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the interstitial waters is consistent with the high methane level, as sul-
fate reduction precedes methane formation during diagenesis of
organic matter (see “Organic Geochemistry,” p. 30). High sulfate levels
probably represent the original sulfate concentration that has not been
used by bacteria, possibly because of the lack of enough metabolizable
organic matter below lithostratigraphic Unit I (see “Lithostratigra-
phy,” p. 4). In addition, the comparably low sedimentation rate (see
“Age Models and Sedimentation Rates,” p. 25) may have allowed sig-
nificant amounts of sulfate to diffuse downward and replenish the sul-
fate reservoir used by bacteria.

Ammonium (NH4
+) concentrations remain almost constant down to

53.20 mbsf, then increase to a maximum of 5.90 mM at 147.90 mbsf
(Fig. F30). Below 53.20 mbsf, ammonium values steadily decrease down
to 431.40 mbsf and then remain constant to the bottom. An increase of
the ammonium concentration reflects the intensive bacterial degrada-
tion of organic matter, whereas a decrease indicates the results of ion
exchange reactions on the surfaces of clay minerals and/or the subse-
quent incorporation into interlayers of diagenetically formed clay min-
erals (Gieskes, 1981).

The phosphate (HPO4
2–) concentrations decrease with depth down to

305.90 mbsf (Fig. F30). Below 305.90 mbsf, the concentrations are rela-
tively constant, but decrease slowly with depth. This trend indicates
rather strong first-order removal, suggesting a diagenetic uptake of dis-
solved phosphate, most likely into sedimentary mineral phases.

Calcium, Magnesium, and Strontium

Calcium (Ca2+) concentrations initially decrease from a subsurface
value of 4.9 to 3.5 mM at ~100 mbsf, because of carbonate precipitation
resulting from the buildup of alkalinity during sulfate reduction (Fig.
F30). The absence of SO4

2–, high alkalinity, and high Mg2+/Ca2+ ratios
may provide a favorable geochemical environment for dolomite forma-
tion (Baker and Kastner, 1981). Between ~300 and ~500 mbsf, Ca2+ con-
centrations increase strongly up to 18.9 mM.

The profile of magnesium (Mg2+) shows high concentrations in the
upper 25 mbsf of Hole 1122A (Fig. F30). High Mg2+ values have been
observed almost ubiquitously in anoxic environments and are thought
to result from the desorption of Mg2+ from solid phases in rapidly accu-
mulating sediments (Gieskes et al., 1982). From ~25 mbsf, Mg2+

decreases with depth down to 272.70 mbsf, which indicates precipita-
tion of dolomite. Between 300 and 450 mbsf, a distinct Mg2+ anomaly
occurs. Concentration variations of these elements may be influenced
by diagenetic controls within this lithologic unit or diffusive transport
by fluid movement within this interval.

Dissolved strontium (Sr2+) concentrations increase slightly from 75
µM at 5.90 mbsf to 173 µM at 243.70 mbsf and then increase rapidly to
a maximum of 466 µM at 370.40 mbsf (Fig. F30). The Sr2+ values remain
relatively constant throughout the lower part of Hole 1122C. Increasing
strontium concentrations in interstitial waters may originate either
from the recrystallization of biogenic carbonate (the associated stron-
tium concentration decrease in the recrystallizing carbonate may be
more than one order of magnitude) or the alteration of tephras. The
maximum Sr2+ concentrations occur at the same level as the Mg2+ maxi-
mum, which indicates an additional input of these two elements into
this interval. The change of the Sr2+ gradient at ~460 mbsf coincides
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with the lithologic boundary between Subunit IIA and IIB (see “Litho-
stratigraphy,” p. 4).

Dissolved Silica, Potassium, and Lithium

Dissolved silica (H4SiO4) concentrations increase gradually from 575
µM at 5.90 mbsf to 803 µM at 591.80 mbsf (Fig. F30). The dissolved sil-
ica increases indicate progressive diatom dissolution. However, the rela-
tively large scatter of the silica data may reflect the fairly heterogeneous
sediment composition.

Potassium (K+) concentrations decrease from 10.6 mM at the subsur-
face to 6.5 mM at the bottom of the core (Fig. F30). This indicates large-
scale removal of K+ into clay minerals that are forming within the sedi-
ments.

The dissolved lithium (Li+) concentrations increase slightly from 18
µM at 5.90 mbsf to 87 µM at 399.50 mbsf and increase steeply to a max-
imum of 231 µM at the bottom of the hole (Fig. F30). Because the Li+

concentration is related to the biogenic silica content (Gieskes, 1981),
the general increase indicates release of Li+ during diatom dissolution
and silica transformation. The abrupt increase in Li+ concentration in
the lower part of the hole, which corresponds to the boundary between
Subunits IIA and IIB (see “Lithostratigraphy,” p. 4), reflects an addi-
tional source of Li+ into the pore fluids, because the dissolved silica con-
centrations decrease in this interval.

Summary of Interstitial Water Results

The primary controlling factor on the interstitial-water chemistry at
Site 1122 is sulfate reduction and methanogenesis, which governs alka-
linity, phosphate, and ammonium concentration. In contrast to the
complete utilization of sulfate in the upper part of the core, the
increased sulfate levels in the middle of the section represent the origi-
nal sulfate concentrations during sediment deposition, possibly pre-
served because of a lack of sufficient metabolizable organic matter and
low sedimentation rates. Other important chemical profiles are magne-
sium and calcium concentrations, from which we may deduce the lat-
eral transport of magnesium-rich fluid during the dissolution of
carbonate. The general chemical zonations of interstitial waters at Site
1122 correspond to those of lithostratigraphic units and paleontologi-
cal age divisions. In particular, note the sharp reduction of methane at
260 mbsf, which coincides with the base of the highly pyritized turbid-
ites of the mud-wave sequence.

ORGANIC GEOCHEMISTRY

Volatile Hydrocarbons

As part of the shipboard safety and pollution-prevention monitoring
program, hydrocarbon gases were analyzed for each core of Hole 1122A
and each core below 60 mbsf of Hole 1122C by the headspace tech-
nique. Gas pockets were not encountered. The headspace methane con-
centrations increase rapidly below the seafloor (Fig. F31). In contrast to
Site 1119 (see “Organic Geochemistry,” p. 24, in the “Site 1119” chap-
ter), there is no well-defined concentration maximum in the section,
but headspace methane concentrations of the sediments between 15
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and 265 mbsf are much higher than in the uppermost sample and in
the sediments below. The variation in this section (1,000–42,000 ppm)
may reflect different sediment properties and/or different amounts of
metabolizable organic matter in the methane-releasing sediments and,
thus, changes in the sedimentary composition. The elevated methane
concentrations are corroborated by low sulfate concentrations (see
“Inorganic Geochemistry,” p. 27). Below 265 mbsf, methane concen-
trations decrease suddenly by two orders of magnitude and are uni-
formly low down to the bottom of the hole. This distinct change
matches the transition from lithostratigraphic Subunit IC to Subunit IB
at 262 mbsf (see “Lithostratigraphy,” p. 4), and may be a result of
changes in the amount or type of organic matter. However, clear corre-
sponding evidence of these changes cannot be found in the elemental
composition (see “Carbonate and Organic Carbon,” p. 31).

Carbonate and Organic Carbon

The abundance of total, inorganic, and organic carbon and of cal-
cium carbonate in sediments from Holes 1122A and 1122B is summa-
rized in Table T14 (also in ASCII format). Random sampling of all
lithologies was performed for carbonate analysis, and one sample per
core was analyzed for organic carbon.

Carbonate contents are highly variable throughout the section and
lie in the range from 0.1 to 76.5 wt% (Fig. F32). There is no clear corre-
lation with depth, age, or lithology. Because of the obvious variation in
the sedimentary composition, particularly the intercalated turbidites in
the hemipelagic sediments, this may be an artifact of random sampling.
Nevertheless, in the upper part of the section between 0 and 140 mbsf,
with exception of the section from 60 to 80 mbsf (lithostratigraphic
Subunits IA and IB) and between 300 and 420 mbsf, carbonate contents
are lower on average than in the rest of the section.

Sediments at Site 1122 average 0.24 wt% organic carbon (Fig. F33),
which is lower than the average for deep-sea sediments of 0.3% com-
piled by McIver (1975) from data of DSDP Legs 1 through 33. There is
no clear correlation with depth, age, or lithology, though in the deeper
part of the hole concentrations seem to decrease with increasing depth.
Despite the high sedimentation rate, low organic carbon concentra-
tions are probably a consequence of organic-matter degradation caused
by the long exposure to an oxic water column.

Organic Matter Source Characterization

Atomic organic carbon/nitrogen values were calculated for Site 1122
samples using TOC and total nitrogen concentrations to help identify
the origin of the organic matter. The ratios vary from 0.2 to 25.9 with
an average of 4.2 (Table T14). These low ratios are not accurate indica-
tors of organic matter source. They may be an artifact of the low
organic carbon content, combined with the tendency of clay minerals
to adsorb ammonium ions generated during degradation of organic
matter (Müller, 1977). This interpretation is supported by unrealistically
low atomic [C/N]a ratios below 4.0 for organic carbon–poor samples
(<0.2 wt%).

Rock-Eval analyses were not made because of low organic carbon
contents (see “Organic Geochemistry,” p. 22, in the “Explanatory
Notes” chapter).

T14. Organic chemistry data, 
p. 141.
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PHYSICAL PROPERTIES

Index Properties

Index properties measurements were made at a resolution of one
sample every two sections in the cores from Holes 1122A and 1122C.
Index properties were determined by a gravimetric method (see “Physi-
cal Properties,” p. 24, in the “Explanatory Notes” chapter). Values of
measured index properties (void ratio, porosity, water content, bulk
density, and grain density) are presented in Table T15 (also in ASCII
format). The properties measured from Holes 1122A and 1122C show
cyclic variations downcore resulting from compositional variations typ-
ical of turbidite sequences (Figs. F34, F35). In the upper 500 mbsf, there
is no apparent change in trend for any of the variables measured. Below
500 mbsf, the index properties show gradual downhole changes in
trend, presumably from the effects of increased overburden.

Multisensor Track Measurements

The shipboard physical properties program at Site 1122 included
nondestructive measurements of bulk density, magnetic susceptibility,
and natural gamma-ray activity on whole sections of all cores using the
MST (Figs. F36, F37). Magnetic susceptibility was measured at 4-cm
intervals and at high sensitivity (4-s measurement time) in all Site 1122
holes. High-amplitude fluctuations of magnetic susceptibility in Hole
1122A and in the upper part (<110 mbsf) of Hole 1122C are associated
with turbidite sequences. The presence of low magnetic susceptibility
values with little variation below 110 mbsf in Hole 1122C is probably a
result of low recovery of sands by XCB coring. Thus, there is a tendency
for recovered core material to be clay rich. Natural gamma radiation
was measured with a 15-s count every 14 cm in Holes 1122A and
1122C. Natural gamma radiation ranges from 15 to 42 counts/s. Varia-
tions occurring downcore reflect changes in mineral composition
between sandy and clayey layers in the turbidite sequence. High values
of natural gamma radiation give an indication of the relative abun-
dance of clay. Low natural gamma radiation values shown in Hole
1122A are correlated with low magnetic susceptibility, indicating a pos-
sible increase in sand content. Gamma-ray attenuation porosity evalua-
tor bulk density measurements were made at 4-cm intervals at all Site
1122 holes. The GRAPE density data exhibit fluctuations that tend to
vary in direction, thickness, and intensity with those observed in the
natural gamma radiation record; these fluctuations seem to correspond
to variations in the occurrence of sandy and clay-rich sediment layers.
A comparison of GRAPE density with the wet-bulk density determined
from discrete samples shows a general agreement except in the upper-
most part of the hole (Fig. F38).

Shear Strength

Measurements of shear strength, using a mechanical vane, were
made on split cores from Holes 1122A and 1122C (Fig. F39). Samples
were generally taken in fine-grained sediments at a resolution of one
per section. No samples were taken from XCB cores. The shear strength
measurements show relatively low values, except for peaks just above
35 and 65 mbsf in Hole 1122A and 42, 69, and 92 mbsf in Hole 1122C.
These peaks indicate clay-rich intervals (see “Lithostratigraphy,” p. 4).

T15. List of index properties mea-
surements, p. 144.
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Shear strength values range from 5 to 60 kPa (maximum value of 57.15
kPa at 65 mbsf in Hole 1122A and 60.525 kPa at 91 mbsf in Hole
1122C). Low values may be associated with the presence of sand-rich
intervals (see “Lithostratigraphy,” p. 4). An indication of the consoli-
dation characteristics of the sediments was made by using the classical
relationship between shear strength and sedimentary overburden pres-
sure (see “Physical Properties,” p. 22, in the “Site 1121” chapter). The
consolidation data from Site 1122 are similar in character to those from
Site 1119 where cyclic variations also occur. Underconsolidation exists
downhole as a result of rapid, increasingly sandy deposition. It is likely
that the sediment is still undelrconsolidated, that is, still in the process
of expelling pore water. The fact that water content and porosity
remain relatively constant throughout the section supports this
hypothesis.

Compressional-Wave Velocity

Compressional-wave (P-wave) velocity was measured parallel to the
core axis on split cores from Site 1122. Because the sediment cracked
when the transducers of the Digital Sound Velocimeter were inserted
into the sandy turbidite sediment, the measurements were only taken
in the upper 20 mbsf of Hole 1122A. Values range from 1527 m/s to
1547 m/s. Below 390 mbsf in Hole 1122C, sediments were more tightly
compacted, and the Hamilton frame velocimeter was used to measure
sound propagation perpendicular to the sediment. A sharp increase in
P-wave velocity from 1800 to 2000 m/s occurred around 429 mbsf
between Sections 181-1122C-48X-2 and 48X-3, indicating a distinct
lithologic horizon.

DOWNHOLE MEASUREMENTS

Logging Operations

Logging was attempted in Hole 1122C but was unsuccessful because
of adverse weather and poor hole conditions. We planned to run one
pass of the triple combination, two passes of the FMS-sonic, and then a
single pass of the GHMT (for abbreviations and explanation of the tool
strings see “Downhole Measurements,” p. 29, in the “Explanatory
Notes” chapter). Logging operations began at 0700 hr on 11 September
1998 and were terminated at 1330 hr on the same day.

After coring the hole to 627.4 mbsf, the BHA was raised to 83.12
mbsf, in preparation for logging. Raising the BHA was, however, prob-
lematic, and resulted in substantial infilling at the base of the hole (see
“Operations,” p. 3). The heave on the ship (>6 m) was too great to
allow use of the wireline heave compensator (WHC). Because of this, it
was decided not to open the calipers on the FMS and lithodensity tools,
in case the excessive heave ripped them off.

The triple combination was lowered to the base of the pipe, but
could not pass completely into the open hole because of an obstruction
at 95 mbsf, ~12 m below the BHA. Weather at the time was poor, with
3.5-m seas, 6-m swells, and 37-kt winds. After trying unsuccessfully for
35 min to break through the obstruction, the triple combination was
pulled back into the drill string. An attempt was made to pull up the
BHA, but it had become stuck. At this point the triple combination was
brought back up to the rig floor and disassembled.

F38. Density measurements in 
Hole 122C, p. 81.
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A revised logging plan was considered, consisting of a wiper trip with
the drill string to clean out the hole, followed by a single pass of a
shorter tool string. The new tool string would consist of the gamma-ray,
sonic, resistivity, and temperature tools. If this pass had been successful,
a run of the GHMT would have followed. However, by this time
weather conditions had deteriorated with the swells increasing to a
maximum of 10 m and the winds to 45 kt. The forecast was for deterio-
rating weather. These conditions constituted a danger to the drill string
and a risk to the tools. Therefore, it was decided to abandon logging
operations at Hole 1122C. It took a further 2 hr to free the BHA from
the hole.
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Figure F1. Locality map for Site 1122, showing location of seismic lines 2023 and 3034 of Figure F2A, p. 39,
and F2B, p. 40.
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Figure F2. A. Portion of seismic line NZ01 2023 through Site 1122 (0530–1200 hr, 6 December 1998). (Con-
tinued on next page.)
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Figure F2 (continued). B. Detail of processed portion of line NIWA 3034-12 through Site 1122 (0020–0200
hr, 17 February 1997).
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Figure F3. Portion of 3.5-kHz line NZ01 2023 through Site 1122 (0830–0940 hr, 6 December 1998).
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Figure F4. Summary log for Site 1122. (Continued on next three pages.)
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