| | | 1 | 123A-3H | 15 | 5.6-25.1 | mbsf | | | | | | | |---------------------------------------|---------------------|---------|-------------|-------------------|---------------------|--|--|--|--|--|--|--| | Leg 181 Site 1123 Hole A Core 3H | | | | | | | | | | | | | | METERS SECTION GRAPHIC LITH. BIOTURB. | STRUCTURE
ICHNO. | FOSSILS | ACCESSORIES | DISTURB. | SAMPLE | DESCRIPTION | -16 | | | Py | ^- > }- | ──IW ──IW ──SS ──SS | FORAMINFER-BEARINGNANNOFOSSIL OOZE and TEPHRA Lithology Light gray (5Y 7/1) to light greenish gray (5GY 7/1) and white (5Y 8/1) beds of FORAMINFER-BEARINGNANNOFOSSIL OOZE comprise this core. General Description The top 100 cm of this core are highly disturbed and composed of white (5Y 8/1) FORAMINFER-BEARINGNANNOFOSSIL OOZE. It becomes color banded in light gray (5Y 7/1) at the bottom of Section 1 through Section 2, where it changes back to white (5Y 8/1). Section 3, 65 to 130 cm, and Section 5, 75 cm, to the base of the core, is light greenish gray (5G 7/1) in color. The contacts between the colors are gradational. The FORAMINFER-BEARINGNANNOFOSSIL OOZE is faintly color banded with local pyrite staining. There is a pyrite layer in Section 4, 48 cm, and a dark green layer, possibly altered TEPHRA in Section 4, 66 cm. | | | | | | | | | | | | | | 1123B- | 1H | 0-3.4 | mbsf | |--------|------------------|----------|-----------|--------|----------|-------------|----------|-------------|--| | Le | g 181 | Sit | e 1123 | Hole I | 3 Core 1 | Н | | | | | METERS | GRAPHIC
LITH. | BIOTURB. | STRUCTURE | ICHNO. | FOSSILS | ACCESSORIES | DISTURB. | SAMPLE | DESCRIPTION | | -2 - 2 | | | | | | | | ~SS
—PAL | FORAMINIFER-BEARINGNANNOFOSSIL OOZE and TEPHRA Lithology This core contains light greenish gray (5GY 7/1) and greenish gray (5GY 6/1) FORAMINIFER-BEARINGNANNOFOSSIL OOZE with oxidized grayish brown (10YR 5/2) FORAMINIFER-BEARINGNANNOFOSSIL OOZE at the top. A 4 cm thick TEPHRA layer occurs in Section 2, 9 cm. General Description In the FORAMINIFER-BEARING NANNOFOSSIL OOZE, boundaries between color changes are gradational. The sediment is mottled, moderately pyrite stained, and heavily bioturbated, primarily by Thalassinoides (throughout the core) and Planolites (in Section 3). The pink (coarse) and white (fine) TEPHRA may be the Omotaroa Ash (~28 ka). | | | | | | | | 1123C-1H | | 0-9.0 | mbsf | |----------------------------------|---|----------|------------|--------|---------|--|----------|--------------------------------|---| | Leg 181 Site 1123 Hole C Core 1H | | | | | | | | | | | METERS | GRAPHIC
LITH. | BIOTURB. | STRUCTURE | ICHNO. | FOSSILS | ACCESSORIES | DISTURB. | SAMPLE | DESCRIPTION | | -4 - 4 - 6 - 6 - 8 - 9 - 1 | 252322
252322
252322
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232
25232 | | ~ ₹ | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | — SS — SS — SS — SS — SS — PAL | which commonly have haloes of pyrite. Dark green laminae occur in Sections 3 and 4 and color mottling is common throughout the core. The TEPHRA lenses, which are pink with a white top, are present in Section 1, 135 cm (probably displaced upcore by ~23 cm), in Section 2, 70 cm, and in Section 6, 70 cm (probably a burrow fill). TEPHRA layers have probably been displaced. | | Site 1123 Smear Slides | | | - 1 | Text | ure | Т | | | | | | Mine | eral | | | | | | | | | Ri | ogeni | ic | | | Rock | k I | |---------------------------------------|---------------|----------------|-----------|----------------|------|--------------|----------------|---------------|-----------|---------------|-----------------|---------------------|---------------|---------------|---------------|---------------|--------------|---------------------|---------------|--------------|-------------------|--------------------|--------------------|-------------------------|-----------------------|-----------------------|-------------------|----------------------------------| | Site 1125 Sincar Sincs | <u> </u> | | \dashv | ICAL | 1 | + | 1 | | ı | - 1 | | | | T | | - 1 | П | - 1 | \dashv | | | J. | gen | | 1 | | T.OCI | | | Leg Site Hole Core Type | Interval (cm) | Depth (mbsf) | Lithology | Sand | Clay | Calcite (30) | Carbonate (35) | Chlorite (45) | Clay (47) | Feldspar (71) | Glauconite (82) | Heavy Minerals (89) | Mica (118) | Opaques (140) | Oxides (146) | Pyrite (169) | Quartz (172) | Volcanic Glass (81) | Zeolite (222) | Diatoms (58) | Foraminifers (78) | Nannofossils (132) | Radiolarians (173) | Silicoflagellates (189) | Skeletal Debris (192) | Sponge Spicules (199) | Fecal Pellet (70) | Lithic Fragments (106) Comments | | 181 1123 A 1 H 1 | 100 | 1 | D | 20 50 | 30 | | P | | P | P | | | | | | | P | C | | R | R | A | | | P | | | ASH LAYER | | 181 1123 A 1 H 2 | 5 | 1.55 | M | 50 25 | | | | | | P | | | | * | | | P | D | | | | | | | P | | | CARBONATE SKELETAL DEBRIS | | 181 1123 A 1 H 2 | 8 | 1.58 | M | 30 40 | 30 | | | | | P | | | | * | | | P | D | | | | R | | | | | | | | 181 1123 A 1 H 4 | 10 | 4.55 | D | 30 20 | | | | | | | | | | P | | | | | | | C | D | | | P | | | | | 181 1123 A 1 H 4 | 106 | 5.51 | M | 10 20 | | | | | | | | | | P | | | | | | R | P | D | | P | P | | | | | 181 1123 A 2 H 3 | 30 | 9.4 | D | 5 25 | | | P | | P | R | | | | P | | | R | | | | C | D | * | | P | R | | DARK GREEN-GLACIAL-DOMINANT | | 181 1123 A 2 H 5 | | 13.48 | M | 70 30 | | | | | | | | | | | | | | D | | | | | | | | | | ASH LAYER | | 181 1123 A 2 H 6 | | 14.49 | D | 5 25 | | | _ | \sqcup | | | | | * | | | | | | | R | P | D | * | | P | | $\sqcup \bot$ | WHITE-INTERGLACIAL | | 181 1123 A 3 H 1 | | 15.66 | D | 5 15 | | | C | | | R | | | | * | | | R | | | | P | D | | P | P | P | | | | 181 1123 A 3 H 4 | | 20.58 | M | 5 15 | | | C | \square | | R | | | _ | P | _ | _ | R | | | | P | D | | P | P | P | \perp | | | 181 1123 A 3 H 4 | | 20.77 | M | 5 15 | | | - | \vdash | _ | _ | | _ | | * | - | _ | _ | | | | * | D | | | * | * | | LITTLE GREEN GRAINS | | 181 1123 A 3 H 5 | | 22.6 | D | 5 15 | | | - | \vdash | | R | | _ | * | _ | _ | _ | R | ~ | | т- | P | D | - | _ | | | \vdash | | | 181 1123 A 4 H 3 | | 28.33 | D | 5 25 | | | | | | - n | | | | - | - | - | ъ | С | | P | P | D | P | P | | | | A CITY AND D | | 181 1123 A 4 H 4
181 1123 A 4 H 6 | | 30.17 | | 80 15
20 40 | | _ | - | \vdash | - | P | | - | - | | \rightarrow | - | P | D | | P | | | | | | | | ASH LAYER | | | | 33.86
37.07 | | | | _ | | \vdash | - | C
P | | P | - | C
P | \rightarrow | - | P | A
D | | Р | | A | | | | | | ASH LAYER + NANNOFOSSILS OOZE | | 181 1123 A 5 H 2
181 1123 A 5 H 3 | | 38.28 | M
M | 60 30
40 20 | | | | | | P | | P | | P | - | | P | D
D | | * | * | С | | | | | | ASH LAYER
ASH | | 181 1123 A 5 H 5 | | | M | 10 30 | | _ | | | | Г | | Г | P | _ | _ | _ | Г | D | | P | C | A | P | P | P | P | | АЗП | | 181 1123 A 6 H 2 | | 46.69 | M | 10 40 | | _ | \vdash | \vdash | - | P | | P | P | P | \rightarrow | _ | P | A | | | _ | A | 1 | 1 | 1 | | | ASH+NANNOFOSSILS | | 181 1123 A 6 H 3 | | 48.49 | M | 30 | | | | | | P | | P | - | C | | | P | A | | | | C | | | | | | ASH+NANNOFOSSILS | | 181 1123 A 6 H 4 | | 49.92 | | 80 | 20 | | | \vdash | | P | | P | С | C | \neg | | P | D | | | | P | | | | | | ASH | | 181 1123 A 6 H 5 | | 50.3 | M | 70 10 | | | | | | P | | P | | P | | | P | D | | | | C | | | | | | ASH+(NANNOFOSSILS) | | 181 1123 A 6 H 6 | | 52.26 | M | 20 40 | _ | | | | | P | | P | P | P | | | P | A | | * | * | A | | | | | | ASH+NANNOFOSSILS | | 181 1123 A 6 H 6 | | 52.87 | | 60 10 | | | | | | P | | С | | P | | | P | P | | * | | A | | | | | | ASH+NANNOFOSSILS | | 181 1123 A 6 H 7 | | 53.25 | M | 40 20 | | | | | | P | | P | P | | | | P | Α | | | | Α | | | | | | ASH+NANNOFOSSILS | | 181 1123 A 6 H 7 | | 53.53 | M | 40 30 | | | | | | P | | | P | | | | P | Α | | | | Α | | | | | | ASH+NANNOFOSSILS | | 181 1123 A 7 H 1 | 55 | 54.15 | | 80 10 | | | | | | P | | | | | | С | P | D | | | | P | | | P | | | ASH | | 181 1123 A 7 H 2 | 57 : | 55.67 | D | 10 | 90 | | P | | P | | | | | | | | | | | | | D | | | * | * | | NANNOFOSSILS OOZE | | 181 1123 A 7 H 3 | 49 : | 57.09 | M | 70 10 | 20 | | | | | P | | | | | | С | P | D | | | P | С | | | | | | ASH+(NANNOFOSSILS) | | 181 1123 A 7 H 3 | 107 | 57.67 | M | 70 10 | 20 | | | | | P | | | | | | P | P | Α | | | | Α | | | | | | ASH+(NANNOFOSSILS) | | 181 1123 A 7 H 4 | | 59.2 | M | 90 | 10 | | | | | C | | | | | | | C | D | | | | P | | | | | | ASH | | 181 1123 A 7 H 5 | | | M | 90 10 | | | | | | P | | | | | | | P | D | | | | | | | | | | ASH | | | | | M | 70 20 | | | _ | \sqcup | | P | | _ | | \rightarrow | _ | _ | P | D | | | | | | | | | | ASH | | 181 1123 A 7 H 5 | | 60.87 | | 60 10 | _ | | | | P | P | | | | | _ | | P | D | | | | | | | | | | GREEN LAYER | | 181 1123 A 7 H CC | | 63.07 | M | 10 | _ | 1 | P | | | | | | | \rightarrow | _ | _ | | | | | P | D | | | P | | \vdash | | | 181 1123 A 8 H 2 | | 65.25 | D | * | 100 | 1 | - | \vdash | P | | \rightarrow | _ | | \rightarrow | _ | \rightarrow | | | | | <u> </u> | D | | | * | | \vdash | | | 181 1123 A 8 H 4 | | 68.85 | M | 10 | 90 | - | - | | P | | | \rightarrow | | | - | _ | | | | | | D | | | | | \perp | GREEN LAYER | | 181 1123 A 9 H 3 | | 76.48 | M | 30 | | _ | _ | | | | | | \rightarrow | A | - | - | | | | * | | A | * | * | | | \vdash | A GIT ATA PAROPOGGIT G | | 181 1123 A 9 H 5 | | 79.61 | M | 40 30 | | - | - | | * | - | - | * | | С | \rightarrow | - | - | A | | × | * | A | ж | * | | | \vdash | ASH+NANNOFOSSILS | | 181 1123 A 9 H 5 | | 80.02 | M | 70 20 | | - | - | \vdash | P P | С | - | Φ. | | - | + | - | С | D | | | | P | | | | | \vdash | ASH (NANNOFOSSILS) | | 181 1123 A 9 H 6
181 1123 A 9 H 7 | | 80.67 | M | 30 50 | | | - | | P | * | * | * | - | P | \dashv | | | D
D | | | | P | | | | | + | ASH+(NANNOFOSSILS) | | 181 1123 A 9 H 7
181 1123 A 11 H 2 | | 81.68
93.69 | M | 70 20
5 | 95 | - | + | \vdash | r | ~ | ~ | ** | \rightarrow | r | \dashv | P | | ע | | P | P | - | P | | | | \vdash | ASH | | 181 1123 A 11 H 2 | | 94.34 | M | 5 | 95 | - | + | \vdash | | | - | \dashv | - | + | + | Г | | - | _ | P | P | A | P | P | | | \vdash | PINK LAYER | | 181 1123 A 11 H 2 | | 100.74 | M | 5 | 95 | - | + | \vdash | | - | - | \dashv | - | + | + | С | | С | | P | r | D | ľ | P | | | \vdash | FINK LAIEK | | 181 1123 A 11 H / | | 100.74 | | 90 | 10 | - | <u> </u> | \vdash | | P | - | | P | - | + | | P | D | | ľ | | P | | Г | | | \vdash | VOLCANIC QUARTZ AND PLAGIOCLASE | | 181 1123 A 12 H 3 | | 104.69 | M | 10 | | 1 | + | \vdash | | 1 | - | \dashv | - | \rightarrow | \dashv | - | 1 | ט | | P | P | D | P | P | | P | \vdash | TOLCAINE QUARTZ AND I LAGIOCLASE | | 181 1123 A 12 H 3 | | 115.07 | D | 5 10 | | | \vdash | \vdash | P | R | \rightarrow | \dashv | \rightarrow | \dashv | \dashv | \rightarrow | R | P | | P | - | A | R | R | | P | \vdash | | | 181 1123 A 13 H 4 | 135 | 116 | D | 10 | | | P | \vdash | - | 11 | | | | | _ | | 1 | | | R | * | D | | | | R | \vdash | | | 101 1123 A 13 11 4 | 133 | 110 | ע | 10 | 1 50 | | 1 | \perp | | | | | | | | | | | | I | | ען | | | | ı | | [| | Site | 123 Sn | ıear | Slide | s | | | | П | 1 | Text u | re | ı | | | | | | Min | eral | | | | | | | Ι | | Bi | iogen | ic | | | R | ock | | |------------|--------------|------|----------|--------|---------|---------------|------------------|-----------|----------|---------------|----------|--|----------------|-----------------|-----------|---------------|-----------------|---------------------|------------|----------------|--------------|--------------|--------------|---------------------|---------------|--------------|-------------------|--------------------|--------------------|-------------------------|-----------------------|-----------------------|-----------|------------------------|-------------------------------------| | Leg | Site | Hole | Core | Type | Section | Interval (cm) | Depth (mbsf) | Lithology | Sand | Silt | Clay | Calcite (30) | Carbonate (35) | Chlorite (45) | Clay (47) | Feldspar (71) | Glauconite (82) | Heavy Minerals (89) | Mica (118) | Opaques (140) | Oxides (146) | Pyrite (169) | Quartz (172) | Volcanic Glass (81) | Zeolite (222) | Diatoms (58) | Foraminifers (78) | Nannofossils (132) | Radiolarians (173) | Silicoflagellates (189) | Skeletal Debris (192) | Sponge Spicules (199) | llet (70) | Lithic Fragments (106) | Comments | | 181 | 1123 | A | 13 | Н | 5 | 98 | 117.13 | M | 80 | 10 | 10 | | | | * | P | | * | | | | | P | D | | | | P | | | | | | | | | 181 | 1123 | A | 14 | Н | 3 | 85 | 123.95 | D | 20 | 30 | 50 | | | | | | | | | | | P | | Α | | P | R | D | _ | R | | R | _ | _ | | | 181 | 1123 | A | 14 | | 3 | 92 | 124.02 | M | | | 10 | | | | | R | | | | P | | ъ | R | D | | _ | n | P | <u> </u> | L. | | | - | + | | | 181 | 1123
1123 | A | 14 | H | 6 | 38 | 127.98 | M | | 15 | 80 | | P | | P | R | | | | | | P | D . | D | | P
R | | D | P
R | R | | R
P | - | - | | | 181
181 | 1123 | A | 15 | Н | 3 | 56
81 | 133.16
134.91 | M | 15
5 | 35
40 | 50 | | P | \vdash | P | K | | | | | | P | R | R
* | | * | R | D | K | - | | R | 1 | + | | | 181 | 1123 | A | 17 | Н | 3 | 133 | 152.93 | M | 5 | 55 | 40 | | 1 | | P | | | | | | | 1 | | | | R | R | D | | | | R | 1 | + | | | 181 | 1123 | A | 17 | Н | 3 | 139 | 152.99 | M | 5 | 55 | 40 | | | \Box | P | | | | | | | * | | | | R | R | D | | | | | T | | | | 181 | 1123 | В | 1 | Н | 1 | 6 | 0.06 | D | 10 | 45 | 45 | | | | P | R | | | | | | | | * | | P | P | D | | R | | R | | | | | 181 | 1123 | В | 3 | Н | 6 | 67 | 21.07 | M | 5 | 35 | 60 | | | | | | | | | | | С | | | | P | R | D | P | | | | | | | | 181 | 1123 | В | 3 | Н | 6 | 123 | 21.63 | M | | 45 | 50 | | | Ш | | | | | | | [| C | | | | P | P | D | R | | | | | | | | 181 | 1123 | В | 4 | Н | 2 | 123 | 25.13 | M | 5 | | 95 | | P | | P | | | | | | | P | _ | _ | | | P | D | | P | | | - | - | GREEN LAYER | | 181 | 1123 | В | 5 | H | 3 | 5 | 34.95 | M | 80 | | 5 | | | | | P | | | P | | | P | | D | | | - | P | - | - | | | - | P | ASH LAYER | | 181 | 1123 | В | 6 | Н | 6 | 24 | 49.14 | M
M | 70
30 | | 20 | | | H | | P
P | | | P
P | | | P
P | _ | D | | | - | P | | | D | | - | D | ASH+(NANNOFOSSILS) | | 181
181 | 1123
1123 | B | 6 | H | 6 | 46
59 | 49.36
49.49 | M | 10 | | 60 | | | \vdash | | Р | | | Р | | | Р | P | A
A | | * | - | A | * | - | P | | ╁ | P
* | ASH+(NANNOFOSSILS) ASH+NANNOFOSSILS | | 181 | 1123 | В | 6 | Н | 6 | 137 | 50.27 | M | | | 20 | | | | | P | | | P | | | P | P | D | | | _ | P | | | | | 1 | + - | ASH | | 181 | 1123 | В | 7 | Н | 1 | 130 | 52.2 | M | 70 | | 10 | | | | | P | | | - | | | P | | D | | | | C | | | | | t | | ASH (V+S) | | 181 | 1123 | В | 7 | Н | 2 | 39 | 52.79 | M | | | 10 | | | | | С | | P | | | | P | | D | | | | P | | | | | | P | ASH (V+S) | | 181 | 1123 | В | 7 | Н | 2 | 90 | 53.3 | M | 30 | 40 | 30 | | | | | С | | P | P | | | P | С | D | | | | С | | | * | * | | | ASH (BIG SHARDS) | | 181 | 1123 | В | 7 | Н | 3 | 100 | 54.9 | D | 5 | 15 | 80 | | | | | | | | | | | | | * | | P | C | D | | | | P | | | (CHLORITE) | | 181 | 1123 | В | 7 | Н | 4 | 94 | 56.34 | M | | | 60 | | | | | | | | | | | | | Α | | | C | A | P | | C | P | | | ASH+FORAMINIFERS+NANNOFOSSILS | | 181 | 1123 | В | 7 | Н | 5 | 117 | 58.07 | M | 20 | | 50 | | | | | | | | | | | P | | A | | | | | | | | A | _ | P | | | 181 | 1123 | В | 7 | Н | 6 | 14 | 58.54 | M | 70 | | 10 | | | | | C | | P | P | | | P | _ | D | | | | | | | | | - | - | ASH (G+S) | | 181
181 | 1123
1123 | В | 7
8 | H | 5 | 87 | 59.27
67.07 | M | 30
5 | 50
15 | 20
80 | | C | | | P | | | | | | P
P | P | D | | | P | D | * | P | | P | 1 | - | | | 181 | 1123 | B | 10 | Н | 1 | 67
38 | 79.78 | M | | | 20 | | C | | | P | | P | D | | | P | P | D | | * | P | ע | <u> </u> | P | | P | 1 | + | ASH (V+S) | | 181 | 1123 | В | 10 | | 1 | 98 | 80.38 | M | | | 20 | | | | | C | | P | 1 | | | C | C | | | | | | | | | | 1 | | ASH (V+S) | | 181 | 1123 | В | 10 | Н | 2 | 8 | 80.98 | M | - , , | 10 | 90 | | P | | P | | | - | | | | | | _ | | P | | D | * | P | | | 1 | | 11011 (1 10) | | 181 | 1123 | В | 10 | Н | 2 | 33 | 81.23 | M | 90 | 10 | | | | | | С | | P | | | | С | С | D | | | | P | | | | | | | ASH (V+S) | | 181 | 1123 | В | 10 | Н | 4 | 68 | 84.58 | M | | 10 | 90 | | P | | P | | | | | | | | | | | P | * | D | P | P | | P | | | | | 181 | 1123 | В | 11 | Н | 3 | 3 | 91.93 | D | | 5 | 95 | | P | | | | | P | | | | | | | | P | P | D | P | P | | P | | | | | 181 | 1123 | В | 12 | Н | 5 | 3 | 104.43 | M | 20 | | 10 | | | | | P | | | | | | С | P | D | | | | P | | | | | _ | | ASH (V+S) FINE | | 181 | 1123 | В | 12 | Н | 6 | 75 | 106.65 | M | - | 5 | 95 | | P | \vdash | _ | | | | | | | _ | | _ | | P | P | D | P | P | | P | - | - | | | 181 | 1123
1123 | В | 13 | H | 2 | 23 | 109.63 | M | | 40 | 40 | - | P | \vdash | P | | | | | \vdash | | C
C | | D
C | | <u>P</u> | n | C
D | * | - | | | - | + | | | 181
181 | 1123 | B | 14
14 | | 5 | 6
37 | 118.96
123.77 | M | 45 | 25 | 30 | | P
P | \vdash | | R | | | | \vdash | | C | | D | | * | 1. | С | +- | | | | | + | | | 181 | 1123 | В | 14 | Н | 5 | 72 | 123.77 | M | 40 | | 20 | | P | $\vdash \vdash$ | | R | | | | \vdash | | C | | D | | Ė | _ K | A | \vdash | \vdash | | | \vdash | + | | | 181 | 1123 | В | 15 | Н | 1 | 132 | 128.22 | M | 25 | | 60 | | P | | P | I | | | | | | C | | A | | R | R | A | * | \vdash | | | \vdash | + | | | 181 | 1123 | В | 15 | | 5 | 64 | 133.6 | M | 35 | | 40 | | | | P | | | | | | | A | | A | | R | P | A | | | | | 1 | 1 | | | 181 | 1123 | В | 15 | Н | 6 | 133 | 135.79 | M | 30 | 25 | 45 | | P | | | R | | | | | | Α | | Α | | R | | A | | | | | | | | | 181 | 1123 | В | 16 | | 1 | 134 | 137.74 | M | | 23 | 80 | | P | P | | | | | | | | | | R | | P | R | A | | R | | P | | | | | 181 | 1123 | В | 16 | Н | 2 | 116 | 139.06 | M | | 13 | 85 | | P | \sqcup | P | R | | * | | | | P | R | | | P | R | A | R | | | P | _ | 1 | | | 181 | 1123 | В | 16 | | 2 | 141 | 139.31 | M | | 13 | 85 | <u> </u> | | \sqcup | C | R | | | | \square | | P | R | * | | P | * | A | _ | _ | | P | <u> </u> | _ | | | 181 | 1123 | В | 16 | H | 4 | 8 | 140.98 | D | 2 | 13 | 85 | | | \vdash | C | | | * | | \vdash | | P | | | | P | R | P | <u> </u> | _ | | P | 1 | + | | | 181 | 1123 | В | 17 | Н | 3 | 85 | 149.75 | D | 7 | 13 | 80 | - | | $\vdash\vdash$ | C | | | | | $\vdash\vdash$ | | P | | D | | P | P | A | R | P | <u> </u> | P | 1 | + | | | 181 | 1123
1123 | B | 17
18 | H
X | 5
3 | 139
142 | 153.29
159.82 | M | 10
10 | | 80
40 | _ | | \vdash | C | | | | | \vdash | _ | P
C | | P
P | _ | P
P | R
* | A | P | \vdash | | P
P | \vdash | + | | | | 1123 | | | | | 5 | 159.82 | D | | 15 | 80 | _ | | \vdash | С | | | | P | \vdash | - | | | * | | P | * | | | \vdash | \vdash | P | + | + | | | 101 | **** | | 1 10 | 1 2 2 | | | 1 200.00 | | | 1 10 | 1 00 | | | | ~ | | | | | | - 1 | - 1 | | | | | 1 | | | 1 | 1 | | 1 | 1 | | | Site 1123 | Smea | ar S | lides | | | | | | Т | extu | ire | | | | | | | Min | eral | | | | | | | | | Bi | ioger | nic | | | Re | ock | | |--------------------|--------|------|-------|------|---------|---------------|------------------|-----------|--|------|------|--------------|----------------|---------------|-----------|---------------|-----------------|---------------------|------------|---------------|--------------|--------------|--------------|---------------------|---------------|--------------|-------------------|--------------------|--------------------|-------------------------|-----------------------|-----------------------|-------------------|------------------------|---------------------------------| | Leg | Site | Hole | Core | Type | Section | Interval (cm) | Depth (mbsf) | Lithology | Sand | Silt | Clay | Calcite (30) | Carbonate (35) | Chlorite (45) | Clay (47) | Feldspar (71) | Glauconite (82) | Heavy Minerals (89) | Mica (118) | Opaques (140) | Oxides (146) | Pyrite (169) | Quartz (172) | Volcanic Glass (81) | Zeolite (222) | Diatoms (58) | Foraminifers (78) | Nannofossils (132) | Radiolarians (173) | Silicoflagellates (189) | Skeletal Debris (192) | Sponge Spicules (199) | Fecal Pellet (70) | Lithic Fragments (106) | Comments | | 181 112 | _ | В | 19 | X | 4 | 9 | 167.35 | M | 20 | 30 | 50 | | P | | T | | | Р | | | | | | * | İ | | P | D | | i i | | P | | | LIGHT LAYER | | 181 112 | | | | X | 4 | 10 | 167.36 | M | | 20 | | | P | | P | | | Ť | | | | P | | P | | С | | | | P | | P | | | DARK LAYER | | 181 112 | 23 E | В | | X | 6 | 126 | 171.56 | M | | | | | P | | | R | | | * | | | Α | R | С | | P | R | A | * | | | P | | | ASH-PYRITE | | 181 112 | 23 E | В | | X | 1 | 10 | 172.4 | M | 20 | | | | | | P | | | | | | | P | | P | | P | | D | P | P | P | P | | | | | 181 112 | 23 E | В | 20 | X | 1 | 100 | 173.3 | M | 10 | 30 | 60 | | P | | P | | | P | | | | | | | | P | | D | P | P | | P | | | | | 181 112 | 23 E | | | X | 2 | 95 | 174.77 | D | 5 | 45 | | | | | C | R | | | | | | * | | P | | P | R | C | * | R | | P | | | | | 181 112 | | | | X | 2 | 142 | 175.24 | M | | 70 | | | | | | R | | | P | | | С | | | | | | R | | | | | | | ASH (V+S) FINE | | 181 112 | | | | X | 2 | 143 | 175.25 | | 80 | | | | | | | P | * | * | | | | С | P | D | _ | | 1 | | | 1 | | | | _ | ASH (V+S) | | 181 112 | | | | X | 4 | 80 | 177.66 | D | 5 | | | | P | | | R | | | | | | | R | | - | P | P | | <u> </u> | R | | P | | _ | | | 181 112 | | | | X | 6 | 23 | 189.63 | M | | 40 | | | n | | | | * | | _ | _ | | C | | * | - | P | 1 | C | | 1 | 1 | C | _ | _ | HARD LAYER | | 181 112 | | | | X | 1 | 130 | 192.9 | D | | 20 | | | P | ъ | | | | | P | _ | | P | | * | - | C | P | D | C | + | - | - | | +- | CDEEN LAVED | | 181 112
181 112 | | | | X | 5 | 36
69 | 193.53
217.49 | D | | 20 | | | \vdash | P | | P | | | | - | | С | P | D | 1 | P | 1 | D
P | P | 1- | 1 | - | | - | GREEN LAYER ASH LAYER (V+S) | | 181 112
181 112 | - | | | X | 5 | | 217.49 | M | | 20 | | | \vdash | | | P | | _ | P | _ | | C | _ | D | \vdash | _ | + | P | - | + | - | - | | + | ASH LAYER (V+S) ASH LAYER (V+S) | | 181 112 | _ | | | X | 7 | 72
32 | 229.72 | M | 70 | 10 | | _ | \vdash | | | Р | | | Р | | | С | Р | ש | + | P | + | D | P | + | | P | | - | DARK LAYER | | 181 112 | | | | X | 1 | 100 | 231 | D | | 10 | | | | | | | | | P | | | C | | | | P | * | D | P | | | P | | | DARK LATER | | 181 112 | | - | | X | 4 | 53 | 244.63 | D | -5 | 15 | | | | | | | | | F | | | | | | + | P | ÷ | D | Г | +- | | P | | | GREEN LAYER | | 181 112 | | | | X | 6 | 145 | 248.55 | M | | 10 | | | | | | | | | | | | | | | | P | | D | | | | C | | | BURROW | | 181 112 | _ | | | X | 4 | 51 | 254.21 | M | | 10 | | | | | | | | | | | | Α | | | | P | | D | P | 1 | | P | | | BURROW | | 181 112 | | | | X | 7 | 147 | | M | | 10 | | | | | | | | | Р | | | C | | | | | P | D | | | | C | | | BLACK LAYER | | 181 112 | | | | X | 3 | 70 | 262.5 | M | 10 | 20 | | | | | | | | | | | | С | | | | P | | D | P | | | P | | | | | 181 112 | 23 E | В | 29 | X | 7 | 6 | 267.86 | M | | 60 | 10 | | | | | P | | P | | | | | P | D | | | | | | | | | | | ASH LAYER (V+S) FINE | | 181 112 | 23 E | В | 30 | X | 3 | 100 | 272.4 | M | 80 | 10 | 10 | | | | R | P | | | | | | C | R | D | | | | R | | | | | | | ASH LAYER | | 181 112 | 23 E | В | | X | 4 | 68 | 283.28 | M | | | | | | | P | | | | | | | C | P | D | | | | P | | | | | | | ASH | | 181 112 | | | | X | 1 | 123 | 288.93 | M | | | | | P | | P | * | | | * | | | | | R | | * | * | A | | | | P | | | | | 181 112 | _ | | | X | 2 | 88 | 290.08 | M | | | | | | | P | | | | | | | P | | A | _ | | _ | R | | | | | | _ | ASH | | 181 112 | _ | | | X | 3 | 90 | 291.6 | D | 2 | | | | | | P | * | | | | | | P | * | R | | | _ | A | | | | P | | | | | 181 112 | | | | X | 5 | 48 | 294.18 | M | 10 | 70 | | | | | | R | | * | | _ | | P | R | | | | | R | | - | | _ | | | | | 181 112 | | | | X | 6 | 3 | 304.83 | M | | 40 | | | P | | С | | | | | P | | | | * | - | _ | - | A | | - | | P | | - | | | 181 112
181 112 | | | | X | 7 | 15 | 306.45 | M | | | | | | | | | | | | | | P | | D | - | - | R
* | | | | | P | | - | ACH | | 181 112 | | | | X | CC
3 | 29.5 | 306.71
310.2 | M | 80
20 | | | | \vdash | | | | | | | - | | C | | P | 1 | - | + " | R
A | - | 1 | 1 | * | | 1 | ASH ASHY LAYER | | 181 112 | | | | X | 4 | 30 | 310.2 | M | | | | | P | | P | | | | * | P | | · | | Г | + | * | + | D | \vdash | 1 | 1 | P | | 1 | ASIII LAIER | | 181 112 | _ | | | X | 1 | 15 | 326.05 | M | | | 90 | | P | | P | | | | | Ļ | | | | | t | 1 | * | D | | 1 | 1 | R | | 1 | | | 181 112 | _ | | | X | 4 | 37 | 330.77 | M | | | 90 | | P | | - | | | * | | | | | | * | | T | 1 | D | * | | | P | | | | | 181 112 | | _ | | X | 4 | 106 | 331.46 | D | | 8 | | | P | | P | | | | | | | | | * | | | | D | | 1 | | Ė | | | | | 181 112 | _ | | | X | 1 | 40 | 345.5 | D | | 5 | 95 | | P | | | | | * | * | | | | | | | | | D | | | | | | | | | 181 112 | 23 E | В | 39 | X | 1 | 10 | 354.8 | M | | 10 | 90 | | P | | | | | * | Ĺ | | | P | | * | | | | D | L | L | | | | | | | 181 112 | | | | X | 4 | 8 | 359.28 | M | | 10 | | | P | | | | | * | | | | | | | | | | D | | | | | | | | | 181 112 | _ | | | X | 6 | 120 | 373.1 | | 80 | | | | | | | P | | P | | | | P | P | D | | * | | P | | | | * | P | P | ASH (V+S) | | 181 112 | | | | X | 7 | 4 | 373.44 | M | <u> </u> | 10 | | | | | | | | | | | | | | | | | | D | | 1 | | P | | | | | 181 112 | | | | | CC | 2 | 373.86 | M | | 10 | | | | | | | | | _ | | | | | | - | <u> </u> | 1 | D | <u> </u> | 1 | 1 | P | | _ | | | 181 112 | _ | | | X | 1 | 32 | 384.02 | D | | 10 | | | | | | | | | P | | | _ | _ | _ | 1 | <u> </u> | 1 | D | | 1 | _ | P | _ | _ | | | 181 112 | _ | _ | | X | 1 | 78 | 394.18 | | 60 | | | | | | | P | | | P | | | P | _ | _ | - | - | - | P | 1 | 1- | - | | | - | COARSE ASH (V+S) | | 181 112 | | _ | | X | 1 | 83 | 394.23 | M | 60 | | | | | | | P | | * | P | - | | P | P | D | 1 | - | 1 | P | - | 1 | 1 | - n | - | - | BURROW (ASH) | | 181 112 | _ | | | X | 1 | 52 | 422.72 | M | - | 5 | | | | | | | | * | | | | P | | | + | 1 | 1 | D
D | | 1 | 1 | P
P | - | 1 | | | 181 112
181 112 | _ | | | X | 2 | 101
78 | 426.21 | M | - | 5 | 95 | | P | | | | | * | | - | | ľ | | | - | 1 | 1 | D | | 1 | 1 | P | | 1 | | | 181 112
181 112 | | | | X | 2 | 88 | 443.78
462.78 | D
D | | 5 | | | ľ | | | | | <u> </u> | | \vdash | | | | \vdash | + | 1 | + | D | \vdash | + | + | P | _ | + | LIGHT GREEN | | 101 112 | ∠J E | ט | 50 | Λ | 4 | 00 | 1 402.78 | υ_ | Щ | | 1 33 | — | \Box | | | | | | | | | | | | 1 | | 1 | _ ע | | | | | | _ | LIGHT UKEEN | | Site 112 | 3 Sme | ear S | Slides | 3 | | | | | 1 | Fext u | ire | | | | | | | Min | eral | | | | | | | Ī | | В | iogen | ic | | | Re | ock | | |----------|------------|-------|--------|--------|---------|---------------|----------------|-----------|------|---------------|------|--|----------------|---------------|-----------|---------------|-----------------|---------------------|------------|---------------|--------------|--------------|--------------|---------------------|---------------|--------------|-------------------|--------------------|--------------------|-------------------------|-----------------------|-----------------------|-------------------|--|---------------------------------| Leg | Site | Hole | Core | Type | Section | Interval (cm) | Depth (mbsf) | Lithology | Sand | Silt | Clay | Calcite (30) | Carbonate (35) | Chlorite (45) | Clay (47) | Feldspar (71) | Glauconite (82) | Heavy Minerals (89) | Mica (118) | Opaques (140) | Oxides (146) | Pyrite (169) | Quartz (172) | Volcanic Glass (81) | Zeolite (222) | Diatoms (58) | Foraminifers (78) | Nannofossils (132) | Radiolarians (173) | Silicoflagellates (189) | Skeletal Debris (192) | Sponge Spicules (199) | Fecal Pellet (70) | Lithic Fragments (106) | Comments | | 181 11 | 123 | В | 50 | X | 3 | 70 | 464.1 | D | | 5 | 95 | 1 | P | | P | * | | | | | | | * | * | İ | P | | D | P | | | P | | | DARK GREEN | | | | | 50 | X | 3 | 70 | 464.1 | D | | 5 | | | | | Α | P | | | | | | | P | * | | P | | | | | | | | | ACID !!!! | | | | | 51 | X | 1 | 120 | 471.2 | M | | 5 | | | | | P | R | | | P | | | | R | | - | _ | | P | _ | _ | | | | | | | | | | 52 | X | 1 | 101 | 480.31 | D | | 5 | | | A | | P | | | P | | | | | | * | - | _ | С | A | _ | P | * | P | | - | CHALK OR LIMESTONE ? | | | | C | 1 | H
H | 1 | 18
135 | 0.18
1.35 | D
M | | | | | | | | P | | P | * | | | * | P | D | | P | C | A | P | P | - | P | | | ASH (S+V) | | | | C | 1 | Н | 2 | 70 | 2.2 | M | | | | | | | | 1 | | 1 | <u> </u> | | | _ | 1 | A | 1 | P | P | A | P | \vdash | P | | | | ASH+NANNOFOSSILS | | | | Č | 1 | Н | 3 | 20 | 3.2 | D | | | | | | | | | | | | | | | | | | Ť | P | | | | P | P | | | | | | | C | 1 | Н | 3 | 60 | 3.6 | D | | | | | | | | | | | | | | P | | | | P | P | D | P | | | P | | | | | | | С | 2 | Н | 2 | 92 | 11.42 | M | | | | | | | | P | | | P | | | P | P | D | | | | | | | | _ | | | ASH (V+S) | | | | С | 2 | Н | 2 | 106 | 11.56 | M | | | | - | | | | P | | | * | | | P | P | D | | | | _ | | | - | | | | ASH (V+S) | | | | C | 2 | H
H | 3 | 69
136 | 12.69
13.36 | M | | | | - | | | | P
P | | | * | | | P
P | P
P | D
D | - | ┢ | | P
P | | | | | | | ASH+(NANNOFOSSILS)
ASH (V+S) | | | | c | 2 | Н | 5 | 57 | 15.57 | M | | | | | | | | Г | | | | | | Г | Г | Ъ | _ | - | P | _ | + | P | | 1 | | | A3H (V+3) | | | | C | 2 | Н | 7 | 33 | 18.33 | M | | | | | | | | | | | | | | | | Α | | P | | A | _ | Ť | | | | | ASH+NANNOFOSSILS | | | | С | 3 | Н | 4 | 85 | 23.85 | M | | | | | | | | P | | | P | | | P | P | | | | | P | | | | | | | ASH (V+S) | | | | С | 3 | Н | 6 | 10 | 26.1 | M | | 25 | | | P | | | | | | | | | * | | * | | P | P | D | | | P | | | | | | | | С | 4 | Н | 4 | 120 | 33.7 | M | | | | | | | | P | | | P | | | P | P | D | | <u> </u> | | P | | | | | | | ASH (0 LAYER) | | | | C | 4 | Н | 6 | 73 | 36.23 | M | | | | | | | | P | | P | P | | | P | P | D | - | ┡ | | | | - | | | | | ASH (V+S) | | | - | C | 5 | H
H | 5 | 90 | 38.4
44.72 | M | | | | - | | | | P
P | | P
P | P
P | | | P
P | P
P | D
D | | - | | P | | | | | | | ASH (V+S) ASH (0 LAYER) | | | | C | 6 | Н | 1 | 78 | 47.78 | M | | 70 | | | | | | P | | P | P | | | С | P | D | | 1 | | P | + | | | | | | ASH (V+S) | | | | C | 6 | Н | 3 | 130 | 51.3 | M | | | | | P | | | | | • | - | | | P | | A | | | | D | | | P | | | | (ASH)+NANNOFOSSILS | | | | C | 6 | Н | 4 | 63 | 52.13 | M | | | | | | | | P | | P | | | | P | P | D | | | | P | | | | | | | ASH (V+S) | | | | С | 6 | Н | 4 | 96 | 52.46 | M | | | 10 | | | | | P | | P | | | | P | P | D | | | | P | | | | | | | ASH (S+V) | | | | C | 6 | Н | 5 | 10 | 53.1 | M | | | | | | | | P | | * | P | | | C | P | D | | | | P | | | | | | | ASH+(NANNOFOSSILS) | | | | C | 6 | Н | 5 | 90 | 53.9 | M | | | | | | | | P | | | P | | | C | P | D | | | | P | | | | | | | ASH+(NANNOFOSSILS) | | | | C | 6 | Н | 5 | 112 | 54.12 | M | | | | - | | | | P | | P
* | | | | C | P | D | - | ┢ | | P | + | | - | - | | - | ASH | | | | C | 6 | H
H | 5
6 | 124
119 | 54.24
55.69 | M | | | | | | | | P
P | | P | * | | | P
P | P
P | D
D | - | ┢ | | P | +- | \vdash | + | - | | - | ASH+(NANNOFOSSILS)
ASH | | | | C | 6 | Н | 7 | 16 | 56.16 | M | | | | | | | | P | * | P | | | | P | P | D | | 1 | | P | + | | | | | | ASH+ RARE GLAUCONITE | | | | C | 6 | Н | 7 | 64 | 56.64 | M | | | | T | | | | P | | P | | | | C | P | D | | t | | P | | | | | | | ASH (V+S) | | | | C | 7 | Н | 2 | 64 | 58.64 | M | 70 | 20 | 10 | | P | | | R | | P | | | | P | R | D | | | | P | | | | | | | ASH | | | | С | 7 | Н | 2 | 124 | 59.24 | M | | | | | | | | P | * | P | | | | P | P | D | | | | R | | | | | | | ASH | | | | C | 7 | Н | 3 | 3 | 59.53 | M | | | | | | | _ | P | | * | | | | R | P | D | | ــــ | P | - | 1 | * | - | _ | | | ASH | | | - | C | 7 | Н | 3 | 87 | 60.37 | M | | | | | | | P | P | | - | - | - | | | P | A | - | * | | C | * | * | P | | | - | ASH | | | | C | 7 | H
H | 4 | 134
57 | 60.84 | M | | | | | | | | P
P | | P | P | | | P | P
P | D
D | | - | | P
R | | - | - | - | | | ASH
ASH | | | | C | 7 | H | 5 | 11 | 62.61 | M | | | | | - | | P | P | P | * | | | | P | P | D | | ╁ | + | R | + | \vdash | + | | | | ASH
ASH | | | | C | 7 | Н | 6 | 89 | 64.89 | M | | 30 | | 1 | P | | P | 1 | 1 | - | | | | P | 1 | P | | t | | D | | * | P | R | | | ADII | | | | С | 8 | Н | 2 | 70 | 68.2 | M | | | | | Ť | | P | P | | * | | | | Ť | P | Ť | | T | P | D | _ | | P | P | | | | | | | C | 8 | Н | 2 | 123 | 68.73 | D | 5 | 35 | | | | | P | | | | | | | | | | | * | | D | | | | P | | | | | | | С | 8 | Н | 7 | 10 | 75.1 | M | 2 | 38 | 60 | | P | | P | R | | * | * | | | | R | | | | R | _ | | | | P | | | | | | | C | 9 | Н | 3 | 113 | 79.63 | M | | 45 | | <u> </u> | P | | P | * | | | _ | | | R | * | * | _ | <u> </u> | R | A | | | - | R | <u> </u> | _ | | | | | C | 9 | Н | 5 | 33 | 81.83 | M | | | | - | | | | P | | * | | 1 | | P | P | D | - | ⊢ | | * | - | - | - | _ | _ | - | ASH | | | 123
123 | C | 9 | H
H | 5
6 | 100
93 | 82.5
83.93 | M | | | | | P | | P | C
R | | P | | | | P | C
R | D | | Ͱ | * | R
D | P | | P | - | | | ASH | | | | C | 10 | Н | 1 | 51 | 85.51 | D | | | | 1 | P | | P | ĸ | | | | | \vdash | | ĸ | * | | P | | D | _ | \vdash | P | R | | | | | | | C | 10 | Н | 2 | 80 | 87.3 | D | | 20 | | | _ | | P | | | | | | | | | | | P | | | | * | t | P | | | | | Site | 1123 Sn | near S | Slide | s | | | | | Т | extu | re | | | | | | Mi | neral | | | | | | | | | Bio | genio | : | | | Ro | ck | | |------|---------|--------|-------|------|---------|---------------|--------------|-----------|------|------|------|--------------|----------------|-----------|---------------|-----------------|---------------------|------------|---------------|--------------|--|--------------|---------------------|---------------|--------------|-------------------|--------------------|--------------------|-------------------------|-----------------------|---------------------------|-------------------|------------------------|--------------------------------| | | | | | | Section | Interval (cm) | Depth (mbsf) | Lithology | pı | | y | Calcite (30) | Carbonate (35) | Clay (47) | Feldsnar (71) | Glauconite (82) | Heavy Minerals (89) | Mica (118) | Opaques (140) | Oxides (146) | Pyrite (169) | Quartz (172) | Volcanic Glass (81) | Zeolite (222) | Diatoms (58) | Foraminifers (78) | Nannofossils (132) | Radiolarians (173) | Silicoflagellates (189) | Skeletal Debris (192) | Sponge Spicules (199) | Fecal Pellet (70) | Lithic Fragments (106) | | | Leg | Site | Hole | Core | Type | š | Ī | <u>§</u> | Lit | Sand | Silt | Clay | Ca | ೨ ಕ | າ ຄັ | <u> </u> | ! ਤੌ | He | ĮΫ | Q | ő | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ᅙ | | Ze | Dia | Foi | Na | 2 | S | Sk | $\mathbf{s}_{\mathbf{p}}$ | Fec | Lit | Comments | | 181 | 1123 | С | 10 | Н | 3 | 90 | 88.9 | D | 10 | 30 | 60 | | Р | P | * | | | | | | | * | | | P | P | D | P | * | | P | | | | | 181 | 1123 | С | 10 | Н | 4 | 55 | 90.05 | D | 10 | 20 | 70 |] | P | P | * | | | | | | R | * | | | | P | D | P | * | | P | | | | | 181 | 1123 | С | 10 | Н | 5 | 143 | 92.43 | D | 5 | 25 | 70 | | | | | | | | | | | | | | P | P | D | P | | | P | | | | | 181 | 1123 | С | 12 | Н | 2 | 70 | 106.2 | M | 80 | 20 | | | | | P | | * | | | | P | P | D | | | | | | | | | | | ASH | | 181 | 1123 | С | 12 | Н | 3 | 23 | 107.23 | D | 5 | 45 | 50 |] | P | P | | | | * | | | | | | | R | P | D | | * | | P | | | | | 181 | 1123 | С | 12 | Н | 4 | 111 | 109.61 | D | 5 | 45 | 50 | | | P | | | | | | | | | * | | P | R | D | R | | | P | | | | | 181 | 1123 | С | 13 | Н | 4 | 68 | 118.68 | M | 80 | 20 | | | | | P | | * | | | | | P | D | | | | R | | | | | | | ASH | | 181 | 1123 | С | 14 | Н | 2 | 60 | 125.1 | D | | 10 | 90 | | | | | | | | | | | | | | P | | D | P | P | P | | | | | | 181 | 1123 | С | 15 | Н | 4 | 50 | 136.97 | M | 40 | 20 | 40 | | | | P | | P | P | | | P | P | Α | | | P | Α | | | P | P | | | ASH+NANNOFOSSILS | | 181 | 1123 | С | | X | 2 | 74 | 232.24 | D | | 20 | 80 | | | P | 1 | | | | | | | | | | P | P | D | T | | P | | | | | | 181 | 1123 | С | 18 | X | 1 | 12.5 | 484.13 | M | 2 | 18 | 80 | | | С | R | | | | | | | R | R | | | R | P | | | | | | | | | 181 | 1123 | С | 18 | X | 1 | 84 | 484.84 | D | 3 | 27 | 70 | | | P | P | | | | | | | | | | | | Α | | | | | | | | | 181 | 1123 | С | 18 | | 2 | 110 | 486.6 | D | 3 | 50 | 47 | | | | P | | | | | | R | P | | | | R | D | T | | | | | | | | 181 | 1123 | С | 19 | X | 3 | 77 | 492.27 | D | 2 | 48 | 50 | | | С | P | | R | | | | | P | | | | | С | R | | | | | | | | 181 | 1123 | С | 19 | | 4 | 70 | 493.7 | D | 5 | 60 | 35 | | | P | P | | | | | | | P | | | | * | Α | * | | | Р | | | | | 181 | 1123 | C | | X | | 143 | 499.53 | M | | 60 | 40 | | | P | _ | | | * | | | P | R | | | | | D | \neg | \neg | | P | | | | | 181 | 1123 | C | 22 | X | 1 | 126 | 518.66 | M | 5 | 55 | 40 | | | P | _ | | | | | | P | R | * | | | Р | D | \neg | \neg | | | | | | | 181 | 1123 | C | 23 | | 2 | 81 | 529.31 | D | | 50 | 50 | | | C | | _ | | | P | | 1 | - | | | | * | C | | | | | | | | | 181 | 1123 | C | 24 | | 1 | 124 | 537.84 | D | | 30 | 70 | | P | P | | | | P | 1 | | * | P | | | | | D | \neg | \neg | | | | | | | 181 | 1123 | C | 24 | | 6 | 90 | 545 | M | | 10 | 90 | | P | P | | | | +- | | | | 1 | | | | | D | \neg | \neg | | | | | CLAST IN DEBRIS FLOW | | 181 | 1123 | C | 25 | | 2 | 30 | 548 | D | 30 | 40 | 30 | | C | T- | + | | | P | | | | | | | | P | | P | _ | P | P | | | LIMESTONE | | 181 | 1123 | C | | X | 3 | 129 | 550.49 | M | 5 | 40 | 55 | | _ | | + | _ | - | P | | | | | * | | | P | D | - | \dashv | • | P | | | GREEN LAYER | | 181 | 1123 | C | 26 | | | 31 | 562.01 | M | | 10 | 90 | | P | P | + | + | _ | P | | | | | | | | - | D | \dashv | \dashv | P | P | | | GREEN LAYER | | 181 | 1123 | C | 27 | X | 4 | 2 | 569.92 | M | | 10 | 90 | | P | P | _ | | | P | | | P | | * | | | | D | \dashv | \dashv | | | | | GREEN LAYER | | 181 | 1123 | C | 28 | | 3 | 52 | 578.62 | D | | 10 | | | C | + | * | | | P | | | <u> </u> | * | | | | | D | \dashv | \dashv | \dashv | Р | | | GREEN EATTER | | 181 | 1123 | C | 28 | | 4 | 117 | 580.77 | M | | 10 | 90 | | P | P | | | | C | P | | | | * | | | | D | \dashv | \dashv | \dashv | | | | PINKY DARK LAYER | | 181 | 1123 | С | 29 | | 2 | 95 | 587.15 | D | | 5 | 95 | | C | _ | P | 1 | 1 | P | 1 | | | | | 1 | | | D | - | - | | | | | GREEN LAYER | | 181 | 1123 | C | 29 | | 2 | 107 | 587.27 | D | | 5 | 95 | | 2 | P | | | | + | | | | | | | | | D | - | \dashv | \neg | | | | WHITE LAYER | | 181 | 1123 | C | 29 | | 5 | 128 | 591.98 | D | | 5 | 95 | | | P | | | | + | 1 | | | | | | | | D | \dashv | \dashv | \dashv | | | | WIIIII | | 181 | 1123 | С | 30 | X | 1 | 77 | 595.07 | D | 5 | 55 | 48 | | _ | + - | + | 1 | 1 | + | 1 | | | | | | | * | D | \dashv | \dashv | P | - | | | LITHIFIED, CARBONATE FRAGMENTS | | 181 | 1123 | С | 31 | | 3 | 42 | 607.32 | D | 2 | 50 | 40 | | _ | P | R | 1 | | + | 1 | | | R | | | | | D | - | \dashv | 1 | Р | | | LITHIFIED LITHIFIED | | 181 | 1123 | С | 32 | | 3 | 7 | 616.67 | M | 5 | 60 | 35 | | | +1 | + | + | + | + | 1 | | | 1 | | | | С | D | \rightarrow | \rightarrow | \dashv | | | | EITHILD | | _ | | | | | | | | | | - 00 | 33 | | | + | * | + | _ | + | 1 | | | * | | | | | | * | \dashv | \dashv | * | | | | | 181 | 1123 | С | 32 | X | 3 | 94 | 617.54 | D | | | | | A | | * | | | | | | | * | | | | | С | * | | | * | | | |