REFERENCES

Abeele, W.V., 1986. The influence of bentonite on the permeability of sandy silts. Nucl. Chem. Waste Manage., 6:81-88.

Altaner, S.P., and Ylagan, R.F., 1997. Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays Clay Miner., 45:517-533.

Bethke, C.M., Vergo, N., and Altaner, S.P., 1986. Pathways of smectite illitization. Clays Clay Miner., 34:125-135.

Bird, P., 1984. Hydration-phase diagrams and friction of montmorillonite under laboratory and geologic conditions, with implications for shale compaction, slope stability, and strength of fault gouge. Tectonophysics, 107:235-260.

Biscaye, P.E., 1965. Mineralogy and sedimentation of recent deep-sea clays in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull., 76:803-832.

Brindley, G.W., 1980. Order-disorder in clay mineral structures. In Brindley, G.W., and Brown, G. (Eds.), Crystal Structures of Clay Minerals and Their X-Ray Identification. Mineral. Soc. Monogr., 5:125-195.

Bruce, C.H., 1984. Smectite dehydration—its relation to structural development and hydrocarbon accumulation in northern Gulf of Mexico basin. AAPG Bull., 68:673-683.

Burst, J.F., 1969. Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration. AAPG Bull., 53:73-93.

Cambray, H., Pubellier, M., Jolivet, L., and Pouclet, A., 1995. Volcanic activity recorded in deep-sea sediments and the geodynamic evolution of western Pacific island arcs. In Taylor, B., and Natland, J. (Eds.), Active Margins and Marginal Basins of the Western Pacific. Geophys. Monogr., 88:97-124.

Chamley, H., 1980. Clay sedimentation and paleoenvironment in the Shikoku Basin since the middle Miocene (Deep Sea Drilling Project Leg 58, North Philippine Sea). In Klein, G. de V., Kobayashi, K., et al., Init. Repts. DSDP, 58: Washington (U.S. Govt. Printing Office), 669-678.

————, 1989. Clay Sedimentology: Berlin (Springer-Verlag).

Chamley, H., Cadet, J.-P., and Charvet, J., 1986. Nankai Trough and Japan Trench late Cenozoic paleoenvironments deduced from clay mineralogic data. In Kagami, H., Karig, D.E., Coulbourn, W.T., et al., Init. Repts. DSDP, 87: Washington (U.S. Govt. Printing Office), 633-641.

Colten-Bradley, V.A., 1987. Role of pressure in smectite dehydration—effects on geopressure and smectite-to-illite transformation. AAPG Bull., 71:1414-1427.

Cook, H.E., Zemmels, I., and Matti, J.C., 1975. X-ray mineralogy data, far western Pacific, Leg 31 Deep Sea Drilling Project. In Karig, D.E., Ingle, J.C., Jr., et al., Init. Repts. DSDP, 31: Washington (U.S. Govt. Printing Office), 883-895.

Dickinson, W.R., and Seely, D.R., 1979. Structure and stratigraphy of forearc regions. AAPG Bull., 63:2-31.

Fagel, N., Andre, L., Chamley, H., Debrabant, P., and Jolivet, L., 1992. Clay sedimentation in the Sea of Japan since the early Miocene: influence of source-rock and hydrothermal activity. Sediment. Geol., 80:27-40.

Fagel, N., Robert, C., Preda, M., and Thorez, J., 2001. Smectite composition as a tracer of deep circulation: the case of the northern North Atlantic. Mar. Geol., 172:309-330.

Faugeres, J.C., Gonthier, E., Masse, L., Parra, M., Pons, J.C., and Pujol, C., 1991. Quaternary deposits on the South Barbados accretionary prism. Mar. Geol., 96:247-267.

Fisher, A.T., Foucher, J.P., Yamano, M., and Hyndman, R., 1993. Data report: Corrected thermal conductivity data, Leg 131. In Hill, I.A., Taira, A., Firth, J.V., et al., Proc. ODP, Sci. Results, 131: College Station, TX (Ocean Drilling Program), 451-456.

Fisher, A.T., and Underwood, M.B., 1995. Calibration of an X-ray diffraction method to determine relative mineral abundances in bulk powders using matrix singular value decomposition: a test from the Barbados accretionary complex. In Shipley, T.H., Ogawa, Y., Blum, P., et al., Proc. ODP, Init. Repts., 156: College Station, TX (Ocean Drilling Program), 29-37.

Freed, R.L., and Peacor, D.R., 1989a. Geopressured shale and sealing effect of smectite to illite transition. AAPG Bull., 73:1223-1232.

————, 1989b. Variability in temperature of the smectite/illite reaction in Gulf Coast sediments. Clay Miner., 24:171-180.

Hathon, E.G., 1992. X-ray diffraction and transmission electron microscopy study of the surface charge on the illite and smectite components of illite/smectite mixed-layer clays [Ph.D. dissert.]. Univ. of Missouri, Columbia.

Hathon, E.G., and Underwood, M.B., 1991. Clay mineralogy and chemistry as indicators of hemipelagic sediment dispersal south of the Aleutian arc. Mar. Geol., 97:145-166.

Hein, J.R., Yeh, H.-W., and Alexander, E., 1979. Origin of iron-rich montmorillonnite from the manganese nodule belt of the north equatorial pacific. Clays Clay Miner., 27:185-194.

Hower, J., Eslinger, E.V., Hower, M.E., and Perry, E.A., 1976. Mechanism of burial metamorphism of argillaceous sediment. 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull., 87:725-737.

Huang, W.-L., Longo, J.M., and Pevear, D.R., 1993. An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays Clay Miner., 41:162-177.

Hyndman, R.D., Wang, K., and Yamano, M., 1995. Thermal constraints on the seismogenic portion of the southwestern Japan subduction thrust. J. Geophys. Res., 100:15373-15392.

Kamata, H., and Kodama, K., 1999. Volcanic history and tectonics of the southwest Japan arc. Isl. Arc, 8:393-403.

Kastner, M., Elderfield, H., and Martin, J.B., 1991. Fluids in convergent margins: what do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes? Philos. Trans. R. Soc. London, Ser. A, 335:243-259.

Kinoshita, H., and Yamano, M., 1986. The heat flow anomaly in the Nankai Trough area. In Kagami, H., Karig, D.E., Coulbourn, W.T., et al., Init. Repts DSDP, 87: Washington (U.S. Govt. Printing Office), 737-743.

Logan, J.M., and Rauenzahn, K.A., 1987. Frictional dependence of gouge mixtures of quartz and montmorillonite on velocity, composition and fabric. Tectonophysics, 144:87-108.

Marsaglia, K.M., Ingersoll, R.V., and Packer, B.M., 1992. Tectonic evolution of the Japanese Islands as reflected in modal compositions of Cenozoic forearc and backarc sand and sandstone. Tectonics, 11:1028-1044.

Masuda, H., O'Neil, J.R., Jiang, W.T., and Peacor, D.R., 1996. Relation between interlayer composition of authigenic smectite, mineral assemblages, I/S reaction rate and fluid composition in silicic ash of the Nankai Trough. Clays Clay Miner., 44:443-459.

Masuda, H., Peacor, D.R., and Dong, H., 2001. Transmission electron microscopy study of conversion of smectite to illite in mudstones of the Nankai Trough: contrast with coeval bentonites. Clays Clay Miner., 49:109-118.

Mitchell, J.K., 1993. Fundamentals of Soil Behavior (2nd ed.): New York (Wiley).

Moore, D.M., and Reynolds, R.C., Jr., 1997. X-Ray Diffraction and the Identification and Analysis of Clay Minerals (2nd ed.): New York (Oxford Univ. Press).

Moore, G.F., Taira, A., Klaus, A., and Leg 190 Scientific party, 2001. New insights into deformation and fluid flow processes in the Nankai Trough accretionary prism: Results of Ocean Drilling Program Leg 190. Geochem. Geophys. Geosyst., 2:10.1029/2001GC000166.

Moore, J.C., and Saffer, D.M., 2001. Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: an effect of diagenetic to low-grade metamorphic processes and increasing effective stress. Geology, 29:183-186.

Moore, J.C., and Vrolijk, P., 1992. Fluids in accretionary prisms. Rev. Geophys., 30:113-135.

Morrow, C.A., Shi, L.Q., and Byerlee, J.D., 1982. Strain hardening and strength of clay-rich fault gouges. J. Geophys. Res., 87:6771-6780.

————, 1984. Permeability of fault gouge under confining pressure and shear stress. J. Geophys. Res., 89:3193-3200.

Naidu, A.S., and Mowatt, T.C., 1983. Sources and dispersal patterns of clay minerals in surface sediments from the continental-shelf areas off Alaska. Geol. Soc. Am. Bull., 94:841-854.

Olafsson, G., 1993. Calcareous nannofossil biostratigraphy of the Nankai Trough. In Hill, I.A., Taira, A., Firth, J.V., et al., Proc. ODP, Sci. Results, 131: College Station, TX (Ocean Drilling Program), 3-13.

Olson, R.E., 1974. Shearing strength of kaolinite, illite, and montmorillonite, J. Soil Mech. Found. Eng.-ASCE, 100:1215-1229.

Orr, R.M., 1992. Clay mineralogy, diagenesis, and provenance of sediments in the Nankai Trough, offshore Shikoku Island, southwest Japan [M.S. thesis]. Univ. of Missouri, Columbia.

Perry, E., and Hower, J., 1970. Burial diagenesis in Gulf Coast pelitic sediments. Clays Clay Miner., 18:165-177.

Petschick, R., 2001. MacDiff software v. 4.2.5 [Online]. Available from the World Wide Web: <http://servermac.geologie.uni-frankfurt.de/Staff/Homepages/Petschick/RainerE.html>. [Cited 2002-11-9]

Petschick, R., Kuhn, G., and Gingele, F., 1996. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Mar. Geol., 130:203-229.

Pickering, K.T., Underwood, M.B., and Taira, A., 1992. Open-ocean to trench turbidity-current flow in the Nankai Trough: Flow collapse and reflection. Geology, 20:1099-1102.

————, 1993. Stratigraphic synthesis of the DSDP-ODP sites in the Shikoku Basin, Nankai Trough, and accretionary prism. In Hill, I.A., Taira, A., Firth, J.V., et al., Proc. ODP, Sci. Results, 131: College Station, TX (Ocean Drilling Program), 313-330.

Piper, D.J.W., von Huene, R., and Duncan, J.R., 1973. Late Quaternary sedimentation in the active eastern Aleutian Trench. Geology, 1:19-22.

Pollastro, R.M., 1993. Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays Clay Miner., 41:119-133.

Porter, S., Vanko, D.A., and Ghazi, A.M., 2000. Major and trace element compositions of secondary clays in basalts altered at low temperature, eastern flank of the Juan de Fuca Ridge. In Fisher, A., Davis, E.E., and Escutia, C. (Eds.), Proc. ODP, Sci. Results, 168: College Station, TX (Ocean Drilling Program), 149-157. [HTML version]

Rettke, R.C., 1981. Probable burial diagenetic and provenance effects on Dakota Group clay mineralogy, Denver Basin. J. Sediment. Petrol., 51:541-551.

Reynolds, R.C., and Hower, J., 1970. The nature of interlayering in mixed-layer illite-montmorillonites. Clays Clay Miner., 18:25-36.

Robinson, R.G., and Allam, M.M., 1998. Effect of clay mineralogy on coefficient of consolidation. Clays Clay Miner., 46:596-600.

Saffer, D.M., and Bekins, B.A., 1999. Fluid budgets at convergent plate margins: implications for the extent and duration of fault-zone dilation. Geology, 27:1095-1098.

Santucci de Magistris, F., Silvestri, F., and Vinale, F., 1998. Physical and mechanical properties of a compacted silty sand with low bentonite fraction. Can. Geotech. J., 35:909-925.

Shimamoto, T., and Logan, J.M., 1981. Effects of simulated clay gouges on the sliding behavior of Tennessee sandstone. Tectonophysics, 75:243-255.

Shipboard Scientific Party, 1986. Site 582. In Kagami, H., Karig, D.E., Coulbourn, W.T., et al., Init. Repts. DSDP, 87: Washington (U.S. Govt. Printing Office), 35-122.

————, 1991. Site 808. In Taira, A., Hill, I., Firth, J.V., et al., Proc. ODP, Init. Repts., 131: College Station, TX (Ocean Drilling Program), 71-269.

————, 2001a. Explanatory notes. In Moore, G.F., Taira, A., Klaus, A., et al., Proc. ODP, Init. Repts., 190, 1-51 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML version]

————, 2001b. Leg 190 summary. In Moore, G.F., Taira, A., Klaus, A., et al., Proc. ODP, Init. Repts., 190: College Station TX (Ocean Drilling Program), 1-87. [HTML version]

————, 2001c. Site 1173. In Moore, G.F., Taira, A., Klaus, A., et al., Proc. ODP, Init. Repts., 190, 1-147 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML version]

————, 2001d. Site 1174. In Moore, G., Taira, A., Klaus, A., et al., Proc. ODP, Init. Repts., 190, 1-149 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML version]

————, 2001e. Site 1177. In Moore, G.F., Taira, A., Klaus, A., et al., Proc. ODP, Init. Repts., 190, 1-91 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML version]

Srodon, J., 1980. Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays Clay Miner., 28:401-411.

Taira, A., and Ashi, J., 1993. Sedimentary facies evolution of the Nankai forearc and its implications for the growth of the Shimanto accretionary prism. In Hill, I.A., Taira, A., Firth, J.V., et al., Proc. ODP, Sci. Results, 131: College Station, TX (Ocean Drilling Program), 331-341.

Taira, A., Hill, I., Firth, J., Berner, U., Brückmann, W., Byrne, T., Chabernaud, T., Fisher, A., Foucher, J.-P., Gamo, T., Gieskes, J., Hyndman, R., Karig, D., Kastner, M., Kato, Y., Lallement, S., Lu, R., Maltman, A., Moore, G., Moran, K., Olaffson, G., Owens, W., Pickering, K., Siena, F., Taylor, E., Underwood, M., Wilkinson, C., Yamano, M., and Zhang, J., 1992. Sediment deformation and hydrogeology of the Nankai accretionary prism: synthesis of shipboard results of ODP Leg 131. Earth Planet. Sci. Lett., 109:431-450.

Taira, A., and Niitsuma, N., 1986. Turbidite sedimentation in the Nankai Trough as interpreted from magnetic fabric, grain size, and detrital modal analyses. In Kagami, H., Karig, D.E., Coulbourn, W.T., et al., Init. Repts. DSDP, 87: Washington (U.S. Govt. Printing Office), 611-632.

Underwood, M.B., and Pickering, K.T., 1996. Clay-mineral provenance, sediment dispersal patterns, and mudrock diagenesis in the Nankai accretionary prism, southwest Japan. Clays Clay Miner., 44:339-356.

Underwood, M.B., Orr, R., Pickering, K., and Taira, A., 1993a. Provenance and dispersal patterns of sediments in the turbidite wedge of Nankai Trough. In Hill, I.A., Taira, A., Firth, J.V., et al., Proc. ODP, Sci. Results, 131: College Station, TX (Ocean Drilling Program), 15-34.

Underwood, M.B., Pickering, K., Gieskes, J.M., Kastner, M., and Orr, R., 1993b. Sediment geochemistry, clay mineralogy, and diagenesis: a synthesis of data from Leg 131, Nankai Trough. In Hill, I.A., Taira, A., Firth, J.V., et al., Proc. ODP, Sci. Results, 131: College Station, TX (Ocean Drilling Program), 343-363.

Uto, K., and Tatsumi, Y., 1996. Quaternary volcanism of the Japanese Islands. Isl. Arc, 5:250-261.

Vrolijk, P., 1990. On the mechanical role of smectite in subduction zones. Geology, 18:703-707.

Wang, C.-Y., 1980. Sediment subduction and frictional sliding in a subduction zone. Geology, 8:530-533.

Wang, K., Hyndman, R.D., and Yamano, M., 1995. Thermal regime of the southwest Japan subduction zone: effects of age history of the subducting plate. Tectonophysics, 248:53-69.

Watanabe, T., 1988. The structural model of illite/smectite interstratified mineral and the diagram for its identificaton. Clay Sci., 7:97-114.