Table T1. Grain-size classes.
Midpoint (µm)
Midpoint
()
Lower
(µm)
Upper
(µm)
0.47 11.055 0.425 0.514
0.559 10.805 0.514 0.604
0.656 10.574 0.604 0.709
0.771 10.341 0.709 0.832
0.905 10.11 0.832 0.977
1.062 9.879 0.977 1.147
1.247 9.647 1.147 1.347
1.464 9.416 1.347 1.581
1.719 9.184 1.581 1.856
2.018 8.953 1.856 2.179
2.369 8.722 2.179 2.559
2.781 8.49 2.559 3.004
3.265 8.259 3.004 3.527
3.834 8.027 3.527 4.14
4.501 7.796 4.14 4.861
5.284 7.564 4.861 5.707
6.203 7.333 5.707 6.7
7.283 7.101 6.7 7.866
8.55 6.87 7.866 9.235
10.038 6.638 9.235 10.842
11.785 6.407 10.842 12.728
13.836 6.175 12.728 14.943
16.243 5.944 14.943 17.543
19.07 5.713 17.543 20.596
22.388 5.481 20.596 24.18
26.284 5.25 24.18 28.388
30.858 5.018 28.388 33.328
36.228 4.787 33.328 39.127
42.532 4.555 39.127 45.936
49.933 4.324 45.936 53.929
58.622 4.092 53.929 63.314

Notes: The size class ranges and midpoints for this study are taken directly from the analysette output files. As one reviewer noted, the midpoints are apparently calculated geometrically: class midpoint = (upper size class boundary + lower size class boundary)/2. A more sophisticated way to determine the midpoint of logarithmic spaced size class intervals would be, of course, the arithmetic mean: class midpoint = (upper size class boundary x lower size class boundary)1/2. However, we chose to use the machine output since the class spacing is small and any possible introduced error is negligible.