Suyehiro, K., Sacks, I.S., Acton, G.D., and Oda, M. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results Volume 186

3. PALEOCEANOGRAPHY OFF SANRIKU, Northeast Japan, Based on Diatom Flora¹

Itaru Koizumi² and Tatsuhiko Sakamoto³

ABSTRACT

The diatom flora from two sediment cores recovered from the upper 27 meters below seafloor (mbsf) in the oceanic frontal area off Sanriku, northeast Japan, during Ocean Drilling Program Leg 186 were analyzed. Diatom abundance seems to be in interglacial stages and suggests a south-north shifting of the frontal area. Diatom temperature values are less reliable because frequency of the warm-water species is smaller. Site 1151 was in a warm climate at ~50 ka, as were Deep Sea Drilling Project Sites 579 and 580 in the western North Pacific Ocean. A mixed diatom assemblage in the upper 3 mbsf at Site 1150 is evidence that the Tsugaru Warm Current flowed into the studied area through the Tsugaru Strait.

INTRODUCTION

The sea off Sanriku, northeast Japan, north of ~38°N, is a thermal frontal area between the Oyashio Front and the Kuroshio Front (Fig. F1). Flowing along the coast of Japan and reaching ~35°N, the Kuroshio Current turns east and mixes with the cold, low-salinity Oyashio Current coming down from the Bering and Okhotsk Seas. At the northern margin of the frontal area, Oyashio water intrudes southward along the Sanriku Coast. The Tsugaru Warm Current, flowing from the Japan Sea into the Pacific Ocean through the Tsugaru Strait, flows southward, closer to the Sanriku Coast, and occasionally comes in contact with the

F1. Location of Sites 1150 and 1151, p. 10.

¹Koizumi, I., and Sakamoto, T., 2003. Paleoceanography off Sanriku, northeast Japan, based on diatom flora. *In* Suyehiro, K., Sacks, I.S., Acton, G.D., and Oda, M. (Eds.), *Proc. ODP, Sci. Results*, 186, 1–21 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/ publications/186_SR/VOLUME/ CHAPTERS/110.PDF>. [Cited YYYY-MM-DD]

²Atsubetsu Kita 3, 5-18-2, Atsubetsuku, Sapporo 004-0073, Japan.

itaru@sci.hokudai.ac.jp

³Institute for Frontier Research on Earth Evolution (iFREE), Japan Marine Science and Technology Center, Natsushima-cho 2-15, Yokosuka 237-0061, Japan.

Initial receipt: 2 January 2002 Acceptance: 3 October 2002 Web publication: 24 April 2003 Ms 186SR-110

Oyashio Intrusion, which elongates, forming a tonguelike shape ~160 km in width (Kawai, 1972).

The sea off northeast Japan is a crucial area for determining the hydrographic relationship between the equatorial Pacific and subarctic North Pacific Ocean over time. However, the northwest Pacific almost entirely lacks carbonate pelagic sediments containing foraminifers and coccolithophorids because its seafloor lies at depths largely below the calcium carbonate compensation depth. Diatom paleoceanographic analyses of the late Neogene on a north-south track across the subarctic front were unravelled during Deep Sea Drilling Project (DSDP) Leg 86 (Koizumi, 1985).

The high-resolution paleoceanographic analyses, however, off the coast of northeast Japan have not been performed because the hydraulic piston corer was not used in previous ocean drilling during DSDP Legs 56, 57, and 87 in the forearc area. Ocean Drilling Program (ODP) Leg 186 provided one opportunity for establishing a high-resolution profile of paleoceanographic history during the Quaternary off northeast Japan based on diatom flora.

MATERIALS AND METHODS

Site 1150 ($39^{\circ}11'N$, $143^{\circ}20'E$; water depth = 2681 m) is located in the deep-sea terrace on the landward side of the Japan Trench. The upper 200 meters below seafloor (mbsf) of sediment from Hole 1150A consists of interbedded diatomaceous ooze and clay (Sacks, Suyehiro, Acton, et al., 2000). Maruyama and Shiono (this volume) suggest the sedimentation rate of 170.1 m/m.y. for the upper 51 mbsf, based on the last occurrence at 0.30 Ma of *Proboscia curvirostris* at 51.03 mbsf. The upper 27 mbsf of Hole 1150A was estimated to be late Quaternary in age and was utilized for this study (Table T1).

Site 1151 (38°45′N, 143°20′E; water depth = 2178 m) is located 48 km south of Site 1150, in the deep-sea terrace of the Japan Trench. The upper 100 mbsf of Hole 1151C is diatomaceous silty clay. The sedimentation rate is 38.3 m/m.y. based on the last occurrence of *P. curvirostris* at 11.50 meters composite depth (mcd). The upper 22 mbsf covers the latest Quaternary used in this study (Table T2).

Dried sample (0.10 g) was placed into a 100-mL beaker with ~10 mL of hydrogen peroxide solution (15%) for several seconds and then left to stand for 24 hr after diluting with distilled water. After pouring off the suspension, the residue was diluted again with 75 mL of distilled water and homogenized for ~3 s in an ultrasonic washer (Clean Matic; 20 W, 40 kHz). Using a micropipette (Justor-Jv 500 µL), 0.25 mL of the solution was placed on a cover glass (18 mm × 18 mm), dried on a hot plate at 50°C, and then mounted on a glass slide using Pleurax.

All diatoms were identified and counted until the number of individual specimens reached 200, excluding *Bacteriastrum* spp. and *Chaetoceros* spp. But only *Chaetoceros furcelatus* was counted.

Sediment accumulation rates were calculated on the basis of the diatom events.

APPROACH

Paleoceanographic analyses are undertaken on the basis of (1) diatom abundance (number of diatoms), (2) diatom temperature (*T*d) val-

T1. Distribution chart of diatom species, Hole 1150A, p. 15.

T2. Distribution chart of diatom species, Hole 1151C, p. 16.

ues, (3) species composition, which reflects the effects of salinity of the water and mode of living, (4) number of extinct diatoms, and (5) principal component analysis, which uses the results from the previous four analytical methods for determining the composition of species.

Diatom Abundance

The number of diatom valves in a given volume of sediment depends on (1) diatom productivity, (2) preservation and/or dissolution of the diatoms, and (3) dilution with terrigenous and/or other organic materials.

Warm-Water and Cold-Water Diatoms

The warm-water (Xw) and cold-water (Xc) species have been classified according to Kanaya and Koizumi (1966). All these diatoms are living species.

Xw species are as follows:

Alveus marinus (Grunow) Kaczmarska and Fryxell Azpeitia nodulifera (Schmidt) Fryxell and Sims Coscinodiscus perforatus Ehrenberg Fragilariopsis doliolus (Wallich) Medlin and Sims Hemidiscus cuneiformis Wallich Planktoniella sol (Wallich) Schtt Rhizosolenia bergonii Peragallo Roperia tesselata (Roper) Grunow Thalassiosira leptopus (Grunow) Hasle and Fryxell

Xc species are as follows:

Actinocyclus curvatulus Ianisch Actinocyclus ochotensis Jouse Asteromphalus robustus Castracane Bacteriosira fragilis (Gran) Gran Chaetoceros furcellatus Bailey Coscinodiscus marginatus Ehrenberg Coscinodiscus oculus-iridis Ehrenberg Fragilariopsis cylindrus (Grunow) Krieger Neodenticula seminae (Simonsen and Kanaya) Akiba and Yanagisawa Odontella aurita (Lyngbye) Agardh Porosira glacialis (Grunow) Jorgensen Rhizosolenia hebetata forma hiemalis (Bailey) Gran Thalassiosira gravida Cleve Thalassiosira hyalina (Grunow) Gran Thalassiosira nordenskioeldii Cleve Thalassiosira trifulta Fryxell

Diatom Temperature Values

The *T*d ratio was proposed by Kanaya and Koizumi (1966) to estimate sea-surface water temperature during the accumulation of sediments in the lower levels of a core sequence:

$$Td = [Xw/(Xw + Xc)] \times 100,$$

where Xw is the frequency of warm-water diatoms and Xc is that of cold-water diatoms. *T*d ranges in value from 0 to 100. Going from the subarctic region to the tropical region, *T*d becomes systematically

larger, showing a positive correlation with sea-surface water temperature over a given geographical site in the North Pacific (Kanaya and Koizumi, 1966).

Species Composition

Diatom populations incorporated into the sediment of Sites 1150 and 1151 at the time of deposition include sublittoral diatoms (brackish water and meroplanktonic or tychopelagic species) and/or freshwater diatoms that are inferred to have been transported to the site by drainage from the land and downslope transport.

Extinct Diatoms

The core sediments include extinct diatoms that are present as a result of reworking Miocene to Pliocene sedimentary rocks on the seafloor and/or inland area. The age of these rocks are identified according to diatom biostratigraphy.

Principal Component Analysis

Principal component analysis of diatom species was carried out when more than six valves of a given species were found in a sample in order to statistically analyze the stratigraphic assemblage structure which reflects the effects of physiographical-ecological, phytogeographical, and evolutionary factors at the site.

RESULTS OF PALEOCEANOGRAPHIC ANALYSIS

Hole 1150A

Diatom Abundance

The number of diatom valves varies from $1.6 \times 10^7/g$, the minimum value at 8.00 mbsf, to $18.4 \times 10^7/g$, the maximum at 1.85 mbsf (average = $7.2 \times 10^7/g$) (Fig. F2). Large fluctuations occur, with secondary and smaller fluctuations. The high values are observed at ~1.50, 17.00, and 26.20 mbsf. The large decreases occur at ~7.50 and 20.20 mbsf.

Warm-Water and Cold-Water Diatoms

Warm-water diatoms are overwhelmed by cold-water diatoms throughout the section. In the upper part, warm-water *Fragilariopsis doliolus* and *Thalassiosira leptopus* are slightly more abundant and show the maximum of 9.5% at 1.53 mbsf. Cold-water diatoms, such as *Bacteriosira fragilis, Fragilariopsis cylindrus, Neodenticula seminae, Odontella aurita, Thalassiosira gravida, Thalassiosira hyalina, Thalassiosira nor-denskioeldii,* and *Thalassiosira trifulta,* generally increase in abundance through the whole section, but sharp decreases occur at ~21.59 and 9.16 mbsf.

Td (Diatom Temperature) Value

*T*d value is very low and is punctuated in brief intervals by relatively larger fluctuations of 2.5%–5.0% throughout the section. The maxi-

F2. Diatom abundance vs. subbottom depth, Hole 1150A, p. 11.

mum value is 16.81% at 1.53 mbsf. These fluctuations represent changes in the surface water temperature, probably caused by the mixing of warm water and cold water in the frontal area.

Sublittoral Diatoms

Major fluctuations among secondary, smaller fluctuations in the abundance of sublittoral diatoms are recognized as declining through the whole section. The abundance of sublittoral diatoms remarkably decreases in the upper 0–5.00 mbsf. The increases in abundance of *Delphineis surirella, Paralia sulcata,* and *Stephanopyxis turris* occur in four intervals: 21.40–23.10, 15.80–19.60, 11.30–13.70, and 6.40–8.00 mbsf.

Freshwater Diatoms

The increased frequencies of *Aulacosira granulata, Eunotia* spp., and *Pinnularia* spp. are recognized in two intervals: 21.60–23.50 and 6.00–11.90 mbsf.

Extinct Diatoms

The sawtoothed curve consisting of a triple increase in abundance is recognized throughout the section. The sawtooth pattern is remarkably sharp in the upper 0–10.00 mbsf. *Melosira albicans* and *Pseudopodosira elegans* are dominant throughout the section.

Principal Component Analysis

The six highest principal components, which were chosen by plotting the eigenvalues of 33 species, are significant for the species composition because they explain 51.1% of the total variance (Fig. F3; Table T3).

The first principal component is fairly stable and shows high positive scores for the upper 3.00 mbsf. It suggests inflow of the Tsugaru Warm Current because of the mixed assemblage consisting of cold-water, warm-water, and oceanic species. On the other hand, negative scores consisting of cold-water and sublittoral species indicate a coastal area nearshore in the subarctic ocean (Table T4).

The second component shows positive scores consisting of dominant sublittoral and extinct diatoms at 19.00–23.00 and 6.00–10.00 mbsf. Negative scores consisting of exclusively cold-water and oceanic species are dominant in the upper 6.00 mbsf.

The third component is negative in the lower part of the section studied but positive in the upper part. The positive scores represent dominant cold-water and oceanic species, and the negative scores represent cold-water and sublittoral diatoms.

The positive scores of the fourth factor occur in the lower 20.00–26.00 mbsf and in the upper 2.00–10.00 mbsf. They are composed of extinct and cold-water species. The fifth and sixth factors are unstable and keep fluctuating throughout the section.

Hole 1151C

Diatom Abundance

Large-scale fluctuations in diatom abundance that are composed of smaller fluctuations are also recognized in the section studied from Site

F3. Q-mode principal component analysis, Hole 1150A, p. 12.

T3. Eigenvalue and percentage of variance of four significant components, Hole 1150A, p. 17.

T4. Loading for 33 species in each component, Hole 1150A, p. 18.

1151. Diatoms are generally abundant in the lower part but indicate a decline in abundance from the bottom upward throughout the section (Fig. F4). That tendency is opposite to that recognized at Site 1150. The maximum value is 10.29×10^{7} /g at 18.40 and 21.40 mcd, and the minimum is 0.46×10^{7} /g at 1.85 mcd. The average value, 4.4×10^{7} /g, is ~60% of that at northern Site 1150.

Warm-Water and Cold-Water Diatoms

Warm-water diatoms such as *Alveus marinus*, *F. doliolus*, *Roperia tesselata*, and *T. leptopus* are abundant at a maximum of 15% at 19.60 mcd in the lower part, but they are a minor component in the section. Coldwater diatoms such as *B. fragilis*, *N. seminae*, *O. aurita*, *T. gravida*, *T. hyalina*, *T. nordenskioeldii*, and *T. trifulta* increase with sharp fluctuations from the bottom to the top throughout the section.

Td (Diatom Temperature) Value

The high *T*d value, 35.71% at 19.60 mcd in the lower part of the section, comes from the decrease of cold-water diatoms and from the increase of warm-water diatoms. The major increases occur at 19.60, ~13.00, 7.00, and 1.85 mcd.

Sublittoral Diatoms

The abundance curve of sublittoral diatoms is marked by three sharp drops occurring at ~15.40, 7.00, and 1.00 mcd. Remarkably high abundances of *S. turris* are present at 3.70 mcd. The variation in abundance is composed of secondary, smaller fluctuations.

Freshwater Diatoms

The abundance of freshwater diatoms increases toward the top of the section, and high values of *Cyclotella* spp. and *Stephanodiscus* spp. are present at 1.85 mcd.

Extinct Diatoms

In the lower part of the section, the abundance of *M. albicans*, *P. elegans*, and *T. nidulus* increases upward and then drops at 12.80 mcd. In the upper section, the abundance gradually decreases with a peak at 5.20 mcd.

Principal Component Analysis

Five principal components were selected as significant based upon the eigenvalues of 34 species because they explain 46.7% of the total variance (Fig. F5; Table T5).

The first factor changes scores from high and positive in the bottom part to lower in the upper part with punctuations by several negative scores. The negative scores are remarkable in the upper 2.00 mbsf. The positive scores are composed of warm-water and oceanic diatoms, suggesting the influence of the Kuroshio Warm Current. On the other hand, the negative scores consist exclusively of cold-water and oceanic diatoms, which are dominant in this area. These fluctuations suggest an overall decline in sea-surface temperature toward the present day (Table T6).

F4. Diatom abundance vs. composite depth, Hole 1151C, p. 13.

F5. Q-mode principal component analysis, Hole 1151C, p. 14.

T5. Eigenvalue and percentage of variance of four significant components, Hole 1151C, p. 20.

T6. Loading for 34 species in each component, Hole 1151C, p. 21.

Contrary to the first, the second factor shows negative scores in the bottom part and positive scores in the upper 9.50–5.00 mbsf. Sublittoral and cold-water diatoms represent the positive scores, and extinct diatoms and warm-water diatoms represent the negative scores.

The third factor fluctuates between negative and positive scores throughout the section. The amplitudes increase upward. The positive scores are represented exclusively by cold-water and extinct diatoms, but the negative scores are attributed to sublittoral and cold-water diatoms.

The fourth factor shows the negative scores at ~14.00 mbsf and positive scores in the upper part. The interval from 19.50 to 15.00 mbsf is occupied by positive scores, which are composed of both cold-water and warm-water diatoms and oceanic diatoms. The negative scores are represented by the mixed assemblage of sublittoral, oceanic, extinct, and cold-water diatoms, and no warm-water diatoms are included.

The fifth factor fluctuates throughout the section.

DISCUSSION

There are no other useful age assignments than two diatom datums for the last occurrence of *P. curvirostris* and *T. nidulus*. The last occurrence of *P. curvirostris* is present at 51.03 mbsf in Hole 1150A and at 11.50 mcd in Hole 1151C. This datum level is almost synchronous with 0.3 Ma in middle-high latitudes in the western North Pacific Ocean (Koizumi and Tanimura, 1985; Koizumi, 1992). The assigned age is also nearly isochronous in the area along the California margin (Maruyama, 2000). The last occurrence of *T. nidulus* is recognized at 10.13 mcd in Hole 1151C. This datum level is slightly earlier in low-middle latitudes (0.39 Ma) than in middle-high latitudes (0.28 Ma) (Koizumi and Tanimura, 1985; Koizumi, 1992).

Diatom abundance seems to be greater in interglacials in Hole 1150A (Fig. F2). The high values at ~1.50 mbsf could be included within Stage 1 (Holocene), those at 17.00 mbsf within Substage 5e, and those at 26.20 mbsf within Stage 7. The sedimentation rate is possibly lower in the glacial stages, but reworked and displaced diatoms are more common when sea level lowered. Td values are less reliable because the value of Xw is smaller.

High *T*d values at 19.60 mcd in Hole 1151C correspond to the warm period at ~50 ka (Koizumi, 1994), when warm water and cold water mixed over the studied area off the Sanriku coast. Diatom abundances in Hole 1151C show a tendency to increase in interglacials as in Hole 1150A (Fig. F4). The high value at the interval from 8.52 to 7.91 mcd in Hole 1151C seems to correspond to Substage 5e based on the cyclicity of diatom abundance and sedimentation rate. The lower values of diatom abundance suggest the possibility that part of the core top might be missing.

ACKNOWLEDGMENTS

We wish to thank the Ocean Drilling Program, Texas A&M University, for furnishing the samples (sample request number 16763A) for this study. We thank the co-chief scientists, shipboard scientists, technicians, and crew of the *JOIDES Resolution* for their assistance and cooperation in obtaining the samples. Our thanks is also extended to Dr. T.

Irino, Hokkaido University, for his help and advice. Also we express our gratitude to Dr. J.A. Barron of the U.S. Geological Survey and Dr. A. Yu Gladenkov of the Geological Institute of Russian Academy of Sciences of reviewers. Gigi Delgado remarked on editorial comments.

This research used samples provided by the Ocean Drilling Program (ODP). ODP is sponsored by the U.S. National Science Foundation (NSF) and participating countries under management of Joint Oceano-graphic Institutions (JOI), Inc.

REFERENCES

- Kanaya, T., and Koizumi, I., 1966. Interpretation of diatom thanatocoenoses from the North Pacific applied to a study of core V20-130 (studies of a deep-sea core V20-120, part IV). Sci. Rep. Tohoku Univ. Ser. 2, 37:89–130.
- Kawai, H., 1972. Hydrography of the Kuroshio Extension. *In* Stommel, H., and Yoshida, K. (Eds.), *Kuroshio—Its Physical Aspects:* Tokyo (Univ. Tokyo Press), 235–352.
- Koizumi, I., 1985. Late Neogene paleoceanography in the western North Pacific. *In* Heath, G.R., Burckle, L.H., et al., *Init. Repts. DSDP*, 86: Washington (U.S. Govt. Printing Office), 429–438.

, 1992. Diatom biostratigraphy of the Japan Sea: Leg 127. *In* Pisciotto, K.A., Ingle, J.C., Jr., von Breymann, M.T., Barron, J., et al., *Proc. ODP, Sci. Results*, 127/128 (Pt. 1): College Station, TX (Ocean Drilling Program), 249–289.

, 1994. Spectral analysis of the diatom paleotemperature records at DSDP Sites 579 and 580 near the subarctic front in the western North Pacific. *Palaeogeogr., Palaeoclimatol., Palaeoecol.,* 108:475–485.

- Koizumi, I., and Tanimura, Y., 1985. Neogene diatom biostratigraphy of the middle latitude western North Pacific, Deep Sea Drilling Project Leg 86. *In* Heath, G.R., Burckle, L.H., et al., *Init. Repts. DSDP*, 86: Washington (U.S. Govt. Printing Office), 269–300.
- Maruyama, T., 2000. Middle Miocene to Pleistocene diatom stratigraphy of Leg 167. *In* Lyle, M., Koizumi, I., Richter, C., and Moore, T.C., Jr. (Eds.), *Proc. ODP, Sci. Results*, 167: College Station, TX (Ocean Drilling Program), 63–110.
- Sacks, I.S., Suyehiro, K., Acton, G.D., et al., 2000. *Proc. ODP, Init. Repts.*, 186 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA.
- Takemoto, A., and Oda, M., 1997. New planktic foraminiferal transfer functions for the Kuroshio-Oyashio Current region off Japan. *Paleontol. Res.*, 1:291–310.

Figure F1. Location of ODP Leg 186 Sites 1150 and 1151. Major current systems and the generalized distribution of sea-surface water masses in seas adjacent to the Japanese Islands are adopted from Takemoto and Oda (1997). C = areas dominated by cold-water masses during the meandering of the Kuroshio Current; W = areas dominated by warm-water masses within the so-called Perturbed Area between the Kuroshio and Oyashio Currents.

Figure F2. Stratigraphic variations of the abundance of diatoms and other paleoceanographic parameters based upon species compositions plotted against the subbottom depth (mbsf), Hole 1150A. Xw = frequency of warm-water species, Xc = frequency of cold-water species, Td = diatom temperature.

Figure F3. Stratigraphic loadings for each component of Q-mode principal component analysis of the diatom assemblage which occurs over six diatoms in any sample, Hole 1150A.

Figure F4. Stratigraphic variations of the abundance of diatoms and other paleoceanographic parameters based upon species compositions plotted against the composite depth (mcd), Hole 1151C. Xw = frequency of warm-water species, Xc = frequency of cold-water species, Td = diatom temperature.

Figure F5. Stratigraphic loadings for each component of Q-mode principal component analysis of the diatom assemblage which occurs over six diatoms in any sample, Hole 1151C. The subbottom depth (mbsf) is used.

Table T1. Distribution chart of diatom species, Hole 1150A. (This table is available in an oversized format.)

 Table T2. Distribution chart of diatom species, Hole 1151C. (This table is available in an oversized format.)

Table T3. Eigenvalue and percentage of variance offour significant components, Hole 1150A.

Component	Eigenvalue	Percent of variance explained	Cumulative percent of variance explained
1	4.952	15.0	15.0
2	4.439	13.5	28.5
3	2.555	7.7	36.2
4	1.957	5.9	42.1
5	1.728	5.2	47.4
6	1.376	4.2	51.5

 Table T4. Loading for 33 species in each component, Hole 1150A. (Continued on next page.)

Factor 1		Factor 2		Factor 3		
Loading	Species	Species Loading Speci		Loading	Species	
0.8553	Odontella aurita	0.6360	Thalassionema nitzschioides	0.7938	Thalassiosira trifulta	
0.7319	Neodenticula seminae	0.6114	Delphineis spp.	0.5311	Thalassiosira antiqua	
0.6669	Fragilariopsis doliolus	0.5281	Pseudopodosira elegans	0.4040	Thalassiosira pacifica	
0.5835	Thalassiosira leptopus	0.4767	Neodenticula spp.	0.3961	Porosira glacialis	
0.4916	Thalassiosira nordenskioeldii	0.4755	Cocconeis spp.	0.3327	Neodenticula spp.	
0.4824	Chaetoceros furcellatus	0.4333	Thalassiosira oestrupii	0.3320	Actinocyclus ochotensis	
0.4791	Thalassiosira lineata	0.4173	Rhizosolenia styliformis	0.2798	Coscinodiscus oculus-iridis	
0.3832	Rhizosolenia setigera	0.4059	Actinocyclus curvatulus	0.2552	Actinocyclus curvatulus	
0.3055	Thalassiosira oestrupii	0.3721	Paralia sulcata	0.2278	Thalassiosira cfrr. convexa	
0.2726	Thalassionema nitzschioides	0.3657	Stephanopyxis turris	0.2251	Rhizosolenia styliformis	
0.2403	Stellarima stellaris	0.2973	Rhizosolenia setigera	0.2211	Cocconeis spp.	
0.1825	Thalassiosira pacifica	0.2780	Stellarima stellaris	0.1852	Neodenticula seminae	
0.1658	Paralia sulcata	0.2641	Thalassiosira lineata	0.1746	Pseudopodosira elegans	
0.1538	Rhizosolenia styliformis	0.2482	Thalassiosira eccentrica	0.1523	Chaetoceros furcellatus	
0.0984	Porosira glacialis	0.1640	Fragilariopsis doliolus	0.1056	Stellarima stellaris	
0.0227	Thalassiosira eccentrica	0.1356	Thalassiosira cf. convexa	0.0706	Fragilariopsis doliolus	
-0.0532	Thalassiosira trifulta	0.1177	Coscinodiscus oculus-iridis	0.0484	Thalassiosira hyalina	
-0.1156	Coscinodiscus oculus-iridis	0.1088	Thalassiosira leptopus	0.0448	Thalassiosira oestrupii	
-0.1515	Neodenticula spp.	0.0600	Actinocyclus ochotensis	0.0035	Thalassiosira leptopus	
-0.1863	Actinocyclus ochotensis	0.0375	Melosira albicans	-0.00928	Odontella aurita	
-0.2422	Actinocyclus curvatulus	0.0364	Thalassiosira trifulta	-0.03955	Stephanopyxis turris	
-0.2444	Delphineis spp.	-0.03628	Thalassiosira gravida	-0.04342	Rhizosolenia setigera	
-0.2502	Pseudopodosira elegans	-0.04335	Odontella aurita	-0.07551	Thalassiosira gravida	
-0.2602	Thalassiosira cf. convexa	-0.0902	Bacteriosira fragilis	-0.18088	Thalassiosira nordenskioeldii	
-0.3004	Thalassiosira hyalina	-0.1488	Thalassiosira antiqua	-0.18285	Fragilariopsis cylindrus	
-0.3235	Thalassiosira antiqua	-0.1837	Neodenticula seminae	-0.18677	Delphineis spp.	
-0.3377	Melosira albicans	-0.22703	Porosira glacialis	-0.21292	Thalassiosira lineata	
-0.3470	Fragilariopsis cylindrus	-0.36131	Fragilariopsis oceanica	-0.24456	Fragilariopsis oceanica	
-0.3472	Fragilariopsis oceanica	-0.40022	Thalassiosira pacifica	-0.25138	Paralia sulcata	
-0.3828	Cocconeis spp.	-0.45045	Thalassiosira nordenskioeldii	-0.29462	Thalassionema nitzschioides	
-0.4324	Stephanopyxis turris	-0.48231	Chaetoceros furcellatus	-0.32141	Bacteriosira fragilis	
-0.4726	Bacteriosira fragilis	-0.63775	Fragilariopsis cylindrus	-0.32667	Thalassiosira eccentrica	
-0.5476	Thalassiosira gravida	-0.70955	Thalassiosira hyalina	-0.35133	Melosira albicans	

Table T4 (continued).

Factor 4		Factor 5		Factor 6		
Loading	Species	Loading	Species	Loading	Species	
0.3944	Pseudopodosira elegans	0.5398	Bacteriosira fragilis	0.3783	Actinocyclus ochotensis	
0.3059	Thalassiosira hyalina	0.5265	Melosira albicans	0.3243	Rhizosolenia setigera	
0.3012	Thalassiosira cf. convexa	0.4684	Rhizosolenia styliformis	0.3241	Chaetoceros furcellatus	
0.2581	Porosira glacialis	0.2868	Thalassiosira cf. convexa	0.2838	Actinocyclus curvatulus	
0.2544	Fragilariopsis cylindrus	0.2019	Coscinodiscus oculus-iridis	0.2774	Paralia sulcata	
0.2368	Actinocyclus curvatulus	0.1998	Porosira glacialis	0.1861	Thalassiosira gravida	
0.2156	Melosira albicans	0.1904	Thalassiosira lineata	0.1678	Fragilariopsis cylindrus	
0.2148	Thalassiosira eccentrica	0.1265	Odontella aurita	0.1676	Stellarima stellaris	
0.2005	Delphineis spp.	0.1259	Fragilariopsis doliolus	0.1273	Neodenticula seminae	
0.1902	Rhizosolenia styliformis	0.0778	Actinocyclus ochotensis	0.1176	Thalassiosira hyalina	
0.1766	Neodenticula spp.	0.0474	Rhizosolenia setigera	0.1121	Thalassiosira lineata	
0.1700	Stellarima stellaris	0.0119	Pseudopodosira elegans	0.0976	Cocconeis spp.	
0.1678	Rhizosolenia setigera	-0.0026	Chaetoceros furcellatus	0.0855	Odontella aurita	
0.1657	Thalassiosira trifulta	-0.00301	Thalassiosira gravida	0.0827	Neodenticula spp.	
0.1500	Chaetoceros furcellatus	-0.01347	Thalassiosira trifulta	0.0512	Delphineis spp.	
0.0961	Thalassionema nitzschioides	-0.02075	Neodenticula spp.	0.0076	Thalassiosira trifulta	
0.0956	Fragilariopsis oceanica	-0.02716	Neodenticula seminae	-0.00112 Melosira albicans		
0.0611	Thalassiosira lineata	-0.02847	Thalassiosira antiqua	-0.00842	Pseudopodosira elegans	
0.0414	Thalassiosira nordenskioeldii	-0.03463	Thalassiosira nordenskioeldii	-0.01956	Thalassiosira leptopus	
0.0393	Paralia sulcata	-0.04001	Paralia sulcata	-0.0466	Rhizosolenia styliformis	
-0.00282	Thalassiosira pacifica	-0.05046	Thalassiosira hyalina	-0.05313	Thalassiosira cf. convexa	
-0.10214	Fragilariopsis doliolus	-0.07254	Delphineis spp.	-0.08698	Bacteriosira fragilis	
-0.10519	Thalassiosira antiqua	-0.07504	Thalassiosira leptopus	-0.0964	Fragilariopsis doliolus	
-0.10922	Bacteriosira fragilis	-0.08902	Cocconeis spp.	-0.10152	Thalassiosira antiqua	
-0.11332	Odontella aurita	-0.12837	Stephanopyxis turris	-0.1372	Stephanopyxis turris	
-0.12807	Cocconeis spp.	-0.1706	Thalassiosira pacifica	-0.17269	Thalassiosira nordenskioeldii	
-0.15369	Neodenticula seminae	-0.20046	Fragilariopsis cylindrus	-0.1728	Thalassionema nitzschioides	
-0.20966	Coscinodiscus oculus-iridis	-0.20356	Thalassionema nitzschioides	-0.20915	Thalassiosira eccentrica	
-0.22304	Thalassiosira oestrupii	-0.21003	Stellarima stellaris	-0.21496	Fragilariopsis oceanica	
-0.25398	Thalassiosira leptopus	-0.2496	Thalassiosira oestrupii	-0.22168	Thalassiosira pacifica	
-0.40523	Stephanopyxis turris	-0.26059	Thalassiosira eccentrica	-0.27603	Coscinodiscus oculus-iridis	
-0.53882	Actinocyclus ochotensis	-0.41226	Actinocyclus curvatulus	-0.37899	Porosira glacialis	
-0.63106	Thalassiosira gravida	-0.45025	Fragilariopsis oceanica	-0.48506	Thalassiosira oestrupii	

Table T5. Eigenvalue and percent of variance of foursignificant components, Hole 1151C.

Components	Eigenvalue	Percent of variance explained	Cumulative percent of variance explained
1	5.41976	15.9	15.9
2	3.85656	11.3	27.3
3	2.56484	7.5	34.8
4	2.21086	6.5	41.3
5	1.79674	5.3	46.6

	Factor 1		Factor 2		Factor 3	Factor 4		Factor 5	
Loading	Species								
0.6549	Thalassiosira leptopus	0.7117	Delphineis spp.	0.6230	Thalassiosira nordenskioeldii	0.5253	Actinocyclus curvatulus	0.5699	Thalassiosira trifulta
0.6172	Fragilariopsis doliolus	0.6539	Thalassionema nitzschioides	0.5180	Rhizosolenia styliformis	0.4661	Thalassiosira decipiens	0.5606	Neodenticula seminae
0.5775	Thalassiosira oestrupii	0.6241	Cyclotella striata	0.5018	Thalassiosira antiqua	0.4355	Thalassiosira hyalina	0.4676	Thalassiosira nidulus
0.5562	Thalassiosira eccentrica	0.6214	Paralia sulcata	0.4587	Thalassiosira hyalina	0.4210	Thalassiosira leptopus	0.4348	Odontella aurita
0.5380	Roperia tesselata	0.4459	Rhizosolenia hebetata	0.3464	Melosira albicans	0.3580	Actinocyclus ochotensis	0.2799	Pseudopodosira elegans
0.4721	Thalassiosira pacifica	0.4017	Coscinodiscus marginatus	0.3162	Neodenticula seminae	0.3077	Fragilariopsis doliolus	0.1780	Paralia sulcata
0.3953	Stephanopyxis turris	0.4007	Rhizosolenia styliformis	0.3069	Porosira glacialis	0.3017	Thalassiosira pacifica	0.1679	Chaetoceros furcellatus
0.3697	Melosira albicans	0.3794	Thalassiosira antiqua	0.1700	Bacteria fragilis	0.2827	Roperia tesselata	0.1225	Thalassiosira oestrupii
0.3491	Thalassiosira cf. convexa	0.2526	Neodenticula seminae	0.1485	Fragilariopsis cylindrus	0.2664	Cyclotella striata	0.1155	Rhizosolenia styliformis
0.3159	Rhizosolenia styliformis	0.2231	Porosira glacialis	0.1293	Chaetoceros furcellatus	0.2577	Coscinodiscus marginatus	0.1099	Thalassiosira decipiens
0.2227	Thalassiosira antiqua	0.1345	Thalassiosira nordenskioeldii	0.0967	Paralia sulcata	0.2351	Thalassiosira cf. convexa	0.0940	Porosira glacialis
0.2200	Neodenticula seminae	0.1140	Cocconeis spp.	0.0937	Fragilariopsis oceanica	0.2158	Odontella aurita	0.0637	Coscinodiscus marginatus
0.1653	Paralia sulcata	0.0950	Odontella aurita	0.0859	Thalassiosira decipiens	0.2088	Fragilariopsis cylindrus	0.0341	Thalassiosira leptopus
0.1161	Thalassionema nitzschioides	0.0875	Actinocyclus curvatulus	0.0397	Thalassiosira leptopus	0.2047	Bacteria fragilis	0.0248	Thalassiosira antiqua
0.0780	Actinocyclus ochotensis	0.0472	Thalassiosira eccentrica	0.0305	Thalassiosira eccentrica	0.1795	Neodenticula seminae	0.0242	Thalassiosira pacifica
0.0645	Thalassiosira nidulus	0.0194	Bacteria fragilis	0.0120	Rhizosolenia hebetata	0.1777	Thalassiosira nordenskioeldii	-0.00955	Rhizosolenia hebetata
0.0343	Cyclotella striata	-0.08138	Thalassiosira oestrupii	-0.00794	Thalassiosira oestrupii	0.1706	Melosira albicans	-0.01192	Cyclotella striata
-0.01106	Coscinodiscus marginatus	-0.08335	Thalassiosira hyalina	-0.02482	Odontella aurita	0.1442	Delphineis spp.	-0.02005	Thalassiosira cf. convexa
-0.02371	Odontella aurita	-0.09457	Thalassiosira leptopus	-0.06348	Thalassiosira pacifica	0.1302	Thalassionema nitzschioides	-0.02989	Fragilariopsis oceanica
-0.05028	Rhizosolenia hebetata	-0.12825	Fragilariopsis cylindrus	-0.06409	Roperia tesselata	0.1247	Thalassiosira trifulta	-0.03011	Actinocyclus ochotensis
-0.12254	Porosira glacialis	-0.15343	Thalassiosira gravida	-0.09966	Stephanopyxis turris	0.0811	Thalassiosira eccentrica	-0.04104	Actinocyclus curvatulus
-0.18209	Thalassiosira nordenskioeldii	-0.15545	Stephanopyxis turris	-0.10366	Thalassiosira trifulta	0.0593	Paralia sulcata	-0.05338	Thalassiosira eccentrica
-0.22148	Cocconeis spp.	-0.19212	Actinocyclus ochotensis	-0.10814	Fragilariopsis doliolus	0.0521	Fragilariopsis oceanica	-0.05815	Cocconeis spp.
-0.22717	Delphineis spp.	-0.204	Thalassiosira trifulta	-0.10877	Thalassiosira gravida	0.0010	Pseudopodosira elegans	-0.06677	Melosira albicans
-0.24008	Actinocyclus curvatulus	-0.20748	Fragilariopsis oceanica	-0.12371	Thalassiosira cf. convexa	-0.03718	Porosira glacialis	-0.07005	Delphineis spp.
-0.29504	Chaetoceros furcellatus	-0.25431	Thalassiosira pacifica	-0.17789	Pseudopodosira elegans	-0.04625	Cocconeis spp.	-0.11585	Fragilariopsis doliolus
-0.36253	Thalassiosira trifulta	-0.27003	Melosira albicans	-0.20315	Thalassiosira nidulus	-0.04962	Chaetoceros furcellatus	-0.14676	Thalassiosira nordenskioeldii
-0.37148	Bacteria fragilis	-0.27109	Pseudopodosira elegans	-0.24724	Actinocyclus curvatulus	-0.07334	Rhizosolenia hebetata	-0.16243	Thalassionema nitzschioides
-0.4899	Thalassiosira hyalina	-0.27284	Chaetoceros furcellatus	-0.27569	Cyclotella striata	-0.07569	Thalassiosira antiqua	-0.16919	Thalassiosira hyalina
-0.52371	Thalassiosira gravida	-0.2886	Thalassiosira decipiens	-0.30884	Actinocyclus ochotensis	-0.10616	Rhizosolenia styliformis	-0.20282	Roperia tesselata
-0.55322	Thalassiosira decipiens	-0.32495	Fragilariopsis doliolus	-0.31703	Thalassionema nitzschioides	-0.16153	Thalassiosira oestrupii	-0.20474	Thalassiosira gravida
-0.60415	Pseudopodosira elegans	-0.43623	Roperia tesselata	-0.3287	Delphineis spp.	-0.30536	Thalassiosira nidulus	-0.28645	Fragilariopsis cylindrus
-0.60432	Fragilariopsis cylindrus	-0.44145	Thalassiosira nidulus	-0.39615	Coscinodiscus marginatus	-0.39006	Thalassiosira gravida	-0.37253	Bacteria fragilis
-0.82055	Fragilariopsis oceanica	-0.50032	Thalassiosira cf. convexa	-0.54499	Cocconeis spp.	-0.41633	Stephanopyxis turris	-0.37756	Stephanopyxis turris

Table T6. Loading for 34 species in each component, Hole 1151C.