Berner, R.A., 1980. Early Diagenesis. A Theoretical Approach. Princeton, NJ (Princeton Univ. Press).
Boetius, A., Ferdelman, T., and Lochte, K., 2000. Bacterial turnover of organic carbon of the deep Arabian Sea in relation to vertical flux. Deep-Sea Res., Part II, 47:1752-1783.
Borowski, W.S., Paull, C.K., and Ussler, W., III, 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24:655-658.
Böttcher, M.E., Bernasconi, S.M., and Brumsack, H.-J., 1999. Carbon, sulfur, and oxygen isotope geochemistry of interstitial waters from the western Mediterranean. In Zahn, R., Comas, M.C., and Klaus, A. (Eds.), Proc. ODP, Sci. Results, 161: College Station, TX (Ocean Drilling Program), 413-422. [PDF version]
Böttcher, M.E., Brumsack, H.-J., and De Lange, G.J., 1998. Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters from the Eastern Mediterranean. In Robertson, A.H.F., Emeis, K.-C., Richter, C., and Camerlenghi, A. (Eds.), Proc. ODP, Sci. Results, 160: College Station, TX (Ocean Drilling Program), 365-373. [PDF version]
Böttcher, M.E., Schale, H., Schnetger, B., Wallmann, K., and Brumsack, H.-J., 2000. Stable sulfur isotopes indicate net sulfate reduction in near-surface sediments of the deep Arabian Sea. Deep-Sea Res., Part II, 47:2769-2783.
Brumsack, H.-J., Zuleger, E., Gohn, E., and Murray, R.W., 1992. Stable and radiogenic isotopes in pore waters from Leg 127, Japan Sea. In Pisciotto, K.A., Ingle, J.C., Jr., von Breymann, M.T., Barron, J., et al., Proc. ODP, Sci. Results, 127/128 (Pt. 1): College Station, TX (Ocean Drilling Program), 635-650.
Canfield, D.E., 1991. Sulfate reduction in deep-sea sediments. Am. J. Sci., 291:177-188.
Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., and Berner, R.A., 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shale. Chem. Geol., 54:149-155.
Carter, R.M., McCave, I.N., Richter, C., Carter, L., et al., 1999. Proc. ODP, Init. Repts., 181 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station, TX 77845-9547, U.S.A. [HTML version]
Chambers, L.A., and Trudinger, P.A., 1979. Microbiological fractionation of stable sulfur isotopes: a review and critique. Geomicrobiol. J., 1:249-293.
Chanton, J.P., Martens, C.S., and Goldhaber, M.B., 1987. Biogeochemical cycling in an organic-rich coastal marine basin, 8. A sulfur isotope budget balanced by differential diffusion across the sediment-water interface. Geochim. Cosmochim. Acta, 51:1201-1208.
Fossing, H. and Jørgensen, B.B., 1989. Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry, 8: 205-222.
Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta, 43:1075-1090.
Giesemann, A., Jäger, H.-J., Norman, A.L., Krouse, H.R., and Brand, W.A., 1994. On-line sulphur isotope determination using an elemental analyzer coupled to a mass spectrometer. Anal. Chem., 66:2816-2819.
Gieskes, J., Gamo, T., and Brumsack, H.-J., 1991. Chemical methods for interstitial water analysis aboard JOIDES Resolution. ODP Tech. Note, 15.
Gieskes, J.M., 1981. Deep sea drilling interstitial water studies: implications for chemical alteration of the oceanic crust, layers I and II. In Warme, J.E., Douglas, R.G. and Winterer, E.L. (Eds.), The Deep Sea Drilling Project: A decade of progress. Spec. Publ.—Soc. Econ. Paleontol. Mineral., 32:149-167.
Gonfiantini, R., Stichler, W., and Rozanski, K., 1995. Standards and intercomparison materials distributed by the International Atomic Energy Agency for stable isotope measurements. IAEA-TECDOC-825, 13-29.
Hartmann, M., and Nielsen, H., 1969. 34S-Werte in rezenten Meeressedimenten und ihre Deutung am Beispiel einiger Sedimentprofile aus der westlichen Ostsee. Geol. Rundsch., 58:621-655.
Hoehler, T.M., Alperin, M.J., Albert, D.B., and Martens, C.S., 1994. Field and laboratory studies of methane oxidation in anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochem. Cycles, 8:451-463.
Jørgensen, B.B., 1979. A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochim. Cosmochim. Acta, 31:363-374.
————, 1982. Mineralization of organic matter in the seabed—the role of sulphate reduction. Nature, 296:643-645.
Kaplan, I.R. and Rittenberg, S.C., 1964. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol., 34:195-212.
Longinelli, A., 1989. Oxygen-18 and sulphur-34 in dissolved oceanic sulphate and phosphate. In Fritz, P., and Fontes, J.C. (Eds.), Handbook of Environmental Isotope Geochemistry (Vol. 3): New York (Elsevier), 219-256.
Manheim, F.T., and Sayles, F.L., 1974. Composition and origin of interstitial waters of marine sediments, based on deep sea drill cores. In Goldberg, E.D. (Ed.), The Sea (Vol. 5): Marine Chemistry: The Sedimentary Cycle: New York (Wiley), 527-568.
Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.A., Fry, J.C., Weightman, A.J., and Harvey, S.M., 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371: 410-413.
Paytan, A., Kastner, M., Campbell, D., and Thiemens, M.H., 1998. Sulfur isotopic composition of Cenozoic seawater sulfate. Science, 282:1459-1462.
Rudnicki, M.D., Elderfield, H., and Spiro, B., 2001. Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures. Geochim. Cosmochim. Acta, 65:777-789.
Torres, M.E., Brumsack, H.-J., Bohrmann, G., and Emeis, K.C., 1996. Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chem. Geol., 127:125-139.
Zak, I., Sakai, H., and Kaplan, I.R., 1980. Factors controlling the 18O/16O and 34S/32S isotope ratios of ocean sulfates, evaporites and interstitial sulfates from modern deep sea sediments. In Goldberg, E.D., Horibe, Y., and Saruhashi, K. (Eds.), Isotope Marine Chemistry: Tokyo (Rokakuho), 339-373.