Huchon, P., Taylor, B., and Klaus, A. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results Volume 180

4. SUMMARY OF REVISED AGE ASSIGNMENTS FOR ODP LEG 180¹

Kyoma Takahashi,² Giuseppe Cortese,³ Gina M. Frost,⁴ Stefania Gerbaudo,⁵ Andrew M. Goodliffe,⁶ Naoto Ishikawa,⁷ Klas S. Lackschewitz,⁸ Russell C.B. Perembo,⁹ Johanna M. Resig,⁶ William G. Siesser,¹⁰ Brian Taylor,⁶ and Massimiliano Testa⁵

ABSTRACT

Based on revised and newly obtained age assignments, sediment accumulation rates and sedimentation curves were recalculated and redrawn, respectively, for Ocean Drilling Program Sites 1109, 1115, and 1118.

REVISION OF AGE ASSIGNMENTS

Several planktonic foraminifer datum points were revised by Resig et al. (in press). Similarly, slight corrections for several magnetic chron and subchron boundaries have also been made (G. Frost, pers. comm., 2000). Moreover, Lackschewitz et al. (in press) measured ⁴⁰Ar/³⁹Ar ages for fallout tephra layers and volcaniclastic deposits in the sedimentary successions at Sites 1109, 1115, and 1118. Seismic correlation between Sites 1109 and 1118 were made by **Goodliffe et al.** (this volume).

The sedimentation rates were recalculated based on the revised and newly obtained age assignments mentioned above at Sites 1109, 1115, and 1118 (Figs. F1, F2, F3, respectively). Based on these calculations, sedimentation curves were correlated between sites (Fig. F4).

Testa et al. (this volume) found several radiolarian datum levels from Holes 1108B, 1110A, 1111A, 1112A, and 1115B. Newly obtained maximum ages for select Quaternary samples from Sites 1108, 1110–1112, and 1115 are listed in Table **T1**. For each sample, the actual age may be equal to or younger than the age of the radiolarian zone indicated.

¹Takahashi, K., Cortese, G., Frost, G.M., Gerbaudo, S., Goodliffe, A.M., Ishikawa, N., Lackschewitz, K.S., Perembo, R.C.B., Resig, J.M., Siesser, W.G., Taylor, B., and Testa, M., 2001. Summary of revised age assignments for ODP Leg 180. In Huchon, P., Taylor, B., and Klaus, A. (Eds.), Proc. ODP, Sci. Results, 180, 1–13 [Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/ 180_SR/VOLUME/CHAPTERS/152.PDF>. [Cited YYYY-MM-DD] ²Interactive Research Center of Science, Tokyo Institute of Technology, Ookayama, Tokyo 152-8551, Japan. kvoma-180@ep.sci.hokudai.ac.jp ³Alfred Wegener Institute for Polar and Marine Research Columbusstrasse, PO Box 120161, 27515 Bremerhaven, Germany. ⁴Central Oregon College Science Department, 2600 Northwest College Way, Bend OR 97702, USA. ⁵Dipartimento di Scienze della Terra, Università degli Studi di Genova, Corso Europa, 26, Genova 16132, Italy. ⁶School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 2525 Correa Road, Honolulu HI 96822-2285, USA. ⁷School of Earth Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan. ⁸Universität Bremen. FB 5 Geowissenschaften, Postfach 330440, 28334 Bremen, Germany. ⁹Department of Geology, University of Papua New Guinea, Box 414, University PO, Papua New Guinea. ¹⁰Department of Geology, Vanderbilt University, Box 46 Station B, Nashville TN 37235, USA.

Initial receipt: 20 October 2000 Acceptance: 30 March 2001 Web publication: 8 August 2002 Ms 180SR-152

F4. Sedimentation curves, p. 10.

T1. Maximum possible ages based on radiolarians, p. 12.

REFERENCES

- Caulet, J.-P., Nigrini, C., and Schneider, D.A., 1993. High resolution Pliocene-Pleistocene radiolarian stratigraphy of the tropical Indian Ocean. *Mar. Micropaleontol.*, 22:111–129.
- Johnson, D.A., Schneider, D.A., Nigrini, C.A., Caulet, J.-P., and Kent, D.V., 1989. Pliocene-Pleistocene radiolarian events and magnetostratigraphic calibrations for the tropical Indian Ocean. *Mar. Micropaleontol.*, 14:33–66.
- Lackschewitz, K.S., Bogaard, P.V.D., Mertz, D.F., in press. ⁴⁰Ar/³⁹Ar ages of fallout tephra layers and volcaniclastic deposits in the sedimentary succession of the western Woodlark Basin, Papua New Guinea: The marine record of Miocene-Pleistocene volcanism. *In* Wilson, R.C.L., Whitmarsh, R.B., Taylor, B., and Froitzheim, N. (Eds.), *Non-volcanic Rifting of Continental Margins: Evidence from Land and Sea*, Geol. Soc. Spec. Publ. (London). [N1]
- Nigrini, C., 1971. Radiolarian zones in the Quaternary of the equatorial Pacific Ocean. *In* Funnell, B.M., and Riedel, W.R. (Eds.), *The Micropalaeontology of Oceans:* Cambridge (Cambridge Univ. Press), 443–461.
- Resig, J.M., Frost, G.M., Ishikawa, N., Perembo, R.C.B., in press. Micropaleontologic and paleomagnetic approaches to stratigraphic anomalies in rift basins: ODP Site 1109, Woodlark Basin. *In* Wilson, R.C.L., Whitmarsh, R.B., Taylor, B., and Froitzheim, N. (Eds.), *Non-volcanic Rifting of Continental Margins: Evidence from Land and Sea*, Geol. Soc. Spec. Publ. (London). [N2]
- Sanfilippo, A., and Nigrini, C., 1998. Code numbers for Cenozoic low latitude radiolarian biostratigraphic zones and GPTS conversion tables. *Mar. Micropaleontol.*, 33:109–156.
- Shackleton, N.J., Baldauf, J.G., Flores, J.-A., Iwai, M., Moore, T.C., Jr., Raffi, I., and Vincent, E., 1995. Biostratigraphic summary for Leg 138. *In Pisias*, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), *Proc. ODP, Sci. Results*, 138: College Station, TX (Ocean Drilling Program), 517–536.
- Shipboard Scientific Party, 1999a. Leg 180 summary. *In* Taylor, B., Huchon, P., Klaus, A., et al., *Proc. ODP, Init. Repts.*, 180, 1–77 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845-9547, U.S.A.

———, 1999b. Site 1109. *In* Taylor, B., Huchon, P., Klaus, A., et al., *Proc. ODP, Init. Repts.*, 180, 1–298 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845-9547, U.S.A.

———, 1999c. Site 1115. *In* Taylor, B., Huchon, P., Klaus, A., et al., *Proc. ODP, Init. Repts.*, 180, 1–226 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845-9547, U.S.A.

, 1999d. Site 1118. *In* Taylor, B., Huchon, P., Klaus, A., et al., *Proc. ODP, Init. Repts.*, 180, 1–213 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845-9547, U.S.A.

Figure F1. Age-depth relationship at Site 1109 based on nannofossil (squares) and planktonic foraminiferal (circles) datum levels, ⁴⁰Ar/³⁹Ar age (crosses), and magnetic chron and subchron boundaries (triangles), as a revision of fig. F63 in Shipboard Scientific Party (1999b) and paleobathymetry (right column) based on benthic foraminifers. Sediment accumulation rates are estimated in meters per million years. Revised and newly obtained age assignments are shown by red symbols. The numbers plotted near symbols correspond to numbers in the left column of the datum table. LAD = last appearance datum, FAD = first appearance datum, LCO = last common occurrence, FCO = first common occurrence, S/D = sinistral to dextral coiling change. (Figure shown on next page.)

Figure F1 (continued).

* datum level used in sedimentation rate calculation

Revised and newly obtained age assignments are expressed in bold.

Figure F2. Age-depth relationship at Site 1115 based on nannofossil (squares) and planktonic foraminiferal (circles) datum levels, ⁴⁰Ar/³⁹Ar age (crosses), and magnetic chron and subchron boundaries (triangles), as a revision of fig. F37 in Shipboard Scientific Party (1999c) and paleobathymetry (right column) based on benthic foraminifers. Sediment accumulation rates are estimated in meters per million years. Revised and newly obtained age assignments are shown by red symbols. The numbers plotted near symbols correspond to numbers in the left column of the datum table. LAD = last appearance datum, FAD = first appearance datum, LCO = last common occurrence, S/D = sinistral to dextral coiling change. (**Figure shown on next page**.)

Figure F2 (continued).

* datum level used in sedimentation rate calculation

Revised and newly obtained age assignments are expressed in bold.

** specimen with pecularities pointed out by Nigrini (1971)

Figure F3. Age-depth relationship at Site 1118 based on nannofossil (squares) and planktonic foraminiferal (circles) datum levels, ⁴⁰Ar/³⁹Ar age (crosses), magnetic chron and subchron boundaries (triangles), and seismic correlation with Site 1109 (pluses), as a revision of fig. F54 in Shipboard Scientific Party (1999d) and paleobathymetry (right column) based on benthic foraminifers. Sediment accumulation rates are estimated in meters per million years. Revised and newly obtained age assignments are shown by red symbols. The numbers plotted near the symbols correspond to numbers in the left column of the datum table. LAD = last appearance datum, FAD = first appearance datum, LCO = last common occurrence. (**Figure shown on next page**.)

Figure F3 (continued).

* datum level used in sedimentation rate calculation

Revised and newly obtained age assignments are expressed in bold.

10

Figure F4. Sedimentation curves at Sites 1115 (black line), 1109 (red line), 1118 (green line), 1108 (solid line, upper right), 1114 (dashed line, upper right), and 1116 (dotted line, upper right) based on nannofossil (squares), planktonic foraminifer (circles), and radiolarian (diamonds) datum levels, magnetic chron and subchron boundaries (triangles), ⁴⁰Ar/³⁹Ar age (crosses), seismic correlation (pluses), and lithostratigraphic correlation (stars), as a revision of fig. F10 in Shipboard Scientific Party (1999a). Symbols with arrows indicate that the actual datum points can be above or below and older or younger than indicated by the symbols. Wavy lines denote unconformities. Shown below are average sedimentation rates in meters per million years calculated for intervals separated by vertical lines and paleobathymetry based on benthic foraminifers at Sites 1115, 1109, and 1118. Broken lines indicate uncertainty in the placement of paleodepth boundaries. (**Figure shown on next page**.)

		Basal Zone Age (Ma)		Sample											
Biozones (Sanfilippo and Nigrini, 19	(Johnson et al., 1989)	(Caulet et al., 1993)	(Shackleton et al., 1995)	1108B-1R-1, 10-12 cm	1110A-1H-2, 77-79 cm	1110A-2H-1, 58-62 cm	1111A-11R-1, 44-46 cm	1111A-14R-1, 60-62 cm	1111A-14R-3, 62-64 cm	1111A-15R-1, 38-40 cm	1111A-16R-1, 5-7 cm	1112A-1R-1, 100-101 cm	1115B-1H-1, 5-7 cm	1115B-2H-4, 145-147 cm	1115B 3H-2, 58-60 cm
RN 17 - Buccinosphaera invaginata Taxon-Range Zone															
RN 16 - Collosphaera tuberosa Interval Zo	one	0.42	0.42												
RN 15 - Stylatractus universus Concurren	t Range Zone	0.47	0.61	х	х	Х	Х	Х	Х				Х		
RN 14 - Amphyropalum ypsilon Interval Zo	ne	1.10	1.12												
RN 13 - Anthocyrtidium angulare Interval Zc	ne	1.65	1.74							Х	х	х		Х	Х

 Table T1. Maximum possible ages of select samples from Sites 1108, 1110, 1111, 1112, and 1115 based on radiolarians.

CHAPTER NOTES*

- N1. 19 February 2002—Lackschewitz, K., Bogaard, P.V.D., and Mertz, D.F., 2001. ⁴⁰Ar/ ³⁹Ar ages of fallout tephra layers and volcaniclastic deposits in the sedimentary succession of the western Woodlark Basin, Papua New Guinea: the marine record of Miocene–Pleistocene volcanism. *In* Wilson, R.C.L., Whitmarsh, R.B., Taylor, B., and Froitzheim, N. (Eds.), *Non-volcanic Rifting of Continental Margins: Evidence from Land and Sea*, Spec. Publ.—Geol. Soc. London, 187:373–388.
- N2. 19 February 2002—Resig, J.M., Frost, G.M., Ishikawa, N., and Perembo, R.C.B., 2001. Micropaleontologic and paleomagnetic approaches to stratigraphic anomalies in rift basins: ODP Site 1109, Woodlark Basin. *In* Wilson, R.C.L., Whitmarsh, R.B., Taylor, B., and Froitzheim, N. (Eds.), *Non-volcanic Rifting of Continental Margins: Evidence from Land and Sea*, Spec. Publ.—Geol. Soc. London, 187:389–404.