Polarity chron/ subchron	Reversal type	Age (Ma)	Range (mbsf)	Best estimate (mbsf)	Best estimate core, section, interval (cm)	Measurement type	Range (mbsf)	Best estimate (mbsf)	Best estimate core, section, interval (cm)	Measurement type
					178-				178-	
0	N	0.000	0.00-0.00		Mudline					
C1n (o)	R→N	0.780	17.12-17.36	17.24	1095A-3H-6, 46	U-channel				
$C1r_1n_{(t)}$	N→R	0.990	19.23-19.27	19.25	1095A-3H-8 26	U-channel				
$C1r_1n_0$	R→N	1.070	19.59-19.65	19.62	1095A-3H-8 63	U-channel				
$C1r_2r_1n_1(t)$	N→R	1.201	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17102	Not identified	o chunnel				
C1r.2r-1n (t)	R→N	1.211			Not identified					
C2n(t)	N→R	1.770	38.12-38.16	38.14	1095A-5H-6, 34	Split-core				
C2n(o)	R→N	1.950	41.20-41.38	41.29	1095A-6H-1, 149	Split-core				
C2r.1n(t)	N→R	2.140			Not identified	-1				
C2r.1n(0)	R→N	2.150			Not identified					
$C_{2r,2r-1}(t)$	Excursion	2,420			Not identified					
$C2r_2r_1$ (0)	Excursion	2.441			Not identified					
C2An.1n (t)	N→R	2.581	58.82-61.96		Between 1095A-7H and 8H	Split-core				
C2An.1n (o)	R→N	3.040	79.20-79.38	79.29	Between 1095A-10H-1 and 10H-2	Split-core				
C2An.2n (t)	N→R	3.110	79.46-79.58	79.52	1095A-10H-2, 22	Split-core				
C2An.2n (o)	R→N	3.220	81.36-82.46	81.91	Between 1095A-10H-3, 56, and 10H-4, 16	Split-core				
C2An.3n (t)	N→R	3.330	86.10-86.14	86.12	1095A-10H-6, 82	Split-core	88.66-88.70	88.68	1095B-1H-4, 118	Split-core
C2An.3n (o)	R→N	3.580					96.90-105.08	100.99	Between 1095B-2H-3, 140, and 3H-3, 8	Split-core
C3n.1 n (t)	N→R	4.180					126.18-126.22	126.20	1095B-5H-4, 70	U-channel
C3n.1n (o)	R→N	4.290					134.94-135.06	135.00	Between 1095B-6H-3, 144, and 6H-4, 6	U-channel
C3n.1n-1 (t)	N→R	?					136.08-136.56	136.32	1095B-6H-4, 132	U-channel
C3n.1n-1 (o)	R→N	?					136.80-136.84	136.82	1095B-6H-5, 32	U-channel
C3n.2n (t)	N→R	4.480					139.60-142.43	141.02	Between 1095B-6H and 7H	Split-core
C3n.2n (o)	R→N	4.620					148.43-148.51	148.47	1095B-7H-6, 100	Split-core
C3n.3n (t)	N→R	4.800					149.53-151.08	150.31	Between 1095B-7H and 8H	Split-core
C3n.3n (o)	R→N	4.890					152.20-152.24	152.22	1095B-8H-2, 122	Split-core
C3n.4n (t)	N→R	4.980					158.40-164.22	161.31	1095B-9H-2, 81	Split-core
C3n.4n (o)	R→N	5.230					177.32-178.40	177.86	Between 1095B-10H and 11H	Split-core
C3r-1 (t)	N→R	?					195.20-195.12	195.16	1095B-12H-6, 16	Split-core
C3r-1 (o)	R→N	?					196.82-197.50	197.16	Between 1095B-12H and 13H	Split-core
C3An.1n (t)	N→R	5.894					210.09-210.17	210.13	1095B-14X-4, 68	Split-core
C3An.1n (o)	R→N	6.137					217.60-224.38	224.30	Between 1095B-15X and 16X	Split-core
C3An.2n (t)	N→R	6.269					239.44-239.48	239.46	1095B-17X-4, 106	Split-core
C3An.2n (o)	R→N	6.567					252.82-262.78	257.80	Between 1095B-18X and 20X	Split-core
C3Bn (t)	N→R	6.935					292.02-292.06	292.04	1095B-23X-1, 34	Split-core
C3Bn (o)	R→N	7.091					302.30-302.34	302.32	1095B-24X-1, 102	Split-core
C3Br.1n (t)	N→R	7.135							Not identified	
C3Br.1n (o)	R→N	7.170							Not identified	
C3Br.2n (t)	N→R	7.341							Not identified	
C3Br.2n (o)	R→N	7.375							Not identified	
C4n.1n (t)	N→R	7.432					321.84-322.62	322.23	1095B-26X-2, 13	Split-core
C4n.1n (o)	R→N	7.562					325.78-325.82	325.80	1095B-26X-4, 70	Split-core
C4n.2n (t)	N→R	7.650					331.04-332.18	331.61	1095B-27X-1, 141	Split-core
C4n.2n (o)	R→N	8.072					356.02-356.06	356.04	1095B-29X-5, 54	Split-core
C4r.1n (t)	N→R	8.225								Split-core
C4r.1n (o)	R→N	8.257								Split-core
C4r.2r-1 (t)	N→R	8.635					399.84–399.88	399.86	1095B-34X-2, 106	Split-core

Table T1. Magnetostratigraphy, Site 1095. (See table notes. Continued on next three pages.)

Table T1 (continued).

				Best				Best	Sedimentation	
Polarity chron/ subchron	Reversal type	Age (Ma)	Range (mbsf)	estimate (mbsf)	Best estimate core, section, interval (cm)	Measurement type	Range (mcd)	estimate (mcd)	rate (m/m.y)	Comment
					178-					
0	N	0.000	0.00-0.00	0	Mudline		0.00-0.00	0.00		(1)
C1n (o)	R→N	0.780	17.96-18.22	18.09	Between 1095D-2H and 3H	U-channel	15.92-16.16	16.04	20.56	Hole 1095A preferred*
C1r.1n (t)	N→R	0.990	20.08-20.10	20.09	1095D-3H-2, 49	U-channel	18.05-18.27	18.16	10.10	Hole 1095A preferred [†]
C1r.1n (o)	R→N	1.070	20.60-21.92	21.26	1095D-3H-3, 16	U-channel	18.42-20.00	19.21	13.13	Hole 1095D preferred [†]
C1r.2r-1n (t)	N→R	1.201			Not identified					Not identified
C1r.2r-1n (t)	R→N	1.211			Not identified					Not identified
C2n (t)	N→R	1.770	40.00-40.18	40.09	1095D-5H-2, 149	Split-core	34.66-34.70	34.68	18.83	(2) Hole 1095A preferred
C2n (o)	R→N	1.950	41.72-42.56	42.14	1095D-5H-4, 54	Split-core	37.24-37.42	37.33	14.72	(2) Hole 1095D preferred
C2r.1n (t)	N→R	2.140	45.12-46.68	46.60	Between 1095D-5H and 6H	Split-core	39.88-41.92	41.84	23.74	(3)†
C2r.1n (o)	R→N	2.150	47.08-47.16	47.12	1095D-6H-1, 52	Split-core	42.32-42.40	42.36	52.00	(3)†
C2r.2r-1 (t)	Excursion	2.420			Not identified					Not identified
C2r.2r-1 (o)	Excursion	2.441			Not identified					Not identified
C2An.1n(t)	N→R	2.581	58.84-58.92	58.88	1095D-7H-2, 128	Split-core	55.04-55.12	55.08	28.13	(4) Hole 1095D preferred*
C2An.1n(0)	R→N	3.040	81.94-81.98	81.96	1095D-9H-5, 86	Split-core	77.64-77.68	77.66	49.19	(5) [†]
C2An.2n (t)	N→R	3,110	82.18-82.26	82.22	1095D-9H-5, 112	Split-core	77.92-77.98	77.95	4.14	(5, 6)†
$C_{2An}^{2n}(0)$	R→N	3 220	84 46-84 50	84 48	1095D-9H-7 38	Split-core	80 16-80 20	80.18	20.27	(7) Hole 1095D preferred [†]
$C_{2An}^{2An} 3n(t)$	N→R	3 330	01.10 01.50	01.10	10/32 /11/, 30	spirecore	84 52-84 60	84 56	39.36	(8)
$C_{2\Delta n} 3n (0)$		3 580					91 40-99 58	95 49	43 72	(0) [‡]
C3n 1 n (t)		4 180					120 68-120 72	120.70	42.02	+
$C3n \ln (n)$		1 200					120.00-120.72	120.70	80.00	+ *
$C3n 1n_1(t)$		ч.270 2					130 58-131 60	127.50	00.00	(10)
$C_{3n} 1n_{-1} (0)$		2					131 30-131 34	131.02		(10)
$C_{3n}^{2n}(t)$: 1 180					135 10-136 93	136.02	3/ 20	+
$C_{2n}^{2n}(t)$		4.400					142 02 142 01	142.02	10.68	+ *
$C_{2n}^{2n} (0)$		4.020					142.93-143.01	142.97	49.00	(11)
C_{2n}^{2n} C_{2n}^{2n} C_{2n}^{2n}		4.000					144.03-143.30	144.01	21.28	(11)
$C_{2n}^{(1)}(0)$		4.090					140.70-140.74	155.91	101.00	(11)
$C_{2n}^{(1)}(t)$		5 220					171 92 172 00	172.24	66.20	+
$C_{2r} = 1 (+)$	K → IN NL \ D	3.230					1/1.02-1/2.90	1/2.30	00.20	+ (12)
$C_{2} = 1$ (c)	IN→K D \ N	? 2					109.02-109.70	109.00		(13)
C3(-1, 0)	K→IN	؛ د ۵۵۸					191.32-192.00	191.00	49.70	(13)
CSAN.TR(t)	IN→K	5.694					204.39-204.67	204.03	46.60	(1.4)†
$C_{2Am} 2m (h)$	K→IN	0.13/					212.10-218.88	∠10.8U	30.31	(14) [*]
$C_{2Am} 2m (t)$	IN→K D \ N'	6.269					233.94-233.98	∠33.96 252.20	114.85	+ -
C3Rn.2n (0)	K→IN	0.36/					247.32-257.28	252.30	01.54	+ -
C3Bn (t)	IN→K	6.935					286.52-286.56	286.54	93.04	‡ •
C3BN (0)	K→N	7.091					296.80-296.84	296.82	65.90	
C3Br. In (t)	N→R	/.135								Not identified
C3Br. In (o)	K→N	7.170								Not identified
C3Br.2n (t)	N→R	7.341								Not identified
C3Br.2n (o)	R→N	7.375								Not identified
C4n.1n (t)	N→R	7.432					316.34-317.12	316.73	58.39	‡
C4n.1n (o)	R→N	7.562					320.28-320.32	320.30	27.46	\$
C4n.2n (t)	N→R	7.650					325.54-326.68	326.11	66.02	‡
C4n.2n (o)	R→N	8.072					350.52-350.56	350.54	57.89	‡
C4r.1n (t)	N→R	8.225								(15)
C4r.1n (o)	R→N	8.257								(15)
C4r.2r-1 (t)	N→R	8.635					394.34-394.38	394.36		(16) [‡]

Table T1 (continued).

Polarity chron/ subchron	Reversal type	Age (Ma)	Range (mbsf)	Best estimate (mbsf)	Best estimate core, section, interval (cm)	Measurement type	Range (mbsf)	Best estimate (mbsf)	Best estimate hole, core, section, interval (cm)	Measurement type
C4r.2r-1 (o)	R→N	8.651					404.81-404.88	404.85	1095B-34X-6, 5	Discrete/Split-core
C4An (t)	N→R	8.699					411.70-411.74	411.72	1095B-35X-4, 62	Split-core
C4An (o)	R→N	9.025					445.98-446.02	446.00	1095B-39X-1, 90	Split-core
C4Ar.1n (t)	N→R	9.230					460.70-461.04	460.87	1095B-40X-5, 7	Split-core
C4Ar.1n (o)	R→N	9.308					485.40-485.65	485.53	Between 1095B-43X-2 and 43X-CC	Split-core
C4Ar.2n (t)	N→R	9.580					504.74-522.88	520.50	Between 1095B-46X-2 and 48X-1	Split-core

Notes: Ages for chrons are from Cande and Kent (1995). (o) = onset, (t) = termination of a polarity chron. $N \rightarrow R = a$ reversal where the polarity of the field changed from normal to reversed, $R \rightarrow N = a$ reversal where the polarity of the field changed from reversed to normal. * = the reversal boundary is the same as identified by Shipboard Scientific Party (1999a), but the location of the boundary has been adjusted slightly. \dagger = identification of chron and reversal boundaries is speculative; therefore, these reversal boundaries are not used in the sedimentation rate plots. ‡ = the reversal boundary is identical to that given by Shipboard Scientific Party (1999a). Comments: (1) = depth to mudline in mbsf agrees to within 2 cm for the first core from Holes 1095A, 1095B, and 1095C. (2) = our interpretation places Chron C2n ~20 m higher in the section than that by Shipboard Scientific Party (1999a). (3) = the polarity subzone interpreted to represent Subchron C2r.1n is speculative. Rather than a geomagnetic origin, the subzone could be caused by coring disturbance at the top of Core 178-1095D-6H. We place the C2r.1n (t) reversal at the very top of Core 178-1095D-6H. This subchron was thought to be lost in a hiatus based on the interpretation of Shipboard Scientific Party (1999a). (4) = this reversal was interpreted to represent C2n (t) by Shipboard Scientific Party (1999a) and was thought to occur above a hiatus that removed reversals C2n (o) to C2An.1n (t). (5) = placing Subchron C2An.1n (o) at this locality produces a subchron (C2An.1r) that is short, with resulting sedimentation rates exceptionally slow relative to sedimentation rates above and below. (6) = average mcd depth taken from the best estimates from Holes 1095A and 1095D, which are 77.98 and 77.92 mcd. (7) = this reversal could be C2An.1n (o) instead of C2An.2n (o), in which case no Subchron C2An.2n appears to be recorded. (8) = average mcd depth taken from the best estimates for Holes 1095A and 1095B, which are 84.58 and 85.54 mcd. (9) = the reversal occurs within an interval that has some drilling disturbance. The best estimate for the location agrees with noisy discrete data. (10) = this is possibly a newly identified cryptochron, which we refer to as C3n.1r-1. (11) = Subchron C3n.3n was not previously identified by Shipboard Scientific Party (1999a). (12) = this poorly constrained reversal, C3n.4n (t), occurs somewhere within a broad zone of shallow inclinations. (13) = this is possibly a newly identified cryptochron, which we refer to as C3r-1. (14) = Subchron 3An.1n (o) is placed in the lower part of the coring gap (top of Core 178-1095B-16X) rather than the middle. (15) = reversals C4r.1n (t) and C4r.1n (o) possibly occur in a zone of shallow inclinations near 364 and 369 mcd, respectively. (16) = the transition zone for Subchron C4r.2r-1 (t) is from 393.94 to 394.48 mcd in discrete samples. This is a zone that is weakly magnetized. (17) = the transition zone for C4r.2r-1 (o) can only be limited to between Sections 178-1095B-34X-5 and 34X-6 in split-core data. (18) = the reversal C4Ar.2n (t) is arbitrarily placed near the top of Core 178-1095B-48X to better agree with logging estimate.

Table T1 (continued).

olarity chron/ subchron	Reversal type	Age (Ma)	Range (mbsf)	Best estimate (mbsf)	Best estimate hole, core, section, interval (cm)	Measurement type	Range (mcd)	Best estimate (mcd)	Sedimenation rate (m/m.y)	Comment
C4r.2r-1 (o)	R→N	8.651					399.31-399.38	399.35		(17)*
C4An (t)	N→R	8.699					406.20-406.24	406.22	88.80	‡
C4An (o)	R→N	9.025					440.48-440.52	440.50	105.15	‡
C4Ar.1n (t)	N→R	9.230					455.20-455.54	455.37	72.54	‡
C4Ar.1n (o)	R→N	9.308					479.90-480.15	480.03	316.09	
C4Ar.2n (t)	N→R	9.580					499.24-517.38	515.00	128.58	(18)