>0.5 cm diameter) in Unit II fluctuates but remains high until 205
mbsf. Most of these cores contain sand and granules and from one to
three pebbles. From 205 to 426 mbsf, cores contain sand, granules, and
low numbers of pebbles. Granite and basalt were the only pebble lithol-
ogies described from this 221-m-thick interval.

LONG-TERM TRENDS IN DIATOM
AND SAND ABUNDANCE

Figure F3A shows the proportion of biogenic silica (mainly diatoms)
in the upper 300 m of Site 1095. There are some clear long-term trends.
Diatoms form 10%–15% of the upper Miocene sediment, increasing in
the Pliocene, and peaking in abundance at ~4.3 Ma. There was a slow
decline in abundance and preservation through the later Pliocene, to
barren sediments in the early Pleistocene. In the upper 50 m of section
(0–1.4 Ma), diatoms are cyclically common. These trends match well
with the data on percentage of opal measured by Hillenbrand and
Fütterer (Chap. 23, this volume), except that the chemical technique
for determination of opal tends to leach silica from clay-rich sediments.
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Thus, Hillenbrand and Fütterer report ~5% of opal in samples that ap-
pear from smear slide analysis to be barren of diatoms.

Figure F3B shows the proportion of sand (see also Wolf-Welling et al.,
Chap. 15, this volume). The spikiness of these data reflects the sam-
pling of meter-scale lithologic cycles; the massive, bioturbated, hemipe-
lagic part of each cycle tends to be sandy and the laminated, turbiditic
part sand free (assuming laminated turbidite sands were not sampled)
(Shipboard Scientific Party, 1999). From 7 to 1.1 Ma the low values are
near zero, whereas the high values decrease from 25% at 6.5 Ma to ~5%
at 4 Ma, then increase again. From 1.1 to 0 Ma the low values are 3%–
4% and the peaks are up to 16%.

Figure F4 shows fine fraction particle size distribution. All the sam-
ples are fine grained, with generally 60%–75% clay (finer than 4 µm).
Unit I (Pleistocene) is the most clay-rich part of the section; the upper
part of Unit II is siltier and has a coarser median diameter (Fig. F4B).
Median diameter averages 9.7 � in the Pliocene and upper Miocene.
Modal diameter (Fig. F4C) averages 8 � in the upper part of the section;
silt modes in the medium–coarse silt range are present in some Pliocene
and Miocene samples. Sorting is poor to very poor and most samples
are fine skewed (Fig. F4D, F4E).

SHORT-TERM “CYCLES”

Many parts of the recovered section show approximately orbital-
scale cyclicity in texture, composition, and physical properties. Selected
intervals will be described from the top down, from Quaternary to up-
per Miocene.

Late Quaternary (0–0.4 Ma)

Marine isotope Stages 1–11 were identified in the upper 9 m of Holes
1095A and 1095D on the basis of lithologic description and the occur-
rence of the diatom Hemidiscus karstenii and the radiolarian Stylatractus
universus. The lithologic cyclicity observed down to Stage 7 by Pudsey
(2000) and O’Cofaigh et al. (in press) in piston cores from the other
drifts, and by Lucchi et al (in press) in distal cores from Drift 7 contin-
ues in diatom percentage and silt/clay ratio down to Stage 11 (Fig. F5).
Interglacials are browner in color, have lower magnetic susceptibility,
and are diatom bearing, bioturbated, and sandy. Glacials are gray and
almost barren of diatoms and have higher and more variable magnetic
susceptibility. Glacial Stages 2–4 and the upper part of Stage 6 are lami-
nated, but below Stage 7 both glacials and interglacials are bioturbated
and contain a few percent unsorted sand (Fig. F5). Very little biogenic
carbonate in the form of foraminifers or calcareous nannofossils is
present at Site 1095. This contrasts with shallower sites on the drifts
where carbonate contents reach 10%–15% in the upper part of Stages 5
and 7 (Pudsey, 2000).

Late Pliocene (2–3 Ma)

This interval consists of alternating thin bioturbated units and
thicker laminated units (Fig. F6). Bioturbated units contain 3%–20% of
unsorted sand, whereas laminated units contain 0.6% or less of well-
sorted very fine sand (possibly some turbidites were inadvertently sam-
pled). Silt laminae are sharp based and graded and vary in thickness

F4. Fine fraction particle size distri-
bution for the upper 300 m of Site 
1095, p. 18.
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from <1 mm up to 5 cm (most are <1 cm). Thickness and abundance
variations in silt laminae have not been studied in detail. There is a
gradual downcore increase in diatom percentage, but detailed data on
Core 178-1095A-10H show diatom percentage is not related to the alter-
nation of sedimentary structures (Fig. F6). There is no obvious differ-
ence in diatom preservation between the bioturbated and laminated
facies.

The grain-size data in Figure F6 show the bioturbated samples are
sandy but deficient in coarse silt (histogram at 79.14 mbsf).  Laminated
samples, even from the fine-grained tops of turbidites, have a mode in
the medium to coarse silt range (histogram at 79.81 mbsf). There is thus
considerably more silt but less sand in the laminated facies, and the
bioturbated facies cannot be derived simply from mixing of the lami-
nated facies. This implies very marked changes in sediment supply.

The difference between the “obvious wiggles” and the results from
spectral analysis of the data is discussed below.

Early Pliocene (3.7–4.3 Ma)

This interval also consists of alternating bioturbated and laminated
units, but without evident (to the human eye) regular periodicity in
sediment type or physical properties (Fig. F7). Bioturbated units contain
2%–5% of unsorted sand, whereas laminated units contain 0%–0.2% of
well-sorted very fine sand. Silt laminae vary in thickness from 2 mm to
1 cm; they have very sharp bases and sharp tops, that is, they do not
grade smoothly into the overlying mud. Most are very dark gray,
though very thin light gray silts occur from 110 to 110.4 and from
127.4 to 127.9 mbsf. There is a gradual downcore increase in diatom
percentage, which is apparently unrelated to the alternation of sedi-
mentary structures, with no obvious difference in diatom preservation
between the facies.

Grain-size data show that muds in the laminated facies have a silt
mode at ~6 φ (histogram at 116.51 mbsf) (Fig. F7). Muds in the biotur-
bated facies contain much more clay than in the laminated facies, in
addition to the small admixture of sand.

Late Miocene (6.2–6.4 Ma)

This part of the section sees a return to cyclicity in biogenic content,
with greener bioturbated units (containing up to 50% diatoms and 11%
unsorted sand) alternating with grayer laminated units (7%–12% dia-
toms and 0%–0.2% sand) (Fig. F8). This cyclicity is well shown in color
reflectance but is less clear in magnetic susceptibility. Note also that not
all the sandy parts of the cycles are diatom rich (e.g., 239.7 mbsf).
Grain-size analysis reveals a mode near the silt/clay boundary in the
bioturbated samples and a weak mode in the medium silt range in the
laminated samples (histograms in Fig. F8). One sample at 239.68 mbsf
in a laminated (Facies L1) unit contains 11.3% of well-sorted very fine
sand, exemplifying the difference between turbiditic and hemipelagic/
ice-rafted facies.

The lithologic “cyclicity” is far from regular from 235 to 300 mbsf.
Sandy, green, bioturbated intervals typically 0.3–1.0 m thick are inter-
bedded with gray laminated intervals 0.5–5.0 m thick. Using the mag-
netostratigraphic timescale of Shipboard Scientific Party (1999), “cycle”
length ranges from ~20 to 110 k.y.
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DISCUSSION

Oceanography

Sea Ice and Sea-Surface Temperature

In the upper Quaternary, there are diatoms in the interglacial sam-
ples, implying seasonally open water, whereas the barren glacials proba-
bly indicate near-permanent sea-ice cover, perhaps with intermittent
polynyas (Pudsey, 2000).

In the Pliocene, diatom abundance reached a maximum at ~4.3 Ma,
which is consistent with the warm period in the Southern Ocean in-
ferred by Hodell and Warnke (1991) and Bohaty and Harwood (1998).
Diatoms occur throughout the cycles, suggesting that there was at least
seasonally open water through glacials and interglacials. Glacial sea ice
was likely of much shorter seasonal extent than in the Quaternary
(Hillenbrand and Fütterer, Chap. 23, this volume). There is no evidence
for anoxia, so in order to suppress bioturbation, the laminated units
must have been much more rapidly deposited. This could mean deposi-
tion of each turbidite during only hours to days, with relatively long in-
tervals between turbidity currents.

In the Miocene, generally lower diatom content in the laminated
sediments, coupled with high sedimentation rates, suggests that diatom
productivity was maintained throughout the cycles but that biogenic
silica was diluted at the site by high terrigenous input of laminated sed-
iment. Lower fine-grained terrigenous input during deposition of the
bioturbated units increased the concentration of diatoms and ice-rafted
sand as well as allowed thorough mixing of the sediment by burrowing
organisms.

Bottom Currents

The fine grain size measured throughout the section down to the up-
per Miocene (Fig. F4) suggests that bottom currents have remained pre-
dominantly weak throughout deposition. Even the relatively sandy
samples contain a considerable proportion of clay. The silts interpreted
as contourites are very thin (usually 1–2 mm) (Shipboard Scientific
Party, 1999) and do not have erosive bases. This implies that currents
strong enough to winnow clay-size particles and deposit only silt did
not persist for very long. Median grain sizes in the range of 8–11 φ (4–
0.5 µm) and modes clustering around 8 φ are consistent with bottom
currents comparable to the average 6 cm/s measured at mooring sites
on Drift 7 (Camerlenghi et al., 1997). Silt modes around 6 φ (Fig. F4C)
were measured in samples that included a turbiditic component.

Continental Glaciation

IRD Supply

Poorly sorted or unsorted sand interpreted as ice rafted is present
throughout the section, mainly in the bioturbated facies (Fig. F4).
Hassler and Cowan (Chap. 11, this volume) examined over 300 gravel
clasts from Sites 1096 and 1101 as well as Site 1095 and were able to
match all lithologies to Antarctic Peninsula source rocks. This is rele-
vant to the possibility suggested by Webb and Harwood (1991) that
during the early Pliocene the West Antarctic Ice Sheet (including the ice
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sheet on the Antarctic Peninsula) may have disappeared completely. If
this were the case and glacier ice no longer reached the coast, the sup-
ply of IRD to Site 1095 would have ceased, except perhaps for very rare
clasts from distant sources in East Antarctica. It is not impossible that
the ice sheet may have been very much smaller during “interglacial”
parts of the depositional cycles (cf. Hall et al., 1997), but there must
have been a source of sediment-laden ice not far from Site 1095 to ac-
count for the continued presence of IRD.

Fine Terrigenous Supply

The model for late Quaternary deposition on Drift 7 shows a
grounded ice sheet extending to the shelf edge during glacial periods
(Larter and Barker, 1991; Pudsey and Camerlenghi, 1998). The ice sheet
transports sediment to the upper slope, which is very steep in this re-
gion (>10°) (Rebesco et al., 1998). Here it accumulates for only short pe-
riods before mass-flow processes transport it into deeper water. During
interglacials the ice margin is at or near the present-day coast and most
glacial sediment remains on the shelf. The geometry of seismic reflec-
tors beneath the shelf and slope has been interpreted to result from
similar alternating positions of the ice margin in the past (Larter et al.,
1997).

According to this model, the alternation of bioturbated, sandy facies
and laminated, silty facies downcore at Site 1095 could simply repre-
sent alternating interglacial and glacial conditions. If this were the case
one might expect a reasonably regular cyclicity with prominent orbital
periods of 19/23, 41, and 100 k.y. However, real continental margin
sediments probably do not respond in a linear way to climate forcings
(see below). The persistence of cyclically alternating facies throughout
lithologic Units I and II supports the seismic interpretation of alternat-
ing positions of the ice margin. Only in Unit III does the more uniform
style of sedimentation (laminated claystone without sandy or biotur-
bated intervals) suggest the nature of glaciation may have been differ-
ent.

Orbitally Controlled vs. Autocyclic Processes

The rather curious results from the MATLAB spectral analysis may be
attributed to a less-than-ideal input function. Even if growth and decay
of the Antarctic Peninsula ice sheet had been smooth and cyclic (a
questionable assumption), terrigenous sediment supply to the conti-
nental rise would have increased sharply each time the ice sheet ad-
vanced to the shelf edge and, conversely, decreased each time ice
retreated back over the shelf. The high sedimentation rate glacials and
low sedimentation rate interglacials therefore cannot match the age
model used in the frequency analysis, which is linear between paleo-
magnetic datum points. The simple, visual technique of counting peaks
and troughs in physical properties (corresponding approximately to
glacial–interglacial cycles) is actually more useful for these sediments
than is a rigorous spectral analysis.

A likely complicating factor is differing amplitudes of cycles at differ-
ent times in the past because of changing phase relationships in the
precession, obliquity, and eccentricity forcings. During some glacials
the ice sheet might not have reached the shelf edge at all or have re-
mained there for only a short time; conversely, some interglacials might
scarcely have allowed time for meltback to the coast before the next ice
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advance. This could account for cycles of regular spacing but differing
thickness of the bioturbated and laminated parts of the cycles, for ex-
ample, the color cycles in Figure F6. Changes in sediment supply in the
late Pliocene apparently included suppression of the turbidite source,
leading to the accumulation of bioturbated, sandy sediment once every
~160 k.y. (Fig. F6), plus a change in the source or concentration of mag-
netic mineral grains approximately every 100 k.y. (magnetic susceptibil-
ity cycles in Fig. F6). In the upper Pliocene this cyclicity is not present.

At Site 1095, which is near the distal edge of Drift 7 and has been in-
fluenced by turbidity currents flowing through the adjacent channel,
processes intrinsic to a submarine channel-lobe system may also have
resulted in alternation of dominantly turbiditic (laminated and rapidly
deposited) and hemipelagic (bioturbated, containing IRD, and slowly
deposited) facies, independent of climate forcing. On continental mar-
gins in low and mid-latitudes, seismic and core studies have docu-
mented channel avulsion with associated lobe progradation or
abandonment, and these processes have commonly been inferred in
ancient sedimentary successions (review by Bouma et al., 1989). Al-
though a degree of climatic control on continental rise sedimentation is
to be expected (e.g., sea level change, particularly in the Neogene), local
sediment supply related to drainage basin geology and tectonic uplift
may mask any orbital cyclicity.

CONCLUSIONS

1. The diatom content of the sediments suggests sea ice was only a
significant limitation on productivity during the Pleistocene (1.5
Ma to present).

2. Fine grain size implies weak bottom currents throughout (7 Ma
to present).

3. Presence of IRD throughout implies the Antarctic Peninsula was
not deglaciated for any significant period during the “warm
Pliocene.”

4. Intermittent supply of fine terrigenous sediment to the rise is
consistent with the depositional model showing the ice sheet
grounded to the shelf edge during glacials.

5. Processes related to submarine channel switching and lobe pro-
gradation during parts of the early Pliocene and Miocene may
have masked climatic control on deposition at this distal site.

Some answers may be offered to the questions listed in the “Introduc-
tion,” p. 2.

1. The present depositional system is a partial analog for the older
depositional environment. There is no evidence for glacial–
interglacial cyclicity in sea-ice cover prior to 1.5 Ma. Bottom cur-
rents no stronger than those measured today are likely to have
prevailed for at least the last 7 m.y. The cyclic provision of glacial
sediment to the shelf edge did occur, but not usually at the 100-
k.y. period which prevailed in the late Quaternary.

2. Deposition was cyclic at least down to 300 mbsf (7 Ma), though
this does not include the “lower part of the drift section”; the
sediments studied here are all within the “drift-maintenance
stage” of Rebesco et al. (1997). Cycle frequencies are 100 k.y. in
part of the upper Pliocene but elsewhere are shorter and irregu-
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lar. This may reflect sedimentation processes intrinsic to the
shelf-slope rise depositional system, rather than purely orbital/
climatic control.

3. The onset of the present stage of continental glaciation has not
been recognized in the upper 300 m of Site 1095. It is possible
the boundary between lithologic Units II and III at 436 mbsf
(Shipboard Scientific Party, 1999) may represent such a change,
but this is beyond the scope of the present study.
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Figure F1. Location map of Site 1095 on the continental rise.
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Figure F2. Schematic lithostratigraphy of Site 1095 showing lithologic Units I and II, main bioturbated in-
tervals (black), and distribution of laminated (mainly turbidite) Facies L1, L2, and L3. Horizontal lines in-
dicate occurrence of silt laminae, which can form as much as 10% of the section (e.g., 70–80 and 220–235
mbsf). Curved arrows show broad trends in frequency of sand and silt laminations and facies types, which
are attributed to long-term “first-order” cycles in Unit II. Shorter-term, “second-order” cycles, interpreted
as glacial–interglacial cycles, are defined top and bottom by intensely bioturbated intervals. These climati-
cally driven cycles are superimposed on the long-term cycles.
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Figure F3. A. Biogenic silica percentage for the upper 300 m of Site 1095. Inset boxes show parts of the sec-
tion illustrated in more detail in F5, p. 19, F6, p. 21, F7, p. 23, and F8, p. 25. B. Sand percentage for the
upper 300 m of Site 1095.
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Figure F5. Late Quaternary, 0–0.4 Ma (0–10 mbsf). The core log at the left shows the occurrence of biotur-
bated and laminated intervals. Warm isotope stages are delineated using the presence of diatoms, supple-
mented by the occurrence of the diatom Hemidiscus karstenii at 4.6 mbsf (Stage 7; Shipboard Scientific Party,
1999) and the radiolarian Stylatractus universus at 7.84 mbsf (Stage 11; this work). Magnetic susceptibility is
low in Stages 5, 7, and 9 and higher and more variable in Stages 2–4, 6, and 10 downward. Color parameter
a* is higher in the brown intervals of Stages 5, 7, and the upper part of 9.

The grain-size pattern is less obviously cyclic at this distal site with a low sedimentation rate than at core
sites higher on the drift (Pudsey and Camerlenghi, 1998). Most samples have a weak mode near the silt/
clay boundary of 4 µm (8 φ). Glacial samples consistently have less coarse silt than interglacial samples
(compare histograms at 0.9 and 4.49 mbsf). The three sand histograms at 2.29 mbsf (Stage 2), 4.59 mbsf
(Stage 7), and 4.94 mbsf (Stage 8) show that coarse, unsorted sand occurs in glacials as well as interglacials.

Spectral analysis, shown in the lower panel, reveals weak peaks of power spectral density at 73, 9.6, and 5.2
ka in magnetic susceptibility and 50.6 ka in chromaticity a*. The units of power spectral density are for col-
or, (chromaticity)2 per cycle per 0.1 m, and for magnetic susceptibility, (SI units)2 per cycle per 0.1 m. (Fig-
ure shown on next page.)
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Figure F5 (continued). (Caption shown on previous page).
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Figure F6. Late Pliocene, 2–3 Ma (65–85 mbsf). The core log at the left shows the occurrence of bioturbated
and laminated intervals. Inclined bedding from 81.7 to 82.4 mbsf may result from slumping. Magnetic sus-
ceptibility shows, to the human eye, cyclicity at approximately a 100-k.y. period (11 peaks in 1.1 m.y.;
peaks and troughs marked by black and gray curve symbols). Color parameter a* shows 7 peaks in 1.1 m.y.,
with troughs of varying thickness (blue curve symbols). This corresponds to a period of 160 k.y. Bioturbated
units occur at the top of each trough; they constitute the whole of the thin troughs at 74.8 and 77 mbsf.
The color cycles do not show a consistent phase relationship to magnetic susceptibility.

Spectral analysis, shown in the middle panel, reveals peaks of power spectral density at 74, 35, 19, 12.3,
and 5.8 ka in magnetic susceptibility and 221 and 17.2 ka in color parameter a*.

The lower part of diagram shows part of Core 178-1095A-10H demonstrating relationship of diatom per-
centage and grain size to bioturbated and laminated facies, with representative grain-size frequency histo-
grams. (Figure shown on next page.)
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Figure 6 (continued). (Caption shown on previous page).
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Figure F7. Early Pliocene, 3.7–4.3 Ma (105–130 mbsf). The core log at the left shows the occurrence of bio-
turbated and laminated intervals. Magnetic susceptibility and color (a*) both have lower values in the bio-
turbated intervals (bioturbated intervals are greener and laminated intervals grayer). Intervals containing
lighter-colored silts at 110–110.4 and 127–127.9 mbsf have low susceptibility. Fine fraction size distribu-
tions from the laminated facies typically have a mode in the silt range (histogram at 116.51 mbsf). The bio-
turbated facies contains poorly sorted sand and very little silt (histograms at 118.34 mbsf).

Spectral analysis, shown in the lower panel, reveals weak peaks of power spectral density at 63.5, 19, 5.6,
and 4.0 ka in magnetic susceptibility and 140, 12.5, 7.3, and 6.2 ka in chromaticity a*. (Figure shown on
next page.)



C.J. PUDSEY
NEOGENE GLACIATION RECORD 24
Figure 7 (continued). (Caption shown on previous page).
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