Moore, G.F., Taira, A., and Klaus, A., et al., 2001 *Proceedings of the Ocean Drilling Program, Initial Reports* Volume 190

# **5. SITE 1174**<sup>1</sup>

Shipboard Scientific Party<sup>2</sup>

# SITE SUMMARY

Site 1174 (ENT-03A) is located in the protothrust zone of the Nankai accretionary prism and was designed to sample a zone of incipient prism deformation. When combined with our reference Site 1173 (~11 km seaward) and Site 808 (~2 km landward at the frontal thrust), Site 1174 provides a transect of stratigraphy, structural data, physical properties, and geochemical gradients across the deformation front of the accretionary prism.

We recognized five lithostratigraphic units and three subunits at Site 1174. Unit I (slope-apron facies) is Quaternary in age and extends from the seafloor to a sub-bottom depth of 4.00 meters below seafloor (mbsf). This facies is composed mostly of mud that was deposited on the lowermost trench slope by hemipelagic settling. Unit II (trenchwedge facies) is Quaternary in age and includes three subunits. Subunit IIA (axial trench-wedge facies) extends from 4.00 to 314.55 mbsf and is characterized by thick sand turbidites, silt turbidites, and hemipelagic mud. The lithologies of Subunit IIB (314.55–431.55 mbsf) are limited to silt turbidites and hemipelagic mud, whereas Subunit IIC (431.55-483.23 mbsf) is composed of hemipelagic mud, volcanic ash, and silt turbidites. The gradual transformation in facies character downsection is consistent with a change in depositional environment from the outer trench wedge to abyssal floor. Unit III (upper Shikoku Basin facies) is Quaternary to Pliocene in age and extends from 483.23 to 660.99 mbsf. Lithologies within this unit include hemipelagic mudstone and volcanic ash; the lower unit boundary coincides with the deepest identifiable bed of vitric tuff. In contrast, Unit IV (lower Shikoku Basin facies) contains mostly bioturbated mudstone with sporadic interbeds and nodules of carbonate-cemented claystone and siliceous claystone. Replacement of glass shards by smectite and zeolites (clinoptilolite or heulandite) increases gradually with depth and is more extreme in

<sup>1</sup>Examples of how to reference the whole or part of this volume. <sup>2</sup>Shipboard Scientific Party addresses.

Ms 190IR-105

finer-grained deposits. As a consequence, both ash to bentonite diagenesis and temporal changes in pyroclastic influx govern the lithologic distinction between the upper and lower Shikoku Basin facies. The unit boundary shifts upsection as Shikoku Basin deposits migrate toward the Nankai deformation front and become increasingly affected by rapid burial and heating beneath the trench wedge. The lowermost stratigraphic unit at Site 1174, Unit V, begins at a depth of 1102.45 mbsf. We drilled only 8.86 m of variegated claystone in this middle Miocene volcaniclastic facies.

Deformation bands are well developed between 218 and 306 mbsf and are concentrated in two oppositely inclined sets striking at 033° with the acute bisectrix inclined 10°NW from vertical. They occur immediately above a narrow but abruptly sheared interval, which with indications of reverse movement and a paleomagnetically restored southeast dip, may be a backthrust. Between 470 and 506 mbsf, fractured and markedly steepened bedding may represent a thrust; no significant deformation was seen in the cores equivalent to the thrust apparent on the seismic profile at 550 mbsf. Narrow, widely spaced zones of fractures and brecciation characterize the interval between 688 and 807 mbsf. Between 807.6 and 840.20 mbsf an irregular downward increase in intensity of inclined fractures and fineness of brecciation defines the décollement, which is thicker and more heterogeneous than at Site 808 and more thoroughly comminuted in its lower part. The underthrust sediments show little tectonic deformation; however, zones of significant bed steepening were noted between 950 and 1000 mbsf and around 1020 mbsf, the latter accompanied by evidence for shear deformation.

Nannofossil assemblages are indicative of Pleistocene (Subzone NN21b) to middle Miocene (Zone NN6) ages. Twenty-three biostratigraphic events are recognized. Nannofossils are common and generally moderately preserved in the Pleistocene, whereas Pliocene and Miocene nannofossils are rare and mostly poorly preserved. Sedimentation rates based on biostratigraphy are 630–770 m/m.y. for the late Quaternary and are significantly lower (11–125 m/m.y.) for deposits older than 0.8 Ma.

Paleomagnetic results indicate that the Brunhes Chron (0–0.78 Ma) ranges from 0 to 544.70 mbsf and extends through the trench-wedge turbidites. The Matuyama Chron occurs from 544.70 to 685.95 mbsf, the Gauss Chron, from 685.95 to 727.85 mbsf, and the Gilbert Chron, from 727.85 to 802.07 mbsf. High magnetic intensities occur from 0 to ~550 mbsf, below which they drop to low values to the bottom of the hole.

The main characteristics of the interstitial water concentration-depth profiles at Site 1174 are similar to those at Site 808. There is an intense, very shallow, sulfate reduction zone, alkalinity and ammonium concentrations peak in the uppermost 200 m of the section, and the solutes that are controlled by fluid-rock reactions, such as Cl, Na, and Si, have sharp changes in their gradients at a depth that corresponds to the boundary between the trench wedge and Shikoku Basin facies (lithostratigraphic Unit II/III boundary). At the depth that corresponds to the thrust intersection (~470  $\pm$  5 mbsf), there are also significant excursions, most distinctly exhibited in the Cl and Si concentrations, that may indicate hydrologic activity. The chemical changes across the major tectonic feature, the décollement, are subtler, but a high-resolution record of pore fluid chemistry was recovered across and within the Nankai Trough décollement for the first time. A local Cl maximum of 496

mM within the décollement decreases smoothly to ~485 mM ~50 m above the décollement zone, whereas there is a very sharp decrease (~10 mM) in the 10 m below the structure. The cause of the Cl maximum in the décollement is as yet unclear. A low-Cl zone in the 200-m interval below the décollement, with minimum concentrations that are ~17% diluted relative to seawater, occurs at an almost identical distance below the décollement at Site 808. The dilution, however, is ~21% at Site 808, ~17% at Site 1174, and considerably less (~9%) at reference Site 1173. In the lowermost ~100 m of the underthrust section, Cl concentrations increase, approaching seawater concentration at 1110 mbsf. Hydration reactions in the lower volcaniclastic or an underlying upper basement fluid flow system may be responsible for the increase in the Cl concentrations.

Dissolved silica concentrations appear to be controlled by biogenic silica dissolution in the trench-wedge sediments, by volcanic ash diagenesis in the upper Shikoku Basin facies, and by the low-Cl source plus in situ silicate reactions at >70° to ~130°C in the lower Shikoku Basin facies. Dissolved sulfate increases below the sulfate reduction zone, 1–2 mM below the upper and lower Shikoku Basin facies boundary sediments, at ~660 mbsf, reaching 8–10 mM below the depth interval of the Cl minimum and remaining constant to the bottom of the section. At Site 1173 the first sulfate increase below the sulfate reduction zone is observed at a much shallower burial depth, ~400 m shallower than at Site 1174. The sulfate distributions at these sites may reflect a dynamic relationship among sedimentation rates, temperature, and microbial sulfate reduction rates.

Organic matter decreases with depth and total organic carbon (TOC) values are low (0.90 to 0.11 wt%; average = ~0.38 wt%) in the core. The C/N ratios indicate the presence of marine organic matter with only a slight increase in the upper trench-wedge facies (~200 mbsf) and in the lower Shikoku Basin facies below the décollement (~1000 mbsf). Discrete intervals of elevated methane concentrations are present between 225 and 700 mbsf. Minor amounts of ethane (200–800 mbsf) and propane (400–650 and 950–1110 mbsf) are probably attributable to some in situ thermal maturation of organic matter.

Microorganisms were enumerated in 40 samples collected from the surface to 1100 mbsf at Site 1174. With the exception of two samples with low abundances (~ $1.8 \times 10^6$  cells/cm<sup>3</sup>) in the sandy layers at 26 and 66 mbsf, abundances from the surface to 400 mbsf were close to values predicted based on data from previous Ocean Drilling Program (ODP) sites. Abundances were lower than predicted below 400 mbsf. The decrease may relate to the relatively high temperature gradient at Site 1174. Cell counts dropped below the detection limit at 528 mbsf and remained so until just above the décollement. Abundances at 778 and 789 mbsf were 4.8 and  $4.2 \times 10^6$  cells/cm<sup>3</sup>, respectively; no cells were detected below these depths. Nineteen whole-round samples were used to inoculate anaerobic growth media and were maintained at the estimated in situ temperature. Samples were chosen from the surface through the known hypothermophilic region (113°C) (Blöchl et al., 1997), and subsamples at five depths were targeted for incubation at in situ pressure and temperature.

Porosities within the axial and outer trench–wedge facies (Subunits IIA and IIB) are characterized by high variability and generally decrease with depth. Porosity decreases across the boundary between the outer trench–wedge and trench to basin transition facies (Subunit IIB/IIC boundary). Within the transitional facies, porosities are less scattered

and decrease slightly with depth. The upper Shikoku Basin facies (Unit III) is characterized by nearly constant porosities, which is a deviation from normal compaction trends. Surprisingly, a high velocity interval between 510 and 520 mbsf is associated with an interval of elevated porosity. At the top of the lower Shikoku Basin facies (Unit IV; ~660 mbsf) another high-velocity interval is present. Porosities within the lower Shikoku Basin facies resume a compaction trend of decreasing porosity with depth. Porosities increase sharply by 2%-4% at the top of the underthrust sequence. This porosity increase is accompanied by a decrease in velocity and increase of electrical conductivity. However, the anisotropy of electrical conductivity is higher in the underthrust sediments than above the décollement zone. Porosities and velocities increase with depth within the underthrust sediments, whereas electrical conductivities decrease. In contrast to Site 808, porosities within the décollement are not significantly lower than above and below it, although values are somewhat scattered.

Uncalibrated gas-permeameter measurements were made throughout the section. Shallower than 600 mbsf, silt-rich and ash horizons showed higher values than the silty clays. The axial trench–wedge sands gave the highest values and the lowermost silty clays recovered gave the lowest.

In situ temperature measurements to a depth of 65.5 mbsf and laboratory thermal conductivity measurements indicate a near-surface heat flow of 180 mW/m<sup>2</sup>. If heat flow is purely conductive and steady state, a temperature of ~140°C is projected for the bottom of the hole.

## **OPERATIONS**

## Transit from Site 1173 to Proposed Site ENT-03A (Site 1174)

The bit was pulled from Hole 1173A, clearing the seafloor at 1930 hr on 6 June. After the positioning beacon was released and recovered at 2100 hr, the vessel started moving to proposed Site ENT-03A (Site 1174) in dynamic positioning (DP) mode. The drill string was recovered during the transit and the bit cleared the rotary table at 0445 hr on 7 June, officially ending Hole 1173A. A positioning beacon was dropped at 0700 hr on 7 June, establishing Site 1174.

## Site 1174

The precision depth recorder indicated a water depth of 4754.4 meters below rig floor (mbrf). An eight-drill collar advanced hydraulic piston corer/extended core barrel (APC/XCB) bottom-hole assembly (BHA) was made up with an 11.4375-in roller cone bit, a lockable float valve, a seal bore drill collar, landing saver sub, top sub, head sub, non-magnetic drill collar, five 8.25-in drill collars, one tapered drill collar, six joints of 5.5-in drill pipe, and a crossover sub to 5-in drill pipe. The drill string was tripped to the seafloor, the bit was positioned at 4741.1 meters below sea level (mbsl) (4752.4 mbrf), and core was taken but did not recover any sediment. The bit was repositioned at 4746.1 mbsl (4757.4 mbrf) and Hole 1174A was successfully spudded at 1735 hr on 7 June. Core 1H recovered 4.4 m of sediment, establishing the drilling depth as 4751.2 mbsl (4762.5 mbrf).

#### Hole 1174A

Cores 1H to 8H were cored from 0 to 64.4 mbsf and recovered 47.04 m (73%) (Tables T1, T2). Fine-grained sand and silts likely caused the somewhat low core recovery. The force required to pull the APC barrel out of the formation increased until it reached 70,000 lb on Core 7H. Core 8H resulted in a partial stroke with only 3 m of penetration, so the coring system was changed over to the XCB.

Core 9X was cut from 64.4 to 74.1 mbsf. When we tried to retrieve the core barrel, it could not be pulled free from the BHA. A 50-bbl sepiolite pill was pumped past the core barrel in an effort to clean out any sands/silts that might be causing it to jam, but this did not help, and the entire drill string had to be recovered. The bit cleared the rotary table at 0130 hr on 9 June, officially ending Hole 1174A.

When the BHA reached the rig floor, it was discovered that the core barrel was stuck inside the nonmagnetic outer drill collar. After the core barrel was finally dislodged, one of the XCB latching mechanisms (dogs) was found to have failed. A 1.5-in-long piece was missing from the middle of the latch dog. One of the remaining ends of the latch was still locked inside the XCB body and had rotated outward, pinning the core barrel in place. This is the first known occurrence of this type of failure, and the cause is as yet unknown.

#### Hole 1174B

The decision was made to set a drill-in-casing (DIC) system in Hole 1174B to case off the loose sands near the seafloor in preparation for an 1150-m-deep penetration through the protothrust and décollement zones. Eleven joints of 11.75-in casing (142.2 m) were made up with a new 14.75-in sawtooth casing bit welded on the end and hung off on the moonpool doors. A 9.875-in tri-cone bit was made up to the drilling assembly and was spaced out ~1 m ahead of the casing bit. Once the drilling assembly was attached to the casing assembly, a DIC reentry funnel was attached to the DIC drive bushing. The completed DIC assembly was then lowered to the seafloor.

While we assembled the DIC system, it was necessary to allow the ship to drift with the current. After the DIC assembly had reached the seafloor, another hour of maneuvering in DP mode was required to move the vessel back on location. Hole 1174B was spudded at 0943 hr on 10 June.

The DIC was first jetted into ~50 mbsf with maximum jetting parameters of 45 strokes per minute (spm), 400 psi, and 5000–10,000 lbs weight on bit (WOB). Then the DIC was drilled into 143.67 mbsf (4906.17 mbrf) with maximum drilling parameters of 80 spm, 1050 psi, 8000–10,000 lbs WOB, 10 rpm, and 6000–9000 ft-lb of torque. Total time for emplacement was ~7.25 hr, and no problems were encountered.

The rotary shifting tool (RST) was then deployed on the wireline to unlatch the DIC. The weight of the DIC casing, ~22,000 lb, was slacked off in preparation for unlatching. The RST had to be worked through the DIC three times before a definite indication of the release sleeve shifting was observed. The drill string was then picked up, and the weight of the DIC system was lost, indicating that it had released properly.

We intended to have Hole 1174B penetrate a relatively thick section that might be unstable; therefore, the decision was made to round trip

T1. Coring summary, p. 87.

**T2.** Coring summary by section, p. 89.

the drill string to remove the DIC drive sub and then reenter with a standard rotary core barrel (RCB) BHA. Thus, the drill string was recovered.

The DIC BHA was broken out, and an RCB BHA was made up. The RCB was tripped to the seafloor and the vibration-isolated television (VIT) camera frame was lowered to the seafloor in preparation for reentry. The search for the DIC reentry funnel began at 1830 hr on 11 June, and the funnel was first sighted visually at ~2315 hr. At 2347 hr on 11 June, Hole 1174B was reentered and the VIT was recovered. The bit was lowered into the hole with moderate drag until the bit had reached 52.5 mbsf, where some resistance was encountered. The top drive was picked up, and the bit had to be worked down all the way through the cased section.

Hole 1174B was then cored from 143.7 to 265.8 mbsf (4906.2 to 5028.3 mbrf) with high erratic torque. At this depth the bit became stuck. The drill string was worked for 1 hr, and 120,000 lb of overpull was required to free the bit. The bit was raised up inside the casing with drag and high erratic torque all the way. The bit was eventually raised to 50 mbsf (4852 mbrf), where the high erratic torque finally disappeared.

The bit was lowered once again, encountering an obstruction at 52.5 mbsf (4854.5 mbrf). The bit was worked through this problem area inside the casing several times until it was thought that the obstruction was no longer a threat to the coring operations. The bit was then lowered back down into the open hole, encountering fill at 172.5 mbsf (4935 mbrf). After the hole was washed and reamed to bottom, coring resumed.

Some further insight into the mysterious high erratic torque previously observed while coring in Hole 1174B appeared in the top of Core 20R. A piece of chewed-up metal ~3 in long, 1.5 in wide, and 0.25 in thick was recovered. Additional pieces of metal were found in other succeeding cores. Unfortunately, the origin of the metal is still not clear.

While retrieving Core 40R from 524.3 mbsf (5286.8 mbrf), the forward core winch wireline parted at the crown with the core barrel at 3664 mbrf. The frayed end of the wireline caught in the oil saver on top of the swivel and T-bar clamps were used to pull the parted wireline up through the top drive. Preparations were then made to string the parted wireline back over the crown sheave and reattach it to the coring winch. However, when the derrick man reached the crown, he discovered that the outboard wireline crown sheave had failed.

Approximately one-third of the sheave rim on the outboard side had separated from the sheave body. A used sheave was located on board and was installed to replace the failed sheave.

The parted wireline was strung over the replacement sheave and reattached to the core winch with cable clamps. The parted wireline was recovered along with the core barrel, which contained 9.21 m of core. The forward core winch was secured, and the aft core winch, which had 9600 m of new wireline on it, was placed into service. A total of 8.25 hr of down time was incurred as a result of the parted wireline and failed sheave.

Although rotation and circulation were maintained while we recovered the parted wireline and replaced the failed sheave, a wiper trip was carried out before we resumed coring operations. The bit was pulled to 128.43 mbsf (4890.93 mbrf) inside the DIC casing shoe. Once the bit was back inside the casing, an overdue maintenance of the drill line (slip and cut) was carried out. The bit was then lowered to 459.86 mbsf

(5222.36 mbrf), where slight drag was encountered. The top drive was picked up and the hole was washed and reamed to 524.3 mbsf. Approximately 7 m of soft fill was encountered in the bottom of the hole. RCB coring then resumed, and Cores 41R to 102R were recovered from 533.9 to 1119.8 mbsf (5882.3 mbrf). After the DIC was drilled in to 143.7 mbsf, Hole 1174B was continuously cored through 976.1 m of section. Recovery was 577.57 m (60%).

Because some gas was detected in the formation, the hole was displaced with 280 bbl of heavy mud. After the hole was displaced, the pipe was pulled out of the hole with no rotation or circulation. When the bit reached 398.2 mbsf (5160.3 mbrf), a tight spot was encountered and the pipe was worked without picking up the top drive. A 60,000-lb overpull was being applied to the drill string when the pipe came free. However, the drill string weight was ~70,000 lb lighter, indicating that the drill string had parted, and the pipe trip continued. The drill string had parted 467 m above the seafloor.

Once the drill pipe was clear of the seafloor, the two seafloor positioning beacons were given release commands. The primary beacon released and was recovered. However, the backup beacon failed to release and was not recovered. Once the beacon was on board and the end of the pipe was near the rig floor, the thrusters and hydrophones were raised and the vessel began the 2-hr transit to proposed Site ENT-05A (Site 1175).

The end of the drill pipe cleared the rig floor at 2230 hr on 22 June. The pin connection on the bottom of drill pipe stand number 26 had failed. Lost in the hole were a 9.875-in RCB bit, a mechanical bit release, an outer core barrel, a top sub, a head sub, seven 8.25-in drill collars, a transition drill collar, six joints of 5.5-in drill pipe, a crossover sub, and 75 joints of 5-in drill pipe.

## LITHOSTRATIGRAPHY

We recognized five lithostratigraphic units at Site 1174 (Fig. **F1**) and were able to correlate these with units previously described at Sites 808 and 1173 (Table **T3**). Unit boundaries are diachronous between the sites.

## Unit I (Slope-Apron Facies)

Unit I is Quaternary in age and extends from the seafloor to a subbottom depth of 4.00 mbsf (Fig. F1; Table T3). The dominant lithology is brown to gray mud (silty clay to clayey silt). A pale brown glass-rich ash layer at 3.38 mbsf is normally graded and 22 cm in thickness. The mud is generally structureless and contains clay minerals with less abundant glass, lithic fragments, quartz, feldspar, siliceous microfossils (mostly diatoms), and calcareous nannofossils (mostly coccoliths) (see "Site 1174 Smear Slides," p. 110). Deposition occurred ~50 m above the trench floor by way of hemipelagic settling and, perhaps, muddy turbidity currents.

## Unit II (Trench-Wedge Facies)

Unit II is Quaternary in age and 479.23 m in thickness (Fig. F1; Table T3). Subunit IIA (axial trench–wedge facies) consists of 310.55 m of sand, silty to muddy sand, silt to sandy silt, silty clay to clayey silt; one

F1. Stratigraphic column, p. 38.





very thin bed of pale gray volcanic ash is at 257 mbsf. We drilled through an inferred sand-rich interval without coring from 67.43 to 143.70 mbsf. Recovered beds of black, dark gray, and greenish gray sand and silty sand range from thick (30-100 cm) to very thick (>100 cm), typically with normal grading (Fig. F2), sharp bases, and gradational tops. Grain size varies from silt to granule (Fig. F3) but is predominantly medium to coarse sand. Thicker intervals of sand are typically soupy. Layers of sandy silt and silt range from medium bedded (10-30 cm) to very thin bedded (1-3 cm) or laminated (<1 cm). Lower contacts are sharp, scoured, or loaded, whereas tops are gradational. Grain size typically fines upward, and plane-parallel laminae are common in the upper parts of beds. The sand and silt deposits contain subrounded to subangular grains of quartz, feldspar, and lithic fragments together with lesser amounts of ferromagnesium minerals, volcanic glass, microfossils, and mica (see "Site 1174 Smear Slides," p. 110). Fine-grained sulfide and framboidal pyrite are present throughout Subunit IIA as a black mottling.

Hemipelagic settling and fine-grained turbidity currents probably caused sedimentation of muddy interbeds in Subunit IIA. The sandy beds are turbidites. Their overall seismic-stratigraphic position and textures and bed thicknesses are all consistent with deposition in the axial portion of the trench wedge. The upper 18 m of the trench wedge is lithologically similar to Unit I at Site 808 (Shipboard Scientific Party, 1991) but does not contain contorted or overturned beds indicative of slump folding. Incipient deformation in the protothrust zone has lifted strata ~50 m above the trench floor. Thus, we cannot rule out the possibility that some of the silty sand beds assigned to Subunit IIA were deposited from axial flows that lapped onto the lowermost slope, and the change to Unit I may be transitional.

The top of Subunit IIB is at the base of a thick silty sand bed at 314.55 mbsf (Section 190-1174B-19R-1, 55 cm). This subunit consists predominantly of silty clay to clayey silt (Fig. F4) with laminae to medium beds of silt and sandy silt. Laminae of volcanic ash are also present. Subunit IIB is very similar to Subunit IA at Site 1173; both probably were deposited in the outer trench-wedge environment.

The top of Subunit IIC (trench to basin transition) is located at the top of a prominent ash bed at 431.55 mbsf (Section 190-1174B-31R-2, 105 cm). This subunit consists of silty claystone to clayey siltstone, volcanic ash, and thin beds of laminated silt to sandy silt. This subunit is equivalent to Subunit IB at Site 1173 and Unit III at Site 808. The base of Subunit IIC is defined by the deepest occurrence of a discrete silt bed (>1 cm) at 483.23 mbsf (Section 190-1174B-36R-5, 73 cm). Thinner silt laminae are sporadically present deeper in the hole.

## Unit III (Upper Shikoku Basin Facies)

Unit III is Pliocene to Quaternary in age and 177.76 m in thickness (Fig. F1; Table T3). This unit consists predominantly of silty claystone to clayey siltstone with interbeds of volcanic ash (Fig. F5) and is equivalent to Unit II at Site 1173 and Subunit IVA at Site 808. The deepest unequivocal ash bed at 660.99 mbsf (Section 190-1174B-55R-2, 49 cm) defines the base of Unit III. This particular ash bed is somewhat unusual in that calcareous nannofossils are mixed with unaltered and partially altered volcanic glass. One other deposit of mixed nannofossil-rich mud and volcanic glass is present in Unit III. Many of the ash beds in Unit III contain partially altered volcanic glass, and the finer-grained

F2. Medium- to fine-grained graded sand and mud chips in Subnit IIA, p. 39.



**F3.** Granule fragments in sand from Subunit IIA, p. 40.



F4. Silty claystone from Subunit IIB containing the trace fossil *Chondrites*, p. 41.



examples display more alteration than coarser-grained beds. This alteration pattern differs from that at Site 1173, where only the lower portion of the upper Shikoku Basin facies showed signs of ash alteration.

## Unit IV (Lower Shikoku Basin Facies)

Unit IV is Miocene to Pliocene in age and consists of 441.46 m of mostly bioturbated silty claystone to clayey siltstone (Figs. F6, F7), with minor calcareous and siliceous claystone (Fig. F1; Table T3). Most of the siliceous claystones are probably altered ash beds because they contain particles of cryptocrystalline silica, smectite, zeolite, and opaque minerals (Table T4). The boundary between Unit III and Unit IV, therefore, is controlled partially by diagenetic alteration, as also documented at Sites 1173 and 808. Attempts to correlate ash stratigraphy at Sites 1173 and 1174 met with limited success (Fig. F8). The total thickness of ash-rich Subunit IB and Unit II at Site 1173 (261 m) is greater than the equivalent thickness of Subunit IIC and Unit III at Site 1174 (229.44 m). This discrepancy, together with the smaller number of identifiable ashes at Site 1174, indicates that the diagenetic front of ash alteration migrates upsection as the Shikoku Basin strata are buried progressively beneath the axial trench wedge. Thickness variations also may have been affected by variable sedimentation rates within Shikoku Basin.

#### Unit V

Unit V begins at a depth of 1102.45 mbsf (Section 190-1174B-102R-CC, 26 cm) and consists of 8.86 m of variegated silty claystone (Fig. F1; Table T3). The probable age is middle Miocene, but recovery from this interval was very poor. The claystone ranges in color from greenish gray to mottled green and red. Even though silicic tuff beds were not recovered, we believe this variegated hemipelagic claystone represents the top of the same volcaniclastic facies as encountered at Site 808 (Shipboard Scientific Party, 1991).

## X-Ray Diffraction Mineralogy

The results of X-ray diffraction (XRD) analyses of randomly oriented bulk-sediment powders are shown in Figure F9, and all data are listed in Tables T5 and T6. The average values of normalized relative mineral abundance in Subunit IIA are quartz = 35%, plagioclase = 19%, calcite = 1%, and total clay minerals = 45%. These values are typical of the entire trench-wedge facies. Quartz content decreases slightly within Unit III (mean = 37%), whereas calcite content increases (mean = 4%). A subtle increase in quartz content occurs below the Unit III/IV boundary; this compositional gradient is followed by a reduction in quartz below ~700 mbsf. Total clay mineral content, conversely, increases gradually below the trench-wedge deposits. Average contents of total clay minerals are 46% in Unit III and 49% in Unit IV. This modest increase in clay mineral abundance is probably a consequence of both diagenetic alteration of disseminated volcanic glass and a decrease in particle size within the hemipelagic mudstones of the Shikoku Basin. Plagioclase content decreases steadily beneath the base of Unit II, probably in response to an overall decrease in grain size. Calcite content is erratic in Unit IV as a result of scattered nannofossil-rich beds and nodules of carbonate.

The peak-area ratio of (101) cristobalite to (100) quartz also changes with stratigraphic position (Fig. F9). The pattern of silica alteration is

**F5.** Two volcanic ash layers from the upper Shikoku Basin, p. 42.



**F6.** Silty claystone with foraminifers from the lower Shikoku Basin, p. 43.



**F7**. Silty claystone with the trace fossil *Zoophycos*, p. 44.



**T4.** XRD analysis of bulk-powder volcanic ash samples, p. 102.

**F8**. Distribution and thickness of volcanic ash layers, Sites 1173 and 1174, p. 45.



more complicated at Site 1174 than at Site 1173 because the effects of burial beneath the Nankai trench wedge are superimposed on trends inherited from burial and heating in the Shikoku Basin. Smear-slide observations show that diatoms become increasingly scarce in Cores 190-1174B-18R and 19R (305–315 mbsf) and disappear in Core 20R (~325 mbsf) and below. The inferred temperature range for that depth interval is 50°–60°C. The cristobalite to quartz ratio decreases toward and beneath the base of Unit II then increases at ~605 mbsf. The peak-area ratio decreases again at ~660 mbsf just below the boundary between Units III and IV.

XRD analysis of representative volcanic ash beds shows a clear transformation downsection from glass-rich deposits with crystals of plagioclase and quartz to smectite-rich claystone or bentonite (Table T4). Some of the samples analyzed are nearly pure smectite (Fig. F10). A second common alteration product within the lower portion of the upper Shikoku Basin facies is undifferentiated clinoptilolite-heulandite. Similar alteration products were documented at Site 808 (Shipboard Scientific Party, 1991). It is interesting to note, however, that zeolites are not present in the altered ash layers from Hole 1173A (see "Site 1173 Smear Slides," p. 78). This difference may be a function of either reaction temperature or reaction time.

# STRUCTURAL GEOLOGY

A variety of deformation structures is present at Site 1174, summarized in relation to lithostratigraphy in Figure F11. All the numerical data are given in Table T7. The chief features at the site are (1) deformation bands developed in the upper part of the hole, (2) zones of fractured and, in places, distinctly steepened bedding within a zone of protothrusting, (3) the basal décollement, and (4) the relatively littledeformed underthrust section. The distribution with depth of the main core-scale structures is portrayed in Figure F12.

### **Hole 1174A**

All the cores retrieved from Hole 1174A, which reached 67.61 mbsf, show approximately horizontal bedding with a distinct fissility in places and a complete absence of deformation.

## **Hole 1174B**

Horizontal bedding with fissile intervals also typifies Hole 1174B down to 464 mbsf, although there is evidence of some slump folding with associated steepened bedding. However, within this largely horizontally bedded interval, we define a structural domain in which deformation bands are concentrated.

### **Deformation Bands**

The shallowest example of a deformation band that we recognized, albeit weakly developed, is at 199 mbsf, indicating that tectonic deformation is acting on sediments that have undergone surprisingly little burial and lithification. The main development of deformation bands arises between 218 and 306 mbsf. The structures appear to be best developed in silty claystones that lack bioturbation. They are manifest in

**F9.** Abundances of clay minerals, quartz, plagioclase, and calcite, p. 46.



**T5.** Peak intensities and peak areas from XRD analysis, p. 103.

**T6.** Normalized relative mineral abundances based on XRD analysis, p. 108.

**F10.** X-ray diffractograms of unaltered and altered volcanic ash, p. 47.



**F11.** Overall distribution of deformation structures, p. 48.



T7. Structural data, p. 112.

the core face as roughly planar dark zones between ~1 and 8 mm across and are commonly in paired, oppositely inclined arrays. Bands can abruptly decrease in width (Fig. F13A) and bifurcate into twin strands that coalesce a few millimeters along the band (Fig. F13B). Such observations are in line with earlier descriptions of deformation bands in the Nankai prism (e.g., Maltman et al., 1993), where at the microscopic scale, the bands have various kinklike and shear-zonelike aspects. On occasion, it was possible with the Site 1174 cores to detect a sense of displacement along the bands; in all the observed cases, this was a reverse sense.

Figure **F14** shows the orientations of all the deformation bands we observed. Despite the diversity of orientations of the structures in the cores, paleomagnetic correction (see "**Paleomagnetism**," p. 10, in the "Explanatory Notes," chapter) revealed a concentration into two distinct sets, both with a strike of 033°—roughly that expected if the bands are due to prism contraction. The lesser dihedral angle between the two sets is 67°, the bisector of which is inclined 10° from vertical toward the northwest. The few cases where sense of movement was discernible from the bands are consistent with the principal shortening being shallowly inclined and bisecting the obtuse angle between the sets, which is congruent with typical kink-band geometry. A few millimeter-wide planar zones, which we classified as deformation bands, were observed at much deeper levels: 510 and 590 mbsf. Both cases, unusually, are developed in and confined to thin bands of volcanic ash.

The concentration of the majority of the deformation bands between ~200 mbsf and a sheared interval at 306 mbsf is striking. This latter horizon is a fault zone a mere 35 cm thick consisting of foliated breccia with fragments as small as a few millimeters in length and a distinctly inclined fabric (Fig. F15). It therefore contrasts markedly with the little disturbed sediments above and particularly with the virtually undeformed material below. Indications of reverse movement such as small parasiticlike folds imply that the structure may be a thrust. Paleomagnetic reorientation of the fold axial planes (Fig. F16A; great circle labeled 1) and the inclined fractures (Fig. F16 great circle labeled 2.) suggest that the fault is a southeast-dipping feature, possibly a backthrust within the prism. The deformation bands may therefore record pervasive strain in the hanging wall of this fault. An alternative explanation for the localization of deformation bands involves some lithologic influence on their development. At the present site their lower limit approximately coincides with the transition from the trench-wedge to outer trench-wedge facies; at Site 808 of Leg 131, where deformation bands were observed at deeper levels, their lower boundary corresponds to the top of the Shikoku Basin sediments.

#### **Protothrust Domain**

The shear zone mentioned above is the shallowest of a number that appear irregularly throughout the section above the basal décollement. Their distribution with depth is depicted in Figure F12. For 157 m below the one already described, there is very little deformation and bedding dips rarely depart from horizontal, although core recovery was relatively poor. Abrupt, therefore, is the 1.5-m-thick zone of fine rubble at 463.0 mbsf, which may or may not be of natural origin. The underlying 2.6-m-interval was unrecovered. Between 467.10 and 469.95 mbsf is an interval of fractured and steepened bedding (Fig. F17), in places vertical, followed by a 6.55-m unrecovered interval and then virtually unde-

**F12.** Distribution of bedding dips and deformation structures with depth, Hole 1174B, p. 49.



**F13.** Deformation bands displaying varying width and the tendency to bifurcate, p. 50.



**F14.** Stereographic projections of deformation bands illustrating the effectiveness of paleomagnetic reorientation, p. 51.



formed subhorizontal beds. A 30-cm-thick zone of shearing at 504 mbsf (Fig. **F16C**) ends this zone of deformation as the underlying cores, to depths well over 600 mbsf, show approximately horizontal beds with little deformation.

#### Seismically Imaged Protothrust

The significance of the above observations, and indeed one underlying reason for drilling Site 1174, is that seismic interpretations show a prism protothrust at this location. In the preliminary seismic depth section, this protothrust is at a depth of ~550 mbsf, yet we saw no deformation in the cores from around that depth. Good core recovery constrains any thrust located at such depths in unrecovered material to have a thickness <5 m. On the basis of the core data, therefore, a protothrust of significant thickness at this site must be represented by the structures between ~463 and 500 mbsf mentioned above. The beds could be steepened by fault-related folding similar to that inferred for the frontal thrust at Sites 573 (Shipboard Scientific Party, 1986) and 808 (Taira, Hill, Firth, et al., 1991), but details at this site remain unclear. The vertical thickness of the fault zone is a maximum of 41 m if all rubble and unrecovered intervals are included, in comparison to the 30 m reported from Site 808.

### **Deeper Fractured and Brecciated Zones**

Further intervals of fractures and brecciation are present between 688 and 807 mbsf, the latter being the top of the décollement (Fig. F12). The appearance of these intervals of broken core is highly variable, and it is possible that those lacking fabric have been artificially induced or that naturally fractured intervals have been enhanced by the coring process. Those zones with a clear alignment of clasts or some regularity of fractures are thought to be natural, but even here their appearance varies. Nowhere are they thick, ranging between 10 and 90 cm. Some cores contain more than one of these zones, separated by intact material, but they are typically many meters apart. Preliminary analysis suggests that some of the fracture fabrics dip toward the southeast; the significance of this remains unclear. The intensified fracturing between 699 and 720 mbsf, sharply bounded at its base and including a northwest-dipping fracture fabric, is shown on Figure F12 as a fault zone. It may correspond to a protothrust apparent at these depths on the seismic section.

#### **Core-Scale Healed Faults**

Small faults are present throughout Site 1174, but they become noticeably more common between ~495 and 611 mbsf. The faults appear as dark seams no more than a millimeter or two across, commonly braided and distinctly curviplanar to irregular (Fig. F18). Offset markers are infrequent but, where observed, in almost all cases show a normal sense of displacement, typically between a millimeter and a centimeter. The faults are vertical to steeply inclined; any breakage along them reveals slickensides and, commonly, down-dip slickenlines. These structures are more commonly developed than at Site 1173 and less widespread than similar structures at Site 808 and so could be recording either increasing tectonic strain or greater burial. Their apparently random strike after paleomagnetic reorientation (Fig. F19) indicates a lack of tectonic influence. In line with previous interpretations, the faults probably reflect the effects of burial compactional strains on these clayey silt lithologies at this degree of lithification. **F15.** Inclined fractures, part of a deformed horizon that may represent a prism backthrust, p. 52.



**F16.** Stereographic projections of fractures related to prism faults, p. 53.



**F17**. Steepened bedding and inclined fractures, p. 54.



**F18.** Bifurcating, healed normal fault, p. 55.



#### Décollement

The deepest of the brecciated intervals reported above is found at 784 mbsf and is underlain by generally intact sediment with moderate dips as deep as 807 mbsf. Here a distinctive set of planar, inclined fractures divides the cores into trapezoidal blocks (Fig. F20A) that decrease downward in size eventually to be replaced by brecciated material (Fig. F20B). The overall orientation of the fractures is shown in Figures F21A and F21B.

We take the onset of these distinctive, inclined fractures to mark the top of the basal décollement at 807.6 mbsf. The striking feature of the décollement zone is the heterogeneity of the deformation, which in a general way increases downward in intensity. Bedding is irregularly steepened in the zone (Fig. F21C). The topmost 3 m (disregarding unrecovered core) consists largely of the trapezoidal blocks mentioned above, mostly 5 cm and more in length, but the size of the blocks tends to diminish in the underlying 7 m of core until intervals with fragments on the scale of millimeters are common. Six meters or more of unrecovered core separates these foliated breccias from 7 m of much more uniformly comminuted material, with only rare clasts exceeding 1 cm in length and a foliated aspect being variably developed (Fig. F22). The base of this zone contains a few larger blocks but also a 20-cm interval of very finely pulverized material. Just 60 cm below this, a further interval of finely broken sediment is underlain by intact sediment; this contact, at 840.20 mbsf, clearly marks the décollement base. The décollement zone therefore has a vertical thickness at this site of 32.6 m. Because the core containing the base of the structure (Core 190-1174B-73R) was almost completely recovered, any allowance for unseen material would increase this figure by <1 m.

The brecciated aspect of the décollement zone is similar to that reported from Site 808 and contrasts with, for example, that of the northern Barbados prism with its scaly clay and S-C fabrics (Maltman et al., 1997). Nevertheless, there are some differences between the décollement cores from Sites 1174 and 808, such as a 13-m greater thickness at Site 1174. Also, the greater proportion of relatively intact intervals suggests a somewhat more heterogeneous deformation. The meters-long sections of comminuted material reported here were not seen at Site 808, although with the less successful recovery there it is possible such material exists but was simply not retrieved.

### **Underthrust Domain**

The underthrust sediments show little deformation overall, as at Site 808. Between 950 and 1000 mbsf, bedding dips >20° were recorded, and at ~1020 mbsf, a 40-cm-thick zone of shallowly inclined slickensided fractures and nearby bedding dips up to 54° testify to some localized tectonic deformation in these downgoing sediments (Fig. F12). The rest of the section, however, is characterized by subhorizontal bedding. Rare, weakly developed healed normal faults and dewatering features (e.g., Fig. F23) probably record early compaction processes.

### **Uncalibrated Gas-Permeability Measurements**

Measurements from Site 1174 are presented in Figure F24. Figure F25 provides a further illustration of the fine resolution that is made available by the instrument. It is important to reemphasize, however, that

**F19.** Stereographic projections of core-scale healed faults, p. 56.



**F20.** Details of the décollement zone showing breakage into angular blocks and comminution of sediments, p. 57.



**F21**. Stereographic projections of structures related to the décollement, p. 58.



**F22.** Details of fracturing across the décollement zone, p. 59.



the shipboard results summarized here are semiquantitative measurements based on nitrogen flow in water-saturated sediments.

The sediments in Hole 1174A, reaching only 68 mbsf, were soft and delicate, but the determinations were sufficient to document the contrast in values between the interturbidite silty clays, which measured  $<10^{-16}$  m<sup>2</sup>, the sandy intervals, which exceeded  $10^{-13}$  m<sup>2</sup>, and the thick layers of black sand, which approached  $10^{-11}$  m<sup>2</sup>. In Hole 1174B, the sands of the axial-trench turbidites were generally too soft to allow reliable measurement, but two attempts gave measurements  $>10^{-13}$  m<sup>2</sup>, whereas the silty clays yielded values within an order of magnitude above and below  $10^{-16}$  m<sup>2</sup>.

The lower part of the trench sediments, lacking the thick sand intervals, generally showed values  $\sim 10^{-16}$  m<sup>2</sup> or slightly greater, but measurements well over  $10^{-15}$  m<sup>2</sup> were given by siltier horizons and some ash bands. Thicker ash bands show some variation in detail, illustrated in Figure F25. Also yielding values an order of magnitude greater than the normal silty clays were the bioturbated intervals that involve ash fragments.

Below 480 mbsf, in the Shikoku Basin facies, the cores consistently gave measurements that deviate little from  $10^{-16}$  m<sup>2</sup> (apart from a few aberrant values near 600 mbsf that are not understood). This consistency includes the horizons of ash at these depths, which presumably give values less than shallower equivalents because of their greater degree of alteration. It also includes the décollement zone, that is, it applies to those fragments >~3 cm across that were large enough to allow measurement. Such clasts may not, of course, represent the permeability of the intervening, more highly sheared material. The underthrust sediments show some variation in appearance, such as degree of bioturbation and diagenetic alteration to carbonate, but all these materials gave measurements that deviated little from  $10^{-16}$  m<sup>2</sup>. In the lowest recovered sediments, values of  $10^{-17}$  m<sup>2</sup> and less were obtained.

## BIOSTRATIGRAPHY

### Introduction

Sediments recovered from Site 1174 provide a continuous sedimentary record from the Quaternary through the middle Miocene. The biostratigraphic outline was provided by calcareous nannofossils using the zonation schemes of Gartner (1977) and Martini (1971) with zonal modifications proposed by Young (1998) (Table T8). The interval (core and section) and depth (mbsf) constraints of calcareouse nannofossil events recognized in Site 1174 are reported in Table T9. The epoch boundaries have been placed as in Table T10. For ranges of calcareous nannofossils at Site 1174 see Tables T11 and T12.

## **Calcareous Nannofossils**

## Hole 1174A

Hole 1174A was cored to 67.61 mbsf and contained upper Quaternary nannofossil assemblages assigned to Subzones NN21b and NN21a. Calcareous nannofossils are common to frequent throughout the sequence and mostly well to moderately preserved. The main assemblage is composed of placoliths (*Emiliania huxleyi* and *Gephyrocapsa* spp.) with **F23.** Example of a dewatering structure in the underthrust sediments, p. 60.



F24. Variation of uncalibrated gaspermeameter measurements with depth, p. 61.



**F25**. Fine-scale variations in volcanic ash, p. 62.





**T9.** Interval and depth constraints of calcareous nannofossil events, p. 122.

a highly diverse subordinate assemblage. Reworked specimens, mainly discoasterids, sphenoliths, and reticulofenestrids of Pliocene to Miocene age, were encountered sporadically. The only event found in Hole 1174A was the onset of the *E. huxleyi* acme defining the base of Subzone NN21b (0.085 Ma), observed between Samples 190-1174B-7H-CC and 8H-2, 74–75 cm.

## Hole 1174B

Hole 1174B was washed to 143.7 mbsf. The sediments recovered were assigned to Zone NN21 of the Pleistocene through Zone NN6 of the middle Miocene. Cores 190-1174B-1R to 39R (143.7 to 513.21 mbsf) yield mostly moderately to well-preserved nannofossil assemblages. Nannofossils are common throughout the Pleistocene sequence. Beginning in Sample 190-1174B-40R-CC (523.81 mbsf) nannofossils decrease drastically in abundance alongside a decline to poorer preservation. Nannofossil assemblages are strongly affected by mechanical breakage and dissolution, with several intervals barren of nannofossils (Samples 190-1174B-41R-CC to 42R-CC, 49R-CC, 64R-CC to 65R-3, 103-104 cm, 66R-CC, 68R-CC, 74R-CC, 77R-CC to 78R-CC, 80R-CC, 83R-CC, 87R-CC to 88R-CC, 97R-CC). A few samples exhibit strong overgrowth, which mainly affected discoasterids and reticulofenestrids in Samples 190-1174B-55R-CC to 56R-CC (668.08 to 671.61 mbsf), 59R-CC (706.45 mbsf), 71R-CC (815.49 mbsf), 82R-CC (922.46 mbsf), 84R-CC (946.55 mbsf) and 93R-CC (1031.08 mbsf). Therefore, the proper position of the biostratigraphic events defining zonal boundaries may actually be in the barren intervals. This could explain discrepancies observed between ages retrieved from paleomagnetic data and biostratigraphic ages. The biostratigraphic analysis of further samples may resolve these problems.

#### Pleistocene

The Pleistocene includes the interval from 150.99 to 639.41 mbsf. Moderately to poorly preserved Pleistocene nannofossils were recovered from Sample 190-1174B-1R-CC to 52R-CC. The Pleistocene assemblages older than 0.26 Ma are characterized by the dominance of gephyrocapsids. Reworked Neogene taxa such as discoasterids, *Reticulofenestra pseudoumbilicus,* and *Sphenolithus* spp. were found in low numbers throughout the Pleistocene samples.

The base of Subzone NN21a, marked by the first occurrence of *E. hux-leyi* (0.26 Ma), was placed between Samples 190-1174B-3R-CC and 4R-CC. The last occurrence of *Pseudoemiliania lacunosa* (0.46 Ma) was observed between Samples 190-1174B-16R-CC and 17R-CC bounding the negatively defined Zone NN20 to the bottom. The last occurrence of *Reticulofenestra asanoi* (0.8 Ma; between Samples 190-1174B-43R-CC and 44RH-3, 75–76 cm) and its first occurrence (1.06 Ma, between Samples 190-1174B-47-CC and 48H-CC) provide further datums to subdivide Zone NN19. The Pleistocene/Pliocene boundary was placed between Samples 190-1174B-52R-CC and 53R-3, 79–80 cm, according to the first appearance of *Gephyrocapsa oceanica* (1.77 Ma), which approximates the epoch boundary. Further analysis of relative abundances of the different *Gephyrocapsa* morphotypes may provide a higher biostratigraphic resolution for Zone NN19.

#### Pliocene

Cores recovered from 645.7 to 778.19 mbsf were assigned to the Pliocene. The Pliocene sediments contain mostly poorly preserved nan-

T10. Epoch boundaries, p. 123.

T11. Calcareous nannofossil range chart (Zones NN21–NN19), p. 124.

**T12.** Calcareous nannofossil range chart (Zones NN18–NN6), p. 128.

nofossils in Samples 190-1174B-53R-CC and 67R-4, 75–76 cm. The abundance of nannofossils is generally lower than in the Pleistocene sediments. The Pliocene nannofossil assemblages are dominated by different morphotypes of reticulofenestrids and discoasterids; associated are mainly *Coccolithus* spp., *Calcidiscus* spp., and sphenoliths. Reworked specimens were encountered sporadically.

The last occurrence of Discoaster brouweri (1.95 Ma) was used to determine the top of Zone NN18 between Samples 190-1174B-53R-CC and 54R-CC. After an interval in which nannofossils were rare and poorly preserved (Samples 190-1174B-55R-CC and 56R-CC), the last occurrence of Discoaster pentaradiatus (2.52 Ma) was recorded between Samples 190-1174B-56R-2, 75-76 cm, and 56R-CC, assigning the level to Zone NN17. The top of Zone NN16 is marked by the last occurrence of Discoaster surculus (2.55 Ma) in Samples 190-1174B-56R-CC and 57R-2, 75–76 cm. The last occurrence of *R. pseudoumbilicus* (>7 µm) was used to define the boundary between Zones NN16 and NN15 (3.75 Ma) between Samples 190-1174B-62R-CC and 63R-CC. The last occurrence of Amaurolithus spp. (4.0 Ma, top of Zone NN14) in Sample 190-1174B-65R-5, 74-75 cm, was observed at the base of a barren sequence (Samples 190-1174B-64R-CC and 65R-3, 103-104 cm). The top of Zone NN14 (4.13 Ma) was indicated by the first appearance of Discoaster asymmetricus between Samples 190-1174B-66R-3, 75–76 cm, and 66R-4, 71–72 cm. The event that identifies zonal boundaries between Zones NN13 and NN12 was not recognized, that is, the first occurrence of Ceratolithus cristatus at the top of Zone NN12 (5.05 Ma). The first occurrence of this rarely observed species was recorded in Sample 190-1174B-63R-CC, which is above the last occurrence of *Amaurolithus* spp. (Zone NN14). The last occurrence of *Discoaster quinqueramus* (5.54 Ma) at the top of Subzone NN11b, which approximates the Pliocene/Miocene boundary (5.32 Ma), was observed between Samples 190-1174B-67R-4, 75–76 cm, and 67R-6, 75–76 cm.

#### Miocene

Sediments recovered from Sample 190-1174B-67R-6, 75–76 cm (784.19 mbsf), to the bottom of Hole 1174B (1111.3 mbsf) contain Miocene nannofossils. The generally poorly preserved Miocene nannofossil assemblage mainly consists of placoliths, diverse discoasterids, and sphenoliths.

The top of Subzone NN11a, marked by the first occurrence of Amaurolithus spp. (7.2 Ma), was assessed between Samples 190-1174B-73R-CC and 74R-3, 41–42 cm. The first occurrence of *D. quinqueramus* was used to define the boundary between Zones NN10 and NN11 (8.6 Ma) between Samples 190-1174B-75R-CC and 79R-CC. The last occurrence of *R. pseudoumbilicus* (>7 µm) marking the top of Subzone NN10a (9.0 Ma) was observed between Samples 190-1174B-76R-CC and 79R-CC. The range of Discoaster hamatus defines the boundaries of Zone NN9 (9.63-10.7 Ma). Its top occurrence was observed in Sample 190-1174B-80R-4, 75–76 cm, and the first occurrence between Samples 190-1174B-81R-CC and 82R-2, 74–75 cm. The basis of Zone NN8 is marked by the first occurrence of Catinaster coalitus (10.83 Ma) between Samples 190-1174B-85R-4, 75–76 cm, and 85R-CC. This event approximates the late/ middle Miocene boundary (11.2 Ma). The first occurrence of Discoaster *kugleri* marking the boundary between Zones NN7 and NN6 (11.8 Ma) was recorded between Samples 190-1174B-96R-CC and 98R-CC. The first occurrence of *D. kugleri* is problematic because intergrades with Discoaster deflandrei are commonly found below the first occurrence da-

tum (Young, 1998). In the same interval, the last occurrence of *Orthorhabdus serratus* (12.3 Ma) was recorded. The last common occurrence of *Cyclicargolithus floridanus* (13.2 Ma) between Samples 190-1174B-99R-CC and 100R-CC provides a further datum to subdivide Zone NN6. The absence of *Sphenolithus heteromorphus*, the last occurrence of which defines the top of NN5 (13.6 Ma), and the first occurrence of large (>7  $\mu$ m) *R. pseudoumbilicus* (13.4 Ma) between Samples 190-1174B-101R-CC and 102R-CC suggests the assignment to Zone NN6. Sample 190-1174B-102R-CC from the bottom of the hole does not yield any age diagnostic nannofossils.

## PALEOMAGNETISM

## Introduction

After measuring the natural remanent magnetization (NRM), all sections of the archive half of the core were partially demagnetized using alternating-field (AF) magnetization up to 30 mT in increments of 5 mT at 5-cm intervals to remove magnetic overprints. Two oriented discrete samples were routinely collected from each section of the working half of the core primarily for shore-based analysis of the anisotropy of magnetic susceptibility. Additional measurements of polarity and basic magnetic character of selected discrete samples were used to aid in the interpretation of the archive long-core magnetization record. Most of the discrete samples were demagnetized up to 60 mT in 5-mT increments to permit principal component analysis. Rock magnetic experiments were conducted to identify the magnetic minerals at Site 1174.

## **Paleomagnetic Results**

The majority of NRM inclinations for all sections are strongly biased toward steep inclinations of ~60°–80°. The steep inclinations observed are interpreted as magnetic overprints acquired during drilling; a problem identified on many previous Deep Sea Drilling Project (DSDP) and ODP legs. These overprints were successfully removed by AF demagnetization at 30 mT (see "Paleomagnetism," p. 14, in the "Site 1173" chapter). Stable magnetic remanent inclinations were measured after AF demagnetization. These inclinations provide information about middle Miocene to Holocene magnetic polarity changes and were used in conjunction with the standard geomagnetic polarity time scale (GPTS) of Cande and Kent (1995) to date the sediments.

Declinations obtained from rotated archive-half core pieces after AF demagnetization aided in core orientation corrections and structural analysis such as fracture fabric analysis (see "Structural Geology," p. 10).

#### Hole 1174A

The sediments of Units I and II in Hole 1174A, consisting of sandy and silty turbidites, show stable paleomagnetic remanence after AF demagnetization. All recovered sediment from Hole 1174A is included in the Brunhes Chron (0–0.78 Ma) based on the predominantly normal polarity inclinations. In contrast to these stable normal polarity inclinations, three reversed polarity inclinations were observed at 29.5 mbsf (Section 4H-5, 10 cm), 51.95 mbsf (Section 7H-1, 5 cm), and 61.58 mbsf (Section 8H-4, 5 cm) (Fig. F26). Intensity values are high in both the reversed and normal polarity inclinations. Zijderveld analysis (Fig. F27) suggests that these short reversal events show the possibility of geomagnetic polarity changes during short geomagnetic excursions.

### Hole 1174B

Inclination changes in Hole 1174B were compared with the GPTS of Cande and Kent (1995). However, noisy inclination changes from 544.7 (Section 43R-1, 110 cm) to 685.95 mbsf (Section 57R-6, 15 cm) complicate the identification of reversed polarity events. Magnetic intensity of this zone shows a distinct low value. Further rock magnetic analysis will also be needed in order to identify reasons for the scattered inclinations.

The paleomagnetic remanence shows characteristic magnetic intensity zones similar to those of Hole 1173A (Fig. F28). Multisensor track (MST) susceptibility values also follow a similar pattern (see "Physical Properties," p. 29). Based on these characteristic intensity and susceptibility changes, the sediments can be divided into four distinct zones (Fig. F28). High magnetic intensities (intensity Zone [IZ] 1) range from 0 to 553.25 mbsf (Section 44R-1, 35 cm). The termination of this zone does not correspond with a lithostratigraphic boundary (Fig. F28). There is a sudden decrease of magnetic intensity that extends to 763.1 mbsf (Section 65R-6, 60 cm). This low-intensity zone (IZ 2) with a slightly high intensity subzone (IZ 2') was also observed at Hole 1173A. From 763.1 to 941.7 mbsf (Section 85R-6, 60 cm), intensities increase slightly (IZ 3). Below this, intensities return to very low values for the remainder of the hole (IZ 4).

## **Rock Magnetism**

Rock-magnetic experiments were conducted to identify the magnetic minerals of the four major intensity zones (Fig. F29). Thermal demagnetization of multicomponent isothermal remanent magnetization (Lowrie, 1990) was used as the primary means of identifying magnetic minerals. For these experiments, orthogonally applied fields of 1.0, 0.3, and 0.1 T were used to generate the isothermal remanent magnetization (IRM) components. The samples were then demagnetized using 15 thermal steps from 50° to 650°C (Fig. F29). Greigite was determined to be the main magnetic carrier in IZ 1, identified by a saturation isothermal remanent magnetization (sIRM) of 300 mT and an unblocking temperature  $(T_{ub})$  of ~400°C. IZ 2 is believed to contain both greigite and magnetite, as indicated by a smooth IRM acquisition curve that reaches an sIRM value of ~200 and 800 mT, and the identification of two  $T_{\rm ub}$ values of ~600°C. Low-intensity values in this zone indicate that greigite is probably the dominant carrier of magnetism. IZs 3 and 4 are determined to contain magnetite as indicated by the  $T_{\rm ub}$  values of 500°-600°C and a narrow sIRM curve point of 300 mT. Similar IRM curves that slightly increase up to ~800 mT were observed for both IZs 3 and 4. indicating that a small amount of greigite is also present, although the high intensities of IZs 3 and 4 suggest that magnetite is probably the dominant magnetic carrier.

**F26.** Paleomagnetic inclination, declination, and intensity, Hole 1174A, p. 63.



**F27.** Zijderveld diagrams of excursions, Hole 1174A, p. 64.



**F28.** Magnetic intensity zones, Sites 1174 and 1173, p. 65.



**F29.** Rock-magnetic experiments, Hole 1174B, p. 66.



### Magnetostratigraphy

Site 1174 magnetostratigraphy is based on polarity changes determined by measuring the inclination of the archive half of the core after AF demagnetization at 30 mT. Many middle Miocene to Pleistocene magnetic polarity records were identified using biostratigraphic datums (calcareous nannofossils; see "**Biostratigraphy**," p. 14) and correlated to the GPTS of Cande and Kent (1995) (Fig. F30). The identified chrons and subchrons are given in Table T13.

A magnetic polarity change from normal to reversed at 544.7 mbsf (Section 190-1174B-42R-7, 25 cm) is interpreted as the Brunhes/ Matuyama Chron boundary dated at 0.78 Ma (Cande and Kent, 1995). The Matuyama Chron (0.780–2.581 Ma) is interpreted to occur at 543.15–685.95 mbsf (Section 190-1174B-57R-6, 15 cm). Although this section of the hole is characterized by a predominantly reversed polarity, only a few normal events are identifiable during the Matuyama Chron (see "Hole 1174B," p. 18).

The Gauss Chron (2.581–3.58 Ma), interpreted to occur at 685.95–727.85 mbsf (Section 190-1174B-62R-1, 135 cm), is characterized by a change to a predominantly normal polarity. The magnetic polarity change at 727.85–802.12 mbsf (Section 190-1174B-69R-7, 75 cm) is interpreted as the Gilbert Chron. The termination of the Gilbert Chron and the beginning of Chron C3 is identified at 802.12 mbsf (Section 190-1174B-69R-7, 75 cm). The polarity boundary at 890.15 mbsf (Section 190-1174B-79R-1, 85 cm) is interpreted as the beginning of Chron C4A. A normal polarity inclination interval observed from 901.40 (Section 190-1174B-80R-2, 90 cm) to 947.15 mbsf (Section 85R-1, 5 cm) is identified as Chron C5n.

## **Sedimentation Rates**

Comparison of the magnetostratigraphy and biostratigraphy is shown in Figure F31. A marked change of sedimentation rate from 69.83 to 4.07 cm/k.y. occurs at 544.7 mbsf (~1 Ma) within the upper Shikoku Basin facies. A second change from 4.07 to 3.53 cm/k.y. occurs at 793.92 mbsf within the lower Shikoku Basin facies (Fig. F31).

## Comparison of Site 1174 to Site 1173

Clear geomagnetic records were identified at both Sites 1173 and 1174. Clearly definable chron boundaries include the Brunhes/ Matuyama (0.78 Ma) and Matuyama/Gauss (2.581 Ma). The Gauss/Gilbert (3.58 Ma) and Chron C4/C5 (9.74 Ma) boundaries were also identified but were not as clearly defined.

Correlation between Sites 1173 and 1174 was also performed using zones and peaks of high and low intensity. The first distinct low-intensity peak at 578.49 mbsf in Hole 1174B is correlated to a low-intensity peak at 179.29 mbsf in Hole 1173A (Section 190-1173A-20H-1, 115 cm) in the upper part of lithostratigraphic Unit II (Fig. F32). The top of another low-intensity peak at 763.19 mbsf can be correlated to 391.99 mbsf in Hole 1173A (Section 190-1173A-42X-3, 15 cm). Therefore, sediments in the upper part of Site 1174 (lithostratigraphic Unit I to the top of Unit III) correspond to the upper part of lithostratigraphic Unit I unit II in Hole 1173A.

This comparison of magnetic intensity peaks, zones, and magnetostratigraphic results suggests that the upper part of Hole 1174A, consist-

F30. Magnetostratigraphy, p. 67.

Sile 1174
Magnetic policy first cosh

Image: cosh first cosh
Policy first

**T13.** Depths and ages of magnetic chrons and subchrons, p. 132.

F31. Age-depth plot, p. 68.

**F32.** Magnetic polarity reversals at Sites 1173, 1174, and 808, p. 69.



ing mainly of trench turbidites of the Nankai Trough, is about three times thicker than the equivalent sediments in Hole 1173A. In contrast, the thickness of the upper and lower Shikoku Basin facies is similar to that of Hole 1173A.

## Comparison of Site 1174 to Site 808

The relationship between Site 1174 and Site 808 previously drilled during Leg 131 (Taira, Hill, Firth, et al., 1991) can be clarified by magnetostratigraphy (Fig. F32). At both sites a very long normal polarity interval identified as the Brunhes Chron was observed in the trench turbidites.

Site 1174 magnetostratigraphy around the décollement shows the décollement occurring within time-equivalent sedimentary horizons from 5.894 to 6.567 Ma (Chron C3An). The magnetostratigraphic comparison of Sites 1174 and 808 suggests that the décollement zone at both sites represents the same horizon.

## **INORGANIC GEOCHEMISTRY**

From Holes 1174A and 1174BA, 127 interstitial water samples were squeezed from selected 10- to 50-cm-long whole-round samples for chemical and isotopic analyses. Sample depths ranged from 1.4 to 66.5 mbsf at Hole 1174A and from 150 to 1110.25 mbsf at Hole 1174B. Samples were collected from every section in Cores 190-1174A-1H and 2H, from three sections per core in Cores 190-1174A-3H and 4H, from two sections in Core 190-1174A-5H, and from every section in the remaining cores from Hole 1174A. From Hole 1174B, one section per core was sampled, except for Cores 190-1174B-71R and 72R, from which two sections were sampled, and Cores 30R, 48R, 58R, 63R, and 65R, which were not sampled because of either recovery problems or the need to squeeze a previously collected sample for a longer time in order to recover adequate volumes of pore fluid. Pore fluids from the four largest 50-cm whole rounds collected from Hole 1174B (Cores 190-1174B-23R, 34R, 43R, and 78R) were subsampled for interstitial water and He isotope analyses.

Elemental concentrations are reported in Table **T14** and plotted in Figure **F33**. For large samples, nine major and minor dissolved anions and cations that sensitively reflect microbially mediated or inorganic water-rock (sediment and oceanic basement) reactions were determined. The former include alkalinity, sulfate, and ammonium, and the latter are Cl, Ca, Mg, Na, K, and Si. On smaller samples, a subset of these elements was determined, depending on the quantity of fluid recovered. Salinity and pH were also measured.

The main characteristics of the interstitial water concentration-depth profiles at Site 1174 are similar to those at Site 808 (Leg 131). Compared to Site 1173, microbially mediated reactions at Site 1174 are more intense and are significant to greater depths. The sulfate reduction is complete by 4 mbsf at Site 1174, and peak ammonium concentrations at Site 1174 are approximately twice those at Site 1173, centered at 200 mbsf as compared to 50 mbsf. There are major changes in chemical gradients associated with both lithostratigraphic boundaries (Units II and III, the trench wedge, and Shikoku Basin facies) and subtle changes associated with tectonic features (protothrust and décollement). At the depth that corresponds to the protothrust intersection and Unit II/III

**T14.** Pore fluid composition, p. 133.

**F33.** Interstitial fluid composition as a function of depth, p. 70.



boundary, there are significant excursions, most distinctly exhibited in the Cl and Si concentrations, that may indicate hydrologic activity. A high-resolution record of pore fluid chemistry was recovered across and within the Nankai Trough décollement for the first time. The chemical changes across the décollement are subtle despite significant changes in physical properties there. Steep concentration gradients, particularly in Cl, Na, and Ca, are observed in the deepest ~50 m of the site, between 1060 and 1110 mbsf, caused by either diagenetic reactions involving hydration in the basal volcaniclastic section or by diffusional communication with an upper basement fluid flow system.

## **Geochemistry Controlled by Inorganic Reactions**

### Chloride

Cl concentrations were all determined in duplicate resulting in a relative analytical uncertainty of 0.1%. Concentrations increase from slightly greater than bottom water concentrations (558.5 mM) to 577 mM (a 3.3% increase) at a depth of 21 mbsf. This trend is most likely due to the diffusion of lower chlorinity interglacial water into the sediments and the hydration of volcanic ash. Concentrations then decrease to a minimum value, 566 mM, at the Subunit IIA/IIB lithostratigraphic boundary (~337 mbsf) (see "Lithostratigraphy," p. 7). Between 337 and 468 mbsf, concentrations increase to 597 mM, where there is both a sharp reversal in the overall gradient and localized concentration spikes. It is unclear from the data whether the reversal corresponds to the Unit II/III lithostratigraphic boundary (483.2 mbsf) or to the protothrust intersection ( $\sim$ 470 ± 5 mbsf). This gradient reversal and the localized spikes could be maintained by any combination of (1) ongoing dehydration reactions in compositionally distinct layers, (2) sustained flow of freshened fluid from depth, or (3) episodic flow of freshened fluids from depth. Below ~500 mbsf, concentrations smoothly decrease for ~230 m, consistent with this interval being dominated by diffusive transport. Assuming one-dimensional vertical diffusion, an average porosity of ~45%, a formation factor of 10 (see "Physical Properties," p. 29), and molecular diffusion of  $5.74 \times 10^{-5}$  cm<sup>2</sup>/s corrected for an in situ temperature of ~90°C, it would take on the order of 650 k.y. to establish this diffusion profile.

Within the décollement (808–840 mbsf) (see "**Structural Geology**," p. 10), there is a local Cl maximum (496 mM). Cl concentrations smoothly increase to the maximum value for ~50 m above the upper boundary of the décollement. In contrast, at the lower boundary of the décollement, there is a very sharp decrease of ~10 mM over 10 m. The cause of the Cl maximum in the décollement is as yet unclear.

At greater depth, there is a low-Cl zone in the 200 m interval below the décollement, with minimum concentrations that are ~17% diluted relative to seawater. The Cl minimum is found at an almost identical distance below the décollement at adjacent Site 808. Note, however, that the dilution is ~21% at Site 808, whereas at the reference Site 1173A it is considerably less, close to 9%. Below the Cl minimum, in a 100-m interval (~950 to 1050 mbsf), concentrations slightly increase with depth, with minor discontinuities superimposed on the general gradient. In the lowermost ~100 m of the underthrust section, Cl concentrations increase monotonically, approaching seawater concentrations at 1110 mbsf. Hydration reactions in the lower volcaniclastic or

an underlying upper basement fluid flow system may be responsible for the increase in the Cl concentrations.

### Sodium

Na concentrations increase from a near-seawater value to a broad maximum, an 8.5% increase, between ~30 and 300 mbsf. This increase is due to a combination of processes: diffusion of low-salinity interglacial water, ion exchange driven by ammonium production, and ash alteration. Except for the discontinuity at the depth of the protothrust (between ~450 mbsf and basement), concentrations decrease, generally following the Cl trend, except in the deepest samples, where Na does not follow the Cl increase, indicating the uptake of Na into the basement.

### Potassium

K concentrations decrease smoothly from slightly greater than seawater concentrations to approximately half seawater concentrations at 414 mbsf, where there is a sharp discontinuity associated with the Subunit IIB/IIC boundary. Concentrations decrease by ~30% in 16 m. This is a large decrease, especially in the depth interval of high ammonium concentrations, where K is being expelled by ammonium into the pore fluid from clay ion exchange sites. This decrease suggests that K is being incorporated into authigenic zeolite. Below this depth, concentrations asymptotically approach a nearly constant value of ~1.5 mM.

The higher than seawater concentrations are caused by K expulsion from clay mineral ion exchange sites, partial dissolution of volcanic ash, and slightly elevated concentrations in the glacial ocean. The nearly constant concentrations at depth are consistent with equilibrium control by potassium-containing silicate phase, primarily K zeolites.

### Silica

Dissolved Si concentrations increase from ~600 to 1250 mM between 275 and 315 mbsf, corresponding to the Subunit IIA/IIB boundary. There is a small decrease to  $\sim 1000 \mu$ M at the Subunit IIB/IIC boundary, across which concentrations drop to  $\sim 200 \ \mu$ M. Below this depth, concentrations generally increase, approximately doubling by 1050 mbsf. This general trend is interrupted by a few discrete maxima that correspond to velocity maxima (see "Physical Properties," p. 29) that are most likely caused by diagenetic reactions associated with ash layers, leading to some cementation. Thus throughout the section, the Si concentration-depth profile reflects the varying dominant silicate diagenetic reactions. The key reaction in Subunits IIB and IIC is the dissolution of siliceous biogenic material that rapidly diminishes in abundance and eventually disappears at the base of Subunit IIC (see "Biostratigraphy," p. 14). This is consistent with a shift in grain density at the Unit II/III boundary (see "Physical Properties," p. 29). In Unit III and through the décollement in Unit IV, the control seems to be quartz solubility, and the few maxima are most likely related to ash alteration. Diagenesis of the basal silicoclastics is responsible for the doubling of the silica concentrations below the décollement.

#### **Magnesium and Calcium**

Mg concentrations generally decrease with depth, whereas calcium concentrations generally increase. There are, however, significant changes in their concentration gradients that indicate the occurrence of a variety of distinct reactions. Mg and Ca concentrations decrease sharply in the uppermost 50 m. This decrease may be due to the formation of dolomite. Mg concentrations then decrease to a minimum at the Subunit IIA/IIB boundary depth. At greater depth, Mg concentrations only vary within a narrow range. There appears to be an increase in Mg in the two deepest samples, but this may be an artifact of the high Ca concentrations on the Mg determination.

Ca concentrations increase smoothly below the shallow minimum until ~50 m above the Subunit IIA/IIB boundary. At this depth, concentrations increase up to the boundary. There is another sharp increase at the Subunit IIB/IIC boundary. Below this they are relatively constant through the décollement. Below the décollement, concentrations increase, indicating a possible source of Ca from the volcaniclastic section and/or oceanic basement.

## Geochemistry Controlled by Microbially Mediated Reactions

### Sulfate

Sulfate concentrations decrease extremely rapidly with depth and reach zero in Core 190-1174A-1H between 2.9 and 4.4 mbsf. Because of the very few data points available for this narrow sulfate reduction zone, it is difficult to distinguish between reduction resulting from local organic matter oxidation and reduction resulting from methane oxidation at the bottom of this zone. From 4 to ~640 mbsf, close to the base of Unit III, the sulfate concentrations vary between 0 and 1.5 mM. Most of these very low concentrations are probably related to small amounts of postsampling sulfide oxidation. Dissolved sulfate concentrations increase with depth in the lower Shikoku Basin section, reaching 8-10 mM below the depth interval of the Cl minimum and remaining constant to the bottom of the section. The same pattern of sulfate reappearance below the sulfate reduction zone has been documented at the reference Site 1173 and at Site 808. At Site 1173, the reappearance is found at ~240 mbsf, whereas at this site it is found at ~660 mbsf, 400 m deeper. Interestingly, the décollement is also ~400 m deeper than the proto-décollement at the reference site. At Site 808, as at this site, sulfate reappears at ~140 m above the décollement. The presence of dissolved sulfate at such great burial depths and at temperatures that range from being within the limits of biological activity to those that are above this limit may have important consequences for microbiology. The systematics of the sulfate distributions at these sites may reflect a dynamic relationship between sedimentation rates, temperature, and microbial sulfate reduction rates.

#### Ammonium

An ammonium concentration maximum of ~7 mM is found at ~13.6 mbsf; at Site 1173 it is at twice this depth. In Hole 1174B, ammonium concentrations continue to increase to 12.4 mM at ~170 mbsf. It is produced by the microbially mediated decomposition of organic matter. At

such high concentrations, ammonium occupies clay ion exchange sites, expelling K and Mg into the pore fluid. Concentrations then decrease to <1 mM at ~600 mbsf. The deeper samples at Site 1174 were not analyzed for ammonium because of the very small recovery of pore fluids from the whole-round core samples. The deep sink for ammonium is as yet unidentified.

### Alkalinity

Alkalinity has a concentration maximum of 50 mM at ~6 mbsf in Hole 1174A. Its production is primarily driven by the microbial decomposition of organic matter. Alkalinity decreases monotonically to ~7 mM at 353 mbsf. At the depths of Ca and Mg concentration maxima, alkalinity concentrations sharply decrease, indicating authigenic carbonate (most likely dolomite) precipitation. At the alkalinity minimum, however, Mg decreases but Ca increases, suggesting either dolomitization of a precursor Ca carbonate or the flow of a low-alkalinity, low-Mg, high-Ca fluid. The latter is supported by the minimum Cl concentration at this same depth. The second and strongest minimum in alkalinity, 2.3 mM, is at the approximate depth of the protothrust and the Unit II/III boundary. The increase in alkalinity in Unit III toward the décollement is unusual and may be related to the increase in sulfate at this depth interval. The decrease in alkalinity below the décollement is caused by carbonate precipitation in this volcaniclastic high-Ca zone at the base of the section and/or in the upper basement.

## Summary

In summary, the highly modified seawater pore fluid chemistry indicates that at this site fluid flow may occur or may have occurred in the recent past at three horizons: at the boundary between Subunits IIA and IIB, along the protothrust, and below the décollement. The basic shipboard geochemical analyses indicate similar pore water characteristics at all three depths: mostly CaCl<sub>2</sub>-type fluid, depleted in Cl, Na, Mg, alkalinity, and, possibly, K and enriched in Ca and Si relative to seawater. Additional shore-based geochemical analyses, mineralogical analyses, and hydrologic studies will be important in distinguishing between in situ pore-water modification, advection of modified fluids from greater depth, and some combination of the two. Furthermore, both carbonate and silicate diagenesis are widespread in a hierarchy of reactions, which may affect some of the measured physical properties. Microbially mediated reactions are most intense in the top 200 m of the section. The products are involved in some of the diagenetic reactions mentioned above.

Because this site is situated along a transect between the arcward Site 808 and the reference Site 1173, it plays an important role in understanding the evolution of the geodynamics, hydrogeology, and geochemistry of this subduction zone.

## **ORGANIC GEOCHEMISTRY**

At Site 1174, real-time monitoring of volatile hydrocarbons was carried out for safety reasons and organic, petrological, and geochemical studies were conducted to (1) determine the amount and type of organic matter preserved in the sediments; (2) characterize the light hy-

drocarbons generated by biogenic, thermogenic, and categenic processes; and (3) further relate hydrocarbon distributions to the thermal evolution and structural properties of the Nankai accretionary prism.

Eight sediment samples and two vacutainer samples were collected from Hole 1174A from 1.35 to 65.13 mbsf, and 102 sediment samples were collected from Hole 1174B (~10-m intervals) from 148.63 to 1110.25 mbsf. All sediments were analyzed for methane concentration and light hydrocarbon composition during headspace analyses (Fig. F34; Table T15). In addition, molecular gas composition, total carbon, and inorganic carbon (carbonate) analyses were performed, and carbon/nitrogen (C/N) ratios were determined (Fig. F35; Table T16).

The total carbon content for the sediment samples examined is relatively low, ranging from 0.03 to 1.6 wt% and averaging 0.74 wt% (Fig. F35A). The highest carbon values are found in the upper 171 mbsf (0.8– 1.6 wt% at 171.33 mbsf), followed by a decrease in carbon content (0.8-4 wt%) between 350 mbsf and just below the décollement at 807.60 mbsf. Carbon contents slightly increase between 1000 and 1100 mbsf and then drop abruptly to 0.2 wt% at greater depth. Variations in the carbon content (Fig. F35A) are correlated with changes in lithostratigraphy. For example, a steady decrease in the amount of carbon was observed in the transition from the upper to lower Shikoku Basin facies and continues to the décollement. Below the décollement, higher carbon values are observed (0.50-0.85 wt%) in some thin layers that also coincide with an increase in ethane and propane hydrocarbons (Fig. F34B, F34C). The inorganic carbon (carbonate) concentrations are generally low (average =  $\sim$ 5 wt%) with several maxima of >40 wt% below ~900 mbsf (Fig. F35C). High concentrations of carbonate nodules were seen in some calcareous claystones (~700 mbsf) in the lower Shikoku Basin section (also observed in sediments of Hole 1173A).

Nitrogen contents of the sediments are also low (~0.1 wt%) with one minimum dropping to zero at ~1020 mbsf (Fig. F35B). The C/N ratios are consistent with a marine origin. At Site 808 (Leg 131), however, the upper Shikoku Basin sediments likely contain a significant terrigenous component as a result of the flux of terrestrial organic matter to these sediments (Berner and Faber, 1993). At greater depths the ratios drop abruptly (<5), consistent with carbon loss due to thermogenic or catagenic C<sub>2</sub> and C<sub>3</sub> hydrocarbon generation. As at Site 808, the generation of light hydrocarbons is relatively low (10–70 ppm) and is attributed to the low TOC and very high temperatures (up to 120°C) (see "In Situ Temperature and Pressure Measurements," p. 34), which is in the range of categenic or "thermal cracking" of organic matter (Tissot and Welte, 1984).

## **Hydrocarbon Gases**

Headspace gas concentrations of methane in Hole 1174A are low (~2.5 ppm) in the first core (1.5 mbsf) within the sulfate reduction zone (Fig. **F34A**). However, a significant increase in methane concentrations is observed just below this zone (~20,000 ppm in sediment samples and 940,000 ppm in vacutainer samples) in the first 65 mbsf of Hole 1174A. Methane concentrations are also high from 300 to 550 mbsf in Hole 1174B (up to ~40,000 ppm). As was observed at Site 808 and in other previous legs, an increase in methane in sediments below the sulfate reduction zone is indicative of bacterial origin (Claypool and Kvenvolden, 1983). The presence of small concentrations of methane in the sulfate reduction zone, however, may be due to migration from below.

**F34.** Molecular compositions and concentrations of headspace gases, p. 71.





**F35.** Total carbon and nitrogen contents and the percentage of inorganic carbon in sediments, p. 72.



**T16.** Carbon, nitrogen, sulfur, and hydrogen analyses, Hole 1174, p. 137.

Ethane and propane are also present in sediments below 300 mbsf, with a sharp increase in propane from 550 to 700 mbsf (10–30 ppm). The atypical predominance of propane over ethane suggests that fermenting bacteria are preferentially utilizing ethane to produce acetate and  $H_2$  (King and Blackburn, 1998), whereas propane remains unaffected (see "**Microbiology**," p. 27, for microbial counts in these sediments). Interestingly, the ratios of ethane to propane in sediments at Site 808 show the same trend. The concentrations of ethane and propane in both Sites 1174 and 808 are proportional at depth and consistent with sediments of higher maturity.

The Bernard gas ratio  $C_1/(C_2+C_3)$  shows that the hydrocarbons above ~900 mbsf are mixtures of biogenic and thermogenic components (Fig. F36). At depths >900 mbsf, the activity of methane-producing archae bacteria has ceased and only thermogenic hydrocarbons are present. Two hydrocarbon mixing zones (biogenic and thermogenic) are observed between 400 and 900 mbsf (Fig. F36). The increase in  $C_1/(C_2+C_3)$ ratios below 900 mbsf may suggest that at this depth cracking of longer chain and less thermally stable hydrocarbons occurs rather than in situ thermal generation of these components. The higher concentrations of propane observed in the upper zone, where maturities of organic matter and temperatures are lower, implicitly suggests that these hydrocarbons were migrated from deeper sections of the accretionary prism. A previously proposed interpretation is that hot fluids moving along the décollement caused extensive heating and cracking of kerogenous organic matter, generating light hydrocarbons that may slowly leak out of the décollement, (Taira et al., 1991). The shipboard geochemical data for Site 1174, however, indicate that there is presently no active advection of light hydrocarbons occurring along the protothrust or the décollement.

#### A Reexamination of Migration

One of the more interesting results from the organic geochemistry shipboard measurements for Site 1174 is the distribution of hydrocarbons within discrete sedimentary zones, suggestive of migration along the frontal and protothrusts, to stratigraphically or structurally controlled areas within the prism. Although it is difficult to reconcile the containment of light hydrocarbons such as methane, the presence of propane and higher hydrocarbons in the trench to basin transition facies and the upper Shikoku Basin strongly suggests that the physical properties of the accretionary prism are influencing the distributions of these components.

A reassessment of the organic geochemical data for Site 808 also revealed some striking similarities to Site 1174 in the distributions of hydrocarbons. As stated earlier in the hydrocarbon section, both propane and ethane show identical profiles in sediments above and below the décollement (Berner and Faber, 1993). A predominance of propane over ethane (Fig. F34) is unusual and was first interpreted by Berner and Faber (1993) as evidence for fluid migration along the frontal thrust from below the décollement. The lack of supportive data for vertical fluid movement in the pore-water chemistry, however, led to a reassessment of these findings (Kastner et al., 1993) and the suggestion that both ethane and propane formed from isotopically different precursor kerogens (terrigenous vs. marine) in situ at low temperature (Taira et al., 1991).





In a more detailed study of the origin of light hydrocarbons at Site 808, carbon isotopic ratios for propane in gas samples collected from the frontal thrust showed similar values to those measured below the décollement (Berner and Faber, 1993). These data are the first indication that hydrocarbons from beneath the décollement are indeed related to those at shallower depth and that migration of fluids along the frontal thrust has occurred (Berner and Faber, 1993). The observation of the same high ratios of propane over ethane in the sediments at Site 1174, coupled with the isotope data for Site 808, strengthens the evidence for migration. Future investigations of the nature of the organic matter in sediments collected at Site 1174 will allow for a more detailed assessment of the organic matter and the biological and physical properties that are found within the Nankai accretionary prism.

## Conclusions

Organic geochemical analysis at Site 1174 leads to the following conclusions:

- 1. At Site 1174 the total carbon content decreases with depth (1.6–0.3 wt%; average = ~0.37) as indicated by the values throughout the hole.
- 2. C/N ratios indicate that marine organic matter is abundant in all of the sediment samples.
- 3. The low sulfate and high methane concentrations in the upper section below the sulfate reduction zone are consistent with a bacterial origin. At depths >900 mbsf, the activity of methane-producing archae bacteria has ceased and only thermogenic hydrocarbons are present.
- 4. The Bernard gas ratio  $C_1/(C_2+C_3)$  shows that the hydrocarbons above ~900 mbsf are mixtures of biogenic and thermogenic components. Below 900 mbsf, cracking of longer chain and thermally less stable hydrocarbons occurs rather than thermal generation of these components.
- 5. Geochemical data indicate that the flux of hydrocarbons is presently negligible across the décollement.
- 6. The organic matter and hydrocarbon geochemical data from Site 808 are in agreement with those from Site 1174. This suggests that lighter hydrocarbons migrated from deeper sediments of a higher maturity into shallower, more immature sediments (450 and 650 mbsf) through the frontal and protothrusts.

# MICROBIOLOGY

Thirty-seven samples for microbiological analysis were obtained from Holes 1174A and 1174B for direct microscopic enumeration on board ship. Fourteen whole-round cores were taken for shipboard enrichment cultures at in situ temperature and pressure, cell viability, and shore-based microbiological analysis to measure potential bacterial activities, culture microorganisms, characterize nucleic acids, and investigate fatty acid biomarkers.

### **Total Bacterial Enumeration**

Bacteria are present in 24 of the 37 samples examined (Table **T17**; Fig. **F37**). The near-surface sample (Sample 190-1174A-1H-2, 99–100 cm) contains  $1.47 \times 10^8$  cells/cm<sup>3</sup>, which follows a trend observed at other ODP sites where near-surface bacterial populations decrease as overlying water depths increase (Table **T18**).

The deepest sample in which bacteria were observed is at 796.5 mbsf (Sample 190-1174B-69R-3, 105–106 cm) with 7.95 × 10<sup>5</sup> cells/cm<sup>3</sup>, some 0.5% of the near-surface population. Prior to this depth, however, cells are not present at 578 mbsf (Sample 190-1174B-46R-4, 119–120 cm) or in five samples between 623.5 and 743.6 mbsf (Samples 190-1174B-51R-2, 149–150 cm, to 63R-5, 149–150 cm). Below 796.5 mbsf to the deepest sample at 1091.3 mbsf (Sample 190-1174B-100R-1, 11–12 cm), no bacterial cells were detected (detection limit =  $6 \times 10^4$  cells/cm<sup>3</sup>).

The depth distribution of total bacterial numbers in sediments from Site 1174 conforms to the general model for bacterial populations in deep-sea sediments (Parkes et al., 1994) from the surface to ~290 mbsf (Fig. F37). Two significantly low populations are found at 26.2 and 66.5 mbsf (Samples 190-1174A-4H-2, 139-140 cm, and 8H-4, 134-135 cm), and these are both samples with substantial proportions of sand. Below 370 mbsf, rising temperatures affect interpretation of the data. The temperature at 370 mbsf was ~45°-50°C (see "In Situ Temperature and Pressure Measurements," p. 34), which is the boundary between mesophilic (medium temperature) and thermophilic (high temperature) bacteria. From this depth downward, bacterial population sizes decrease to zero by 575 mbsf. There is one further occurrence of bacteria  $(4.76 \times 10^4)$ cells/cm<sup>3</sup>) at 598.5 mbsf (Sample 190-1174B-48R-5, 104-105 cm) before 690 mbsf. At this depth the temperature is estimated to be 80°C, which represents the microbiological boundary where hyperthermophilic bacteria are found. There are two occurrences of bacterial populations within this zone, at 778.6 and 796.5 mbsf (Samples 190-1174B-67R-4, 120–121 cm, and 190-1174A-69R-3, 105–106 cm). The deepest of these is estimated to be at 90°C. The possibility that these were contaminated samples was examined; however, the large populations enumerated meant that they could not be the result of contamination from either seawater or drilling muds. Additionally, zero counts were obtained from both above and below these intervals, and the counting procedure was checked with blanks to confirm absence of counting procedure errors. No bacteria were detected within the décollement zone (~810-840 mbsf) or at any greater depths, despite temperature not being a limiting factor until ~875 mbsf.

## **Contamination Tests**

Tracer tests were conducted while coring with APC (Core 190-1174A-4H) and RCB (Cores 190-1174B-4R, 5R, 31R, and 32R) at this site. In order to estimate the amount of drilling fluid intrusion into the recovered cores, chemical and particulate tracers were deployed as previously described (Smith et al., 2000).

### **Chemical Tracer**

Perfluoro(methylcyclohexane) was used as the perfluorocarbon tracer (PFT). Calibration of the gas chromatograph (HP 5890) with standard solutions yielded a slope of  $9.2 \times 10^{11}$  area units/gram of PFT. The

**T17.** Total bacterial populations in sediments, p. 141.

**F37.** Depth and temperature distribution of total bacterial populations, p. 74.



**T18.** Comparison of near-surface sediment bacterial populations at Site 1174 with data from nine other ODP sites, p. 142.

detection limit for these samples is equivalent to 0.01  $\mu$ L of drilling fluid. The tracer was detected on the outer edge of each core, indicating a successful delivery (Table **T19**). Estimates of drilling fluid intrusion in these samples range from below detection to 57.9  $\mu$ L/g. As expected, the intrusion of drilling fluid into the centers of Cores 190-1174B-4R and 5R (57.9 and 14.3  $\mu$ L/g, respectively) was substantial. This was due to the use of the RCB in the relatively soft sediment. Visual inspection of the split cores confirmed the disturbance. No PFT was detected in the center samples from Sections 190-1174B-31R-1 and 31R-2. The chemical tracer was found throughout the Core 190-1174B-32R. It is believed that the high values are due to sample handling on the catwalk. Instead of breaking the sections after the core liner is cut, as recommended (Smith et al., 2000), the sections were separated with a knife. It is likely that the tracer was dragged through the core with the blade.

### **Particulate Tracer**

Fluorescent microspheres were detected on the outside of four cores (Table **T20**); the outside sample of one of the eight samples was lost before analysis. The absence of microspheres in the samples from the outside edge of the core suggests problems with the delivery of the microspheres. No microspheres were detected in the interiors of Sections 190-1174B-4H-2, 5R-1, 31R-1, or 32R-1. As with the PFT, microspheres were found throughout Section 190-1174B-4R-1, again confirming the disturbance while coring. Microspheres were not observed in the interior of the other disturbed core (Section 190-1174B-5R-1), but the very low abundance on the outside of this core (13 microspheres/g) may explain this observation. Microspheres in the interiors of Sections 190-1174B-32R-2 and 32R-3 are consistent with the PFT data from these sections.

# **PHYSICAL PROPERTIES**

## Introduction

At Site 1174, laboratory measurements were made to provide a downhole profile of physical properties at a site within the protothrust zone, landward of reference Site 1173 and seaward of Site 808. With the exception of some extremely short (<50 cm), small diameter (<4 cm), and intensely fractured sections, all cores were initially passed through the MST before splitting. Gamma-ray attentuation (GRA) and magnetic susceptibility measurements were taken at 4-cm intervals with 2-s acquisition times for all cores. Natural gamma ray (NGR) was counted every 30 cm for 30-s intervals. Voids and cracking caused by gas expansion were noted in cores between 0 and 67 mbsf and degraded MST measurements. Biscuiting and reduced core diameter in RCB cores also degraded measurements. Data are not available between 74.1 and 143.70 mbsf because this interval was not cored.

Moisture and density samples were selected from undisturbed core at regularly spaced intervals of at least one per section. Additional samples were taken within the décollement zone. Measurements of dry volume and wet and dry mass were uploaded to the ODP (Janus) database and were used to calculate water content, bulk density, grain density, porosity, void ratio, and dry bulk density. During moisture and density measurements for Hole 1174B, a calibration problem was noted for the pycnometer. After recalibration, a linear correction was applied to samples **T19.** Drilling fluid intrusion estimated based on PFT experiments, p. 143.

**T20.** Fluorescent microsphere tracer experiments, p. 144.

that had been run with the incorrect calibration. This correction affected Cores 190-1174B-1R through 42R and Section 43R-3. The dry volumes and calculated parameters reported in the database have been updated to incorporate this correction.

*P*-wave velocities were measured on split cores or discrete samples at a frequency of two to three per core. Measurements were taken in three directions when core conditions permitted. Electrical conductivity measurements were taken at a frequency of two to three per core. Raw data and calculated physical properties are available from the Janus database for all MST, moisture and density, velocity, and thermal conductivity measurements (see the "**Related Leg Data**" contents list). Because electrical conductivity data are not currently available from the Janus database, they are included in Tables **T21** and Table **T22**, respectively.

### **Density and Porosity**

Sediment bulk density was determined by both the GRA method on unsplit cores and the mass/volume method ("index properties") on discrete samples (see "Physical Properties," p. 19, in the "Explanatory Notes" chapter). The GRA density data and the bulk densities determined by the mass/volume method show similar downhole trends, but density values from the two methods are significantly different (Fig. F38A, F38B). The GRA density values exhibit considerable scatter at all depths and are generally 0.2 g/cm<sup>3</sup> lower than the moisture and density measurements. This may be caused by the small and variable diameter and the biscuited nature of RCB cores.

Grain densities determined from dry mass and volume measurements increase from ~2.64 g/cm<sup>3</sup> at ~144 mbsf (start of coring in Hole 1174B) to ~2.79 g/cm<sup>3</sup> at ~1000 mbsf (Fig. F38C). A shift occurs between Units III and IV; the average grain density within Unit III is 2.71 g/cm<sup>3</sup>, whereas the average for Unit IV is 2.77 g/cm<sup>3</sup>.

The calculated porosity profile is shown in Figure F38D. Porosities from silty clays within lithostratigraphic Unit II (trench-wedge facies) are characterized by a general decrease with depth, from 58%–72% at the seafloor to 36%–42% by 480 mbsf (Fig. F38D). Typically, the lower porosity values represent sands and silty sands. Scatter within the silty clay samples may reflect subtle differences in grain size and composition that were not distinguishable in hand specimen. Porosities decrease slightly from ~38% to 35% at the top of Subunit IIC (trench to basin transition facies), and this transitional unit is not readily distinguished from Unit III (upper Shikoku Basin facies) solely on the basis of moisture and density.

With the exception of two zones of scattered, elevated porosities (at 500–550 and 600–650 mbsf), the shipboard data show essentially constant porosity of 35%–42% throughout lithostratigraphic Unit III (upper Shikoku Basin facies; 480–661 mbsf). This is a significant deviation from both normal compaction trends for silty clays (e.g., Hamilton, 1976; Athy, 1930) and the decrease of porosity with depth observed within Units II and IV above and below (Fig. F38D).

Porosities drop slightly to 34%–40% at the top of lithostratigraphic Unit IV (lower Shikoku Basin facies; 661 to 1102 mbsf). The change in porosity at the boundary between the upper and lower Shikoku Basin facies is similar to the pattern observed at Site 1173. The correlation between the discontinuity in porosity at ~661 mbsf and the boundary between Units III and IV suggests that the character of porosity change with depth is controlled, at least in part, by lithology. Porosities resume **T21.** Formation factors for Hole 1174A by the needle-probe method, p. 145.

**T22.** Electrical conductivity and formation factor for sample cubes, p. 146.

**F38.** Bulk density, grain density, and porosity, p. 75.



a compaction trend from 661 to 807 mbsf, decreasing to 30%–35% by the top of the décollement zone (807.6–840 mbsf; see "**Structural Geology**," p. 10). Within the décollement interval, porosity continues this compaction trend but exhibits somewhat greater scatter (perhaps due to increased sampling). Porosity increases sharply to 33%–38% directly below the décollement zone. In the underthrust section (below 840 mbsf), porosities remain relatively constant to 985 mbsf then decrease slightly with depth from 33%–38% at 985 mbrf to 32%–37% at the bottom of the hole. Overall, the rate of porosity decreases with depth is comparable to the porosity decrease with depth in the underthrust sequence (below 965 mbsf) at Site 808 and the age-equivalent sequence (below 390 mbsf) at Site 1173 (Fig. F39).

## **Thermal Conductivity and Projected Temperatures**

Thermal conductivity was measured using one of two methods depending on core condition. For shallow, nonindurated samples, a needle probe was inserted into the unsplit core for a full-space conductivity measurement. For samples from below 67 mbsf, insertion of the needle caused fracturing, so a half-space method was used on split cores. Between the mudline and ~815 mbsf, thermal conductivities increase gradually with depth from ~0.74 to 1.8 W/(m·°C) (Fig. F40A). Thermal conductivities decrease slightly below the décollement zone at ~840 mbsf, and range from 1.62 to 1.81 W/(m·°C) within the underthrust sediments. The change in thermal conductivity across the décollement zone correlates with the abrupt increase in porosity (Fig. F38D). This relationship is expected because the thermal conductivity of sediment grains is higher than that of pore fluid.

Shipboard thermal conductivities and downhole temperature measurements to 65.5 mbsf (see "In Situ Temperature and Pressure Measurements," p. 34) define a near-surface heat flow of 180 mW/m<sup>2</sup>. Using this estimated heat flow and measured thermal conductivities, and assuming steady-state vertical conductive heat flow, projected downhole temperatures reach ~110°C at the top of the décollement zone and ~140° at 1111 mbsf (Fig. F40B). These estimates are highly speculative because it is likely that (1) thermal steady-state has not been reached and (2) conductive heat flow is perturbed within the toe of the accretionary complex by fluid flow.

## **Acoustic Velocity**

In APC cores from Hole 1174A, *P*-wave velocities were measured using the *P*-wave sensors 1 and 2 (PWS1 and PWS2) insertion probe system along (z-axis) and across (y-axis) the core axis, respectively. The PWS3 contact probe system was used to measure *P*-wave velocities across the liner (x-axis) (Fig. F41A). Because of unfavorable core conditions, measurements in more than one direction could rarely be obtained in the same interval. In RCB cores from Hole 1174B, sample cubes were cut and measurements in all three directions were performed using the PWS3 contact probe system.

The velocity-depth profile at this site displays important deviations from a smooth compaction curve. Between 200 mbsf and the décollement zone, three zones with higher velocities are identified: (1) between 360 and 420 mbsf, near the base of the outer trench wedge (Subunit IIB); (2) ~520 mbsf, near the top of the upper Shikoku Basin facies (Unit III); and (3) ~660 mbsf, across the transition from upper to lower **F39.** Porosities below the décollement or age-equivalent horizon, p. 76.



**F40.** Thermal conductivity and temperature trends, p. 77.



**F41**. *P*-wave velocity and bulk density, p. 78.



Shikoku Basin facies (Unit III/IV boundary). Of these anomalies, only the deepest one is well defined in Site 808 data, where it is also found at the same Unit III/IV boundary. Surprisingly, the two lower zones correspond to zones of lower, not higher, bulk density (Fig. F41A).

This anomalous behavior also appears on the porosity-velocity crossplot (Fig. **F41B**) and suggests cementation. This behavior is similar to the relatively high velocities and high porosities in the upper Shikoku Basin facies at reference Site 1173. The two zones at 520 and 660 mbsf still retain unaltered volcanic glass, and there is a correlation between these two zones in high velocity and high silica content in the pore fluid (see "Inorganic Geochemistry," p. 20). The upper zone of high velocities (360–420 mbsf) is not ash rich, as it lays within the turbidite wedge, but is characterized by a higher than average cristobalite/quartz ratio (see "Lithostratigraphy," p. 7). This observation suggests that (probably biogenic) recrystallization of amorphous silica is taking place in this interval as well. Velocity drops across the décollement zone by ~300 m/s and then increases regularly down to the base of the hole. The velocity decrease across the décollement zone correlates with the increase in porosity over the same interval.

Velocity anisotropy results (Fig. **F41C**) are similar to those obtained at Site 808. In Unit II, anisotropy averages 3% and decreases very slightly with depth. Varying bedding dips in a 100-m-thick zone around the décollement zone and between 400 and 450 mbsf (see **"Structural Geology**," p. 10) may contribute to scatter of both vertical and horizontal anisotropy. Below the décollement zone, anisotropy increases with depth, reaching ~10% at the base of the hole.

Part of the anisotropy in this shallow part is attributed to the welldeveloped lamination in some samples, which increased attenuation along the core axis and made measurements along this direction more difficult. Lamination tends to decrease downhole, occurs only as occasional bedding-parallel cracks in samples from Units III and IV, and is absent in the zones of abnormally high velocity around 400, 540, and 660 mbsf. The effect of discrete cracks on the velocity measurements is not obvious.

## **Electrical Conductivity**

Measurements were made on APC cores with a four-needle, 30-kHz electrode array. On RCB cores, conductivity was measured on the same sample cubes used for *P*-wave measurements with a 30-kHz two-electrode system.

Electrical conductivity and formation factor (see "Physical Properties," p. 19, in the "Explanatory Notes" chapter) measured on sample cubes are given in Table T22. For the needle-probe measurements, only the apparent formation factor is given. Needle-probe measurements for Hole 1174A yield formation factors mostly between 2.5 and 6 (Fig. F42A). As at Site 1173, coarser lithologies, which include silty and sandy turbidites, appear more resistive, and formation factor measured perpendicular to the core axis (x- and y-direction) is lower than that along the core axis. Data acquired in the horizontal plane closely follow the variation in porosity and display reversals of the compaction trend with distinctive decreases of the formation factor at ~520 mbsf, 600– 630 mbsf, and across the décollement zone (Fig. F42B). Formation factor measured along the z-axis displays stronger variations than the horizontal components at the two upper reversals (Fig. F42C). These rever-

**F42.** Formation factor and anisotropy of electrical conductivity, p. 80.



sals correlate with the zones of high porosity and anomalous *P*-wave velocity identified earlier.

Conductivity anisotropy (Fig. **F42C**) is generally higher than at the reference site. Conductivity anisotropy generally increases with depth and appears higher beneath the décollement zone than above. The anomalous high-porosity and high-velocity zones around 520 and 660 mbsf have a lower anisotropy than the formation above and below. Samples from coherent fragments within the décollement zone all have low apparent vertical anisotropy. Variations of bedding dip may not entirely explain this feature as bedding dip is <20° at most of the intervals sampled within the décollement zone (see "Structural Geology," p. 10).

Although conductivity is theoretically less sensitive than P-wave velocity to cracks orthogonal to the direction of the measurement, bedding-parallel lamination in the upper part of Hole 1174B appeared to influence conductivity along the core axis. Conductivity along the zaxis increased by 5% or more in laminated samples when a pressure of  $\sim$ 2–3 bars was applied on the sample by pressing the electrode by hand. Measurements along the x- and y-axes were not as pressure sensitive. The conductivity increase from applying the same hand pressure was typically <2% for measurements along the x- and y-axes, as well as for measurements made along the z-axis on samples without lamination. Small gas bubbles were also observed escaping from the larger cracks when pressure was applied. Thus, we suspect that partial desaturation of these cracks contributed to the anomalous increase of conductivity across the cracks in the most laminated samples. This effect can probably be neglected below 500 mbsf. To limit this effect, measurements below 730 mbsf in Hole 1174B (and at later sites) were made applying a pressure of ~1 bar on the sample with a 10-lb weight.

### Magnetic Susceptibility

Volumetric magnetic susceptibilities were measured in all recovered cores from Site 1174 (Fig. F43). Uncorrected values of magnetic susceptibility from the Janus database were used. Large magnetic susceptibility values and large scatter between 0 and 280 mbsf are correlated with the occurrence of sand-rich turbidites. Less scatter occurs below 280 mbsf, and susceptibility reaches a minimum between 570 and 640 mbsf. Below 640 mbsf, magnetic susceptibility increases to 820 mbsf. The hemipelagic mudstones between 820 and 950 mbsf are characterized by three peaks of up to  $200 \times 10^{-5}$  SI. These peaks can be correlated with magnetic susceptibility peaks at Sites 1173 and 808. Magnetic susceptibility data show a slight decrease from 950 to 1100 mbsf.

### **Summary and Discussion**

As seen at Site 1173, porosities within the trench-wedge facies (Unit II at Site 1174, Unit I at Site 1173) are characterized by high variability and a general decrease with depth. From the top of Subunit IIC and throughout the upper Shikoku Basin facies, porosities remain nearly constant with depth. These constant porosities deviate from a typical compaction profile for silty clays. The porosities within Unit III at Site 1174 are ~20% less than porosities within this unit at Site 1173 and show considerably smaller deviation from a normal compaction trend than observed at Site 1173. At the boundary between the upper and lower Shikoku Basin facies (Units III and IV), porosity decreases slightly

**F43.** Magnetic susceptibility, p. 81.



and resumes a trend of gradually decreasing porosity with depth. An increase in porosity across the base of the décollement zone is accompanied by decreases in thermal conductivity, velocity, and formation factor.

The physical properties of sediments drilled at Site 1174 are generally consistent with results from Site 1173 and previous DSDP and ODP sites in the region (Sites 582 and 808). Site 582, located in the Nankai Trough southwest of Site 1174, penetrated the outer trench–wedge and the upper Shikoku Basin facies. Data from Site 582 show the same pattern of decreasing porosity with depth in the trench wedge (Kagami et al., 1986). However, a change in the porosity-depth profile is noted at the top of the upper Shikoku Basin facies at Sites 1173 and 582, whereas a change occurs at the top of the trench to basin transition facies at Site 1174.

Site 808, located ~2 km landward of Site 1174 and ~3 km landward of the deformation front, penetrated the outer trench-wedge and the upper and lower Shikoku Basin facies (Taira, Hill, Firth, et al., 1991). At both Sites 1174 and 808, a slight decrease in porosity was observed at the top of the lower Shikoku Basin facies and porosities increase abruptly across the décollement zone. The porosity increase across the décollement zone at Site 1174 is 2%–4%, whereas the porosity shift at Site 808 is 5%–6%. Porosities within the underthrust sediments at Site 1174 decrease more slowly with depth than at Site 808, reaching 34%– 36% at the base of Unit IV, compared to 31%–33% at Site 808 (Fig. F39). This difference in porosity of the underthrust section may reflect progressive compaction and dewatering between the two sites. Alternatively, it may be a consequence of slight variations in initial porosity, cementation, or loading history of the two sites.

# IN SITU TEMPERATURE AND PRESSURE MEASUREMENTS

Two reliable determinations of downhole temperatures were made at depths of 32.9 and 65.5 mbsf at Site 1174 using the Adara temperature tool and the Davis-Villinger temperature probe (DVTP). Table **T23** summarizes the deployments, and the station data are shown in Figures **F44** and **F45**. A DVTP measurement at 165.5 mbsf was considered unreliable because of a faulty thermistor. A measurement attempt at 209.1 mbsf was not successful because the temperature record indicated invasion of seawater. No deeper penetrations were attempted.

In situ temperatures were estimated by extrapolation of the station data to correct for the frictional heating on penetration using an average thermal conductivity of 1.0 W/(m·°C). The estimated in situ temperatures from the mudline temperature and the two measurements suggest a linear gradient of  $0.183^{\circ}$ C/m in the upper 65.5 m (Fig. F46). For thermal conductivities of 1.0 W/(m·°C), conductive near-surface heat flow at Hole 1174A would be 183 mW/m<sup>2</sup>. This value is considerably higher than estimated for ODP Site 808, located 3 km arcward (130 mW/m<sup>2</sup>; Taira et al., 1991). However, seafloor heat flow data show considerable variability near the deformation front (Yamano et al., 1992).

Assuming purely vertical conductive and steady state heat flow, in situ temperatures of ~140°C are projected at the bottom of the hole (see "**Physical Properties**," p. 29). However, because this site is located near the deformation front, it may have experienced input of warm fluids or

**T23.** Summary of downhole temperature measurements, Hole 1174A, p. 149.

**F44**. Temperatures measured during the deployment of the Adara temperature tool, p. 82.



**F45**. Temperatures measured during the DVTP station, p. 83.



F46. Measured temperatures, Hole 1174A, p. 84.



faulting that would render this assumption invalid. Because both influx of warm fluids and thrust faulting would cause near-surface heat-flow measurements to overestimate heat flow from basement, 140°C should be considered a maximum value.

Pressures were also recorded during a DVTP-P deployment at 65.5 msbf (Fig. **F47**). As noted in "**In Situ Temperature and Pressure Measurements**," p. 26, in the "Explanatory Notes" chapter, postcruise modeling and processing is required to estimate in situ pressures, but preliminary interpretation of the raw data indicates a near-hydrostatic pressure, which is not unexpected at this relatively shallow depth.

# SEISMIC STRATIGRAPHY

Reflections on three-dimensional (3-D) seismic line 281 can be correlated with lithostratigraphic boundaries at Site 1174 (Fig. F48). Specific correlations should be considered preliminary at this time because the velocity structure at this site is not well known. Any inaccuracies in velocity will produce errors in depth conversion. Additional velocity work will be carried out postcruise to improve depth conversions and stratigraphic correlations.

Unit I (slope-apron facies) is a very thin interval (<10 mbsf) just below the seafloor reflection. The axial trench-wedge facies (Unit II) extends to the strong reflection just below 300 mbsf (core depth of 314.55 mbsf) and is characterized by high-amplitude, laterally continuous reflections. Subunits IIB and IIC (outer trench-wedge facies and trench to basin transition facies) cannot be easily distinguished in the seismic data as there is not a distinct change in reflection character between them. The base of Subunit IIC is the top of a strong reflection representing the top of Unit III (upper Shikoku Basin facies) at ~485 mbsf. Unit III consists of a series of three strong reflections that are offset by a protothrust at ~540 mbsf at Site 1174. Note that the depth of the seismically defined protothrust does not match the depth of the thrust identified in the cores between 467.10 and 469.95 mbsf, possibly due to either a mismatch between navigation from the 1999 3-D seismic cruise and Leg 190 or incorrect velocities. The lower part of this unit has less distinct reflections. The transition between Units III and IV (lower Shikoku Basin facies) is marked by the last laterally continuous reflection at ~660 mbsf. Unit IV is characterized by indistinct, noncontinuous reflections in the upper part and stronger, more continuous reflections in its lower part. The structurally defined décollement is represented by a strong negative-polarity reflection at ~820–860 mbsf. Unit V (volcaniclastic facies) is represented by an indistinct reflection at ~1120 mbsf that overlies the strong basement reflection at ~1170 mbsf.





**F48.** Three-dimensional seismic reflection line 281 across Site 1174, p. 86.



## REFERENCES

- Athy, L.F., 1930. Density, porosity, and compaction of sedimentary rocks. *AAPG Bull.*, 14:1–24.
- Berner, U., and Faber, E., 1993. Light hydrocarbons in sediments of the Nankai Accretionary Prism (Leg 131, Site 808). *In* Hill, I.A., Taira, A., Firth, J.V., et al., *Proc. ODP, Sci. Results*, 131: College Station, TX (Ocean Drilling Program), 185–195.
- Blöchl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H.W., and Stetter, K.O., 1997. *Pyrolobus fumarii*, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. *Extremophiles*, 1:14–21.
- Cande, S.C., and Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. *J. Geophys. Res.*, 100:6093–6095.
- Claypool, G.E., and Kvenvolden, K.A., 1983. Methane and other hydrocarbon gases in marine sediment. *Annu. Rev. Earth Planet. Sci.*, 11:299–327.
- Gartner, S., 1977. Calcareous nannofossil biostratigraphy and revised zonation of the Pleistocene. *Mar. Micropaleontol.*, 2:1–25.
- Hamilton, E.L., 1976. Variations of density and porosity with depth in deep-sea sediments. J. Sediment. Petrol., 46:280–300.
- Kagami, H., Karig, D.E., Coulbourn, W.T., et al., 1986. *Init. Repts. DSDP*, 87: Washington (U.S. Govt. Printing Office).
- Kastner, M., Elderfield, H., Jenkins, W.J., Gieskes, J.M., and Gamo, T., 1993. Geochemical and isotopic evidence for fluid flow in the western Nankai subduction zone, Japan. *In* Hill, I.A., Taira, A., Firth, J.V., et al., *Proc. ODP, Sci. Results*, 131: College Station, TX (Ocean Drilling Program), 397–413.
- King, G.M., and Blackburn, T.H., 1998. *Bacterial Biogeochemistry* (1<sup>st</sup> ed.): San Diego (Academic Press).
- Lee, M.W., Hutchinson, D.R., Collett, T.S., and Dillon, W.P., 1996. Seismic velocities for hydrate-bearing sediments using weighted equation. *J. Geophys. Res.*, 101:20347–20358.
- Lowrie, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. *Geophys. Res. Lett.*, 17:159–162.
- Maltman, A., Labaume, P., and Housen, B., 1997. Structural geology of the décollement at the toe of the Barbados accretionary prism. *In Shipley*, T.H., Ogawa, Y., Blum, P., and Bahr, J.M. (Eds.), *Proc. ODP, Sci. Results*, 156: College Station, TX (Ocean Drilling Program), 279–292.
- Maltman, A.J., Byrne, T., Karig, D.E., Lallemant, S., Knipe, R., and Prior, D., 1993. Deformation structures at Site 808, Nankai accretionary prism, Japan. *In* Hill, I.A., Taira, A., Firth, J.V., et al., *Proc. ODP, Sci. Results*, 131: College Station, TX (Ocean Drilling Program), 123–133.
- Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. *In* Farinacci, A. (Ed.), *Proc.* 2<sup>nd</sup> *Int. Conf. Planktonic Microfossils Roma:* Rome (Ed. Tecnosci.), 2:739–785.
- Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.A., Fry, J.C., Weightman, A.J., and Harvey, S.M., 1994. A deep bacterial biosphere in Pacific Ocean sediments. *Nature*, 371:410–413.
- Shipboard Scientific Party, 1986. Site 582. *In* Kagami, H., Karig, D.E., Coulbourn, W.T., et al., *Init. Repts. DSDP*, 87: Washington (U.S. Govt. Printing Office), 35–122.
  - , 1991. Site 808. *In* Taira, A., Hill, I., Firth, J.V., et al., *Proc. ODP, Init. Repts.*, 131: College Station, TX (Ocean Drilling Program), 71–269.
- Smith, D.C., Spivack, A.J., Fisk, M.R., Haveman, S.A., Staudigel, H., and ODP Leg 185 Scientific Party, 2000. Methods for quantifying potential microbial contamination during deep ocean coring. *ODP Tech. Note*, 28 [Online]. Available from World Wide Web: <a href="http://www-odp.tamu.edu/publications/tnotes/tn28/INDEX.HTM">http://www-odp.tamu.edu/publications/tnotes/tn28/INDEX.HTM</a>>.
- Taira, A., Hill, I., Firth, J.V., et al., 1991. *Proc. ODP, Init. Repts.*, 131: College Station, TX (Ocean Drilling Program).
- Tissot, B.P., and Welte, D.H., 1984. *Petroleum Formation and Occurrence* (2<sup>nd</sup> ed.): Heidelberg (Springer-Verlag).
- Yamano, M., Foucher, J.-P., Kinoshita, M., Fisher, A., Hyndman, R.D., and ODP Leg 131 Shipboard Scientific Party, 1992. Heat flow and fluid flow regime in the western Nankai accretionary prism. *Earth Planet. Sci. Lett.*, 109:451–462.
- Young, J.R., 1998. Neogene. *In Bown, P.R. (Ed.), Calcareous Nannofossil Biostratigraphy* (Vol. 8): Dordrecht (Kluwer Academic), 225–265.

Figure F1. Stratigraphic column for Site 1174, showing lithostratigraphic units, ages, and characteristic lithologies.



**Figure F2.** Medium- to fine-grained graded sand with mud chips in the upper part of Subunit IIA (intervals 190-1174A-8H, 0–40 and 40–80 cm).



**Figure F3.** Granule fragments in sand from Subunit IIA (interval 190-1174B-18R-3, 70–86 cm). Granule fragments are white glassy volcanic rock fragments derived from the Honshu arc. They are present in coarse sand intermixed with silty claystone with some convoluted bedding.



**Figure F4.** Silty claystone from Subunit IIB containing the trace fossil *Chondrites* (interval 190-1174B-27R-1, 80–89 cm).



**Figure F5.** Two volcanic ash layers from the upper Shikoku Basin facies (interval 190-1174B-37R-2, 111–135 cm). Both ash layers have sharp lower contacts and gradational upper contacts with overlying silty clay.



**Figure F6.** Silty claystone with foraminifers from the lower Shikoku Basin facies (interval 190-1174B-62R-3, 88–92 cm).



**Figure F7.** Silty claystone with the trace fossil *Zoophycos* from the lower Shikoku Basin facies (interval 190-1174B-74R-1, 65–75 cm).

cm 65-



**Figure F8.** Distribution and thickness of volcanic ash layers at Sites 1173 and 1174. The Bruhnes-Matuyama magnetic reversal provides a stratigraphic tie line.



**Figure F9.** Relative abundances of total clay minerals, quartz, plagioclase, and calcite at Site 1174 based on X-ray diffraction analyses of random bulk powders. Also shown is the ratio of peak areas for (101) cristobalite to (100) quartz.



**Figure F10.** Representative X-ray diffractograms showing unaltered and altered volcanic ash at Site 1174. The unaltered ash sample displays a highly elevated baseline due to amorphous glass shards and minor amounts of quartz, plagioclase, and halite (Sample 190-1174B-37R-2, 131–137 cm). Common alteration products with deeper burial of the ash include smectite (e.g., Sample 190-1174B-84R-5, 77–78 cm) and undifferentiated clinoptilolite/heulandite (e.g., Sample 190-1174B-54R-7, 27–28 cm).



**Figure F11.** Overall distribution of deformation structures with depth compared with lithostratigraphic divisions. The shaded bands indicate possible fault zones.



**Figure F12.** Distribution of bedding dips (circles) and deformation structures with depth in Hole 1174B. The numbers of deformation bands (diamonds), core-scale healed faults (shaded squares), and fractures (lines) are shown per meter. Fractures are open breaks in the core that are thought to be natural (see "**Deeper Fractured and Brecciated Zones**," p. 12, in "Structural Geology"). The shaded bands indicate zones of steepened bedding and/or intensified fracturing.



**Figure F13.** Deformation bands. A. Interval 190-1174B-17R-2, 103–112 cm. Note the varying width and the tendency of the bands to bifurcate. B. Interval 190-1174B-15R-2, 19–24 cm. Note the variation in width of the more shallowly inclined set.



**Figure F14.** Equal-area lower-hemisphere stereographic projections of deformation bands illustrating the effectiveness of paleomagnetic reorientation. A. Deformation bands in the core-liner reference frame before paleomagnetic reorientation. B. Data in A after paleomagnetic correction to real geographic coordinates (excluding some planes for which the paleomagnetic information was not available). Note the concentration into two oppositely dipping sets. C. Poles to the planes shown in B. D. Average of the two sets of deformation bands showing the dihedral angle and the inclination from vertical of the acute bisectrix.



**Figure F15.** Inclined fractures, part of a deformed horizon that may represent a prism backthrust (interval 190-1174B-18R-2, 0–35 cm).



**Figure F16.** Equal-area lower-hemisphere stereographic projections of fractures related to prism faults in the interval 200–525 mbsf after paleomagnetic reorientation. **A.** Representative planes for the entire interval. The bold great circle labeled 1 represents narrow fractures that are axialplanar to small asymmetric folds in the fault zone at 306 mbsf (the base of the deformation band domain), and the circle labeled 2 represents the main fracture set in the same horizon. These southeast dips suggest the fault may be a prism backthrust. Note the similarity in orientation of the axial-planar fractures with the southeast-dipping set of deformation bands shown in Figure **F14D**, p. 51. **B.** Poles to the planes shown in A. C. Slickensided surfaces from the fault zone at 504 mbsf, thought to be part of a northwest-dipping protothrust.



**Figure F17.** Steepened bedding and inclined fractures, part of a deformed interval that may represent a protothrust horizon (interval 190-1174B-35R-1, 30–63 cm).



Figure F18. Bifurcating, healed normal fault (interval 190-1174B-43R-6, 79–94 cm).



**Figure F19.** Equal-area lower-hemisphere stereographic projections of core-scale healed faults throughout Site 1174 based on paleomagnetically restored data. A. Fault planes. B. Contoured poles to fault planes. Number of points = 26, contour interval = 2.0%/1% area. Note that unlike the data on other structures, there is no dominant orientation even after paleomagnetic restoration, suggesting that the faults may be due to compactional processes rather than tectonic stress.



**Figure F20.** A. Detail of the upper part of the décollement zone showing breakage into angular blocks along inclined fractures (interval 190-1174B-71R-2, 48–79 cm). **B.** Detail of lower part of décollement zone showing comminution of sediments (interval 190-1174B-73R-1, 96–118 cm) (also see the photograph of Core 190-1174B-73R in the **"Site 1174 Core Descriptions**," p. 80).



**Figure F21.** Equal-area lower-hemisphere stereographic projections of structures related to the décollement after paleomagnetic reorientation. **A.** Slickensided and slickenlined planes (650–840 mbsf), including the décollement zone. **B.** Contoured poles to the planes shown in A. Number of points = 26, contour interval = 2.0%/1% area. **C.** Bedding planes with poles (746–840 mbsf).



**Figure F22.** Details of fracturing across the décollement zone. The density of fracturing is expressed by the nature and size of the brecciated fragments. Most of the fracture surfaces are slickensided and slickenlined. Note the trend of increasing fracturing downward through the zone, peaking a few meters above a sharply defined base.



Figure F23. Example of a dewatering structure in the underthrust sediments (interval 190-1174B-84R-3, 23–44 cm).

cm





Figure F24. Variation of uncalibrated gas-permeameter measurements with depth at Site 1174.

**Figure F25.** Detail of uncalibrated gas-permeameter measurements within a reworked layer of volcanic ash to illustrate fine-scale variations (interval 190-1174B-31R-3, 115–133 cm; 432 mbsf).



**Figure F26.** Paleomagnetic inclination, declination, and intensity after AF demagnetization at 30 mT for Hole 1174A. Marked reversed polarity inclinations are identified as magnetic excursions. Declinations were corrected using Tensor tool orientation data.



**Figure F27.** Typical Zijderveld diagrams of Hole 1174A interpreted excursions. A stable reversed polarity magnetization was identified after AF demagnetization at 30 mT.



**Figure F28.** Comparison of magnetic intensity zones at Sites 1174 and 1173 based on magnetostratigraphic interpretations. The characteristic intensity values were identified as high-intensity Zone 1, low-intensity Zone 2, slightly high intensity Zone 3, and a second low-intensity Zone 4. An increase of intensity within Zone 2 was identified as Zone 2'.



**Figure F29.** Multicomponent isothermal remanent magnetization (mIRM) and thermal demagnetization experiments at Hole 1174B. Discrete samples were selected from the four major intensity zones (see "Hole 1174B," p. 18, in "Paleomagnetic Results" and Fig. F28, p. 65). The three fields used to generate the IRM components are shown by the x, y, and z curves.



**Figure F30.** Site 1174 magnetostratigraphy. Solid lines indicate correspondence to the magnetic polarity time scale of Cande and Kent (1995). Black = normal polarity, white = reversed polarity, gray = unknown polarity, ? = questionable correlation.



**Figure F31.** Site 1174 age-depth plot obtained by magnetostratigraphy and biostratigraphy. Black = normal polarity, white = reversed polarity.





**Figure F32.** Correlation of magnetic polarity reversals between Sites 1173, 1174, and 808. Black = normal polarity, white = reversed polarity, gray = unknown polarity.



Figure F33. Pore fluid composition as a function of depth at Site 1174. Solid horizontal lines indicate lithostratigraphic boundaries.





**Figure F35.** Total carbon and nitrogen contents in sediments from Site 1174 and the percentage of inorganic carbon (carbonate) in sediments. **A.** Total organic carbon (TOC) ranges from 0.2 to 1.5 wt% in Hole 1174A. **B.** Nitrogen contents are low, reaching zero at 1020 mbsf. **C.** Carbonate concentrations are low but increase sharply below 900 mbsf, consistent with the observation of carbonate nodules in the cores.


**Figure F36.** Bernard ratio for  $C_1/(C_2+C_3)$  with increasing depth and present-day temperature (inferred temperature from in situ measurements) at Site 1174.



**Figure F37.** Depth and temperature distribution of total bacterial populations in sediment samples from Holes 1174A and 1174B. The curved dashed line represents a general regression line of bacterial numbers vs. depth in deep-sea sediments (Parkes et al., 1994), with 95% upper and lower prediction limits shown by the curved lines of longer dashes. The shaded area to the left of the figure indicates levels where bacterial populations are too low to be detected with the acridine orange direct counts technique; the detection limit was  $6 \times 10^4$  cells/cm<sup>3</sup> (any values within this area are constructed from sums of three enumerations and have no measure of error). The two horizontal lines separate bacterial groups with different temperature ranges for growth.







75

**Figure F39.** Porosities below the décollement zone at Sites 1174 and 808 and below the age equivalent of the décollement zone at Site 1173.



Figure F40. A. Site 1174 thermal conductivity. B. Observed (triangles) and projected (dashed line) temperatures.



**Figure F41.** A. *P*-wave velocity and bulk density at Site 1174. (Continued on next page.)



**Figure F41 (continued). B.** Horizontal and vertical *P*-wave velocity as a function of porosity. The line represents a typical relationship for clayey silt computed from a weighted average equation using a matrix velocity of 4500 m/s and a weighting parameter of 1.1 (Lee et al., 1996). C. *P*-wave velocity anisotropy. The vertical plane anisotropy compares velocity along the two transverse axes (x and y) to that parallel to the core (z), whereas the horizontal plane anisotropy compares velocity of the x- and y-axes. Because cores are randomly rotated, horizontal plane anisotropy should average zero.







Figure F43. Site 1174 magnetic susceptibility.



**Figure F44.** Temperatures measured during the deployment of the Adara temperature tool in Hole 1174A. The dashed line indicates extrapolated in situ temperature. Note that values after 64 min were not used for the extrapolation because of noise. The solid line indicates the mudline temperature.



**Figure F45.** Temperatures measured during the DVTP station below Core 190-1174A-8H. The dashed line indicates extrapolated in situ temperature.



Figure F46. Measured temperatures at Hole 1174A.





Figure F47. Pressures measured during the DVTP-P station after Core 190-1174A-8H.

Figure F48. Three-dimensional seismic reflection line 281 across Site 1174. This line has been 3-D stacked and migrated.



|            | Date           |                  | Denth          | (mhsf)         | Lenc       | th (m)       | _               |                                                         |
|------------|----------------|------------------|----------------|----------------|------------|--------------|-----------------|---------------------------------------------------------|
| Core       | (June<br>2000) | l ime<br>(local) | Top            | Bottom         | Cored      | Recovered    | Recovery<br>(%) | Comments                                                |
|            | 2000)          | (10000)          |                | Bottom         | corea      | necovercu    | (,,,)           |                                                         |
| 190-117    | 4A-            |                  |                |                |            |              |                 |                                                         |
| 1H<br>2U   | 7              | 1800             | 0.0            | 4.4            | 4.4        | 4.40         | 100.0           |                                                         |
| 2H<br>3H   | 7              | 1925             | 4.4            | 13.9           | 9.5        | 9.59         | 88.8            | Tensor at 19:20 Expanding core: gassy yoids throughout  |
| 4H         | 7              | 2040             | 23.4           | 32.9           | 9.5        | 7 38         | 77 7            | Tensor at 19.20. Expanding core. gassy volds throughout |
| 5H         | 7              | 2340             | 32.9           | 42.4           | 9.5        | 7.43         | 78.2            |                                                         |
| 6H         | 8              | 0100             | 42.4           | 51.9           | 9.5        | 0.00         | 0.0             | Whirl-Pak, tracer                                       |
| 7H         | 8              | 0220             | 51.9           | 61.4           | 9.5        | 3.59         | 37.8            | Whirl-Pak, tracer                                       |
| 8H         | 8              | 0415             | 61.4           | 64.4           | 3.0        | 6.21         | 207.0           | DVTP at 4826.9 m                                        |
| 9X         | 9              | 0045             | 64.4           | 74.1           | 9.7        | 0.00         | 0.0             | Core barrel jammed; end hole                            |
|            |                |                  |                | Totals:        | 74.1       | 47.04        | 63.4            |                                                         |
| 190-117    | 4B-            |                  |                |                |            |              |                 |                                                         |
| 10         | 10             | 1830             | 0.0            | 143.7          | 0.0        | 0.00         | N/A             | Drill-in casing to 4906.17 m                            |
| 1R         | 12             | 0730             | 143.7          | 150.1          | 6.4        | 9.62         | 150.3           | AHC on                                                  |
| 2R<br>2D   | 12             | 1005             | 150.1          | 159.7          | 9.6        | 0.60         | 6.2             | Run DVPT sample at 4922.17 m; AHC on                    |
| 3K<br>4D   | 12             | 1415             | 159.7          | 169.4          | 9.7        | 2.39         | 24.6            | AHC ON<br>Whitl Bak, tracor, AHC on                     |
| 4K<br>5R   | 12             | 1820             | 109.4          | 179.0          | 9.0        | 2.31         | 24.1            | Whirl-Pak, tracer, AHC on                               |
| 6R         | 12             | 1945             | 188.7          | 198.4          | 9.7        | 2.39         | 20.5            | AHC on                                                  |
| 7R         | 12             | 2130             | 198.4          | 208.0          | 9.6        | 1.47         | 15.3            | DVTP at 4970.5 m; AHC on                                |
| 8R         | 13             | 0030             | 208.0          | 217.7          | 9.7        | 0.95         | 9.8             | AHC on                                                  |
| 9R         | 13             | 0210             | 217.7          | 227.2          | 9.5        | 2.79         | 29.4            | AHC on                                                  |
| 10R        | 13             | 0400             | 227.2          | 236.8          | 9.6        | 2.30         | 24.0            | AHC on                                                  |
| 11R        | 13             | 0520             | 236.8          | 246.5          | 9.7        | 2.53         | 26.1            | AHC on                                                  |
| 12R        | 13             | 0705             | 246.5          | 256.2          | 9.7        | 1.74         | 17.9            | AHC on                                                  |
| 13R        | 13             | 0900             | 256.2          | 265.8          | 9.6        | 3.69         | 38.4            | AHC on                                                  |
| 14K        | 13             | 1/10             | 265.8          | 2/5.5          | 9.7        | 0.50         | 5.Z             | AHC on                                                  |
| 15K<br>16P | 13             | 2130             | 275.5          | 203.1          | 9.0        | 2.20         | 23.7<br>18.0    | AHC on                                                  |
| 17R        | 13             | 2350             | 205.1          | 304 3          | 9.5        | 2.88         | 29.7            | AHC on                                                  |
| 18R        | 14             | 0205             | 304.3          | 314.0          | 9.7        | 6.17         | 63.6            | AHC on                                                  |
| 19R        | 14             | 0410             | 314.0          | 323.5          | 9.5        | 2.22         | 23.4            | AHC on                                                  |
| 20R        | 14             | 0625             | 323.5          | 333.1          | 9.6        | 3.89         | 40.5            | AHC on                                                  |
| 21R        | 14             | 0830             | 333.1          | 342.4          | 9.3        | 2.85         | 30.6            | AHC on                                                  |
| 22R        | 14             | 1045             | 342.4          | 352.0          | 9.6        | 1.34         | 14.0            | AHC on                                                  |
| 23R        | 14             | 1245             | 352.0          | 361.7          | 9.7        | 2.49         | 25.7            | AHC on                                                  |
| 24R        | 14             | 1455             | 361./          | 3/1.3          | 9.6        | 4./2         | 49.2            | AHC on                                                  |
| 25K<br>26D | 14             | 1033             | 3/1.3          | 380.9          | 9.6        | 2.20         | 22.9            | AHC on                                                  |
| 20K<br>27R | 14             | 2120             | 390.5          | 400.2          | 9.0        | 5 12         | 52.8            | AHC on                                                  |
| 28R        | 14             | 2345             | 400.2          | 409.8          | 9.6        | 2.32         | 24.2            | AHC on                                                  |
| 29R        | 15             | 200              | 409.8          | 419.4          | 9.6        | 4.94         | 51.5            | AHC on                                                  |
| 30R        | 15             | 415              | 419.4          | 429.0          | 9.6        | 0.18         | 1.9             | AHC on                                                  |
| 31R        | 15             | 630              | 429.0          | 438.6          | 9.6        | 4.62         | 48.1            | Whirl-Pak, tracer, AHC on                               |
| 32R        | 15             | 920              | 438.6          | 448.2          | 9.6        | 9.55         | 99.5            | Whirl-Pak, tracer, AHC on                               |
| 33R        | 15             | 1150             | 448.2          | 457.9          | 9.7        | 7.16         | 73.8            | AHC on                                                  |
| 34R        | 15             | 1420             | 457.9          | 467.1          | 9.2        | 7.25         | 78.8            | AHC on                                                  |
| 32K<br>36D | 15             | 1045             | 40/.1<br>476 5 | 4/0.3<br>485 7 | 9.4<br>0 0 | ∠.ŏ⊃<br>7 /0 | 50.5<br>81 1    |                                                         |
| 378        | 15             | 2050             | 470.5          | 405.7          | 9.2        | 9.21         | 95.9            | AHC on                                                  |
| 38R        | 15             | 2310             | 495.3          | 504.9          | 9.6        | 9.73         | 101.4           | AHC on                                                  |
| 39R        | 16             | 0125             | 504.9          | 514.6          | 9.7        | 8.31         | 85.7            | AHC on                                                  |
| 40R        | 16             | 1305             | 514.6          | 524.3          | 9.7        | 9.21         | 94.9            |                                                         |
| 41R        | 16             | 2200             | 524.3          | 533.9          | 9.6        | 4.89         | 50.9            |                                                         |
| 42R        | 17             | 0105             | 533.9          | 543.6          | 9.7        | 9.76         | 100.6           |                                                         |
| 43R        | 17             | 0315             | 543.6          | 552.9          | 9.3        | 9.13         | 98.2            |                                                         |
| 44R        | 17             | 0525             | 552.9          | 562.6          | 9.7        | 5.79         | 59.7            |                                                         |
| 45K        | 17             | 0/15             | 302.0          | 5/2.5          | 9./<br>0.2 | 5./5         | 59.3<br>00 0    |                                                         |
| 40K<br>47P | 17             | 1115             | 572.5<br>581 0 | 501.9<br>501 6 | 9.0<br>0.7 | 9.44<br>8 70 | 90.5<br>90.6    |                                                         |
| 48R        | 17             | 1325             | 591.5          | 601.2          | 9.7<br>9.6 | 0.79<br>9.98 | 104.0           |                                                         |
| 49R        | 17             | 1510             | 601.2          | 610.9          | 9.7        | 4.14         | 42.7            |                                                         |
| 50R        | 17             | 1705             | 610.9          | 620.5          | 9.6        | 7.19         | 74.9            |                                                         |
| 51R        | 17             | 1850             | 620.5          | 630.1          | 9.6        | 3.85         | 40.1            |                                                         |
| 52R        | 17             | 2045             | 630.1          | 639.8          | 9.7        | 9.31         | 96.0            |                                                         |
| 53R        | 17             | 2230             | 639.8          | 649.4          | 9.6        | 5.90         | 61.5            |                                                         |
| 54R        | 18             | 0030             | 649.4          | 659.0          | 9.6        | 9.84         | 102.5           |                                                         |
| 55R        | 18             | 0230             | 659.0          | 668.7          | 9.7        | 9.08         | 93.6            |                                                         |

# Table T1. Coring summary, Site 1174. (See table note. Continued on next page.)

|      | Date<br>(lune | Time    | Depth  | n (mbsf)      | Leng     | gth (m)      | Recovery |                             |
|------|---------------|---------|--------|---------------|----------|--------------|----------|-----------------------------|
| Core | 2000)         | (local) | Тор    | Bottom        | Cored    | Recovered    | (%)      | Comments                    |
| 56R  | 18            | 0435    | 668.7  | 678.3         | 9.6      | 2.91         | 30.3     |                             |
| 57R  | 18            | 0640    | 678.3  | 688.0         | 9.7      | 9.93         | 102.4    |                             |
| 58R  | 18            | 0845    | 688.0  | 697.6         | 9.6      | 6.44         | 67.1     |                             |
| 59R  | 18            | 1050    | 697.6  | 707.2         | 9.6      | 8.85         | 92.2     |                             |
| 60R  | 18            | 1250    | 707.2  | 716.9         | 9.7      | 8.61         | 88.8     |                             |
| 61R  | 18            | 1455    | 716.9  | 726.5         | 9.6      | 9.91         | 103.2    |                             |
| 62R  | 18            | 1640    | 726.5  | 736.1         | 9.6      | 7.18         | 74.8     |                             |
| 63R  | 18            | 1835    | 736.1  | 745.7         | 9.6      | 9.97         | 103.9    |                             |
| 64R  | 18            | 2040    | 745.7  | 755.0         | 9.3      | 7.42         | 79.8     |                             |
| 65R  | 18            | 2230    | 755.0  | 764.6         | 9.6      | 9.93         | 103.4    |                             |
| 66R  | 19            | 0030    | 764.6  | 774.2         | 9.6      | 7.17         | 74.7     |                             |
| 67R  | 19            | 0240    | 774.2  | 783.9         | 9.7      | 9.96         | 102.7    |                             |
| 68R  | 19            | 0445    | 783.9  | 793.6         | 9.7      | 3.74         | 38.6     |                             |
| 69R  | 19            | 0650    | 793.6  | 803.3         | 9.7      | 9.89         | 102.0    |                             |
| 70R  | 19            | 0900    | 803.3  | 812.5         | 9.2      | 7.82         | 85.0     |                             |
| 71R  | 19            | 1135    | 812.5  | 822.2         | 9.7      | 2.99         | 30.8     | Firm at 5578 m (815.5 mbsf) |
| 72R  | 19            | 1415    | 822.2  | 831.8         | 9.6      | 5.05         | 52.6     |                             |
| 73R  | 19            | 1645    | 831.8  | 841.4         | 9.6      | 9.88         | 102.9    |                             |
| 74R  | 19            | 1840    | 841.4  | 851.0         | 9.6      | 3.89         | 40.5     |                             |
| 75R  | 19            | 2025    | 851.0  | 860.7         | 9.7      | 1.91         | 19.7     |                             |
| 76R  | 19            | 2240    | 860.7  | 870.4         | 9.7      | 2.77         | 28.6     |                             |
| 77R  | 20            | 0025    | 870.4  | 880.0         | 9.6      | 8.22         | 85.6     |                             |
| 78R  | 20            | 0235    | 880.0  | 889.3         | 9.3      | 7.13         | 76.7     |                             |
| 79R  | 20            | 0450    | 889.3  | 899.0         | 9.7      | 4.38         | 45.2     |                             |
| 80R  | 20            | 0645    | 899.0  | 908.6         | 9.6      | 8.60         | 89.6     |                             |
| 81R  | 20            | 0830    | 908.6  | 918.3         | 9.7      | 7.90         | 81.4     |                             |
| 82R  | 20            | 1010    | 918.3  | 927.9         | 9.6      | 4.16         | 43.3     |                             |
| 83R  | 20            | 1220    | 927.9  | 937.5         | 9.6      | 9.93         | 103.4    |                             |
| 84R  | 20            | 1415    | 937.5  | 947.1         | 9.6      | 9.05         | 94.3     |                             |
| 85R  | 20            | 1605    | 947.1  | 956.8         | 9.7      | 8.83         | 91.0     |                             |
| 86R  | 20            | 1800    | 956.8  | 966.5         | 9.7      | 8.99         | 92.7     |                             |
| 87R  | 20            | 2010    | 966.5  | 976.1         | 9.6      | 7.30         | 76.0     |                             |
| 88R  | 20            | 2210    | 976.1  | 985.3         | 9.2      | 5.87         | 63.8     |                             |
| 89R  | 21            | 0010    | 985.3  | 994.9         | 9.6      | 9.88         | 102.9    | AHC on                      |
| 90R  | 21            | 0210    | 994.9  | 1004.6        | 9.7      | 3.06         | 31.5     | AHC on                      |
| 91R  | 21            | 0430    | 1004.6 | 1014.2        | 9.6      | 3.28         | 34.2     | AHC on                      |
| 92R  | 21            | 0640    | 1014.2 | 1023.9        | 9.7      | 8.20         | 84.5     | AHC on                      |
| 93R  | 21            | 0855    | 1023.9 | 1033.5        | 9.6      | 7.18         | 74.8     | AHC on                      |
| 94R  | 21            | 1135    | 1033.5 | 1043.1        | 9.6      | 7.43         | 77.4     | AHC on                      |
| 95R  | 21            | 1345    | 1043.1 | 1052.6        | 9.5      | 5.84         | 61.5     | AHC on                      |
| 96R  | 21            | 1540    | 1052.6 | 1062.3        | 9.7      | 6.03         | 62.2     | AHC on                      |
| 97R  | 21            | 1755    | 1062.3 | 1071.9        | 9.6      | 6.92         | 72.1     | AHC on                      |
| 98R  | 21            | 2010    | 1071.9 | 1081.5        | 9.6      | 5.37         | 55.9     | AHC on                      |
| 99R  | 21            | 2225    | 1081.5 | 1091.2        | 9.7      | 2.50         | 25.8     | AHC on                      |
| 100R | 22            | 0045    | 1091.2 | 1100.8        | 9.6      | 2.77         | 28.9     | AHC on                      |
| 101R | 22            | 0325    | 1100.8 | 1110.2        | 9.4      | 1.71         | 18.2     |                             |
| 102R | 22            | 0605    | 1110.2 | 1119.8        | 9.6      | 1.11         | 11.6     |                             |
|      |               |         | *      | *** Drilled f | rom 0 to | 143.7 mbsf * | ***      |                             |
|      |               |         |        | Totals:       | 976.1    | 577.57       | 59.2     |                             |

| Note: | DVTP | = Davis- | Villinger | temperatu | re probe | , AHC = | advanced | hydraulic | piston corer. |
|-------|------|----------|-----------|-----------|----------|---------|----------|-----------|---------------|
|       |      |          |           |           |          |         |          |           |               |

|        | Date       | Timo    | Core<br>(m | depth<br>bsf)  | Le    | ength<br>(m) | Recovery |              | Lei<br>( | ngth<br>m) | Sectior<br>(m       | n depth<br>bsf) |                    |
|--------|------------|---------|------------|----------------|-------|--------------|----------|--------------|----------|------------|---------------------|-----------------|--------------------|
| Core   | 2000)      | (local) | Тор        | Bottom         | Cored | Recovered    | (%)      | Section      | Liner    | Curated    | Тор                 | Bottom          | Catwalk samples    |
| 190-11 | 74A-       |         |            |                |       |              |          |              |          |            |                     |                 |                    |
| 1H     | 7          | 1800    | 0.0        | 4.4            | 4.4   | 4.4          | 100      | 1            | 15       | 15         | 0.0                 | 15              |                    |
|        |            |         |            |                |       |              |          | 2            | 1.5      | 1.5        | 1.5                 | 3               | IW WRC WRY WRS     |
|        |            |         |            |                |       |              |          | 3            | 1.19     | 1.19       | 3.0                 | 4.19            | IW, BGAS           |
|        |            |         |            |                |       |              |          | CC(w/3)      | 0.21     | 0.21       | 4.19                | 4.4             | PAL, PAL           |
|        | _          |         |            |                |       |              |          | Totals:      | 4.4      | 4.4        |                     |                 |                    |
| 2H     | 7          | 1925    | 4.4        | 13.9           | 9.5   | 9.59         | 100.9    | 1            | 0.20     | 0.20       | 4.4                 | 4.60            |                    |
|        |            |         |            |                |       |              |          | 2            | 0.29     | 1.5        | 4.4<br>4.69         | 4.09            | BACT WRY IW        |
|        |            |         |            |                |       |              |          | 3            | 1.5      | 1.5        | 6.19                | 7.69            | IW                 |
|        |            |         |            |                |       |              |          | 4            | 1.5      | 1.5        | 7.69                | 9.19            | IW, VAC            |
|        |            |         |            |                |       |              |          | 5            | 1.5      | 1.5        | 9.19                | 10.69           | HS, IW, VAC, BGAS  |
|        |            |         |            |                |       |              |          | 6            | 1.5      | 1.5        | 10.69               | 12.19           | BACT, IW, WRY      |
|        |            |         |            |                |       |              |          | 7            | 1.5      | 1.5        | 12.19               | 13.69           | IW                 |
|        |            |         |            |                |       |              |          | CC(w/CC)     | 0.3      | 0.3        | 13.69               | 13.99           | PAL                |
| зн     | 7          | 2040    | 13.9       | 23.4           | 95    | 8 44         | 88.8     | Totals:      | 9.59     | 9.59       |                     |                 |                    |
| 511    | ,          | 2040    | 13.2       | 23.4           | 2.5   | 0.11         | 00.0     | 1            | 1.5      | 1.5        | 13.9                | 15.4            |                    |
|        |            |         |            |                |       |              |          | 2            | 1.23     | 1.23       | 15.4                | 16.63           | BACT, IW           |
|        |            |         |            |                |       |              |          | 3            | 1.21     | 1.21       | 16.63               | 17.84           |                    |
|        |            |         |            |                |       |              |          | 4            | 1.5      | 1.5        | 17.84               | 19.34           | IW                 |
|        |            |         |            |                |       |              |          | 5            | 1.2      | 1.2        | 19.34               | 20.54           | HS, BGAS           |
|        |            |         |            |                |       |              |          | 6            | 1.05     | 1.05       | 20.54               | 21.59           | IW                 |
|        |            |         |            |                |       |              |          | /<br>CC(w/7) | 0.01     | 0.01       | 21.39               | 22.2            | DAL                |
|        |            |         |            |                |       |              |          | Totals:      | 8.44     | 8.44       | 22.2                | 22.34           | FAL                |
| 4H     | 7          | 2225    | 23.4       | 32.9           | 9.5   | 7.38         | 77.7     | , o cuist    | 0        | 0111       |                     |                 |                    |
|        |            |         |            |                |       |              |          | 1            | 1.5      | 1.5        | 23.4                | 24.9            |                    |
|        |            |         |            |                |       |              |          | 2            | 1.5      | 1.5        | 24.9                | 26.4            | BACT, IW           |
|        |            |         |            |                |       |              |          | 3            | 1.5      | 1.5        | 26.4                | 27.9            |                    |
|        |            |         |            |                |       |              |          | 4            | 1.5      | 1.5        | 27.9                | 29.4            | IW, HS             |
|        |            |         |            |                |       |              |          | 5<br>CC(w/5) | 0.33     | 0.33       | 29.4                | 30.45           |                    |
|        |            |         |            |                |       |              |          | Totals:      | 7.38     | 7.38       | 50.45               | 50.70           | IAL                |
| 5H     | 7          | 2340    | 32.9       | 42.4           | 9.5   | 7.43         | 78.2     |              |          |            |                     |                 |                    |
|        |            |         |            |                |       |              |          | 1            | 1.5      | 1.5        | 32.9                | 34.4            |                    |
|        |            |         |            |                |       |              |          | 2            | 1.5      | 1.5        | 34.4                | 35.9            | IW, BACT           |
|        |            |         |            |                |       |              |          | 3            | 1.5      | 1.5        | 35.9                | 37.4            | DCAC NA            |
|        |            |         |            |                |       |              |          | 4            | 1.5      | 1.5        | 37.4                | 38.9<br>30.40   | BCAS, IVV          |
|        |            |         |            |                |       |              |          | CC(w/5)      | 0.84     | 0.84       | 39.49               | 40.33           | PAL                |
|        |            |         |            |                |       |              |          | Totals:      | 7.43     | 7.43       |                     |                 |                    |
| 6H     | 8          | 0100    | 42.4       | 51.9           | 9.5   | 0.0          | 0.0      |              |          |            |                     |                 |                    |
|        |            |         |            |                |       |              |          | 1            | 0.0      | 0.0        |                     |                 |                    |
| 711    | 0          | 0220    | 51.0       | (1.4           | 0.5   | 2.50         | 27.0     | Totals:      | 0.0      | 0.0        |                     |                 |                    |
| /H     | 8          | 0220    | 51.9       | 61.4           | 9.5   | 3.39         | 37.8     | 1            | 10       | 1.0        | 51.9                | 52.9            |                    |
|        |            |         |            |                |       |              |          | 2            | 1.5      | 1.5        | 52.9                | 54.4            | HS, IW, BGAS, SMTC |
|        |            |         |            |                |       |              |          | 3            | 0.37     | 0.37       | 54.4                | 54.77           |                    |
|        |            |         |            |                |       |              |          | 4            | 0.53     | 0.53       | 54.77               | 55.3            |                    |
|        |            |         |            |                |       |              |          | CC(w/4)      | 0.19     | 0.19       | 55.3                | 55.49           | PAL                |
|        |            |         |            |                |       |              | ~~~      | Totals:      | 3.59     | 3.59       |                     |                 |                    |
| 8H     | 8          | 0415    | 61.4       | 64.4           | 3.0   | 6.21         | 207      | 1            | 0 00     | 0 00       | <i>c</i> 1 <i>i</i> | 62.20           |                    |
|        |            |         |            |                |       |              |          | 2            | 0.88     | 0.88       | 62.28               | 63.63           |                    |
|        |            |         |            |                |       |              |          | 3            | 1.5      | 1.5        | 63.63               | 65.13           |                    |
|        |            |         |            |                |       |              |          | 4            | 1.5      | 1.5        | 65.13               | 66.63           | HS, IW, BGAS       |
|        |            |         |            |                |       |              |          | 5            | 0.8      | 0.8        | 66.63               | 67.43           | · ·                |
|        |            |         |            |                |       |              |          | CC(w/5)      | 0.18     | 0.18       | 67.43               | 67.61           | PAL                |
| 0.4    | ~          | 00.15   | <i></i>    | 74.1           | o -   | 0.0          | ~ ~      | Totals:      | 6.21     | 6.21       |                     |                 |                    |
| 9X     | 9          | 0045    | o4.4       | 74.1<br>Totals | 9./   | 0.0<br>47.04 | 63.4     |              |          |            |                     |                 |                    |
| 100 11 | 740        |         |            | rotuis.        | 77.1  | TV. VT       | -,,,     |              |          |            |                     |                 |                    |
| 10-11  | /40-<br>10 | 1830    | 0.0        | 143 7          | 0.0   | 0.0          | N/A      |              |          |            |                     |                 |                    |
|        |            |         | 5.0        |                | 0.0   |              | ,        |              |          |            |                     |                 |                    |

# Table T2. Coring summary by section, Site 1174. (See table notes. Continued on next 11 pages.)

|       | Date  | Time    | Core<br>(m | depth<br>bsf) | Le       | ength<br>(m) | Recovery |              | Lei<br>( | ngth<br>m) | Section<br>(m  | n depth<br>bsf) |                  |
|-------|-------|---------|------------|---------------|----------|--------------|----------|--------------|----------|------------|----------------|-----------------|------------------|
| Core  | 2000) | (local) | Тор        | Bottom        | Cored    | Recovered    | (%)      | Section      | Liner    | Curated    | Тор            | Bottom          | Catwalk sample   |
| 1 R   | 12    | 0730    | 143.7      | 150.1         | 6.4      | 9.62         | 150.3    |              |          |            |                |                 |                  |
|       |       |         |            |               |          |              |          | 1            | 1.5      | 1.5        | 143.7          | 145.2           |                  |
|       |       |         |            |               |          |              |          | 2            | 1.26     | 1.26       | 145.2          | 146.46          |                  |
|       |       |         |            |               |          |              |          | 3            | 1.5      | 0.0        |                |                 |                  |
|       |       |         |            |               |          |              |          | 4            | 1.5      | 1.5        | 146.46         | 147.96          |                  |
|       |       |         |            |               |          |              |          | 5            | 1.5      | 0.67       | 147.96         | 148.63          |                  |
|       |       |         |            |               |          |              |          | 6            | 1.5      | 1.5        | 148.63         | 150.13          | HS, IW, BGAS     |
|       |       |         |            |               |          |              |          | 7            | 0.46     | 0.46       | 150.13         | 150.59          | PAL              |
|       |       |         |            |               |          |              |          | CC(w/7)      | 0.4      | 0.4        | 150.59         | 150.99          |                  |
|       |       |         |            |               |          |              |          | Totals:      | 9.62     | 7.29       |                |                 |                  |
| 2R    | 12    | 1005    | 150.1      | 159.7         | 9.6      | 0.6          | 6.3      |              |          |            |                |                 |                  |
|       |       |         |            |               |          |              |          | 1            | 0.48     | 0.48       | 150.1          | 150.58          | HS, BGAS         |
|       |       |         |            |               |          |              |          | CC(w/1)      | 0.12     | 0.12       | 150.58         | 150.7           | PAL, IW          |
|       |       |         |            |               |          |              |          | Totals:      | 0.6      | 0.6        |                |                 |                  |
| 3R    | 12    | 1415    | 159.7      | 169.4         | 9.7      | 2.39         | 24.6     |              |          |            |                |                 |                  |
|       |       |         |            |               |          |              |          | 1            | 1.5      | 1.5        | 159.7          | 161.2           | IW, BGAS         |
|       |       |         |            |               |          |              |          | 2            | 0.69     | 0.69       | 161.2          | 161.89          | HS               |
|       |       |         |            |               |          |              |          | CC(w/2)      | 0.2      | 0.2        | 161.89         | 162.09          | PAL              |
|       |       |         |            |               |          |              |          | Totals:      | 2.39     | 2.39       |                |                 |                  |
| łR    | 12    | 1630    | 169.4      | 179.0         | 9.6      | 2.31         | 24.1     |              |          |            |                |                 |                  |
|       |       |         |            |               |          |              |          | 1            | 1.5      | 1.5        | 169.4          | 170.9           | BACT, SMTCR      |
|       |       |         |            |               |          |              |          | 2            | 0.61     | 0.61       | 170.9          | 171.51          | HS, IW           |
|       |       |         |            |               |          |              |          | CC(w/2)      | 0.2      | 0.2        | 171.51         | 171.71          | PAL              |
|       |       |         |            |               |          |              |          | Totals:      | 2.31     | 2.31       |                |                 |                  |
| 5R    | 12    | 1820    | 179.0      | 188.7         | 9.7      | 1.97         | 20.3     |              |          |            |                |                 |                  |
|       |       |         |            |               |          |              |          | 1            | 1.5      | 1.5        | 179            | 180.5           | SMTCR, BACT, IW, |
|       |       |         |            |               |          |              |          | 2            | 0.2      | 0.2        | 180.5          | 180.7           | HS               |
|       |       |         |            |               |          |              |          | CC(w/2)      | 0.27     | 0.27       | 180.7          | 180.97          | PAL              |
|       |       |         |            |               |          |              |          | Totals:      | 1.97     | 1.97       |                |                 |                  |
| 6R    | 12    | 1945    | 188.7      | 198.4         | 9.7      | 2.39         | 24.6     |              |          |            |                |                 |                  |
|       |       |         |            |               |          |              |          | 1            | 1.5      | 1.5        | 188.7          | 190.2           | IW               |
|       |       |         |            |               |          |              |          | 2            | 0.71     | 0.71       | 190.2          | 190.91          | HS               |
|       |       |         |            |               |          |              |          | CC(w/2)      | 0.18     | 0.18       | 190.91         | 191.09          | PAL              |
|       |       |         |            |               |          |              |          | Totals:      | 2.39     | 2.39       |                |                 |                  |
| 7R    | 12    | 2130    | 198.4      | 208.0         | 9.6      | 1.47         | 15.3     |              |          |            |                |                 |                  |
|       |       |         |            |               |          |              |          | 1            | 1.23     | 1.23       | 198.4          | 199.63          | HS, IW, BGAS     |
|       |       |         |            |               |          |              |          | CC(w/1)      | 0.24     | 0.24       | 199.63         | 199.87          | PAL              |
|       |       |         |            |               |          |              |          | Totals:      | 1.47     | 1.47       |                |                 |                  |
| BR    | 13    | 0030    | 208.0      | 217.7         | 9.7      | 0.95         | 9.8      |              |          |            |                |                 |                  |
|       |       |         |            |               |          |              |          | 1            | 0.84     | 0.84       | 208.0          | 208.84          | HS, IW, BGAS     |
|       |       |         |            |               |          |              |          | CC(w/CC)     | 0.11     | 0.11       | 208.84         | 208.95          | PAL              |
|       |       |         |            |               |          |              |          | Totals:      | 0.95     | 0.95       |                |                 |                  |
| 9R    | 13    | 0210    | 217.7      | 227.2         | 9.5      | 2.79         | 29.4     |              |          |            |                |                 |                  |
|       |       |         |            |               |          |              |          | 1            | 1.5      | 1.5        | 217.7          | 219.2           | IW               |
|       |       |         |            |               |          |              |          | 2            | 1.14     | 1.14       | 219.2          | 220.34          | BACT. HS. BGAS   |
|       |       |         |            |               |          |              |          | <br>CC(w/2)  | 0.15     | 0.15       | 220.34         | 220.49          | PAL              |
|       |       |         |            |               |          |              |          | Totals       | 2,79     | 2.79       |                | /               |                  |
| OR    | 13    | 0400    | 227.2      | 236.8         | 9.6      | 2.3          | 24       |              | /        | /          |                |                 |                  |
|       |       | 0.00    | / .2       | 200.0         | 2.5      | 2.5          |          | 1            | 1.5      | 1.5        | 227.2          | 228.7           | IW               |
|       |       |         |            |               |          |              |          | 2            | 0.62     | 0.62       | 228 7          | 229 32          | HS BGAS          |
|       |       |         |            |               |          |              |          | CC(w/2)      | 0.18     | 0.18       | 220.7          | 229.52          | PAL SERCC        |
|       |       |         |            |               |          |              |          | Totals       | 2.3      | 2.3        | 227.32         | 227.5           | They shared      |
| 11R   | 13    | 0520    | 236.8      | 246 5         | 97       | 2 53         | 26.1     | 10(0)3.      | 2.5      | 2.5        |                |                 |                  |
|       | 5     | 0320    | 20.0       | 2-10.5        | 2.7      | 2.55         | 20.1     | 1            | 15       | 15         | 236 R          | 238 3           |                  |
|       |       |         |            |               |          |              |          | י<br>כ       | 0.9      | 0.8        | 230.0          | 230.5           |                  |
|       |       |         |            |               |          |              |          | CC(m/2)      | 0.0      | 0.0        | 230.3          | 232.1           | DAI              |
|       |       |         |            |               |          |              |          | Totals:      | 2.52     | 2.52       | 237.1          | 237.33          | I AL             |
| 120   | 12    | 0705    | 216 5      | 256 2         | 07       | 1 74         | 170      | TOLOIS:      | 2.35     | 2.33       |                |                 |                  |
| 1 Z N | 13    | 0/03    | 240.3      | 230.2         | 9.1      | 1.74         | 17.9     | 1            | 15       | 15         | 216 5          | 248 0           |                  |
|       |       |         |            |               |          |              |          | I<br>CC/w/CC | 1.5      | 1.5        | 240.3<br>240 0 | 240.U           | DAL              |
|       |       |         |            |               |          |              |          |              | 0.24     | 0.24       | Z48.U          | 246.24          | rAL              |
| 1 2 5 | 17    | 0000    | 254.2      | 265.0         | <u> </u> | 2.40         | 20.4     | lotals:      | 1./4     | 1./4       |                |                 |                  |
| 1 3 K | 13    | 0900    | 256.2      | 265.8         | 9.6      | 3.69         | 38.4     | 1            | 1 5      | 1 5        | 25 4 2         | 2577            |                  |
|       |       |         |            |               |          |              |          |              | 1.5      | 1.5        | 256.2          | 25/./           | 110 114          |
|       |       |         |            |               |          |              |          | 2            | 1.5      | 1.5        | 257.7          | 259.2           | H3, IW           |
|       |       |         |            |               |          |              |          | 3            | 0.42     | 0.42       | 259.2          | 259.62          |                  |
|       |       |         |            |               |          |              |          | CC(w/CC)     | 0.27     | 0.27       | 259.62         | 259.89          | PAL              |
|       |       |         |            |               |          |              |          | Totals:      | 3.69     | 3.69       |                |                 |                  |

|      | Date<br>(lune | Time    | Core<br>(m | depth<br>bsf) | Le    | ength<br>(m) | Recovery |             | Lei<br>( | ngth<br>m) | Sectior<br>(m   | n depth<br>bsf) |                    |
|------|---------------|---------|------------|---------------|-------|--------------|----------|-------------|----------|------------|-----------------|-----------------|--------------------|
| Core | 2000)         | (local) | Тор        | Bottom        | Cored | Recovered    | (%)      | Section     | Liner    | Curated    | Тор             | Bottom          | Catwalk samples    |
| 14R  | 13            | 1710    | 265.8      | 275.5         | 9.7   | 0.5          | 5.2      |             |          |            |                 |                 |                    |
|      |               |         |            |               |       |              |          | 1           | 0.38     | 0.38       | 265.8           | 266.18          | HS, IW             |
|      |               |         |            |               |       |              |          | CC(w/1)     | 0.12     | 0.12       | 266.18          | 266.3           | PAL                |
|      |               | 1005    |            |               |       |              |          | Totals:     | 0.5      | 0.5        |                 |                 |                    |
| 15R  | 13            | 1925    | 275.5      | 285.1         | 9.6   | 2.28         | 23.8     | 1           | 15       | 15         | 275 5           | 277.0           | 11.47              |
|      |               |         |            |               |       |              |          | 2           | 0.5      | 1.5        | 273.3           | 277.0           |                    |
|      |               |         |            |               |       |              |          | CC(w/2)     | 0.28     | 0.28       | 277.5           | 277.78          | PAL                |
|      |               |         |            |               |       |              |          | Totals:     | 2.28     | 2.28       | 27710           | 2////0          |                    |
| 16R  | 13            | 2130    | 285.1      | 294.6         | 9.5   | 1.8          | 18.9     |             |          |            |                 |                 |                    |
|      |               |         |            |               |       |              |          | 1           | 1.5      | 1.5        | 285.1           | 286.6           | BACT, HS, IW       |
|      |               |         |            |               |       |              |          | CC(w/CC)    | 0.3      | 0.3        | 286.6           | 286.9           | PAL                |
| 170  | 10            | 2250    | 204.6      | 204.2         | 0.7   | 2.00         | 20.7     | Totals:     | 1.8      | 1.8        |                 |                 |                    |
| I/K  | 13            | 2350    | 294.6      | 304.3         | 9.7   | 2.88         | 29.7     | 1           | 15       | 15         | 201.6           | 296 1           | NA/                |
|      |               |         |            |               |       |              |          | 2           | 1.5      | 1.5        | 296.1           | 297 33          | HS BGAS            |
|      |               |         |            |               |       |              |          | CC(w/CC)    | 0.15     | 0.15       | 297.33          | 297.48          | PAL                |
|      |               |         |            |               |       |              |          | Totals:     | 2.88     | 2.88       |                 |                 |                    |
| 18R  | 14            | 0205    | 304.3      | 314.0         | 9.7   | 6.17         | 63.6     |             |          |            |                 |                 |                    |
|      |               |         |            |               |       |              |          | 1           | 1.5      | 1.5        | 304.3           | 305.8           |                    |
|      |               |         |            |               |       |              |          | 2           | 1.5      | 1.5        | 305.8           | 307.3           | IW, WRSF, WRC, WRY |
|      |               |         |            |               |       |              |          | 3           | 1.5      | 1.5        | 307.3           | 308.8           | HS, BGAS           |
|      |               |         |            |               |       |              |          | 4           | 1.4/     | 1.4/       | 308.8           | 310.27          | DAL                |
|      |               |         |            |               |       |              |          | Totals:     | 6.17     | 6.17       | 510.27          | 510.47          | PAL                |
| 19R  | 14            | 0410    | 314.0      | 323.5         | 9.5   | 2.22         | 23.4     | Totals.     | 0.17     | 0.17       |                 |                 |                    |
| 121  | • •           | 0110    | 511.0      | 525.5         | 2.5   | 2.22         | 23.1     | 1           | 1.5      | 1.5        | 314.0           | 315.5           | IW                 |
|      |               |         |            |               |       |              |          | 2           | 0.57     | 0.57       | 315.5           | 316.07          | HS, BGAS           |
|      |               |         |            |               |       |              |          | CC(w/CC)    | 0.15     | 0.15       | 316.07          | 316.22          | PAL                |
|      |               |         |            |               |       |              |          | Totals:     | 2.22     | 2.22       |                 |                 |                    |
| 20R  | 14            | 0625    | 323.5      | 333.1         | 9.6   | 3.89         | 40.5     |             |          |            |                 |                 |                    |
|      |               |         |            |               |       |              |          | 1           | 1.5      | 1.5        | 323.5           | 325.0           |                    |
|      |               |         |            |               |       |              |          | 2           | 1.5      | 1.5        | 325.0           | 320.3<br>227.18 | HS, IVV, BGAS      |
|      |               |         |            |               |       |              |          | c c (w/cc)  | 0.00     | 0.00       | 320.3           | 327.10          | PAL SERCC WRTR     |
|      |               |         |            |               |       |              |          | Totals:     | 3.89     | 3.89       | 527.10          | 527.57          | TAL, SINCE, WIND   |
| 21R  | 14            | 0830    | 333.1      | 342.4         | 9.3   | 2.85         | 30.6     |             |          |            |                 |                 |                    |
|      |               |         |            |               |       |              |          | 1           | 1.5      | 1.5        | 333.1           | 334.6           | HS, IW             |
|      |               |         |            |               |       |              |          | 2           | 1.12     | 1.12       | 334.6           | 335.72          |                    |
|      |               |         |            |               |       |              |          | CC(w/2)     | 0.23     | 0.23       | 335.72          | 335.95          | SFRCC, PAL         |
| 220  | 14            | 1045    | 2121       | 2520          | 0.4   | 1 24         | 14       | lotals:     | 2.85     | 2.85       |                 |                 |                    |
| ZZK  | 14            | 1045    | 542.4      | 552.0         | 9.0   | 1.54         | 14       | 1           | 0.51     | 0.51       | 342.4           | 342 91          | HS IW/             |
|      |               |         |            |               |       |              |          | 2           | 0.68     | 0.68       | 342.91          | 343.59          | BGAS               |
|      |               |         |            |               |       |              |          | CC(w/CC)    | 0.15     | 0.15       | 343.59          | 343.74          | PAL                |
|      |               |         |            |               |       |              |          | Totals:     | 1.34     | 1.34       |                 |                 |                    |
| 23R  | 14            | 1245    | 352.0      | 361.7         | 9.7   | 2.49         | 25.7     |             |          |            |                 |                 |                    |
|      |               |         |            |               |       |              |          | 1           | 1.5      | 1.5        | 352.0           | 353.5           | BACT, IW           |
|      |               |         |            |               |       |              |          | Z           | 0.99     | 0.99       | 353.5           | 354.49          | HS, BGAS, PAL      |
| 24₽  | 14            | 1455    | 361 7      | 371 3         | 9.6   | 4 72         | 49.2     | rotais:     | 2.49     | 2.49       |                 |                 |                    |
| 240  | 14            | 1455    | 501.7      | 571.5         | 2.0   | 7.72         | 77.2     | 1           | 1.5      | 1.5        | 361.7           | 363.2           |                    |
|      |               |         |            |               |       |              |          | 2           | 1.5      | 1.5        | 363.2           | 364.7           |                    |
|      |               |         |            |               |       |              |          | 3           | 1.46     | 1.46       | 364.7           | 366.16          | HS, IW, BGAS       |
|      |               |         |            |               |       |              |          | CC(w/CC)    | 0.26     | 0.26       | 366.16          | 366.42          | PAL                |
|      |               |         |            |               |       |              |          | Totals:     | 4.72     | 4.72       |                 |                 |                    |
| 25R  | 14            | 1655    | 371.3      | 380.9         | 9.6   | 2.2          | 22.9     | 1           | 1 5      | 1.5        | 271 2           | 272.0           |                    |
|      |               |         |            |               |       |              |          | 1           | 1.5      | 1.5        | 3/1.3           | 3/2.8           | HS, IW             |
|      |               |         |            |               |       |              |          | ∠<br>()//2) | 0.37     | 0.37       | 372.0<br>373 37 | 373.57          | PAI                |
|      |               |         |            |               |       |              |          | Totals:     | 2.2      | 2.2        | 5, 5.57         | 5, 5.5          |                    |
| 26R  | 14            | 1910    | 380.9      | 390.5         | 9.6   | 0.84         | 8.8      |             |          |            |                 |                 |                    |
|      |               |         |            |               |       |              |          | 1           | 0.58     | 0.58       | 380.9           | 381.48          | HS                 |
|      |               |         |            |               |       |              |          | CC(w/1)     | 0.26     | 0.26       | 381.48          | 381.74          | PAL, IW            |
| a=-  | -             | ar      |            |               |       |              |          | Totals:     | 0.84     | 0.84       |                 |                 |                    |
| 27R  | 14            | 2120    | 390.5      | 400.2         | 9.7   | 5.12         | 52.8     | 1           | 1 5      | 1.7        | 200 5           | 202.0           |                    |
|      |               |         |            |               |       |              |          | 1           | 1.5      | 1.5        | 390.5           | 392.0<br>202 5  | DACI, IW           |
|      |               |         |            |               |       |              |          | 4           | ı.J      | ı.J        | 372.0           | د.درر           |                    |

| Core         2000         (inc.)         top         Battom         Cored         Recovered         (in)         Section         Liner         Corabel         Top         Bottom         Chroals samples           288         14         2345         400.2         409.8         9.6         2.32         24.2         1         1.3         1.37         1.37         394.4         93.4         395.4         395.4         395.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4         93.4 <t< th=""><th></th><th>Date</th><th>Time</th><th>Core<br/>(m</th><th>depth<br/>bsf)</th><th>Le</th><th>ength<br/>(m)</th><th>Recovery</th><th></th><th>Le<br/>(</th><th>ngth<br/>m)</th><th>Sectior<br/>(m</th><th>n depth<br/>bsf)</th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | Date  | Time    | Core<br>(m | depth<br>bsf) | Le    | ength<br>(m) | Recovery |          | Le<br>( | ngth<br>m) | Sectior<br>(m | n depth<br>bsf) |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|---------|------------|---------------|-------|--------------|----------|----------|---------|------------|---------------|-----------------|--------------------|
| 3         1.37         1.37         1.37         39.3         39.47         15. WRMT           288         14         2345         400.2         409.8         9.6         2.32         2.22         0.22         0.23         0.33         39.47         39.5.4         98.40         ML           288         14         2345         400.2         409.2         401.7         H.5. W. BCAS         60.2         401.7         H.5. W. BCAS           298         15         020         49.3         1.13         1.5         400.2         401.7         H.5. W. BCAS           2080         15         020         49.4         41.43         41.43         41.43         41.43         H.5. W. BCAS           3080         15         11.3         1.5         1.5         409.8         41.43         H.4.74         HN, WRT, WRT, WRT, WRT, WRT, WRT, WRT, WRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Core | 2000) | (local) | Тор        | Bottom        | Cored | Recovered    | (%)      | Section  | Liner   | Curated    | Тор           | Bottom          | Catwalk samples    |
| $ \begin{array}{cccc} + & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |         |            |               |       |              |          | 3        | 1.37    | 1.37       | 393.5         | 394.87          | HS, WRMT           |
| $ \begin{array}{cccc} \  \  \  \  \  \  \  \  \  \  \  \  \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |         |            |               |       |              |          | 4        | 0.53    | 0.53       | 394.87        | 395.4           |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |         |            |               |       |              |          | CC(w/4)  | 0.22    | 0.22       | 395.4         | 395.62          | PAL                |
| 288         14         243         400.2         409.8         9.6         2.32         42.2         1.5         1.5         400.2         407.2         H5, NV, BCAS           298         15         020         409.8         419.4         9.6         4.94         51.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |         |            |               |       |              |          | Totals:  | 5.12    | 5.12       |               |                 |                    |
| 298         15         020         409.8         419.4         9.6         4.94         51.5         1         1.5         1.3         402.5         PAL           298         15         020         409.8         419.4         9.6         4.94         51.5         1         1.5         1.3         411.3         412.8         WRC, WRY, WRS, PLU           308         15         013         419.4         419.4         419.4         419.4         419.7         419.4         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7         419.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28R  | 14    | 2345    | 400.2      | 409.8         | 9.6   | 2.32         | 24.2     | 1        | 15      | 15         | 400.2         | 401.7           |                    |
| 298         15         602.00         409.8         419.4         9.6         4.94         51.5         1         1.5         1.5         1.5         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50         402.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |         |            |               |       |              |          | 2        | 0.56    | 0.56       | 401.2         | 402.26          | 113, 117, DOAS     |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |         |            |               |       |              |          | CC(w/CC) | 0.26    | 0.26       | 402.26        | 402.52          | ΡΔΙ                |
| 298         15         0200         409,8         419,4         9,6         4,94         51.5         10.10.10.10.10.10.10.10.10.10.10.10.10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |         |            |               |       |              |          | Totals   | 2.32    | 2.32       | .02.20        | 102102          |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29R  | 15    | 0200    | 409.8      | 419.4         | 9.6   | 4.94         | 51.5     |          |         |            |               |                 |                    |
| $ \begin{array}{cccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |         |            |               |       |              |          | 1        | 1.5     | 1.5        | 409.8         | 411.3           |                    |
| $ \begin{array}{c} 3 & 1.65 \\ CC(WCC) \\ Totals \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\ 4.94 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |         |            |               |       |              |          | 2        | 1.5     | 1.5        | 411.3         | 412.8           | WRC, WRY, WRS, PLU |
| Sore         15         0415         419.4         429.0         9.6         0.18         1.9         CC(W/C)         0.29         414.45         414.74         PAL. WRT8           31R         15         0630         429.0         438.6         9.6         4.62         48.1         1         1.5         1.5         429.0         430.5         WV           31R         15         0630         429.0         438.6         9.6         4.62         48.1         1         1.5         1.5         429.0         433.4         HS, BCAS           200         438.6         448.2         9.6         9.5         99.5         14         1.5         1.5         448.6         440.1           2         1.5         1.5         448.6         440.1         10.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8         11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |         |            |               |       |              |          | 3        | 1.65    | 1.65       | 412.8         | 414.45          | HS, IW, BGAS       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |         |            |               |       |              |          | CC(w/CC) | 0.29    | 0.29       | 414.45        | 414.74          | PAL, WRTB          |
| 30R       15       0415       419.4       429.0       9.6       0.18       1.9       CCCW/CC       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18       0.18 <th0.17< th="">       0.15       0.15</th0.17<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |         |            |               |       |              |          | Totals:  | 4.94    | 4.94       |               |                 |                    |
| 31R         15         0630         429.0         438.6         9.6         4.62         48.1         1         5         1.5         420.0         430.5         W           31R         15         05030         429.0         438.6         9.6         4.62         48.1         1         1.5         1.5         420.0         433.4         HS, BGAS           32R         15         07020         438.6         448.2         9.6         9.55         995         1         1.5         1.5         430.6         440.1         W           32R         15         0720         438.6         448.2         9.6         9.55         955         1         1.5         1.5         440.4         447.65           32R         15         1150         448.2         457.9         9.7         7.16         73.8         1         1.5         1.5         444.6         146.1         147.85           33R         15         1150         448.2         457.9         9.7         7.16         73.8         1         1.5         1.5         448.2         449.7         147.85           33R         15         1420         457.9         9.7         7.16<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30R  | 15    | 0415    | 419.4      | 429.0         | 9.6   | 0.18         | 1.9      |          |         |            |               |                 |                    |
| 31R         15         0630         429.0         438.6         9.6         4.62         48.1         1         1.5         1.5         430.5         432.0         433.4         HS, BGAS           32R         15         0920         438.6         448.2         9.6         9.55         995         -         -         -         -         -         433.4         433.6         440.1         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |         |            |               |       |              |          | CC(w/CC) | 0.18    | 0.18       | 419.4         | 419.58          | PAL                |
| 31R       15       0630       429.0       438.6       9.6       4.62       48.1         1       1.5       1.5       1.05       1.30       432.0       433.4       H5, BCAS         2       1.5       1.5       1.4       430.5       M2.0       433.4       H5, BCAS         32R       15       0920       438.6       448.2       9.6       9.55       99.5       I       1.5       1.5       440.1       441.6       HK       HK         32R       15       0920       438.6       448.2       9.6       9.55       99.5       I       1.5       1.5       444.6       446.1       HK       BCAS         32R       15       150       448.2       457.9       9.7       7.16       73.8       I       1.5       1.441.6       447.6       K5       K6A5.7       K47.6       448.1       K46.1       H5, BCAS       K6A5.7       K47.6       448.1       K46.1       K5       K6A5.7       K47.6       K47.85       K47.85       K47.6       K47.85       K47.85       K47.85       K47.97       K5.7       K48.2       K47.7       K47.85       K47.97       K5.7       K48.2       K47.7       K5.7       K48.2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.5 | 1.5   | 0.420   | 120.0      | 120 (         | 0.4   | 1.62         | 40.1     | Totals:  | 0.18    | 0.18       |               |                 |                    |
| $ \begin{array}{cccc} 1 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & 1.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 31R  | 15    | 0630    | 429.0      | 438.6         | 9.6   | 4.62         | 48.1     | 1        | 1 5     | 1.5        | 420.0         | 420.5           | 1147               |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |         |            |               |       |              |          | 1        | 1.5     | 1.5        | 429.0         | 430.5           | IVV                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |         |            |               |       |              |          | 2        | 1.5     | 1.5        | 430.5         | 432.0           |                    |
| Signed State         Hold Halo         Hold Halo         Hold Halo         Hold Halo         Hold Halo           32R         15         0920         438.6         448.2         9.6         9.55         99.5         1         1.5         1.5         438.6         440.1         441.6         IV           32R         15         0920         438.6         448.2         9.6         9.55         99.5         1         1.5         1.5         444.6         HAL         IV           32R         15         15.5         444.6         440.1         441.6         IV         IV         448.15         IV         IV         1.5         1.5         444.6         HAL         IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |       |         |            |               |       |              |          |          | 0.22    | 0.22       | 432.0         | 433.4           |                    |
| 328       15       0920       438.6       448.2       9.6       9.5       99.5       10.0000       10.0000       10.0000       10.0000         328       15       0920       438.6       448.2       9.6       9.55       99.5       1       1.5       1.5       438.6       440.1       441.6       MW         3       1.5       1.5       1.5       443.1       444.6       446.1       HS, BCAS         6       1.5       1.5       1.5       444.6       446.1       HS, BCAS         6       1.5       1.5       444.6       447.85       SFRCC, WRS, PAL         7       0.25       0.25       0.33       447.85       447.85       SFRCC, WRS, PAL         7       0.25       0.55       9.55       9.55       1       1.5       1.5       448.2       447.7         338       15       1150       448.2       447.85       SFRCC, WRS, PAL       1       1.5       1.5       448.2       447.7       1       1.5       1.5       448.2       447.7       1       1.5       1.5       450.7       450.7       450.7       15       450.9       450.7       450.7       15       1.5       45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |         |            |               |       |              |          | Totals:  | 4.62    | 4.62       | 433.4         | 433.02          | FAL                |
| 15         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32R  | 15    | 0920    | 438.6      | 448.2         | 9.6   | 9.55         | 99.5     | Totals.  | 1.02    | 1.02       |               |                 |                    |
| $ \begin{array}{ccccc} 2 & 1.5 & 1.5 & 440.1 & 441.6 & MV \\ 3 & 1.5 & 1.5 & 440.1 & 441.6 & MV \\ 3 & 1.5 & 1.5 & 444.6 & 440.1 & HS, BGAS \\ 5 & 1.5 & 1.5 & 444.6 & 446.1 & HS, BGAS \\ 6 & 1.5 & 1.3 & 444.6 & 447.8 \\ 7 & 0.25 & 0.25 & 447.8 & 548.15 & 5FRCC, WRS, PAL \\ 7 & 0.25 & 0.25 & 447.8 & 548.15 & 5FRCC, WRS, PAL \\ 7 & 0.25 & 0.25 & 447.8 & 548.15 & 5FRCC, WRS, PAL \\ 7 & 0.25 & 0.25 & 447.8 & 548.15 & 5FRCC, WRS, PAL \\ 7 & 0.25 & 0.25 & 447.8 & 548.15 & 5FRCC, WRS, PAL \\ 7 & 0.25 & 0.25 & 447.8 & 548.15 & 5FRCC, WRS, PAL \\ 7 & 0.25 & 0.25 & 447.8 & 548.15 & 5FRCC, WRS, PAL \\ 7 & 0.25 & 0.25 & 447.8 & 548.15 & 5FRCC, WRS, PAL \\ 7 & 0.25 & 0.25 & 447.8 & 548.15 & 5FRCC, WRS, PAL \\ 7 & 0.25 & 0.25 & 447.8 & 548.15 & 5FRCC, WRS, PAL \\ 7 & 0.25 & 0.25 & 447.8 & 548.15 & 5FRCC, WRS, PAL \\ 1 & 1.5 & 1.5 & 448.2 & 459.7 & 459.4 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 548 & 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |       |         |            |               |       |              |          | 1        | 1.5     | 1.5        | 438.6         | 440.1           |                    |
| 3       1.5       1.5       1.1.5       441.6       443.1         4       1.5       1.5       1.5       441.6       443.1         5       1.5       1.5       1.44.6       446.1       H5, BGAS         6       1.5       1.5       1.44.6       446.1       H5, BGAS         7       0.25       0.25       0.47.6       447.85       SFRCC, WRS, PAL         7       0.25       0.25       9.55       9.55       9.55         33R       15       1150       448.2       457.9       9.7       7.16       7.38         1       1.5       1.5       1.5       448.12       449.7       41.2       M         3       1.5       1.5       1.5       447.2       49.7       45.2       45.7         3       1.5       1.5       1.5       452.7       45.12       M       45.2       452.7       45.12       M       45.2       45.14       45.14       45.14       45.14       45.14       45.14       45.14       45.14       45.14       45.14       45.14       45.14       45.14       45.14       45.14       45.14       45.14       45.14       45.14       45.15 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>1.5</td><td>1.5</td><td>440.1</td><td>441.6</td><td>IW</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |       |         |            |               |       |              |          | 2        | 1.5     | 1.5        | 440.1         | 441.6           | IW                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |         |            |               |       |              |          | 3        | 1.5     | 1.5        | 441.6         | 443.1           |                    |
| 33R       15       1150       448.2       457.9       9.7       7.16       7.8       -0.25       0.25       447.6       447.85       58.7         33R       15       1150       448.2       457.9       9.7       7.16       7.8       -0.25       0.25       447.85       448.15       SFRCC, WRS, PAL         33R       15       1150       448.2       457.9       9.7       7.16       7.8       -1.5       1.5       448.2       449.7       -         2       1.5       1.5       1.5       448.2       449.7       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td>1.5</td><td>1.5</td><td>443.1</td><td>444.6</td><td>WRMT</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |       |         |            |               |       |              |          | 4        | 1.5     | 1.5        | 443.1         | 444.6           | WRMT               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |         |            |               |       |              |          | 5        | 1.5     | 1.5        | 444.6         | 446.1           | HS, BGAS           |
| $ \begin{array}{cccccccc} 7 & 0.25 & 0.25 & 447.6 & 447.85 \\ CC(NS) & 107 tais: \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |       |         |            |               |       |              |          | 6        | 1.5     | 1.5        | 446.1         | 447.6           |                    |
| $ \begin{array}{c} CC(NS) \\ Totals: \  \  \begin{array}{c} 0.3 \\ 9.5 \\ 9.5 \end{array} \\ 447.85 \end{array} \\ 448.15 \qquad SFRCC, WRS, PAL \\ \hline Totals: \  \  \begin{array}{c} 0.3 \\ 9.5 \\ 9.5 \end{array} \\ 447.85 \end{array} \\ 448.15 \qquad SFRCC, WRS, PAL \\ \hline Totals: \  \  \begin{array}{c} 0.3 \\ 9.5 \\ 9.5 \end{array} \\ 448.2 \qquad 449.7 \\ 449.7  451.2 \\ 449.7  451.2 \\ 449.7 \\ 449.7  451.2 \\ 449.7 \\ 449.7  451.2 \\ 449.7 \\ 449.7  451.2 \\ 449.7 \\ 449.7  451.2 \\ 452.1 \end{array} \\ 448.2 \qquad 449.7 \\ 455.3  452.7  451.2 \\ 5 \\ 0.94 \end{array} \\ 448.2  449.7 \\ 452.4  452.7 \\ 452.1 \\ 452.4  455.36 \end{array} \\ PAL \\ \hline \begin{array}{c} 1 \\ 7.2 \\ 7.16 \end{array} \\ 7.16 \bigg \\ \\ 7.16 \bigg \\ 7.16 \bigg \\ \\ 7.16 \bigg \\ \\ 7.16 \bigg \\ \\ 7.16 \bigg \\ \\ \\ 7.16 \bigg \\ \\ 7.16 \bigg \\ \\ 7.16 \bigg \\ \\ \\ 7.16 \bigg \\ \\ 7.16 \bigg \\ \\ \\ \\ 7.16 \bigg \\ 7.16 \bigg \\ \\ 7.16 \bigg \\ 7.16 \bigg \\ 7.16 \bigg \\ 7.16 \bigg \\ \\ \\ \\ 7.16 \bigg \\ 7.16 \bigg \\ \\ 7.16 \bigg \\ 7.16 \bigg \\ \\ \\ \\ \\ 7.16 \bigg \\ 7.16 \bigg \\ \\ 7.16 \bigg \\ \\ \\ \\ \\ 7.16 \bigg \\ \\ \\ \\ \\ 7.16 \bigg \\ \\ \\ \\ \\ \\ 7.16 \bigg \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ |      |       |         |            |               |       |              |          | 7        | 0.25    | 0.25       | 447.6         | 447.85          |                    |
| 33R         15         1150         448.2         457.9         9.7         7.16         73.8           1         1.5         1.5         1.5         1.5         448.2         449.7           2         1.5         1.5         1.5         448.2         497.7           2         1.5         1.5         1.5         448.2         497.7           3         1.5         1.5         1.5         449.7         451.2         10W           3         1.5         1.5         1.5         451.2         452.7         454.2           4         1.5         1.5         459.7         459.4         255.6         PAL           20022         0.22         0.22         0.22         455.14         455.36         PAL           34R         15         1420         457.9         467.1         9.2         7.25         78.8         1         1.5         1.5         459.4         460.9           3         1.5         1.5         1.45         462.4         463.9         HS           5         1.04         1.04         1.04         463.9         HS         1           36R         15         1645 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>CC(NS)</td> <td>0.3</td> <td>0.3</td> <td>447.85</td> <td>448.15</td> <td>SFRCC, WRS, PAL</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |         |            |               |       |              |          | CC(NS)   | 0.3     | 0.3        | 447.85        | 448.15          | SFRCC, WRS, PAL    |
| 33R       15       1150       448.2       457.9       9.7       7.16       73.8         1       1.5       1.5       1.5       1.5       449.7       451.2       IW         3       1.5       1.5       1.5       449.7       451.2       IW         3       1.5       1.5       1.5       449.7       451.2       IW         3       1.5       1.5       451.2       452.7       H5         4       1.5       1.5       452.7       454.2       455.14         CC(W/C)       0.22       0.22       222       455.14       60.9         3       1.5       1.5       457.9       467.1       9.2       7.25       78.8         3       1.5       1.5       46.94       460.9       3       1.5       1.5       460.9       463.4         3       1.5       1.5       46.94       465.15       PAL       725       725       725       725       725       725       725       725       725       725       725       725       725       725       725       725       725       725       725       725       725       725       725       725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |         |            |               |       |              |          | Totals:  | 9.55    | 9.55       |               |                 |                    |
| $ \begin{array}{cccc} 1 & 1.5 & 1.5 & 449.7 & 451.2 & W \\ 3 & 1.5 & 1.5 & 449.7 & 451.2 & W \\ 3 & 1.5 & 1.5 & 452.7 & 454.2 \\ 5 & 0.94 & 0.94 & 454.2 & 455.14 \\ CC(W/CC) & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.22 & 0.22 & 0.22 \\ 0.21 & 0.16 \\ 0.9 & 459.4 \\ 0.9 & 459.4 \\ 0.9 & 459.4 \\ 0.9 & 459.4 \\ 0.9 & 459.4 \\ 0.9 & 459.4 \\ 0.9 & 459.4 \\ 0.9 & 459.4 \\ 0.9 & 459.4 \\ 0.9 & 459.4 \\ 0.9 & 459.4 \\ 0.9 & 459.4 \\ 0.9 & 459.4 \\ 0.9 & 459.4 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 464.94 \\ 0.9 & 0.9 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.0 & 0.0 \\ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33K  | 15    | 1150    | 448.2      | 457.9         | 9.7   | 7.16         | /3.8     | 1        | 15      | 15         | 440.0         | 440.7           |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |         |            |               |       |              |          | 1        | 1.5     | 1.5        | 448.Z         | 449.7           | NA/                |
| $ \begin{array}{cccc} 3 & 1.5 & 1.5 & 1.5 & 451.2 & 452.7 & 452.7 \\ 4 & 1.5 & 1.5 & 452.7 & 454.2 \\ 5 & 0.94 & 0.94 & 454.2 & 455.14 & 455.36 & PAL \\ \hline \\ CCC(W/CC) & 0.22 & 0.22 & 455.14 & 455.36 & PAL \\ \hline \\ 1 & 1.5 & 1.5 & 457.9 & 459.4 & 460.9 \\ 3 & 1.5 & 1.5 & 459.4 & 460.9 \\ 3 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 4 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 4 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 4 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 4 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 4 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 4 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 4 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 4 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 4 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 4 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 1 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 1 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 1 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 1 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 1 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 1 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 1 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 1 & 1.5 & 1.5 & 460.9 & 460.9 & IH \\ 1 & 1.5 & 1.5 & 460.7 & 460.7 & BACT, HS, WRTB \\ 2 & 1.1 & 1.1 & 1.1 & 468.6 & IW \\ 2 & 1.1 & 1.1 & 1.1 & 468.6 & IW \\ 1 & 1.5 & 1.5 & 478.0 & 479.7 & WRTB \\ 3 & 1.5 & 1.5 & 478.0 & 479.5 & WRTB \\ 3 & 1.5 & 1.5 & 478.0 & 479.5 & WRTB \\ 3 & 1.5 & 1.5 & 478.0 & 479.5 & WRTB \\ 3 & 1.5 & 1.5 & 478.0 & 479.5 & WRTB \\ 3 & 1.5 & 1.5 & 481.0 & 84.7 & IW \\ 1 & 1.5 & 1.5 & 481.0 & 482.5 & HS \\ 1 & 1.5 & 1.5 & 481.0 & 482.5 & HS \\ 1 & 1.5 & 1.5 & 481.0 & 482.5 & HS \\ 1 & 1.5 & 1.5 & 485.7 & 487.2 \\ 3 & 1.5 & 1.5 & 485.7 & 487.2 \\ 3 & 1.5 & 1.5 & 485.7 & 487.2 \\ 3 & 1.5 & 1.5 & 488.7 & 487.2 \\ 3 & 1.5 & 1.5 & 488.7 & 487.2 \\ 4 & 1.5 & 1.5 & 488.7 & 487.2 \\ 3 & 1.5 & 1.5 & 488.7 & 487.2 \\ 3 & 1.5 & 1.5 & 488.7 & 487.2 \\ 4 & 1.5 & 1.5 & 488.7 & 487.2 \\ 3 & 1.5 & 1.5 & 488.7 & 487.2 \\ 4 & 1.5 & 1.5 & 488.7 & 487.2 \\ 4 & 1.5 & 1.5 & 488.7 & 487.2 \\ 4 & 1.5 & 1.5 & 488.7 & 487.2 \\ 4 & 1.5 & 1.5 & 488.7 & 487.2 \\ 4 & 1.5 & 1.5 & 488.7 & 487.2 \\ 4 & 1.5 & 1.5 & 488.7 & 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |       |         |            |               |       |              |          | 2        | 1.5     | 1.5        | 449.7         | 431.Z           |                    |
| $\begin{array}{ccccc} 1 & 15 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 & 163 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |       |         |            |               |       |              |          | 4        | 1.5     | 1.5        | 452.7         | 454.2           | 115                |
| 34R       15       1420       457.9       467.1       9.2       7.25       78.8       1       1.5       1.5       457.9       459.4       20.9         34R       15       1420       457.9       467.1       9.2       7.25       78.8       1       1.5       1.5       459.4       460.9       3       1.5       1.5       469.9       462.4       IW, BGAS         3       1.5       1.5       1.5       463.9       462.4       IW, BGAS       4       1.5       1.5       463.9       463.9       HS         3       1.5       1.645       467.1       476.5       9.4       2.85       30.3       1       1.5       1.5       467.1       468.6       IW         35R       15       1645       467.1       476.5       9.4       2.85       30.3       1       1.5       1.5       467.1       468.6       IW       ME       1       1.5       1.5       467.1       468.6       IW       ME       1       1.5       1.5       467.1       468.6       IW       ME       1       1.5       1.5       1.5       469.7       BACT, HS, WRTB       2       1.1       1.1       1.5       1.5<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |       |         |            |               |       |              |          | 5        | 0.94    | 0.94       | 454.2         | 455 14          |                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |       |         |            |               |       |              |          | CC(w/CC) | 0.22    | 0.22       | 455.14        | 455.36          | PAL                |
| 34R       15       1420       457.9       467.1       9.2       7.25       78.8         1       1.5       1.5       1.5       457.9       459.4         2       1.5       1.5       1.5       460.9         3       1.5       1.5       460.9       462.4       IW, BGAS         4       1.5       1.5       462.4       463.9       HS         5       1.04       1.021       464.94       463.9       HS         5       1.04       1.021       464.94       463.15       PAL         35R       15       1645       467.1       476.5       9.4       2.85       30.3       1       1.5       1.5       466.7       BACT, HS, WRTB         2       1.1       1.1       1.1       468.6       IW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |         |            |               |       |              |          | Totals:  | 7.16    | 7.16       |               | 100100          |                    |
| $ \begin{array}{ccccc} 1 & 1.5 & 1.5 & 457.9 & 459.4 \\ 2 & 1.5 & 1.5 & 459.4 & 460.9 \\ 3 & 1.5 & 1.5 & 460.9 & 462.4 & IW, BGAS \\ 4 & 1.5 & 1.5 & 462.4 & 463.9 & HS \\ 5 & 1.04 & 1.04 & 463.9 & 464.94 \\ CC(W/S) & C21 & 0.21 & 0.21 \\ Totals: & 7.25 & 7.25 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34R  | 15    | 1420    | 457.9      | 467.1         | 9.2   | 7.25         | 78.8     |          |         |            |               |                 |                    |
| $ \begin{array}{ccccc} 2 & 1.5 & 1.5 & 459.4 & 460.9 \\ 3 & 1.5 & 1.5 & 460.9 & 462.4 & W, BGAS \\ 4 & 1.5 & 1.5 & 462.4 & 463.9 & HS \\ 5 & 1.04 & 1.04 & 463.9 & 464.94 & 465.15 & PAL \\ \hline \\ 35R & 15 & 1645 & 467.1 & 476.5 & 9.4 & 2.85 & 30.3 \\ \hline \\ 35R & 15 & 1645 & 467.1 & 476.5 & 9.4 & 2.85 & 30.3 \\ \hline \\ 36R & 15 & 1850 & 476.5 & 485.7 & 9.2 & 7.49 & 81.4 \\ \hline \\ 36R & 15 & 1850 & 476.5 & 485.7 & 9.2 & 7.49 & 81.4 \\ \hline \\ 37R & 15 & 2050 & 485.7 & 495.3 & 9.6 & 9.21 & 95.9 \\ \hline \\ 37R & 15 & 2050 & 485.7 & 495.3 & 9.6 & 9.21 & 95.9 \\ \hline \\ 37R & 15 & 2050 & 485.7 & 495.3 & 9.6 & 9.21 & 95.9 \\ \hline \\ 37R & 15 & 2050 & 485.7 & 495.3 & 9.6 & 9.21 & 95.9 \\ \hline \\ 37R & 15 & 2050 & 485.7 & 495.3 & 9.6 & 9.21 & 95.9 \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |         |            |               |       |              |          | 1        | 1.5     | 1.5        | 457.9         | 459.4           |                    |
| 3       1.5       1.5       460.9       462.4       MV, BGAS         4       1.5       1.5       462.4       463.9       HS         5       1.04       1.04       463.9       HS         2C(W/S)       0.21       0.21       0.21       464.94       465.15       PAL         35R       15       1645       467.1       476.5       9.4       2.85       30.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |         |            |               |       |              |          | 2        | 1.5     | 1.5        | 459.4         | 460.9           |                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |         |            |               |       |              |          | 3        | 1.5     | 1.5        | 460.9         | 462.4           | IW, BGAS           |
| 35R       15       1645       467.1       476.5       9.4       2.85       30.3         35R       15       1645       467.1       476.5       9.4       2.85       30.3         36R       15       1850       476.5       485.7       9.2       7.49       81.4         36R       15       1.5       1.5       476.5       478.0       469.95       PAL         37R       15       2050       485.7       49.2       9.6       9.21       95.9       1       1.5       1.5       479.5       481.0       82.5       HS         37R       15       2050       485.7       495.3       9.6       9.21       95.9       1       1.5       1.5       481.0       482.5       HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |         |            |               |       |              |          | 4        | 1.5     | 1.5        | 462.4         | 463.9           | HS                 |
| $ \begin{array}{cccc}         CC(W/5) & 0.21 & 0.21 \\             Totals: 7.25 & 7.25 \\ \end{array} $ $ \begin{array}{cccc}         CC(W/2) & 7.25 & 7.25 \\ \hline         Totals: 7.25 & 7.25 & 481.0 & 8ACT, W \hline         Totals: 7.49 & 7.49 \\ \hline         Totals: 7.5 & 487.2 & 488.7 \\ \hline         Totals: 7.5 & 1.5 & 487.2 & 488.7 \\ \hline         Totals: 7.5 & 1.5 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |         |            |               |       |              |          | 5        | 1.04    | 1.04       | 463.9         | 464.94          |                    |
| 35R       15       1645       467.1       476.5       9.4       2.85       30.3         36R       15       1850       476.5       485.7       9.2       7.49       81.4         36R       15       1850       476.5       478.0       479.5       WRTB         37R       15       2050       485.7       495.3       9.6       9.21       95.9         37R       15       2050       485.7       487.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>CC(w/5)</td> <td>0.21</td> <td>0.21</td> <td>464.94</td> <td>465.15</td> <td>PAL</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |       |         |            |               |       |              |          | CC(w/5)  | 0.21    | 0.21       | 464.94        | 465.15          | PAL                |
| 35R       13       1643       407.1       476.3       9.4       2.83       50.3         1       1.5       1.5       1.5       467.1       468.6       IW         2       1.1       1.1       1.4       468.6       469.7       BACT, HS, WRTB         36R       15       1850       476.5       485.7       9.2       7.49       81.4       I       1.5       1.5       469.7       469.95       PAL         36R       15       1850       476.5       485.7       9.2       7.49       81.4       I       1.5       1.5       476.5       478.0       2       1.5       1.5       1.5       478.0       479.5       WRTB         3       1.5       1.5       1.5       478.0       482.5       HS       3       1.5       1.5       481.0       482.5       HS         3       1.5       1.5       1.49       1.49       482.5       483.99       PAL         37R       15       2050       485.7       495.3       9.6       9.21       95.9       I       1.5       1.5       488.7       40.2       WRTB         3       1.5       1.5       1.5       485.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250  | 15    | 1645    | 1671       | 176 5         | 0.4   | 2 95         | 20.2     | lotals:  | 7.25    | 7.25       |               |                 |                    |
| 36R       15       1850       476.5       485.7       9.2       7.49       81.4         1       1.5       1.5       1.5       469.7       469.75       469.75       PAL         36R       15       1850       476.5       485.7       9.2       7.49       81.4       1       1.5       1.5       469.7       469.95       PAL         36R       15       1850       476.5       485.7       9.2       7.49       81.4       1       1.5       1.5       476.5       478.0         3       1.5       1.5       1.5       476.5       478.0       469.75       WRTB         3       1.5       1.5       1.5       478.0       479.5       WRTB         3       1.5       1.5       478.0       482.5       HS         3       1.5       1.5       481.0       482.5       HS         37R       15       2050       485.7       495.3       9.6       9.21       95.9         1       1.5       1.5       1.5       487.7       487.2       2       1.5       1.5       487.7       3       1.5       1.5       487.7       488.7       480.2       WRTB </td <td>224</td> <td>15</td> <td>1045</td> <td>407.1</td> <td>470.5</td> <td>2.4</td> <td>2.85</td> <td>50.5</td> <td>1</td> <td>15</td> <td>15</td> <td>467 1</td> <td>468 6</td> <td>١\٨/</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 224  | 15    | 1045    | 407.1      | 470.5         | 2.4   | 2.85         | 50.5     | 1        | 15      | 15         | 467 1         | 468 6           | ١\٨/               |
| CC(w/2)       1.1       1.5       1.5       469.7       469.95       PAL         36R       15       1850       476.5       485.7       9.2       7.49       81.4       1       1.5       1.5       476.5       478.0         2       1.5       1.5       1.5       478.0       479.5       WRTB         3       1.5       1.5       1.5       481.0       BACT, IW         4       1.5       1.5       1.49       1.49       482.5       HS         3       1.5       1.5       481.0       482.5       HS         37R       15       2050       485.7       495.3       9.6       9.21       95.9         1       1.5       1.5       1.5       487.2       2       1.5       1.5       487.2         3       1.5       1.5       1.5       488.7       490.2       WRTB         4       1.5       1.5       1.5       488.7       490.2       WRTB         4       1.5       1.5       487.2       488.7       3       1.5       1.5       490.2       WRTB         4       1.5       1.5       1.5       1.5       490.2       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |         |            |               |       |              |          | 2        | 1.5     | 1.5        | 468.6         | 469.7           | BACT HS WRTB       |
| Orac       Orac       Orac         Totals:       Orac       Orac       Orac         Totals:       2.85       2.85       2.85         Jac       2.85       2.85       2.85         Jac       1       1.5       1.5       476.5       478.0         2       1.5       1.5       1.5       478.0       479.5       WRTB         Jac       1       1.5       1.5       479.5       481.0       BACT, IW         4       1.5       1.5       1.49       1.49       482.5       483.99       PAL         Jac       1       1.5       1.5       485.7       487.2         2       1.5       1.5       1.5       487.2       488.7         3       1.5       1.5       1.5       488.7       490.2       WRTB         4       1.5       1.5       1.5       490.2       WRTB         4       1.5       1.5       491.7       493.2       HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |         |            |               |       |              |          | CC(w/2)  | 0.25    | 0.25       | 469.7         | 469.95          | PAI                |
| 36R       15       1850       476.5       485.7       9.2       7.49       81.4         1       1.5       1.5       1.5       476.5       478.0         2       1.5       1.5       1.5       478.0       479.5       WRTB         3       1.5       1.5       1.5       478.0       479.5       WRTB         3       1.5       1.5       1.5       481.0       BACT, IW         4       1.5       1.5       481.0       482.5       HS         37R       15       2050       485.7       495.3       9.6       9.21       95.9       1       1.5       1.5       487.2       488.7         3       1.5       1.5       1.5       1.5       487.2       488.7       2       1.5       1.5       488.7       487.2         2       1.5       1.5       1.5       488.7       490.2       WRTB         4       1.5       1.5       1.5       488.7       490.2       WRTB         4       1.5       1.5       1.5       490.2       491.7       1W         5       1.5       1.5       1.5       491.7       493.2       HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |         |            |               |       |              |          | Totals:  | 2.85    | 2.85       |               |                 |                    |
| 1       1.5       1.5       476.5       478.0         2       1.5       1.5       1.5       478.0       479.5         3       1.5       1.5       1.5       478.0       479.5         3       1.5       1.5       1.5       478.0       BACT, IW         4       1.5       1.5       481.0       482.5       HS         5       1.49       1.49       482.5       483.99       PAL         70tals:       7.49       7.49       7.49       7.49       7.49         3       1.5       1.5       1.5       487.2       483.7         1       1.5       1.5       1.5       488.7       488.7         3       1.5       1.5       1.5       488.7       488.7         3       1.5       1.5       1.5       488.7       489.7         3       1.5       1.5       1.5       488.7       488.7         3       1.5       1.5       1.5       489.7       489.7         4       1.5       1.5       489.7       490.2       WRTB         4       1.5       1.5       490.2       491.7       IW         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36R  | 15    | 1850    | 476.5      | 485.7         | 9.2   | 7.49         | 81.4     |          |         |            |               |                 |                    |
| 2       1.5       1.5       478.0       479.5       WRTB         3       1.5       1.5       1.5       479.5       481.0       BACT, IW         4       1.5       1.5       1.5       481.0       482.5       HS         5       1.49       1.49       482.5       483.99       PAL         70tals:       7.49       7.49       7.49       7.49       7.49         37R       15       2050       485.7       495.3       9.6       9.21       95.9       95.9       1       1.5       1.5       487.2       2         1       1.5       1.5       1.5       487.2       488.7       487.2       2       1.5       1.5       1.5       487.2       487.2       487.2       3       1.5       1.5       1.5       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2       487.2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1.5</td><td>1.5</td><td>476.5</td><td>478.0</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |         |            |               |       |              |          | 1        | 1.5     | 1.5        | 476.5         | 478.0           |                    |
| 3       1.5       1.5       479.5       481.0       BACT, IW         4       1.5       1.5       1.5       481.0       482.5       HS         5       1.49       1.49       1.49       482.5       483.99       PAL         37R       15       2050       485.7       495.3       9.6       9.21       95.9       95.9       95.9       95.9       95.9       95.9       1       1.5       1.5       485.7       487.2       2         1       1.5       1.5       1.5       486.7       487.2       2       2       1.5       1.5       488.7       488.7         3       1.5       1.5       1.5       1.5       488.7       490.2       WRTB         4       1.5       1.5       1.5       490.2       491.7       IW         5       1.5       1.5       491.7       493.2       HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |         |            |               |       |              |          | 2        | 1.5     | 1.5        | 478.0         | 479.5           | WRTB               |
| 4       1.5       1.5       481.0       482.5       HS         5       1.49       1.49       482.5       483.99       PAL         37R       15       2050       485.7       495.3       9.6       9.21       95.9         1       1.5       1.5       485.7       487.2         2       1.5       1.5       487.2       488.7         3       1.5       1.5       488.7       490.2       WRTB         4       1.5       1.5       1.5       491.7       IW         5       1.5       1.5       1.5       491.7       493.2       HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |       |         |            |               |       |              |          | 3        | 1.5     | 1.5        | 479.5         | 481.0           | BACT, IW           |
| 5       1.49       1.49       482.5       483.99       PAL         37R       15       2050       485.7       495.3       9.6       9.21       95.9       95.9       1       1.5       1.5       485.7       487.2         2       1.5       1.5       1.5       488.7       480.2       480.7         3       1.5       1.5       488.7       490.2       WRTB         4       1.5       1.5       491.7       IW         5       1.5       1.5       491.7       493.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |         |            |               |       |              |          | 4        | 1.5     | 1.5        | 481.0         | 482.5           | HS                 |
| Totals:       7.49       7.49         37R       15       2050       485.7       495.3       9.6       95.9         1       1.5       1.5       1.5       485.7       487.2         2       1.5       1.5       487.2       488.7         3       1.5       1.5       488.7       490.2       WRTB         4       1.5       1.5       491.7       IW         5       1.5       1.5       491.7       493.2       HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       |         |            |               |       |              |          | 5        | 1.49    | 1.49       | 482.5         | 483.99          | PAL                |
| 3/K       13       2030       403.7       493.3       9.0       9.21       93.9         1       1.5       1.5       1.5       487.2         2       1.5       1.5       487.2         3       1.5       1.5       488.7         4       1.5       1.5       490.2       WRTB         4       1.5       1.5       491.7       IW         5       1.5       1.5       491.7       493.2       HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | חדכ  | 15    | 2050    | 105 7      | 40E 2         | 0.7   | 0.21         | 05.0     | Totals:  | 7.49    | 7.49       |               |                 |                    |
| 1       1.3       1.3       463.7       467.2         2       1.5       1.5       487.2       488.7         3       1.5       1.5       488.7       490.2       WRTB         4       1.5       1.5       490.2       491.7       IW         5       1.5       1.5       491.7       493.2       HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5/K  | 15    | 2050    | 482./      | 472.3         | 9.6   | 9.21         | 95.9     | 1        | 15      | 15         | 185 7         | 187 2           |                    |
| 1.5       1.5       467.2       4667.2         3       1.5       1.5       488.7       490.2       WRTB         4       1.5       1.5       490.2       491.7       IW         5       1.5       1.5       491.7       493.2       HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |         |            |               |       |              |          | י<br>ז   | 1.5     | 1.5        | 487 2         | 407.2<br>488 7  |                    |
| 4 1.5 1.5 490.2 491.7 IW<br>5 1.5 1.5 491.7 493.2 HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |       |         |            |               |       |              |          | ∠<br>3   | 1.5     | 1.5        | 488 7         | 490.7           | WRTB               |
| 5 1.5 1.5 491.7 493.2 HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |       |         |            |               |       |              |          | 4        | 1.5     | 1.5        | 490.2         | 491.7           | IW                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |         |            |               |       |              |          | 5        | 1.5     | 1.5        | 491.7         | 493.2           | HS                 |

|      | Date           | Time    | Core<br>(m | depth<br>bsf) | Le    | ength<br>(m) | Deservery |          | Le<br>( | ngth<br>m) | Sectior<br>(m   | n depth<br>bsf)  |                    |
|------|----------------|---------|------------|---------------|-------|--------------|-----------|----------|---------|------------|-----------------|------------------|--------------------|
| Core | (June<br>2000) | (local) | Тор        | Bottom        | Cored | Recovered    | (%)       | Section  | Liner   | Curated    | Тор             | Bottom           | Catwalk samples    |
|      |                |         |            |               |       |              |           | 6        | 13      | 13         | 493.2           | 494 5            |                    |
|      |                |         |            |               |       |              |           | 7        | 0.41    | 0.41       | 494.5           | 494.91           | PAL                |
|      |                |         |            |               |       |              |           | Totals:  | 9.21    | 9.21       |                 |                  |                    |
| 38R  | 15             | 2310    | 495.3      | 504.9         | 9.6   | 9.73         | 101.4     |          | 1 5     | 1.5        | 105.2           | 10 ( 0           |                    |
|      |                |         |            |               |       |              |           | 1        | 1.5     | 1.5        | 495.3           | 496.8            | RCAS               |
|      |                |         |            |               |       |              |           | 2        | 1.5     | 1.5        | 498.3           | 499.8            | WRY, WRC, WRY, WRS |
|      |                |         |            |               |       |              |           | 4        | 1.5     | 1.5        | 499.8           | 501.3            | IW                 |
|      |                |         |            |               |       |              |           | 5        | 1.5     | 1.5        | 501.3           | 502.8            | HS                 |
|      |                |         |            |               |       |              |           | 6        | 1.5     | 1.5        | 502.8           | 504.3            | WRMT               |
|      |                |         |            |               |       |              |           | 7        | 0.51    | 0.51       | 504.3           | 504.81           | DAL                |
|      |                |         |            |               |       |              |           | Totals   | 9.73    | 9.73       | 504.81          | 505.05           | PAL                |
| 39R  | 16             | 0125    | 504.9      | 514.6         | 9.7   | 8.31         | 85.7      | Totals.  | 2.75    | 2.75       |                 |                  |                    |
|      |                |         |            |               |       |              |           | 1        | 1.5     | 1.5        | 504.9           | 506.4            | HYWR               |
|      |                |         |            |               |       |              |           | 2        | 1.5     | 1.5        | 506.4           | 507.9            |                    |
|      |                |         |            |               |       |              |           | 3        | 1.5     | 1.5        | 507.9           | 509.4            | HS, IW             |
|      |                |         |            |               |       |              |           | 4        | 1.5     | 1.5        | 509.4           | 510.9            |                    |
|      |                |         |            |               |       |              |           | 6        | 0.81    | 0.81       | 512.4           | 513.21           | PAI                |
|      |                |         |            |               |       |              |           | Totals:  | 8.31    | 8.31       | 0.2             | 010121           |                    |
| 40R  | 16             | 1305    | 514.6      | 524.3         | 9.7   | 9.21         | 94.9      |          |         |            |                 |                  |                    |
|      |                |         |            |               |       |              |           | 1        | 1.5     | 1.5        | 514.6           | 516.1            |                    |
|      |                |         |            |               |       |              |           | 2        | 1.5     | 1.5        | 516.1           | 517.6            |                    |
|      |                |         |            |               |       |              |           | 3<br>4   | 1.5     | 1.5        | 517.6           | 519.1            | BACT IW BGAS       |
|      |                |         |            |               |       |              |           | 5        | 1.5     | 1.5        | 520.6           | 520.0            | HS. WRTB           |
|      |                |         |            |               |       |              |           | 6        | 1.46    | 1.46       | 522.1           | 523.56           |                    |
|      |                |         |            |               |       |              |           | CC(w/CC) | 0.25    | 0.25       | 523.56          | 523.81           | PAL                |
|      |                |         |            | 533 A         |       |              |           | Totals:  | 9.21    | 9.21       |                 |                  |                    |
| 41R  | 16             | 2200    | 524.3      | 533.9         | 9.6   | 4.89         | 50.9      | 1        | 15      | 15         | 524 2           | 575 0            |                    |
|      |                |         |            |               |       |              |           | 2        | 1.5     | 1.5        | 525.8           | 527.3            | IW                 |
|      |                |         |            |               |       |              |           | 3        | 1.5     | 1.5        | 527.3           | 528.8            | HS, BGAS           |
|      |                |         |            |               |       |              |           | CC(w/CC) | 0.39    | 0.39       | 528.8           | 529.19           | PAL, WRTB          |
|      |                |         |            |               |       |              |           | Totals:  | 4.89    | 4.89       |                 |                  |                    |
| 42R  | 17             | 0105    | 533.9      | 543.6         | 9.7   | 9.76         | 100.6     | 1        | 15      | 15         | 522.0           | 525 A            |                    |
|      |                |         |            |               |       |              |           | 2        | 1.5     | 1.5        | 535.9           | 536.9            |                    |
|      |                |         |            |               |       |              |           | 3        | 1.5     | 1.5        | 536.9           | 538.4            | WRLZ               |
|      |                |         |            |               |       |              |           | 4        | 1.5     | 1.5        | 538.4           | 539.9            | HS, BGAS           |
|      |                |         |            |               |       |              |           | 5        | 1.5     | 1.5        | 539.9           | 541.4            | IW                 |
|      |                |         |            |               |       |              |           | 6        | 1.5     | 1.5        | 541.4           | 542.9            |                    |
|      |                |         |            |               |       |              |           |          | 0.36    | 0.36       | 542.9<br>543.46 | 543.40<br>543.66 | PAL SERCC WRTB     |
|      |                |         |            |               |       |              |           | Totals:  | 9.76    | 9.76       | 545.40          | 545.00           | TAL, SINCE, WIND   |
| 43R  | 17             | 0315    | 543.6      | 552.9         | 9.3   | 9.13         | 98.2      |          |         |            |                 |                  |                    |
|      |                |         |            |               |       |              |           | 1        | 1.5     | 1.5        | 543.6           | 545.1            |                    |
|      |                |         |            |               |       |              |           | 2        | 1.5     | 1.5        | 545.1           | 546.6            |                    |
|      |                |         |            |               |       |              |           | 2<br>2   | 1.5     | 1.5        | 548.0           | 549.1            | HS                 |
|      |                |         |            |               |       |              |           | 5        | 1.5     | 1.5        | 549.6           | 551.1            | WRMG               |
|      |                |         |            |               |       |              |           | 6        | 1.36    | 1.36       | 551.1           | 552.46           |                    |
|      |                |         |            |               |       |              |           | CC(w/CC) | 0.27    | 0.27       | 552.46          | 552.73           | PAL, WRTB, SFRCC   |
| 440  | 17             | 05.25   | 5520       | 5(2)(         | 0.7   | 5 70         | 50.7      | Totals:  | 9.13    | 9.13       |                 |                  |                    |
| 44K  | 17             | 0525    | <u> </u>   | 302.0         | 9.7   | 5./9         | 39.7      | 1        | 1.5     | 1.5        | 552.9           | 554 4            |                    |
|      |                |         |            |               |       |              |           | 2        | 1.5     | 1.5        | 554.4           | 555.9            |                    |
|      |                |         |            |               |       |              |           | 3        | 1.5     | 1.5        | 555.9           | 557.4            | HS, IW, BGAS       |
|      |                |         |            |               |       |              |           | 4        | 1.29    | 1.29       | 557.4           | 558.69           | PAL                |
| 450  | 17             | 0715    | 5(2)       | E 7 2 2       | 0.7   | F 7F         | 50.2      | Totals:  | 5.79    | 5.79       |                 |                  |                    |
| 45K  | 17             | 0/15    | 302.6      | 3/2.3         | 9.7   | 5./5         | 39.3      | 1        | 15      | 15         | 562.6           | 564 1            |                    |
|      |                |         |            |               |       |              |           | 2        | 1.5     | 1.5        | 564.1           | 565.6            |                    |
|      |                |         |            |               |       |              |           | 3        | 1.5     | 1.5        | 565.6           | 567.1            | HS, IW, BGAS       |
|      |                |         |            |               |       |              |           | 4        | 1.1     | 1.1        | 567.1           | 568.2            |                    |
|      |                |         |            |               |       |              |           | CC(w/CC) | 0.15    | 0.15       | 568.2           | 568.35           | SFRCC, WRTB, PAL   |
|      |                |         |            |               |       |              |           | Iotals:  | 5.75    | 5.75       |                 |                  |                    |

|      | Date           | Time    | Core<br>(m | depth<br>Ibsf) | Le    | ength<br>(m) | Pecover |                     | Le<br>( | ngth<br>m) | Section<br>(m  | n depth<br>bsf) |                      |
|------|----------------|---------|------------|----------------|-------|--------------|---------|---------------------|---------|------------|----------------|-----------------|----------------------|
| Core | (June<br>2000) | (local) | Тор        | Bottom         | Cored | Recovered    | (%)     | Section             | Liner   | Curated    | Тор            | Bottom          | Catwalk samples      |
| 460  | 17             | 0000    |            | 501.0          | 0.6   | 0.44         | 00.0    |                     |         |            | •              |                 |                      |
| 46K  | 17             | 0920    | 572.3      | 581.9          | 9.6   | 9.44         | 98.3    | 1                   | 15      | 15         | 572 2          | 572 8           |                      |
|      |                |         |            |                |       |              |         | 2                   | 1.5     | 1.5        | 573.8          | 575 3           |                      |
|      |                |         |            |                |       |              |         | 3                   | 1.5     | 1.5        | 575.3          | 576.8           |                      |
|      |                |         |            |                |       |              |         | 4                   | 1.5     | 1.5        | 576.8          | 578.3           | BACT, HS, IW, BGAS   |
|      |                |         |            |                |       |              |         | 5                   | 1.5     | 1.5        | 578.3          | 579.8           |                      |
|      |                |         |            |                |       |              |         | 6                   | 1.5     | 1.5        | 579.8          | 581.3           |                      |
|      |                |         |            |                |       |              |         | 7                   | 0.44    | 0.44       | 581.3          | 581.74          | PAL                  |
|      |                |         |            |                |       |              |         | Totals:             | 9.44    | 9.44       |                |                 |                      |
| 47R  | 17             | 1115    | 581.9      | 591.6          | 9.7   | 8.79         | 90.6    |                     |         |            |                |                 |                      |
|      |                |         |            |                |       |              |         | 1                   | 1.5     | 1.5        | 581.9          | 583.4           |                      |
|      |                |         |            |                |       |              |         | 2                   | 1.5     | 1.5        | 583.4          | 584.9           |                      |
|      |                |         |            |                |       |              |         | 3                   | 1.5     | 1.5        | 584.9          | 586.4           | HS, BGAS             |
|      |                |         |            |                |       |              |         | 4                   | 1.5     | 1.5        | 586.4          | 587.9           | IW                   |
|      |                |         |            |                |       |              |         | 5                   | 1.5     | 1.5        | 587.9          | 589.4           |                      |
|      |                |         |            |                |       |              |         | 6                   | 1.11    | 1.11       | 589.4          | 590.51          |                      |
|      |                |         |            |                |       |              |         | CC(W/CC)            | 0.18    | 0.18       | 590.51         | 590.69          | PAL, WRIB            |
| 19D  | 17             | 1225    | 501 6      | 601.2          | 0.6   | 0.08         | 104     | TOLOIS:             | 0.79    | 8.79       |                |                 |                      |
| 101  | 17             | 1323    | 571.0      | 001.2          | 9.0   | 7.70         | 104     | 1                   | 15      | 15         | 591 6          | 503 1           |                      |
|      |                |         |            |                |       |              |         | י<br>ז              | 1.5     | 1.5        | 592.0          | 592.1<br>594.6  |                      |
|      |                |         |            |                |       |              |         | 2                   | 1.5     | 1.5        | 594.6          | 596.1           |                      |
|      |                |         |            |                |       |              |         | 4                   | 1.5     | 1.5        | 596 1          | 597.6           |                      |
|      |                |         |            |                |       |              |         | 5                   | 1.5     | 1.5        | 597.6          | 599.1           | WRY WRC WRY WRS      |
|      |                |         |            |                |       |              |         | 6                   | 1.5     | 1.5        | 599.1          | 600.6           | ,,,                  |
|      |                |         |            |                |       |              |         | 7                   | 0.67    | 0.67       | 600.6          | 601.27          |                      |
|      |                |         |            |                |       |              |         | CC(w/7)             | 0.31    | 0.31       | 601.27         | 601.58          | PAL                  |
|      |                |         |            |                |       |              |         | Totals:             | 9.98    | 9.98       |                |                 |                      |
| 49R  | 17             | 1510    | 601.2      | 610.9          | 9.7   | 4.14         | 42.7    |                     |         |            |                |                 |                      |
|      |                |         |            |                |       |              |         | 1                   | 1.5     | 1.5        | 601.2          | 602.7           | IW                   |
|      |                |         |            |                |       |              |         | 2                   | 1.5     | 1.5        | 602.7          | 604.2           |                      |
|      |                |         |            |                |       |              |         | 3                   | 1.14    | 1.14       | 604.2          | 605.34          | PAL, HS, BGAS, WRL   |
|      |                |         |            |                |       |              |         | Totals:             | 4.14    | 4.14       |                |                 |                      |
| 50R  | 17             | 1705    | 610.9      | 620.5          | 9.6   | 7.19         | 74.9    |                     |         |            |                |                 |                      |
|      |                |         |            |                |       |              |         | 1                   | 1.5     | 1.5        | 610.9          | 612.4           | WKHZ                 |
|      |                |         |            |                |       |              |         | 2                   | 1.5     | 1.5        | 612.4          | 613.9           |                      |
|      |                |         |            |                |       |              |         | 3                   | 1.5     | 1.5        | 615.9          | 616.0           | 11.47                |
|      |                |         |            |                |       |              |         | 4                   | 1.5     | 1.5        | 616.9          | 618.00          |                      |
|      |                |         |            |                |       |              |         | Totals <sup>.</sup> | 7 19    | 7 19       | 010.2          | 010.07          | TAL, 115             |
| 51R  | 17             | 1850    | 620.5      | 630.1          | 9.6   | 3.85         | 40.1    |                     |         |            |                |                 |                      |
|      |                |         |            |                |       |              |         | 1                   | 1.5     | 1.5        | 620.5          | 622.0           | IW, BGAS             |
|      |                |         |            |                |       |              |         | 2                   | 1.5     | 1.5        | 622.0          | 623.5           | BACT                 |
|      |                |         |            |                |       |              |         | 3                   | 0.56    | 0.56       | 623.5          | 624.06          | HS                   |
|      |                |         |            |                |       |              |         | CC(w/3)             | 0.29    | 0.29       | 624.06         | 624.35          | PAL                  |
|      |                |         |            |                |       |              |         | Totals:             | 3.85    | 3.85       |                |                 |                      |
| 52R  | 17             | 2045    | 630.1      | 639.8          | 9.7   | 9.31         | 96      | 1                   |         |            | (20.1          | () ( )          |                      |
|      |                |         |            |                |       |              |         | 1                   | 1.5     | 1.5        | 630.1          | 631.6           |                      |
|      |                |         |            |                |       |              |         | 2                   | 1.5     | 1.5        | 031.6          | 033.1           |                      |
|      |                |         |            |                |       |              |         | 2<br>1              | 1.5     | 1.5        | 033.1<br>634 4 | 034.0<br>636 1  |                      |
|      |                |         |            |                |       |              |         | 4                   | 1.5     | 1.5        | 626.1          | 637.6           |                      |
|      |                |         |            |                |       |              |         | 6                   | 1.5     | 1.5        | 637.6          | 639.1           |                      |
|      |                |         |            |                |       |              |         | 7                   | 0.31    | 0.31       | 639.1          | 639 41          | PAI                  |
|      |                |         |            |                |       |              |         | ,<br>Totals:        | 9.31    | 9.31       | 037.1          | 057.41          | TAL                  |
| 53R  | 17             | 2230    | 639.8      | 649.4          | 9.6   | 5.9          | 61.5    | . 5 calor           |         |            |                |                 |                      |
|      | -              |         |            |                |       |              |         | 1                   | 1.5     | 1.5        | 639.8          | 641.3           |                      |
|      |                |         |            |                |       |              |         | 2                   | 1.5     | 1.5        | 641.3          | 642.8           |                      |
|      |                |         |            |                |       |              |         | 3                   | 1.5     | 1.5        | 642.8          | 644.3           | WRMT, IW, WRSR       |
|      |                |         |            |                |       |              |         | 4                   | 1.15    | 1.15       | 644.3          | 645.45          | HS                   |
|      |                |         |            |                |       |              |         | CC(w/4)             | 0.25    | 0.25       | 645.45         | 645.7           | PAL                  |
| _    |                |         |            |                |       |              |         | Totals:             | 5.9     | 5.9        |                |                 |                      |
| 54R  | 18             | 0030    | 649.4      | 659.0          | 9.6   | 9.84         | 102.5   |                     |         |            |                | <               |                      |
|      |                |         |            |                |       |              |         | 1                   | 1.5     | 1.5        | 649.4          | 650.9           |                      |
|      |                |         |            |                |       |              |         | 2                   | 1.5     | 1.5        | 650.9          | 652.4           | HS, BGAS             |
|      |                |         |            |                |       |              |         | 2<br>1              | 1.5     | 1.5        | 032.4<br>652.0 | 033.9<br>655 A  | VVKID                |
|      |                |         |            |                |       |              |         | 4                   | 1.5     | 1.5        | 033.9<br>655 1 | 656 0           |                      |
|      |                |         |            |                |       |              |         | 5                   | 1.5     | i.J        | 055.4          | 050.7           | WINC, WIND, DACT, IV |

|      | Date  | Timo    | Core<br>(m | depth<br>bsf) | Le    | ength<br>(m) | Pacovoru |               | Lei<br>(   | ngth<br>m) | Sectior<br>(m   | n depth<br>bsf)  |                 |
|------|-------|---------|------------|---------------|-------|--------------|----------|---------------|------------|------------|-----------------|------------------|-----------------|
| Core | 2000) | (local) | Тор        | Bottom        | Cored | Recovered    | (%)      | Section       | Liner      | Curated    | Тор             | Bottom           | Catwalk samples |
|      |       |         |            |               |       |              |          | 6             | 1.5        | 1.5        | 656.9           | 658.4            |                 |
|      |       |         |            |               |       |              |          | 7             | 0.63       | 0.63       | 658.4           | 659.03           |                 |
|      |       |         |            |               |       |              |          | CC(w/CC)      | 0.21       | 0.21       | 659.03          | 659.24           | PAL             |
|      |       |         |            |               |       |              |          | Totals:       | 9.84       | 9.84       |                 |                  |                 |
| 55R  | 18    | 0230    | 659.0      | 668./         | 9.7   | 9.08         | 93.6     | 1             | 15         | 15         | <b>650 0</b>    | 660 5            |                 |
|      |       |         |            |               |       |              |          | 2             | 1.5        | 1.5        | 660 5           | 662.0            | WKJF            |
|      |       |         |            |               |       |              |          | 3             | 1.5        | 1.5        | 662.0           | 663.5            |                 |
|      |       |         |            |               |       |              |          | 4             | 1.5        | 1.5        | 663.5           | 665.0            | HS              |
|      |       |         |            |               |       |              |          | 5             | 1.5        | 1.5        | 665.0           | 666.5            |                 |
|      |       |         |            |               |       |              |          | 6             | 1.43       | 1.43       | 666.5           | 667.93           | DAL             |
|      |       |         |            |               |       |              |          | CC(W/CC)      | 0.15       | 0.15       | 667.93          | 668.08           | PAL             |
| 56R  | 18    | 0435    | 668.7      | 678.3         | 9.6   | 2.91         | 30.3     | Totais.       | 2.00       | 2.00       |                 |                  |                 |
|      |       |         |            |               |       |              |          | 1             | 1.5        | 1.5        | 668.7           | 670.2            | BACT, IW        |
|      |       |         |            |               |       |              |          | 2             | 1.41       | 1.41       | 670.2           | 671.61           | PAL, HS, BGAS   |
|      |       |         |            |               |       |              |          | Totals:       | 2.91       | 2.91       |                 |                  |                 |
| 57R  | 18    | 0640    | 678.3      | 688.0         | 9.7   | 9.93         | 102.4    | 1             | 1 5        | 1.5        | (70.2           | (70.0            |                 |
|      |       |         |            |               |       |              |          | 2             | 1.5        | 1.5        | 670.3<br>670.8  | 6/9.8<br>681 3   |                 |
|      |       |         |            |               |       |              |          | 2             | 1.5        | 1.5        | 681.3           | 682.8            |                 |
|      |       |         |            |               |       |              |          | 4             | 1.5        | 1.5        | 682.8           | 684.3            | HS, IW          |
|      |       |         |            |               |       |              |          | 5             | 1.5        | 1.5        | 684.3           | 685.8            |                 |
|      |       |         |            |               |       |              |          | 6             | 1.5        | 1.5        | 685.8           | 687.3            | HYWR            |
|      |       |         |            |               |       |              |          | 7             | 0.63       | 0.63       | 687.3           | 687.93           |                 |
|      |       |         |            |               |       |              |          | Totals:       | 0.3        | 0.3        | 687.93          | 688.23           | PAL, SFRCC      |
| 58R  | 18    | 0845    | 688.0      | 697.6         | 9.6   | 6.44         | 67.1     | Totais.       | 7.75       | 7.75       |                 |                  |                 |
|      |       |         |            |               |       |              |          | 1             | 1.5        | 1.5        | 688.0           | 689.5            |                 |
|      |       |         |            |               |       |              |          | 2             | 1.5        | 1.5        | 689.5           | 691.0            |                 |
|      |       |         |            |               |       |              |          | 3             | 1.5        | 1.5        | 691.0           | 692.5            | HS              |
|      |       |         |            |               |       |              |          | 4             | 1.5        | 1.5        | 692.5           | 694.0            |                 |
|      |       |         |            |               |       |              |          | s<br>CC(w/CC) | 0.21       | 0.21       | 694.0<br>694.21 | 694.21<br>694.44 | ΡΔΙ             |
|      |       |         |            |               |       |              |          | Totals:       | 6.44       | 6.44       | 074.21          | 071.11           |                 |
| 59R  | 18    | 1050    | 697.6      | 707.2         | 9.6   | 8.85         | 92.2     |               |            |            |                 |                  |                 |
|      |       |         |            |               |       |              |          | 1             | 1.5        | 1.5        | 697.6           | 699.1            |                 |
|      |       |         |            |               |       |              |          | 2             | 1.5        | 1.5        | 699.1           | 700.6            |                 |
|      |       |         |            |               |       |              |          | 3             | 1.5        | 1.5        | 700.6<br>702.1  | 702.1            |                 |
|      |       |         |            |               |       |              |          | 5             | 1.5        | 1.5        | 702.1           | 705.0            | WRIZ CRG        |
|      |       |         |            |               |       |              |          | 6             | 1.35       | 1.35       | 705.1           | 706.45           | PAL             |
|      |       |         |            |               |       |              |          | CC(w/6)       | 0.0        | 0.0        |                 |                  |                 |
|      |       |         |            |               |       |              |          | Totals:       | 8.85       | 8.85       |                 |                  |                 |
| 60R  | 18    | 1250    | /0/.2      | /16.9         | 9.7   | 8.61         | 88.8     | 1             | 15         | 15         | 707.2           | 709 7            |                 |
|      |       |         |            |               |       |              |          | 2             | 1.5        | 1.5        | 707.2           | 710.2            | BACT. IW        |
|      |       |         |            |               |       |              |          | 3             | 1.5        | 1.5        | 710.2           | 711.7            |                 |
|      |       |         |            |               |       |              |          | 4             | 1.5        | 1.5        | 711.7           | 713.2            |                 |
|      |       |         |            |               |       |              |          | 5             | 1.5        | 1.5        | 713.2           | 714.7            | HS              |
|      |       |         |            |               |       |              |          | 6<br>Tatalai  | 1.11       | 1.11       | 714.7           | 715.81           | PAL             |
| 61R  | 18    | 1455    | 716 9      | 726 5         | 9.6   | 9 91         | 103.2    | TOLOIS:       | 0.01       | 0.01       |                 |                  |                 |
| UIK  | 10    | 1455    | /10./      | 720.5         | 2.0   | 2.21         | 105.2    | 1             | 1.5        | 1.5        | 716.9           | 718.4            |                 |
|      |       |         |            |               |       |              |          | 2             | 1.5        | 1.5        | 718.4           | 719.9            |                 |
|      |       |         |            |               |       |              |          | 3             | 1.5        | 1.5        | 719.9           | 721.4            |                 |
|      |       |         |            |               |       |              |          | 4             | 1.5        | 1.5        | 721.4           | 722.9            | 114/            |
|      |       |         |            |               |       |              |          | 5             | 1.5        | 1.5<br>1.5 | /22.9<br>721 1  | /24.4<br>725 0   | IVV<br>HS       |
|      |       |         |            |               |       |              |          | 7             | 0.55       | 0.55       | 725.9           | 726.45           | i IJ            |
|      |       |         |            |               |       |              |          | CC(w/7)       | 0.36       | 0.36       | 726.45          | 726.81           | PAL             |
|      |       |         |            |               |       |              |          | Totals:       | 9.91       | 9.91       |                 |                  |                 |
| 62R  | 18    | 1640    | 726.5      | 736.1         | 9.6   | 7.18         | 74.8     | -             |            |            |                 | 705 -            |                 |
|      |       |         |            |               |       |              |          | 1             | 1.5        | 1.5        | 726.5           | 728.0            |                 |
|      |       |         |            |               |       |              |          | 2             | 1.5<br>1.5 | 1.5<br>1.5 | 728.U<br>729.5  | 729.5<br>731 0   | IW BGAS WRSP    |
|      |       |         |            |               |       |              |          | 4             | 1.5        | 1.5        | 731.0           | 732.5            |                 |
|      |       |         |            |               |       |              |          | 5             | 1.07       | 1.07       | 732.5           | 733.57           | PAL, HS         |

|      | Date           | Timo    | Core<br>(m | depth<br>bsf) | Le    | ength<br>(m) | Pacovary |                    | Le<br>(    | ngth<br>m)   | Sectior<br>(m    | n depth<br>bsf)  |                    |
|------|----------------|---------|------------|---------------|-------|--------------|----------|--------------------|------------|--------------|------------------|------------------|--------------------|
| Core | (June<br>2000) | (local) | Тор        | Bottom        | Cored | Recovered    | (%)      | Section            | Liner      | Curated      | Тор              | Bottom           | Catwalk samples    |
| (20  | 10             | 1025    | 726 1      | 745 7         | 0.(   | 0.07         | 102.0    | CC(w/5)<br>Totals: | 0.11 7.18  | 0.11<br>7.18 | 733.57           | 733.68           | WRTB               |
| OSK  | 10             | 1033    | / 50.1     | 743.7         | 9.0   | 9.97         | 103.9    | 1                  | 1.5        | 1.5          | 736.1            | 737.6            |                    |
|      |                |         |            |               |       |              |          | 2                  | 1.5        | 1.5          | 737.6            | 739.1            |                    |
|      |                |         |            |               |       |              |          | 3                  | 1.5        | 1.5          | 739.1            | 740.6            |                    |
|      |                |         |            |               |       |              |          | 4                  | 1.5        | 1.5          | 740.6            | 742.1            | 5. OT 1.0          |
|      |                |         |            |               |       |              |          | 5                  | 1.5        | 1.5          | 742.1<br>743.6   | 743.6<br>745.1   | BACT, HS           |
|      |                |         |            |               |       |              |          | 7                  | 0.59       | 0.59         | 745.1            | 745.69           |                    |
|      |                |         |            |               |       |              |          | ,<br>CC(w/7)       | 0.38       | 0.38         | 745.69           | 746.07           | PAL                |
|      |                |         |            |               |       |              |          | Totals:            | 9.97       | 9.97         |                  |                  |                    |
| 64R  | 18             | 2040    | 745.7      | 755.0         | 9.3   | 7.42         | 79.8     |                    |            |              |                  |                  |                    |
|      |                |         |            |               |       |              |          | 1                  | 1.5        | 1.5          | 745.7            | 747.2            |                    |
|      |                |         |            |               |       |              |          | 2                  | 1.5        | 1.5          | 747.Z<br>748.7   | 750.2            | 1\\/               |
|      |                |         |            |               |       |              |          | 4                  | 1.5        | 1.5          | 750.2            | 751.7            | HS                 |
|      |                |         |            |               |       |              |          | 5                  | 1.42       | 1.42         | 751.7            | 753.12           | PAL                |
|      |                |         |            |               |       |              |          | Totals:            | 7.42       | 7.42         |                  |                  |                    |
| 65R  | 18             | 2230    | 755.0      | 764.6         | 9.6   | 9.93         | 103.4    |                    |            |              |                  |                  |                    |
|      |                |         |            |               |       |              |          | 1                  | 1.5        | 1.5          | 755.0            | 756.5            | HS, BGAS           |
|      |                |         |            |               |       |              |          | 2                  | 1.5        | 1.5          | /30.3<br>758.0   | 750.0<br>750.5   |                    |
|      |                |         |            |               |       |              |          | 4                  | 1.5        | 1.5          | 759.5            | 761.0            |                    |
|      |                |         |            |               |       |              |          | 5                  | 1.5        | 1.5          | 761.0            | 762.5            | HS                 |
|      |                |         |            |               |       |              |          | 6                  | 1.5        | 1.5          | 762.5            | 764.0            |                    |
|      |                |         |            |               |       |              |          | 7                  | 0.57       | 0.57         | 764.0            | 764.57           |                    |
|      |                |         |            |               |       |              |          | CC(w/7)            | 0.36       | 0.36         | 764.57           | 764.93           | PAL                |
| 66R  | 19             | 0030    | 764.6      | 774.2         | 9.6   | 7.17         | 74.7     | TOLOIS:            | 9.95       | 9.95         |                  |                  |                    |
|      | .,             | 0050    | / 0 110    | ,, <u>-</u>   | 210   |              | ,        | 1                  | 1.5        | 1.5          | 764.6            | 766.1            | HS, IW, BGAS       |
|      |                |         |            |               |       |              |          | 2                  | 1.5        | 1.5          | 766.1            | 767.6            |                    |
|      |                |         |            |               |       |              |          | 3                  | 1.5        | 1.5          | 767.6            | 769.1            |                    |
|      |                |         |            |               |       |              |          | 4                  | 1.5        | 1.5          | 769.1            | 770.6            |                    |
|      |                |         |            |               |       |              |          | S<br>CC(NIS)       | 0.11       | 0.11         | 771.66           | 771 77           | HS<br>PAL W/RS     |
|      |                |         |            |               |       |              |          | Totals:            | 7.17       | 7.17         | //1.00           | //1.//           |                    |
| 67R  | 19             | 0240    | 774.2      | 783.9         | 9.7   | 9.96         | 102.7    |                    |            |              |                  |                  |                    |
|      |                |         |            |               |       |              |          | 1                  | 0.24       | 0.24         | 774.2            | 774.44           |                    |
|      |                |         |            |               |       |              |          | 2                  | 1.5        | 1.5          | 774.44           | 775.94           | WRMG               |
|      |                |         |            |               |       |              |          | 3<br>4             | 1.5        | 1.5          | 775.94           | 778 94           | WKSF               |
|      |                |         |            |               |       |              |          | 5                  | 1.5        | 1.5          | 778.94           | 780.44           | 115, 100           |
|      |                |         |            |               |       |              |          | 6                  | 1.5        | 1.5          | 780.44           | 781.94           |                    |
|      |                |         |            |               |       |              |          | 7                  | 1.5        | 1.5          | 781.94           | 783.44           |                    |
|      |                |         |            |               |       |              |          | 8                  | 0.33       | 0.33         | 783.44           | 783.77           | DAL                |
|      |                |         |            |               |       |              |          | CC(W/8)<br>Totals: | 9.96       | 9.96         | /83.//           | /84.16           | PAL                |
| 68R  | 19             | 0445    | 783.9      | 793.6         | 9.7   | 3.74         | 38.6     | 10(0)3.            | 2.20       | 2.20         |                  |                  |                    |
|      |                |         |            |               |       |              |          | 1                  | 1.5        | 1.5          | 783.9            | 785.4            | IW                 |
|      |                |         |            |               |       |              |          | 2                  | 1.5        | 1.5          | 785.4            | 786.9            | HS, HYWR           |
|      |                |         |            |               |       |              |          | 3                  | 0.43       | 0.43         | 786.9            | 787.33           | DAL                |
|      |                |         |            |               |       |              |          | Totals:            | 3.74       | 3 74         | /8/.33           | /8/.04           | PAL                |
| 69R  | 19             | 0650    | 793.6      | 803.3         | 9.7   | 9.89         | 102      | Totals.            | 5.7 1      | 5.7 1        |                  |                  |                    |
|      |                |         |            |               |       |              |          | 1                  | 0.27       | 0.27         | 793.6            | 793.87           |                    |
|      |                |         |            |               |       |              |          | 2                  | 1.5        | 1.5          | 793.87           | 795.37           | WRLZ               |
|      |                |         |            |               |       |              |          | 3                  | 1.5        | 1.5          | 795.37           | 796.87           | WRC, WRY, WRS, WRC |
|      |                |         |            |               |       |              |          | 4<br>5             | 1.5<br>1.5 | 1.5<br>1.5   | 798.87<br>798.37 | /YO.3/<br>799 R7 |                    |
|      |                |         |            |               |       |              |          | 6                  | 1.5        | 1.5          | 799.87           | 801.37           |                    |
|      |                |         |            |               |       |              |          | 7                  | 1.5        | 1.5          | 801.37           | 802.87           |                    |
|      |                |         |            |               |       |              |          | 8                  | 0.41       | 0.41         | 802.87           | 803.28           |                    |
|      |                |         |            |               |       |              |          | CC(w/8)            | 0.21       | 0.21         | 803.28           | 803.49           | PAL                |
| 70P  | 10             | 0000    | 803 3      | 812 5         | 0.2   | 7 9 0        | 85       | Iotals:            | 9.89       | 9.89         |                  |                  |                    |
| 706  | 17             | 0200    | 000.0      | 012.3         | 9.Z   | 7.02         | 05       | 1                  | 1.5        | 1.5          | 803.3            | 804.8            |                    |
|      |                |         |            |               |       |              |          | 2                  | 1.5        | 1.5          | 804.8            | 806.3            | IW, WRSR           |

|      | Date           | Time    | Core<br>(m | depth<br>bsf) | Le    | ength<br>(m) | Recovery |                       | Lei<br>( | ngth<br>m) | Sectior<br>(m   | n depth<br>bsf) |                    |
|------|----------------|---------|------------|---------------|-------|--------------|----------|-----------------------|----------|------------|-----------------|-----------------|--------------------|
| Core | (June<br>2000) | (local) | Тор        | Bottom        | Cored | Recovered    | (%)      | Section               | Liner    | Curated    | Тор             | Bottom          | Catwalk samples    |
|      |                |         |            |               |       |              |          | 3                     | 1.5      | 1.5        | 806.3           | 807.8           | HS                 |
|      |                |         |            |               |       |              |          | 4                     | 1.5      | 1.5        | 807.8           | 809.3           |                    |
|      |                |         |            |               |       |              |          | 5                     | 1.5      | 1.5        | 809.3           | 810.8           |                    |
|      |                |         |            |               |       |              |          | CC(w/CC)              | 0.32     | 0.32       | 810.8           | 811.12          | WRTB, PAL          |
| 71R  | 19             | 1135    | 812.5      | 822.2         | 9.7   | 2.99         | 30.8     | Totals.               | 7.02     | 7.02       |                 |                 |                    |
|      |                |         |            |               |       |              |          | 1                     | 0.38     | 0.38       | 812.5           | 812.88          | WRTB, IW           |
|      |                |         |            |               |       |              |          | 2                     | 1.28     | 1.28       | 812.88          | 814.16          | IW, BACT           |
|      |                |         |            |               |       |              |          | 3                     | 1.01     | 1.01       | 814.16          | 815.17          | HS, BGAS           |
|      |                |         |            |               |       |              |          | CC(w/3)               | 0.32     | 0.32       | 815.17          | 815.49          | PAL                |
| 72R  | 19             | 1415    | 877.7      | 831.8         | 9.6   | 5.05         | 52.6     | TOLAIS:               | 2.99     | 2.99       |                 |                 |                    |
| 720  |                | 1115    | 022.2      | 051.0         | 2.0   | 5.05         | 52.0     | 1                     | 1.5      | 1.5        | 822.2           | 823.7           | WRSF, WRS, IW, BGA |
|      |                |         |            |               |       |              |          | 2                     | 1.5      | 1.5        | 823.7           | 825.2           |                    |
|      |                |         |            |               |       |              |          | 3                     | 1.5      | 1.5        | 825.2           | 826.7           | HS, IW, BACT, BGAS |
|      |                |         |            |               |       |              |          | 4                     | 0.28     | 0.28       | 826.7           | 826.98          |                    |
|      |                |         |            |               |       |              |          | CC(W/4)               | 0.27     | 5.05       | 826.98          | 827.25          | PAL                |
| 73R  | 19             | 1645    | 831.8      | 841.4         | 9.6   | 9.88         | 102.9    | Totals.               | 5.05     | 5.05       |                 |                 |                    |
|      |                |         |            |               |       |              |          | 1                     | 1.5      | 1.5        | 831.8           | 833.3           |                    |
|      |                |         |            |               |       |              |          | 2                     | 1.5      | 1.5        | 833.3           | 834.8           |                    |
|      |                |         |            |               |       |              |          | 3                     | 1.5      | 1.5        | 834.8           | 836.3           | BACT, IW           |
|      |                |         |            |               |       |              |          | 4                     | 1.5      | 1.5        | 836.3           | 837.8           | H2                 |
|      |                |         |            |               |       |              |          | 6                     | 1.5      | 1.5        | 037.0<br>839.3  | 840 8           | 1\\\/              |
|      |                |         |            |               |       |              |          | 7                     | 0.67     | 0.67       | 840.8           | 841.47          | WRTB               |
|      |                |         |            |               |       |              |          | CC(w/7)               | 0.21     | 0.21       | 841.47          | 841.68          | PAL, SFRCC         |
|      |                |         |            |               |       |              |          | Totals:               | 9.88     | 9.88       |                 |                 |                    |
| 74R  | 19             | 1840    | 841.4      | 851.0         | 9.6   | 3.89         | 40.5     | 1                     | 1.5      | 1.5        | 0.41.4          | 042.0           | M/DI 7             |
|      |                |         |            |               |       |              |          | 2                     | 1.5      | 1.5        | 841.4<br>842.9  | 842.9<br>844.4  |                    |
|      |                |         |            |               |       |              |          | 2                     | 0.57     | 0.57       | 844.4           | 844.97          | HS                 |
|      |                |         |            |               |       |              |          | CC(w/3)               | 0.32     | 0.32       | 844.97          | 845.29          | PAL, WRTB          |
|      |                |         |            |               |       |              |          | Totals:               | 3.89     | 3.89       |                 |                 |                    |
| 75R  | 19             | 2025    | 851.0      | 860.7         | 9.7   | 1.91         | 19.7     | 1                     | 1.5      | 1.5        | 051.0           | 0525            | 110                |
|      |                |         |            |               |       |              |          | 2                     | 1.5      | 1.5        | 852.5           | 852.5<br>852.78 |                    |
|      |                |         |            |               |       |              |          | CC(w/2)               | 0.13     | 0.20       | 852.78          | 852.91          | PAL                |
|      |                |         |            |               |       |              |          | Totals:               | 1.91     | 1.91       |                 |                 |                    |
| 76R  | 19             | 2240    | 860.7      | 870.4         | 9.7   | 2.77         | 28.6     |                       |          |            |                 |                 |                    |
|      |                |         |            |               |       |              |          | 1                     | 1.5      | 1.5        | 860.7           | 862.2           | IW                 |
|      |                |         |            |               |       |              |          | $\sum_{n=1}^{\infty}$ | 0.94     | 0.94       | 862.2<br>863.14 | 863.14          | HS, WKIB           |
|      |                |         |            |               |       |              |          | Totals:               | 2.77     | 2.77       | 005.14          | 003.47          | FAL                |
| 77R  | 20             | 0025    | 870.4      | 880.0         | 9.6   | 8.22         | 85.6     |                       |          |            |                 |                 |                    |
|      |                |         |            |               |       |              |          | 1                     | 1.5      | 1.5        | 870.4           | 871.9           |                    |
|      |                |         |            |               |       |              |          | 2                     | 1.5      | 1.5        | 871.9           | 873.4           | B 1 07             |
|      |                |         |            |               |       |              |          | 3                     | 1.5      | 1.5        | 8/3.4           | 8/4.9<br>876 4  | BACI               |
|      |                |         |            |               |       |              |          | 5                     | 1.5      | 1.5        | 876.4           | 877.9           | HS BGAS            |
|      |                |         |            |               |       |              |          | 6                     | 0.6      | 0.6        | 877.9           | 878.5           | WRTB               |
|      |                |         |            |               |       |              |          | CC(w/CC)              | 0.12     | 0.12       | 878.5           | 878.62          | PAL, WRS           |
|      |                |         |            |               |       |              |          | Totals:               | 8.22     | 8.22       |                 |                 |                    |
| 78R  | 20             | 0235    | 880.0      | 889.3         | 9.3   | 7.13         | 76.7     | 1                     | 1 5      | 15         | 880 0           | 991 F           |                    |
|      |                |         |            |               |       |              |          | 2                     | 1.5      | 1.5        | 881.5           | 883.0           | HYWR               |
|      |                |         |            |               |       |              |          | 3                     | 1.5      | 1.5        | 883.0           | 884.5           | HS, IW, BGAS       |
|      |                |         |            |               |       |              |          | 4                     | 1.5      | 1.5        | 884.5           | 886.0           |                    |
|      |                |         |            |               |       |              |          | 5                     | 0.99     | 0.99       | 886.0           | 886.99          |                    |
|      |                |         |            |               |       |              |          | CC(w/CC)              | 0.14     | 0.14       | 886.99          | 887.13          | WRS, PAL           |
| 79R  | 20             | 0450    | 889 3      | 899 0         | 97    | 4 38         | 45 2     | lotals:               | 1.13     | 7.13       |                 |                 |                    |
| ,    | 20             | 0.100   | 007.5      | 077.0         | 9.1   | 0С.ד         | TJ.Z     | 1                     | 1.5      | 1.5        | 889.3           | 890.8           | IW                 |
|      |                |         |            |               |       |              |          | 2                     | 1.5      | 1.5        | 890.8           | 892.3           | WRS, HS            |
|      |                |         |            |               |       |              |          | 3                     | 1.09     | 1.09       | 892.3           | 893.39          |                    |
|      |                |         |            |               |       |              |          | CC(w/3)               | 0.29     | 0.29       | 893.39          | 893.68          | PAL                |
|      |                |         |            |               |       |              |          | Totals:               | 4.38     | 4.38       |                 |                 |                    |

|      | Date  | Time    | Core<br>(m | depth<br>bsf) | Le       | ength<br>(m) | Recovery    |          | Lei<br>( | ngth<br>m) | Sectior<br>(m  | n depth<br>bsf) |                 |
|------|-------|---------|------------|---------------|----------|--------------|-------------|----------|----------|------------|----------------|-----------------|-----------------|
| Core | 2000) | (local) | Тор        | Bottom        | Cored    | Recovered    | (%)         | Section  | Liner    | Curated    | Тор            | Bottom          | Catwalk samples |
| 800  | 20    | 0645    | 800 A      | 009.6         | 0.6      | 0 4          | <u>80 6</u> |          |          |            |                |                 |                 |
| OUK  | 20    | 0645    | 899.0      | 908.0         | 9.0      | 0.0          | 69.0        | 1        | 15       | 15         | 899 0          | 900 5           |                 |
|      |       |         |            |               |          |              |             | 2        | 1.5      | 1.5        | 900.5          | 902.0           | WRS WRC WRY PLU |
|      |       |         |            |               |          |              |             | 3        | 1.5      | 1.5        | 902.0          | 903.5           | IW WRSF         |
|      |       |         |            |               |          |              |             | 4        | 1.5      | 1.5        | 903.5          | 905.0           |                 |
|      |       |         |            |               |          |              |             | 5        | 1.5      | 1.5        | 905.0          | 906.5           | HS. BGAS        |
|      |       |         |            |               |          |              |             | 6        | 0.84     | 0.84       | 906.5          | 907.34          | ,               |
|      |       |         |            |               |          |              |             | CC(w/6)  | 0.26     | 0.26       | 907.34         | 907.6           | PAL             |
|      |       |         |            |               |          |              |             | Totals:  | 8.6      | 8.6        |                |                 |                 |
| 81R  | 20    | 0830    | 908.6      | 918.3         | 9.7      | 7.9          | 81.4        |          |          |            |                |                 |                 |
|      |       |         |            |               |          |              |             | 1        | 1.5      | 1.5        | 908.6          | 910.1           |                 |
|      |       |         |            |               |          |              |             | 2        | 1.5      | 1.5        | 910.1          | 911.6           |                 |
|      |       |         |            |               |          |              |             | 3        | 1.5      | 1.5        | 911.6          | 913.1           | IW              |
|      |       |         |            |               |          |              |             | 4        | 1.5      | 1.5        | 913.1          | 914.6           | HS              |
|      |       |         |            |               |          |              |             | 5        | 1.5      | 1.5        | 914.6          | 916.1           |                 |
|      |       |         |            |               |          |              |             | 6        | 0.15     | 0.15       | 916.1          | 916.25          |                 |
|      |       |         |            |               |          |              |             | CC(w/CC) | 0.25     | 0.25       | 916.25         | 916.5           | PAL, WRS        |
|      |       |         |            |               |          |              |             | Totals:  | 7.9      | 7.9        |                |                 |                 |
| 82R  | 20    | 1010    | 918.3      | 927.9         | 9.6      | 4.16         | 43.3        |          |          |            |                |                 |                 |
|      |       |         |            |               |          |              |             | 1        | 1.5      | 1.5        | 918.3          | 919.8           |                 |
|      |       |         |            |               |          |              |             | 2        | 1.25     | 1.25       | 919.8          | 921.05          | HS, IW          |
|      |       |         |            |               |          |              |             | 3        | 1.12     | 1.12       | 921.05         | 922.17          |                 |
|      |       |         |            |               |          |              |             | CC(w/3)  | 0.29     | 0.29       | 922.17         | 922.46          | PAL, WRS        |
|      |       |         |            |               |          |              |             | Totals:  | 4.16     | 4.16       |                |                 |                 |
| 83R  | 20    | 1220    | 927.9      | 937.5         | 9.6      | 9.93         | 103.4       |          |          |            |                |                 |                 |
|      |       |         |            |               |          |              |             | 1        | 1.5      | 1.5        | 927.9          | 929.4           |                 |
|      |       |         |            |               |          |              |             | 2        | 1.5      | 1.5        | 929.4          | 930.9           |                 |
|      |       |         |            |               |          |              |             | 3        | 1.5      | 1.5        | 930.9          | 932.4           |                 |
|      |       |         |            |               |          |              |             | 4        | 1.5      | 1.5        | 932.4          | 933.9           | IW              |
|      |       |         |            |               |          |              |             | 5        | 1.5      | 1.5        | 933.9          | 935.4           |                 |
|      |       |         |            |               |          |              |             | 6        | 1.5      | 1.5        | 935.4          | 936.9           | HS, BGAS        |
|      |       |         |            |               |          |              |             | /        | 0.65     | 0.65       | 936.9          | 937.55          |                 |
|      |       |         |            |               |          |              |             | CC(w/7)  | 0.28     | 0.28       | 937.55         | 937.83          | PAL, WRS        |
| 040  | 20    | 1415    | 027.5      | 047 1         | 0.4      | 0.05         | 04.2        | Totals:  | 9.93     | 9.93       |                |                 |                 |
| 04K  | 20    | 1415    | 937.3      | 947.1         | 9.0      | 9.05         | 94.5        | 1        | 15       | 15         | 0275           | 020.0           |                 |
|      |       |         |            |               |          |              |             | 1        | 1.5      | 1.5        | 937.3          | 939.0           |                 |
|      |       |         |            |               |          |              |             | 2        | 1.5      | 1.5        | 939.0          | 940.5           | W/PL7           |
|      |       |         |            |               |          |              |             | 1        | 1.5      | 1.5        | 0/2 0          | 9/3 5           | VVINLZ          |
|      |       |         |            |               |          |              |             | 5        | 1.5      | 1.5        | 943.5          | 945.0           | нс              |
|      |       |         |            |               |          |              |             | 6        | 1.5      | 1.5        | 945.0          | 946.2           | 115             |
|      |       |         |            |               |          |              |             | CC(w/CC) | 0.35     | 0.35       | 946.2          | 946.55          | PAL WRS         |
|      |       |         |            |               |          |              |             | Totals:  | 9.05     | 9.05       | 2.012          | , 10100         | .,              |
| 85R  | 20    | 1605    | 947.1      | 956.8         | 9.7      | 8.83         | 91          |          |          |            |                |                 |                 |
|      |       |         |            |               |          |              |             | 1        | 1.5      | 1.5        | 947.1          | 948.6           | WRTB            |
|      |       |         |            |               |          |              |             | 2        | 1.5      | 1.5        | 948.6          | 950.1           |                 |
|      |       |         |            |               |          |              |             | 3        | 1.5      | 1.5        | 950.1          | 951.6           | IW              |
|      |       |         |            |               |          |              |             | 4        | 1.5      | 1.5        | 951.6          | 953.1           | HS              |
|      |       |         |            |               |          |              |             | 5        | 1.5      | 1.5        | 953.1          | 954.6           |                 |
|      |       |         |            |               |          |              |             | 6        | 1.17     | 1.17       | 954.6          | 955.77          |                 |
|      |       |         |            |               |          |              |             | CC(w/6)  | 0.16     | 0.16       | 955.77         | 955.93          | PAL             |
|      |       |         |            |               |          |              |             | Totals:  | 8.83     | 8.83       |                |                 |                 |
| 86R  | 20    | 1800    | 956.8      | 966.5         | 9.7      | 8.99         | 92.7        |          |          |            |                |                 |                 |
|      |       |         |            |               |          |              |             | 1        | 1.5      | 1.5        | 956.8          | 958.3           |                 |
|      |       |         |            |               |          |              |             | 2        | 1.5      | 1.5        | 958.3          | 959.8           | IW, BGAS        |
|      |       |         |            |               |          |              |             | 3        | 1.5      | 1.5        | 959.8          | 961.3           | HS              |
|      |       |         |            |               |          |              |             | 4        | 1.5      | 1.5        | 961.3          | 962.8           |                 |
|      |       |         |            |               |          |              |             | 5        | 1.5      | 1.5        | 962.8          | 964.3           |                 |
|      |       |         |            |               |          |              |             | 6        | 1.12     | 1.12       | 964.3          | 965.42          | DAL             |
|      |       |         |            |               |          |              |             | CC(w/6)  | 0.37     | 0.37       | 965.42         | 965.79          | PAL             |
| 070  | 20    | 2012    | 044 -      | 074 1         | <u> </u> |              | 77          | fotals:  | 8.99     | 8.99       |                |                 |                 |
| 8/K  | 20    | 2010    | 966.5      | 976.1         | 9.6      | 1.3          | /6          | 1        | 1 5      | 1.7        | 066.5          | 0/8 0           |                 |
|      |       |         |            |               |          |              |             | ן<br>ר   | 1.5      | 1.5        | 906.5          | 968.U           | VVK2K           |
|      |       |         |            |               |          |              |             | 2        | 1.5      | 1.5<br>1 5 | 900.U          | 707.5<br>071 0  |                 |
|      |       |         |            |               |          |              |             | 2<br>4   | 1.5      | 1.5        | 707.3<br>071 0 | 7/1.U<br>072 5  | 113             |
|      |       |         |            |               |          |              |             | -+<br>5  | 0.05     | 0.05       | 971.0          | 972.5           |                 |
|      |       |         |            |               |          |              |             | 6        | 0.95     | 0.95       | 112.3          | 273.43          |                 |
|      |       |         |            |               |          |              |             | v        | 5.5      | 0.0        |                |                 |                 |

|      | Date           | Time    | Core<br>(m | depth<br>bsf) | Le    | ength<br>(m) | Recovery |                    | Lei<br>(    | ngth<br>m)  | Sectio<br>(m | n depth<br>lbsf) |                    |
|------|----------------|---------|------------|---------------|-------|--------------|----------|--------------------|-------------|-------------|--------------|------------------|--------------------|
| Core | (June<br>2000) | (local) | Тор        | Bottom        | Cored | Recovered    | (%)      | Section            | Liner       | Curated     | Тор          | Bottom           | Catwalk samples    |
|      |                |         |            |               |       |              |          | CC(w/6)<br>Totals: | 0.35<br>7.3 | 0.35<br>7.3 | 973.45       | 973.8            | PAL                |
| 88R  | 20             | 2210    | 976.1      | 985.3         | 9.2   | 5.87         | 63.8     | 1                  | 15          | 15          | 976 1        | 977 6            |                    |
|      |                |         |            |               |       |              |          | 2                  | 1.5         | 1.5         | 977.6        | 979.1            | IW. BACT           |
|      |                |         |            |               |       |              |          | 3                  | 1.5         | 1.5         | 979.1        | 980.6            | HS                 |
|      |                |         |            |               |       |              |          | 4                  | 1.37        | 1.37        | 980.6        | 981.97           | PAL                |
|      |                |         |            |               |       |              |          | Totals:            | 5.87        | 5.87        |              |                  |                    |
| 89R  | 21             | 0010    | 985.3      | 994.9         | 9.6   | 9.88         | 102.9    |                    |             |             |              |                  |                    |
|      |                |         |            |               |       |              |          | 1                  | 1.5         | 1.5         | 985.3        | 986.8            |                    |
|      |                |         |            |               |       |              |          | 2                  | 1.5         | 1.5         | 986.8        | 988.3            | 114/               |
|      |                |         |            |               |       |              |          | 2<br>1             | 1.5         | 1.5         | 900.5        | 969.6<br>001 3   | IVV                |
|      |                |         |            |               |       |              |          | 5                  | 1.5         | 1.5         | 991.3        | 992.8            | HS BGAS            |
|      |                |         |            |               |       |              |          | 6                  | 1.5         | 1.5         | 992.8        | 994.3            | WRMT               |
|      |                |         |            |               |       |              |          | 7                  | 0.56        | 0.56        | 994.3        | 994.86           |                    |
|      |                |         |            |               |       |              |          | CC(w/CC)           | 0.32        | 0.32        | 994.86       | 995.18           | PAL                |
|      |                |         |            |               |       |              |          | Totals:            | 9.88        | 9.88        |              |                  |                    |
| 90R  | 21             | 0210    | 994.9      | 1004.6        | 9.7   | 3.06         | 31.5     |                    |             |             |              |                  |                    |
|      |                |         |            |               |       |              |          | 1                  | 1.5         | 1.5         | 994.9        | 996.4            | IW                 |
|      |                |         |            |               |       |              |          |                    | 0.25        | 1.31        | 996.4        | 997.71           |                    |
|      |                |         |            |               |       |              |          | Totals             | 3.06        | 3.06        | 997.71       | 997.90           | PAL                |
| 91R  | 21             | 0430    | 1004.6     | 1014.2        | 9.6   | 3.28         | 34.2     | rotuis.            | 5.00        | 5.00        |              |                  |                    |
|      |                |         |            |               |       |              |          | 1                  | 1.5         | 1.5         | 1004.6       | 1006.1           | IW, IW             |
|      |                |         |            |               |       |              |          | 2                  | 1.54        | 1.54        | 1006.1       | 1007.64          | HS                 |
|      |                |         |            |               |       |              |          | CC(w/CC)           | 0.24        | 0.24        | 1007.64      | 1007.88          | PAL                |
|      |                |         |            |               |       |              |          | Totals:            | 3.28        | 3.28        |              |                  |                    |
| 92R  | 21             | 0640    | 1014.2     | 1023.9        | 9.7   | 8.2          | 84.5     | 1                  | 1 5         | 15          | 1014.2       | 1015 7           |                    |
|      |                |         |            |               |       |              |          | 2                  | 1.5         | 1.5         | 1014.2       | 1015./           |                    |
|      |                |         |            |               |       |              |          | 3                  | 1.5         | 1.5         | 1017.2       | 1017.2           | WRMG               |
|      |                |         |            |               |       |              |          | 4                  | 1.5         | 1.5         | 1018.7       | 1020.2           |                    |
|      |                |         |            |               |       |              |          | 5                  | 1.5         | 1.5         | 1020.2       | 1021.7           | WRS, WRY, WRC, BAC |
|      |                |         |            |               |       |              |          | 6                  | 0.48        | 0.48        | 1021.7       | 1022.18          | IW                 |
|      |                |         |            |               |       |              |          | CC(w/CC)           | 0.22        | 0.22        | 1022.18      | 1022.4           | PAL, SFRCC         |
|      |                |         |            | 1000 5        |       | = 10         |          | Totals:            | 8.2         | 8.2         |              |                  |                    |
| 93R  | 21             | 0855    | 1023.9     | 1033.5        | 9.6   | 7.18         | /4.8     | 1                  | 15          | 15          | 1022.0       | 1025 4           |                    |
|      |                |         |            |               |       |              |          | 2                  | 1.5         | 1.5         | 1025.9       | 1023.4           |                    |
|      |                |         |            |               |       |              |          | 3                  | 1.5         | 1.5         | 1025.4       | 1028.4           | Н                  |
|      |                |         |            |               |       |              |          | 4                  | 1.5         | 1.5         | 1028.4       | 1029.9           | IW                 |
|      |                |         |            |               |       |              |          | 5                  | 0.89        | 0.89        | 1029.9       | 1030.79          |                    |
|      |                |         |            |               |       |              |          | CC(w/5)            | 0.29        | 0.29        | 1030.79      | 1031.08          | PAL                |
|      |                |         |            |               |       |              |          | Totals:            | 7.18        | 7.18        |              |                  |                    |
| 94R  | 21             | 1135    | 1033.5     | 1043.1        | 9.6   | 7.43         | /7.4     | 1                  | 15          | 15          | 1022 5       | 1025.0           | NA/ NA/            |
|      |                |         |            |               |       |              |          | 2                  | 1.5         | 1.5         | 1035.5       | 1035.0           | 177, 177           |
|      |                |         |            |               |       |              |          | 3                  | 1.5         | 1.5         | 1036.5       | 1038.0           | WRLZ               |
|      |                |         |            |               |       |              |          | 4                  | 1.5         | 1.5         | 1038.0       | 1039.5           | HS                 |
|      |                |         |            |               |       |              |          | 5                  | 1.16        | 1.16        | 1039.5       | 1040.66          |                    |
|      |                |         |            |               |       |              |          | CC(w/5)            | 0.27        | 0.27        | 1040.66      | 1040.93          | PAL                |
|      |                |         |            |               |       |              |          | Totals:            | 7.43        | 7.43        |              |                  |                    |
| 95R  | 21             | 1345    | 1043.1     | 1052.6        | 9.5   | 5.84         | 61.5     | 1                  | 15          | 1 5         | 1042 1       | 1044 (           | 1\A/               |
|      |                |         |            |               |       |              |          | 2                  | 1.5         | 1.5         | 1045.1       | 1044.0           | IVV                |
|      |                |         |            |               |       |              |          | ∠<br>3             | 1.5         | 1.5         | 1046.1       | 1047.6           |                    |
|      |                |         |            |               |       |              |          | 4                  | 0.97        | 0.97        | 1047.6       | 1048.57          | HS, BGAS           |
|      |                |         |            |               |       |              |          | CC(w/4)            | 0.37        | 0.37        | 1048.57      | 1048.94          | ·, · · ·           |
|      |                |         |            |               |       |              |          | Totals:            | 5.84        | 5.84        |              |                  |                    |
| 96R  | 21             | 1540    | 1052.6     | 1062.3        | 9.7   | 6.03         | 62.2     |                    | _           |             |              |                  |                    |
|      |                |         |            |               |       |              |          | 1                  | 1.5         | 1.5         | 1052.6       | 1054.1           | 847                |
|      |                |         |            |               |       |              |          | 2                  | 1.5         | 1.5         | 1054.1       | 1055.6           |                    |
|      |                |         |            |               |       |              |          | כ<br>⊿             | 1.5         | 1.5         | 1055.0       | 1057.1           | IN, DACI, WKSK     |
|      |                |         |            |               |       |              |          |                    | 0.18        | 0.18        | 1058.45      | 1058.63          | PAL                |
|      |                |         |            |               |       |              |          | Totals:            | 6.03        | 6.03        |              |                  |                    |

#### Table T2 (continued).

|      | Date<br>(lune | Time    | Core<br>(m | depth<br>hbsf) | Le    | ength<br>(m) | Recoverv |         | Le<br>( | ngth<br>m) | Sectio<br>(m | n depth<br>Ibsf) | _                 |
|------|---------------|---------|------------|----------------|-------|--------------|----------|---------|---------|------------|--------------|------------------|-------------------|
| Core | 2000)         | (local) | Тор        | Bottom         | Cored | Recovered    | (%)      | Section | Liner   | Curated    | Тор          | Bottom           | Catwalk samples   |
| 97R  | 21            | 1755    | 1062.3     | 1071.9         | 9.6   | 6.92         | 72.1     |         |         |            |              |                  |                   |
|      |               |         |            |                |       |              |          | 1       | 1.5     | 1.5        | 1062.3       | 1063.8           | IW, WRTB          |
|      |               |         |            |                |       |              |          | 2       | 1.5     | 1.5        | 1063.8       | 1065.3           | HS, HYWR          |
|      |               |         |            |                |       |              |          | 3       | 1.5     | 1.5        | 1065.3       | 1066.8           |                   |
|      |               |         |            |                |       |              |          | 4       | 1.5     | 1.5        | 1066.8       | 1068.3           |                   |
|      |               |         |            |                |       |              |          | 5       | 0.68    | 0.68       | 1068.3       | 1068.98          |                   |
|      |               |         |            |                |       |              |          | CC(w/5) | 0.24    | 0.24       | 1068.98      | 1069.22          | PAL               |
|      |               |         |            |                |       |              |          | Totals: | 6.92    | 6.92       |              |                  |                   |
| 98R  | 21            | 2010    | 1071.9     | 1081.5         | 9.6   | 5.37         | 55.9     |         |         |            |              |                  |                   |
|      |               |         |            |                |       |              |          | 1       | 1.5     | 1.5        | 1071.9       | 1073.4           | WRSF              |
|      |               |         |            |                |       |              |          | 2       | 1.5     | 1.5        | 1073.4       | 1074.9           |                   |
|      |               |         |            |                |       |              |          | 3       | 1.06    | 1.06       | 1074.9       | 1075.96          | IW, BGAS          |
|      |               |         |            |                |       |              |          | 4       | 0.46    | 0.46       | 1075.96      | 1076.42          | HS                |
|      |               |         |            |                |       |              |          | 5       | 0.85    | 0.85       | 1076.42      | 1077.27          | PAL               |
|      |               |         |            |                |       |              |          | Totals: | 5.37    | 5.37       |              |                  |                   |
| 99R  | 21            | 2225    | 1081.5     | 1091.2         | 9.7   | 2.5          | 25.8     |         |         |            |              |                  |                   |
|      |               |         |            |                |       |              |          | 1       | 1.5     | 1.5        | 1081.5       | 1083.0           |                   |
|      |               |         |            |                |       |              |          | 2       | 0.69    | 0.69       | 1083.0       | 1083.69          | HS, IW            |
|      |               |         |            |                |       |              |          | CC(w/2) | 0.31    | 0.31       | 1083.69      | 1084             |                   |
|      |               |         |            |                |       |              |          | Totals: | 2.5     | 2.5        |              |                  |                   |
| 100R | 21            | 0045    | 1091.2     | 1100.8         | 9.6   | 2.77         | 28.9     |         |         |            |              |                  |                   |
|      |               |         |            |                |       |              |          | 1       | 1.36    | 1.36       | 1091.2       | 1092.56          | HS, IW, BGAS, WRS |
|      |               |         |            |                |       |              |          | 2       | 1.13    | 1.13       | 1092.56      | 1093.69          |                   |
|      |               |         |            |                |       |              |          | CC(w/2) | 0.28    | 0.28       | 1093.69      | 1093.97          |                   |
|      |               |         |            |                |       |              |          | Totals: | 2.77    | 2.77       |              |                  |                   |
| 101R | 21            | 0325    | 1100.8     | 1110.2         | 9.4   | 1.71         | 18.2     |         |         |            |              |                  |                   |
|      |               |         |            |                |       |              |          | 1       | 0.64    | 0.64       | 1100.8       | 1101.44          | HS, IW, IW        |
|      |               |         |            |                |       |              |          | 2       | 0.8     | 0.8        | 1101.44      | 1102.24          |                   |
|      |               |         |            |                |       |              |          | CC(w/2) | 0.27    | 0.27       | 1102.24      | 1102.51          | PAL               |
|      |               |         |            |                |       |              |          | Totals: | 1.71    | 1.71       |              |                  |                   |
| 102R | 21            | 0605    | 1110.2     | 1119.8         | 9.6   | 1.11         | 11.6     |         |         |            |              |                  |                   |
|      |               |         |            |                |       |              |          | 1       | 0.85    | 0.85       | 1110.2       | 1111.05          | HS, IW            |
|      |               |         |            |                |       |              |          | CC(w/1) | 0.26    | 0.26       | 1111.05      | 1111.31          | PAL               |
|      |               |         |            |                |       |              |          | Totals: | 1.11    | 1.11       |              |                  |                   |
|      |               |         |            | Totals:        | 976.1 | 577.57       | 59.20    |         |         |            |              |                  |                   |

Notes: Catwalk samples: IW = interstitial water, HS = headspace, PAL = paleontology, VAC = vacutainer. All other abbreviations are sample codes for postcruise research (see the "Sample Codes" database query). CC = core catcher (number in parenthesis indicates which section the core catcher is stored with). This table is also available in ASCII format.

| Sub-      |                            | Inter       | val (cm)    | Depth   | (mbsf)  | - Thickness |                     |                                                            |
|-----------|----------------------------|-------------|-------------|---------|---------|-------------|---------------------|------------------------------------------------------------|
| Unit unit | Facies name                | Тор         | Bottom      | Тор     | Bottom  | (m)         | Stratigraphic age   | Lithologic description                                     |
|           |                            | 190-1174A-  | 190-1174A-  |         |         |             |                     |                                                            |
| I         | Slope apron                | 1H-1, 0     | 1H-CC, 0    | 0.00    | 4.00    | 4.00        | Quaternary          | Hemipelagic mud, rare volcanic ash                         |
|           |                            | 190-1174A-  | 190-1174B-  |         |         |             |                     |                                                            |
| II IIA    | Axial-trench wedge         | 1H-CC, 0    | 19R-1, 55   | 4.00    | 314.55  | 310.55      | Quaternary          | Sand, muddy sand, silt turbidites, hemipelagic mud         |
|           |                            | 190-1174B-  | 190-1174B-  |         |         |             |                     |                                                            |
| IIB       | Outer-trench wedge         | 19R-1, 55   | 31R-2, 105  | 314.55  | 431.55  | 117.00      | Quaternary          | Silt turbidites, hemipelagic mud                           |
| IIC       | Trench to basin transition | 31R-2, 105  | 36R-5, 73   | 431.55  | 483.23  | 51.68       | Quaternary          | Silt turbidites, volcanic ash, hemipelagic mud             |
| III       | Upper Shikoku Basin        | 36R-5, 73   | 55R-2, 49   | 483.23  | 660.99  | 177.76      | Quaternary-Pliocene | Hemipelagic mud, volcanic ash                              |
| IV        | Lower Shikoku Basin        | 55R-2, 49   | 101R-CC, 21 | 660.99  | 1102.45 | 441.46      | Pliocene-Miocene    | Hemipelagic mud, siliceous claystone, calcareous claystone |
| V         | Volcaniclastic             | 101R-CC, 21 | 102R-CC, 26 | 1102.45 | 1111.31 | 8.86        | Miocene             | Hemipelagic mud, altered volcanic ash                      |

 Table T3. Summary of stratigraphic relations at Site 1174 and correlation with equivalent units at Sites 808 and 1173.

|                | Sub-       |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                             | Statigraphic                                           | correlation                                          |
|----------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|
| Unit           | unit       | Processes of formation                                                                                                                                                                                                                                    | Tectonic and physiographic setting                                                                                                                                                                                                          | Site 808                                               | Site 1173                                            |
| I              |            | Hemipelagic settling                                                                                                                                                                                                                                      | Lowermost trench slope                                                                                                                                                                                                                      | Unit I                                                 |                                                      |
| Ш              | IIA        | Turbidity currents in axial channel, hemipelagic settling                                                                                                                                                                                                 | Axis of trench floor                                                                                                                                                                                                                        | Units IIA, IIB                                         |                                                      |
| III<br>IV<br>V | IIB<br>IIC | Lateral margins of turbidity currents, hemipelagic settling<br>Rare turbidity currents, air-fall ash, hemipelagic settling<br>Hemipelagic settling, air-fall ash<br>Hemipelagic settling, diagenetic alteration<br>Acidic volcanism, hemipelagic settling | Seaward margin of trench floor<br>Transition from trench to Shikoku Basin<br>Shikoku Basin - closer to trench; volcanism in Kyushu/Honshu<br>Shikoku Basin - distal to trench<br>Japan Outer Zone volcanism - triggered by ridge subduction | Unit IIC<br>Unit III<br>Unit IVA<br>Unit IVB<br>Unit V | Unit IA<br>Unit IB<br>Unit II<br>Unit III<br>Unit IV |

|                                                  |                            |                  |              |              | X-ra           | y diffra    | ction p       | eak int           | ensity (        | cps)          |               |              |               |                           |               |               | X-ra           | y diffra    | iction pe       | ak area (               | total cou             | nts)              |                 |                 |                   |
|--------------------------------------------------|----------------------------|------------------|--------------|--------------|----------------|-------------|---------------|-------------------|-----------------|---------------|---------------|--------------|---------------|---------------------------|---------------|---------------|----------------|-------------|-----------------|-------------------------|-----------------------|-------------------|-----------------|-----------------|-------------------|
| Core, section,<br>interval (cm)                  | Depth<br>(mbsf)            | Smectite         | Illite       | Chlorite     | Clinoptilolite | Hornblende  | Cristobalite  | Quartz            | Plagioclase     | Calcite       | Pyroxene      | Halite       | Pyrite        | Smectite                  | Illite        | Chlorite      | Clinoptilolite | Hornblende  | Cristobalite    | Quartz                  | Plagioclase           | Calcite           | Pyroxene        | Halite          | Pyrite            |
| 190-1174A-<br>1H-3, 33-35                        | 3.35                       | 0                | 0            | 0            | 0              | 0           | 0             | 154               | 181             | 24            | 0             | 260          | 0             | 0                         | 0             | 0             | 0              | 0           | 0               | 2,298                   | 2,866                 | 601               | 0               | 3,482           | 0                 |
| 190-1174B-<br>34R-2, 34-36<br>37R-2 131-137      | 459.76<br>488.55           | 111<br>34        | 0            | 28<br>0      | 0              | 60<br>0     | 109<br>60     | 608<br>375        | 558<br>108      | 39<br>0       | 0             | 38<br>71     | 32<br>0       | 12,744                    | 0             | 618<br>0      | 0              | 887<br>0    | 1,755           | 8,363<br>4,997          | 13,454                | 924<br>0          | 0               | 921<br>1.060    | 324<br>0          |
| 39R-4, 39-43<br>43R-4, 84-85                     | 509.83<br>548.95           | 27<br>261        | 27<br>0      | 28<br>0      | 0              | 0           | 50<br>76      | 335<br>229        | 100<br>146      | 748<br>0      | 0             | 87<br>0      | 0             | 1,109<br>26,660           | 527<br>0      | 659<br>0      | 0<br>0         | 0           | 980<br>1,826    | 5,219<br>3,246          | 3,046<br>5,933        | 14,584<br>0       | 0<br>0          | 1,967<br>0      | 0                 |
| 52R-3, 118-119<br>54R-4, 21-22                   | 634.29<br>654.12           | 154<br>41        | 0<br>14      | 0<br>0       | 50<br>49       | 0<br>0      | 0<br>0        | 72<br>76          | 148<br>139      | 0<br>0        | 0<br>0        | 0<br>0       | 0<br>26       | 17,101<br>4,290           | 0<br>215      | 0<br>0        | 682<br>897     | 0<br>0      | 0<br>0          | 1,483<br>2,240          | 8,925<br>7,893        | 0<br>0            | 0<br>0          | 0<br>0          | 0<br>553          |
| 54R-7, 27-28<br>55R-2, 4-5                       | 658.68<br>660.55           | 85<br>68         | 0<br>0       | 0<br>0       | 136<br>76      | 0<br>0      | 0<br>0        | 78<br>72          | 191<br>964      | 0<br>0        | 0<br>0        | 0<br>53      | 0<br>0        | 12,058<br>7,239           | 0<br>0        | 0<br>0        | 2,760<br>1,376 | 0<br>0      | 0<br>0          | 1,706<br>1,071          | 6,796<br>15,972       | 0<br>0            | 0<br>0          | 0<br>1,082      | 0<br>0            |
| 55R-2, 39-40<br>58R-2, 129-131                   | 660.90<br>690.81           | 123<br>74        | 24<br>31     | 22<br>32     | 138<br>0       | 0<br>0      | 0<br>75       | 451<br>1,202      | 182<br>239      | 650<br>85     | 0             | 73<br>0      | 0<br>0        | 13,131<br>9,200           | 321<br>1,130  | 336<br>677    | 2,001<br>0     | 0           | 0<br>1,267      | 6,621<br>16,481         | 7,532<br>9,169        | 11,009<br>1,912   | 0<br>0          | 1,061<br>0      | 0<br>0            |
| 60R-5, 57-59<br>66R-2, 92-93                     | 713.79                     | 120<br>67        | 34<br>0      | 44<br>0      | 0<br>0         | 0<br>0      | 88<br>204     | 752               | 1,918<br>367    | 115<br>0      | 0             | 0            | 221<br>0      | 10,783<br>5,939           | 770<br>0      | 961<br>0      | 0<br>0         | 0           | 1,586<br>3,850  | 9,548<br>2,970          | 26,022<br>13,444      | 2,142<br>0        | 0<br>0          | 0<br>0          | 2,798<br>0        |
| 67K-6, 129-131<br>84R-5, 77-78<br>89R-3, 130-131 | 781.75<br>944.28<br>989.61 | 201<br>318<br>88 | 0<br>0<br>12 | 0<br>0<br>34 | 0<br>0<br>0    | 0<br>0<br>0 | 0<br>0<br>143 | 1/3<br>123<br>191 | 779<br>0<br>652 | 61<br>0<br>50 | 0<br>0<br>119 | 0<br>0<br>63 | 38<br>0<br>80 | 20,075<br>33,597<br>8,728 | 0<br>0<br>260 | 0<br>0<br>793 | 0<br>0<br>0    | 0<br>0<br>0 | 0<br>0<br>2.892 | 3,543<br>2,219<br>3,548 | 15,278<br>0<br>19,797 | 1,826<br>0<br>914 | 0<br>0<br>3.534 | 0<br>0<br>1.246 | 611<br>0<br>1.397 |

| Table T4. Results of X-ray diffraction analysis of bulk-powder volcanic ash samples, Site 11 | 74. |
|----------------------------------------------------------------------------------------------|-----|
|----------------------------------------------------------------------------------------------|-----|

**Table T5.** Peak intensities and peak areas from X-ray diffraction analysis of bulk-powder sediment samples, Hole 1174A. (See table note. Continued on next four pages.)

|                                 |                 |                        |        | X-ray c                 | diffractior     | n peak intensi | ty (cps) |                 |                       |                        |         | X-ray di                | ffraction p     | eak area (tota | l counts) |                 |                       |
|---------------------------------|-----------------|------------------------|--------|-------------------------|-----------------|----------------|----------|-----------------|-----------------------|------------------------|---------|-------------------------|-----------------|----------------|-----------|-----------------|-----------------------|
| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Smectite<br>+ chlorite | Illite | Chlorite<br>+ kaolinite | (101)<br>Quartz | Plagioclase    | Calcite  | (100)<br>Quartz | (101)<br>Cristobalite | Smectite<br>+ chlorite | Illite  | Chlorite<br>+ kaolinite | (101)<br>Quartz | Plagioclase    | Calcite   | (100)<br>Quartz | (101)<br>Cristobalite |
| 190-1174A-                      |                 |                        |        |                         |                 |                |          |                 |                       |                        |         |                         |                 |                |           |                 |                       |
| 1H-1, 38-39                     | 0.39            | 67                     | 122    | 152                     | 2,117           | 559            | 0        | 390             | 128                   | 3,198                  | 2,603   | 2,918                   | 27,784          | 13,033         | 0         | 4,621           | 1,749                 |
| 1H-2, 96-97                     | 2.47            | 72                     | 141    | 153                     | 2,213           | 452            | 82       | 429             | 119                   | 3,159                  | 3,115   | 2,794                   | 29,261          | 12,181         | 1,878     | 5,232           | 1,614                 |
| 1H-3, 109-110                   | 4.10            | 58                     | 122    | 131                     | 1,893           | 423            | 0        | 330             | 107                   | 2,214                  | 2,145   | 2,389                   | 25,451          | 11,128         | 0         | 4,210           | 1,341                 |
| 2H-5, 130-131                   | 10.50           | 81                     | 142    | 193                     | 2,304           | 496            | 100      | 430             | 129                   | 3,543                  | 3,023   | 3,452                   | 30,423          | 11,927         | 1,477     | 5,292           | 1,754                 |
| 2H-7, 131-132                   | 13.51           | 67                     | 151    | 165                     | 2,133           | 502            | 146      | 420             | 109                   | 2.227                  | 3.269   | 2.939                   | 28,779          | 12,167         | 2.007     | 5.099           | 1,439                 |
| 3H-2, 104-105                   | 16.45           | 71                     | 173    | 240                     | 3,295           | 1.069          | 252      | 527             | 129                   | 2,143                  | 3,293   | 4,185                   | 45,909          | 26.674         | 2.946     | 7.387           | 2.156                 |
| 3H-4, 75-76                     | 18.60           | 80                     | 166    | 201                     | 2,213           | 526            | 87       | 365             | 132                   | 3.295                  | 3,323   | 3,489                   | 29.055          | 13.290         | 1,114     | 4,498           | 1.636                 |
| 3H-6, 84-85                     | 21.39           | 76                     | 155    | 180                     | 2,147           | 473            | 44       | 415             | 126                   | 2.509                  | 2.950   | 3,308                   | 28,544          | 12,488         | ,<br>658  | 5,319           | 1.768                 |
| 4H-2, 63-64                     | 25.54           | 72                     | 187    | 233                     | 2.020           | 506            | 0        | 368             | 125                   | 2.992                  | 3.300   | 4.145                   | 28.453          | 11.928         | 0         | 4.724           | 1.615                 |
| 4H-4, 129-130                   | 29.20           | 75                     | 157    | 185                     | 1.487           | 283            | 29       | 261             | 102                   | 2,447                  | 2,821   | 3,455                   | 20,417          | 8.376          | 369       | 3.567           | 1,419                 |
| 5H-1, 99-100                    | 33.90           | 70                     | 134    | 163                     | 2,290           | 481            | 0        | 320             | 124                   | 2,801                  | 2,705   | 2,764                   | 29,658          | 12,542         | 0         | 4.372           | 1,988                 |
| 5H-2, 134-135                   | 35.75           | 72                     | 131    | 173                     | 2.050           | 588            | 120      | 324             | 126                   | 2,699                  | 2,562   | 2,948                   | 27,237          | 14,708         | 1.833     | 4.319           | 1,663                 |
| 5H-CC 40-41                     | 39.90           | 70                     | 139    | 165                     | 2 2 7 5         | 577            | 76       | 395             | 144                   | 2 309                  | 2 740   | 3 1 3 4                 | 29 391          | 15 147         | 1 1 4 2   | 4 975           | 1 850                 |
| 7H-2 132-133                    | 54 23           | 50                     | 131    | 145                     | 2,2,3           | 826            | 68       | 338             | 136                   | 2,309                  | 2 861   | 2 594                   | 34 310          | 17 807         | 825       | 4 311           | 1 925                 |
| 8H-3 138-139                    | 65.02           | 46                     | 129    | 118                     | 2,005           | 983            | 88       | 445             | 150                   | 1 721                  | 2 1 7 0 | 2,371                   | 31 554          | 24 528         | 1 272     | 5 171           | 2 031                 |
| 8H-4 133-134                    | 66.47           | 29                     | 60     | 75                      | 2,120           | 800            | 0        | 354             | 189                   | 1 227                  | 1 258   | 1 4 3 4                 | 25 325          | 22,756         | 0         | 4 365           | 2,622                 |
| 1R-1 71-72                      | 144 42          | 60                     | 108    | 161                     | 2,000           | 499            | 107      | 393             | 162                   | 1 914                  | 1 799   | 2 4 9 0                 | 27 656          | 14 438         | 1 657     | 4 885           | 2,022                 |
| 3R-1 125-127                    | 160.97          | 65                     | 136    | 140                     | 1 889           | 553            | 39       | 331             | 127                   | 2 4 2 4                | 2 978   | 2,120                   | 25 122          | 13 771         | 513       | 4 363           | 1 790                 |
| 4R-7 44-45                      | 171 35          | 66                     | 126    | 140                     | 1,002           | 446            | 96       | 350             | 120                   | 2,424                  | 2,570   | 2,022                   | 26 262          | 11 867         | 1 405     | 4 950           | 1,7 20                |
| 5R-1 35-36                      | 179.36          | 63                     | 103    | 131                     | 1 846           | 448            | 0        | 294             | 139                   | 2,500                  | 1 864   | 2,005                   | 20,202          | 11,684         | 0         | 3 852           | 2 1 5 6               |
| 5R-1, 122-123                   | 180 23          | 51                     | 100    | 110                     | 2 140           | 697            | 63       | 372             | 149                   | 1 641                  | 1 737   | 1 881                   | 26,650          | 17 209         | 671       | 4 534           | 2,130                 |
| 6P-1 122-123                    | 180.23          | 70                     | 107    | 137                     | 1 753           | 466            | 78       | 287             | 140                   | 2 8 3 1                | 2 286   | 2 3 5 6                 | 20,030          | 12 627         | 1 1 6 2   | 3 702           | 2,030                 |
| 7P_1 05_06                      | 109.95          | 61                     | 138    | 137                     | 2 0 9 5         | 506            | 110      | 306             | 141                   | 1 8 3 8                | 2,200   | 2,550                   | 26 710          | 12,027         | 1,102     | 3,772           | 1 873                 |
| 8P-1 61-62                      | 208.62          | 53                     | 114    | 152                     | 1 073           | J00<br>⊿71     | 03       | 333             | 140                   | 2 1 1 1                | 2,023   | 2,033                   | 24 805          | 12,004         | 1 207     | 1 1 7 0         | 1,075                 |
| QP_1 116_117                    | 200.02          | 66                     | 00     | 130                     | 2 105           | 566            | 2J<br>81 | 373             | 161                   | 2,111                  | 2,717   | 2,743                   | 27,005          | 14 169         | 1,207     | 4 726           | 2 202                 |
| 10D 1 110 110                   | 210.07          | 60                     | 100    | 139                     | 1 961           | J00<br>416     | 64       | 200             | 140                   | 2,193                  | 1 0 9 7 | 2,002                   | 22,250          | 14,109         | 1,090     | 4,720           | 2,202                 |
| 10R-1, 110-119                  | 220.39          | 67                     | 115    | 127                     | 2 056           | 510            | 67       | 277             | 140                   | 2,230                  | 2 226   | 2,090                   | 25,755          | 13 046         | 903       | 4,000           | 1,200                 |
| 110 2 15 16                     | 229.40          | 62                     | 110    | 133                     | 2,030           | 424            | 75       | 211             | 1 1 4 2               | 2,010                  | 1 0 20  | 2,795                   | 20,330          | 11 220         | 1 005     | 4,300           | 1,022                 |
| 11R-2, 13-10<br>12D 1 112 112   | 230.40          | 02<br>72               | 147    | 140                     | 7,955           | 404            | 73       | 215             | 142                   | 2,000                  | 1,020   | 2,000                   | 20,043          | 12 001         | 010       | 4,015           | 1,070                 |
| 12R-1, 112-113                  | 247.05          | 72                     | 147    | 147                     | 2,400           | 390            | 102      | 247             | 100                   | 2,330                  | 1 090   | 2,704                   | 10 704          | 0.022          | 1 5 1 6   | 2 2 7 2         | 2,400                 |
| 1 3 K-1, 100-107                | 257.27          | 63                     | 120    | 109                     | 1,470           | 530            | 102      | 24/             | 124                   | 3,203                  | 1,900   | 2,110                   | 19,704          | 7,735          | 2 2 1 4   | 3,370           | 1,032                 |
| 13R-2, 110-119                  | 230.09          | 74                     | 120    | 140                     | 1,997           | 307            | 01       | 200             | 144                   | 2,092                  | 2,323   | 2,070                   | 20,307          | 14,052         | 1 202     | 4,342           | 2,102                 |
| 14K-1, 19-20                    | 200.00          | 74                     | 121    | 1/1                     | 2,045           | 462            | 242      | 209             | 157                   | 2,838                  | 2,201   | 3,199                   | 20,300          | 13,241         | 1,393     | 4,004           | 2,370                 |
| 15K-1, 125-124                  | 2/0./3          | 20                     | 112    | 115                     | 1,392           | 332            | 242      | 209             | 105                   | 1,977                  | 2,404   | 1,992                   | 21,032          | 8,273          | 3,411     | 4,101           | 2,056                 |
| I 3K-Z, 40-49                   | 277.40          | 70                     | 130    | 157                     | 1,030           | 402            | 145      | 214             | 115                   | 2,730                  | 2,793   | 2,924                   | 25,140          | 9,809          | 2,117     | 4,089           | 1,330                 |
| 10K-1, 123-124                  | 200.33          | 00                     | 110    | 130                     | 1,930           | 433            | 139      | 24/             | 131                   | 2,298                  | 2,302   | 2,835                   | 20,310          | 11,039         | 1,094     | 4,518           | 1,/ 31                |
| 1/K-1, 110-111                  | 295.70          | /2                     | 100    | 130                     | 1,049           | 417            | 90       | 220             | 100                   | 3,028                  | 1,/0/   | 2,490                   | 24,479          | 12,217         | 1,312     | 4,652           | 2,830                 |
| 18K-2, 67-68                    | 306.47          | 69<br>71               | 103    | 133                     | 1,8//           | 435            | 152      | 333             | 109                   | 2,786                  | 2,462   | 2,610                   | 25,471          | 12,127         | 2,479     | 4,435           | 1,473                 |
| 18R-4, 81-82                    | 309.61          | /1                     | 107    | 135                     | 1,986           | 417            | 93       | 294             | 138                   | 2,884                  | 2,409   | 2,630                   | 26,113          | 11,081         | 1,392     | 4,198           | 1,873                 |
| 19K-1, /8-/9                    | 314.78          | /5                     | 116    | 153                     | 2,152           | 512            | 136      | 33/             | 145                   | 2,598                  | 2,2/1   | 2,//2                   | 27,823          | 13,659         | 2,095     | 4,412           | 1,984                 |
| 19K-1, 89-90                    | 314.89          | 61                     | 140    | 153                     | 2,653           | 4/3            | 94       | 416             | 125                   | 2,599                  | 2,699   | 2,/18                   | 35,555          | 12,/24         | 1,319     | 5,186           | 1,499                 |
| 20R-2, 110-111                  | 326.10          | /8                     | 105    | 146                     | 2,161           | 666            | /8       | 443             | 182                   | 2,910                  | 2,199   | 2,683                   | 28,336          | 15,6/9         | 1,084     | 5,398           | 2,500                 |
| 20R-3, 50-51                    | 327.00          | /5                     | 115    | 128                     | 1,807           | 3/3            | 45       | 321             | 99                    | 3,109                  | 2,338   | 2,388                   | 23,862          | 9,998          | 515       | 4,331           | 1,485                 |
| 21R-1, 114-115                  | 334.24          | /9                     | 115    | 170                     | 2,490           | 506            | 123      | 451             | 145                   | 2,331                  | 2,111   | 3,143                   | 31,556          | 12,780         | 1,660     | 5,808           | 1,996                 |
| 21R-CC, 3-4                     | 335.75          | 64                     | 131    | 135                     | 1,774           | 333            | 166      | 286             | 98                    | 2,731                  | 2,801   | 2,731                   | 23,668          | 8,360          | 2,387     | 3,841           | 1,449                 |
| 22R-1, 25-26                    | 342.65          | 71                     | 105    | 140                     | 2,165           | 511            | 126      | 389             | 117                   | 2,072                  | 2,051   | 2,591                   | 28,712          | 12,875         | 1,998     | 5,167           | 1,556                 |
| 23R-1, 96-97                    | 352.96          | 76                     | 132    | 161                     | 2,094           | 417            | 102      | 312             | 128                   | 2,484                  | 2,531   | 2,930                   | 27,811          | 10,781         | 1,632     | 4,142           | 1,531                 |

|                                 |                 |                        |        | X-ray d                 | liffractior     | n peak intensi | ty (cps) |                 |                       |                        |        | X-ray di                | ffraction p     | eak area (tota | l counts) |                 |                       |
|---------------------------------|-----------------|------------------------|--------|-------------------------|-----------------|----------------|----------|-----------------|-----------------------|------------------------|--------|-------------------------|-----------------|----------------|-----------|-----------------|-----------------------|
| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Smectite<br>+ chlorite | Illite | Chlorite<br>+ kaolinite | (101)<br>Quartz | Plagioclase    | Calcite  | (100)<br>Quartz | (101)<br>Cristobalite | Smectite<br>+ chlorite | Illite | Chlorite<br>+ kaolinite | (101)<br>Quartz | Plagioclase    | Calcite   | (100)<br>Quartz | (101)<br>Cristobalite |
| 24R-3, 117-118                  | 365.87          | 66                     | 101    | 146                     | 2,224           | 465            | 0        | 384             | 166                   | 2,606                  | 2,241  | 2,820                   | 28,272          | 12,812         | 0         | 5,127           | 2,177                 |
| 25R-1, 122-123                  | 372.52          | 69                     | 76     | 114                     | 1,862           | 471            | 0        | 294             | 168                   | 3,217                  | 1,675  | 2,392                   | 24,199          | 12,966         | 0         | 4,190           | 2,982                 |
| 26R-1, 56-57                    | 381.46          | 69                     | 124    | 147                     | 1,905           | 435            | 0        | 323             | 136                   | 3,174                  | 2,312  | 2,656                   | 25,527          | 11,137         | 0         | 4,408           | 2,046                 |
| 27R-1, 123-124                  | 391.73          | 60                     | 75     | 110                     | 2,000           | 518            | 57       | 335             | 227                   | 2,561                  | 1,726  | 2,400                   | 25,893          | 14,618         | 1,051     | 4,470           | 3,162                 |
| 27R-3, 115-116                  | 394.65          | 78                     | 115    | 138                     | 2,101           | 422            | 44       | 376             | 144                   | 2,765                  | 2,599  | 2,492                   | 27,692          | 11,552         | 681       | 5,210           | 2,179                 |
| 28R-1, 124-125                  | 401.44          | 57                     | 66     | 98                      | 1,679           | 414            | 32       | 275             | 171                   | 2,890                  | 1,420  | 2,115                   | 22,016          | 11,279         | 687       | 4,136           | 2,467                 |
| 28R-2, 49-50                    | 402.19          | 58                     | 77     | 130                     | 2,091           | 517            | 0        | 349             | 189                   | 2,789                  | 1,755  | 2,489                   | 26,285          | 13,200         | 0         | 4,356           | 2,689                 |
| 29R-2, 81-82                    | 412.11          | 63                     | 89     | 132                     | 2,012           | 478            | 0        | 397             | 150                   | 2,931                  | 1,845  | 2,373                   | 25,110          | 12,276         | 0         | 4,929           | 1,945                 |
| 29R-3, 133-134                  | 414.13          | 67                     | 108    | 145                     | 2,067           | 477            | 42       | 360             | 148                   | 3,480                  | 2,319  | 2,756                   | 26,618          | 12,907         | 1,052     | 4,731           | 2,072                 |
| 29R-CC, 18-19                   | 414.63          | 72                     | 101    | 132                     | 1,960           | 440            | 23       | 320             | 132                   | 3,305                  | 1,792  | 2,436                   | 24,901          | 10,933         | 630       | 4,292           | 1,761                 |
| 30R-CC, 5-6                     | 419.45          | 80                     | 110    | 146                     | 2,148           | 454            | 65       | 312             | 134                   | 3,289                  | 2,132  | 2,906                   | 27,391          | 11,658         | 710       | 4,545           | 1,810                 |
| 31R-1, 116-117                  | 430.16          | 74                     | 121    | 148                     | 2,108           | 442            | 96       | 465             | 140                   | 2,795                  | 2,884  | 2,951                   | 27,614          | 12,699         | 1,576     | 5,573           | 1,703                 |
| 31R-3, 44-45                    | 432.44          | 63                     | 111    | 155                     | 2,062           | 416            | 98       | 373             | 109                   | 2,471                  | 2,075  | 2,673                   | 26,853          | 11,270         | 1,622     | 4,522           | 1,490                 |
| 32R-2, 117-118                  | 441.27          | 65                     | 114    | 141                     | 2,197           | 473            | 78       | 394             | 131                   | 2,395                  | 2,544  | 2,983                   | 29,022          | 11,255         | 1,180     | 5,117           | 1,862                 |
| 32R-5, 130-131                  | 445.90          | 49                     | 78     | 93                      | 1,662           | 354            | 703      | 288             | 82                    | 1,942                  | 1,299  | 1,865                   | 21,067          | 10,389         | 10,412    | 3,957           | 1,064                 |
| 33R-2, 119-120                  | 450.89          | 60                     | 87     | 112                     | 1,864           | 710            | 0        | 295             | 140                   | 2,639                  | 1,916  | 2,121                   | 23,987          | 14,592         | 0         | 3,949           | 1,728                 |
| 33R-4, 18-19                    | 452.88          | 69                     | 87     | 112                     | 2,050           | 654            | 0        | 323             | 175                   | 3,098                  | 1,909  | 2,364                   | 25,595          | 14,136         | 0         | 4,269           | 2,376                 |
| 34R-3, 96-97                    | 461.86          | 64                     | 104    | 148                     | 3,692           | 653            | 118      | 472             | 157                   | 2,067                  | 1,952  | 2,941                   | 33,023          | 14,952         | 1,576     | 5,714           | 1,855                 |
| 35R-1, 118-119                  | 468.28          | 63                     | 98     | 108                     | 2,282           | 581            | 1//      | 355             | 125                   | 3,529                  | 2,163  | 1,882                   | 28,769          | 13,969         | 2,435     | 4,/53           | 1,906                 |
| 35R-2, 94-95                    | 469.54          | 51                     | 28     | 54                      | 1,021           | 207            | 159      | 239             | 90                    | 4,139                  | 686    | 993                     | 13,171          | 6,527          | 2,625     | 3,424           | 1,/8/                 |
| 36R-2, 133-134                  | 4/9.33          | 62                     | 106    | 160                     | 2,372           | 500            | 184      | 381             | 141                   | 2,312                  | 2,245  | 2,935                   | 30,514          | 11,/58         | 2,/21     | 4,//4           | 1,631                 |
| 36K-3, 111-112                  | 480.61          | 62                     | 112    | 130                     | 1,983           | 405            | 200      | 339             | 101                   | 2,831                  | 2,409  | 2,631                   | 26,429          | 11,510         | 3,192     | 4,627           | 1,270                 |
| 3/R-3, 130-131                  | 490.00          | 66                     | 89     | 106                     | 1,872           | 440            | 200      | 334             | 139                   | 3,220                  | 1,/62  | 2,086                   | 24,012          | 12,170         | 2 1 4 2   | 4,668           | 2,071                 |
| 3/K-4, 11/-110                  | 491.37          | 60<br>50               | 110    | 92                      | 1,0/4           | 440            | 209      | 202             | 121                   | 3,324                  | 1,4//  | 1,021                   | 20,410          | 10,874         | 3,14Z     | 4,445           | 1,705                 |
| 20K-2, 04-02                    | 499.14          | 52                     | 110    | 123                     | 2,234           | 445            | 209      | 200             | 100                   | 1,974                  | 2,2/3  | 2,179                   | 20,337          | 11,507         | 2,938     | 4,650           | 1,720                 |
| 20R-4, 112-110                  | 502.43          | 59                     | 00     | 127                     | 2,030           | 425            | 200      | 242             | 100                   | 3,073                  | 1,937  | 2,330                   | 20,401          | 0 410          | 2,490     | 4,332           | 2,100                 |
| 20R-0, 02-03                    | 506 22          | 40                     | 99     | 123                     | 1,909           | 202            | 140      | 242             | 100                   | 2,010                  | 2,141  | 2,40/                   | 23,333          | 9,419          | 2,475     | 4,009           | 1,243                 |
| 20D 2 117 119                   | 500.25          | 61                     | 61     | 125                     | 1,000           | 122            | 00       | 300             | 117                   | 3,327                  | 2,070  | 2,303                   | 24,301          | 10,091         | 2,309     | 4,303           | 2,492                 |
| AOP_A 118_110                   | 520.28          | 74                     | 64     | 74                      | 1,704           | 396            | 99       | 280             | 130                   | 3,071<br>4 537         | 1,222  | 1,050                   | 22,107          | 10,333         | 1,090     | 3 9/8           | 2,000                 |
| 41P-2 20-30                     | 526.00          | 77                     | 01     | 117                     | 2 300           | 478            | 187      | 366             | 100                   | 2 738                  | 1 032  | 2 0 5 8                 | 20,517          | 11,271         | 2 7//     | 1 976           | 1 272                 |
| 41R-CC 20-21                    | 529.00          | 66                     | 101    | 120                     | 1 993           | 429            | 42       | 379             | 91                    | 2,750                  | 2 376  | 2,050                   | 26 681          | 11,054         | 660       | 5 211           | 1,272                 |
| 42R-1 96-97                     | 534.86          | 41                     | 88     | 81                      | 1,225           | 412            | 0        | 326             | 120                   | 2,104                  | 2,370  | 1 507                   | 20,001          | 12 169         | 000       | 4 252           | 1 4 5 8               |
| 42R-3, 125-126                  | 538.15          | 58                     | 98     | 105                     | 1,770           | 337            | õ        | 337             | 87                    | 3,100                  | 2,545  | 2,005                   | 23,807          | 9.544          | Ő         | 4,717           | 1,078                 |
| 42R-5, 116-117                  | 541.06          | 55                     | 93     | 93                      | 2,224           | 374            | 51       | 405             | 104                   | 2,794                  | 2,459  | 2,000                   | 27,856          | 10.342         | 723       | 5.345           | 1,352                 |
| 43R-3, 99-100                   | 547.59          | 61                     | 112    | 105                     | 1.939           | 443            | 35       | 306             | 91                    | 3.203                  | 2.046  | 1.782                   | 25.649          | 11.362         | 446       | 4.238           | 1.135                 |
| 43R-5, 127-128                  | 550.87          | 60                     | 116    | 108                     | 2.168           | 412            | 193      | 336             | 97                    | 2,365                  | 2.314  | 2,158                   | 28,361          | 11.677         | 3,179     | 4.549           | 1,199                 |
| 43R-5, 127-128                  | 550.87          | 60                     | 116    | 108                     | 2.168           | 412            | 193      | 336             | 97                    | 2.639                  | 2,600  | 2,183                   | 28,444          | 11.619         | 3,369     | 4.584           | 1.203                 |
| 43R-6, 129-130                  | 552.39          | 58                     | 111    | 116                     | 1.829           | 336            | 225      | 336             | 97                    | 2.694                  | 2,455  | 1,944                   | 24.348          | 9.379          | 3,373     | 4,397           | 1.501                 |
| 44R-3, 117-118                  | 557.07          | 55                     | 118    | 125                     | 2,078           | 406            | 0        | 375             | 83                    | 2,604                  | 2,834  | 2,351                   | 27,894          | 9,945          | 0         | 4,730           | 1,021                 |
| 44R-4, 125-126                  | 558.65          | 67                     | 107    | 129                     | 1,968           | 378            | 0        | 357             | 132                   | 1,967                  | 2,682  | 2,361                   | 25,667          | 11,043         | 0         | 4,759           | 1,514                 |
| 45R-1, 72-73                    | 563.32          | 67                     | 70     | 70                      | 1,647           | 410            | 0        | 271             | 118                   | 4,488                  | 1,566  | 1,531                   | 21,706          | 12,112         |           | 3,791           | 1,576                 |
| 45R-3, 109-110                  | 566.69          | 61                     | 77     | 95                      | 1,661           | 347            | 463      | 292             | 100                   | 4,100                  | 1,910  | 2,007                   | 21,833          | 10,612         | 7,299     | 4,137           | 1,317                 |
| 46R-1, 149-150                  | 573.79          | 53                     | 86     | 90                      | 1,589           | 283            | 457      | 274             | 82                    | 2,444                  | 2,010  | 1,749                   | 20,751          | 8,536          | 6,815     | 3,789           | 983                   |
| 46R-4, 118-119                  | 577.98          | 60                     | 84     | 79                      | 1,943           | 349            | 94       | 362             | 138                   | 4,576                  | 1,903  | 1,556                   | 25,604          | 9,607          | 1,434     | 5,221           | 1,474                 |
| 46R-7, 42-43                    | 581.72          | 74                     | 78     | 83                      | 1,611           | 308            | 571      | 280             | 70                    | 4,247                  | 1,506  | 1,693                   | 20,775          | 8,522          | 8,792     | 3,685           | 783                   |
| 47R-1, 149-150                  | 583.39          | 59                     | 77     | 90                      | 1,736           | 354            | 0        | 284             | 94                    | 3,446                  | 1,979  | 1,617                   | 22,767          | 10,593         | 0         | 4,170           | 1,188                 |
| 47R-4, 119-120                  | 587.59          | 77                     | 53     | 65                      | 1,068           | 254            | 82       | 202             | 57                    | 8,283                  | 1,183  | 1,178                   | 16,307          | 9,349          | 1,721     | 4,334           | 890                   |

|                |                 |           |        | X-ray d      | iffractior      | n peak intensi | ty (cps) |                 |                       |           |        | X-ray di    | ffraction p     | eak area (tota | l counts) |                 |                       |
|----------------|-----------------|-----------|--------|--------------|-----------------|----------------|----------|-----------------|-----------------------|-----------|--------|-------------|-----------------|----------------|-----------|-----------------|-----------------------|
| Core, section, | Depth<br>(mbsf) | Smectite  | Illito | Chlorite     | (101)<br>Quartz | Plagioclase    | Calcite  | (100)<br>Quartz | (101)<br>Cristobalite | Smectite  | Illito | Chlorite    | (101)<br>Quartz | Plagioclase    | Calcite   | (100)<br>Quartz | (101)<br>Cristobalite |
|                | (11031)         | 1 enionee | inite  | 1 Kuoliinite | Quartz          | T lugiociuse   | culette  | Quartz          | Clistobulite          | 1 enionee | inite  | 1 Kuolinite | Quartz          | Theylocluse    | Culcite   | Quartz          | Clistobulite          |
| 48R-2, 134-135 | 594.44          | 62        | 91     | 102          | 1,927           | 400            | 0        | 374             | 90                    | 3,643     | 2,087  | 1,961       | 25,344          | 10,411         | 0         | 5,070           | 1,025                 |
| 48R-5, 101-102 | 598.61          | 71        | 93     | 100          | 2,019           | 351            | 0        | 389             | 91                    | 4,402     | 2,118  | 2,046       | 26,719          | 10,667         | 0         | 5,434           | 1,198                 |
| 49R-1, 119-120 | 602.39          | 61        | 56     | 65           | 1,582           | 274            | 599      | 296             | 78                    | 3,801     | 1,311  | 1,453       | 20,387          | 8,360          | 10,932    | 4,349           | 1,000                 |
| 49R-3, 99-100  | 605.19          | 70        | 78     | 98           | 1,744           | 359            | 59       | 321             | 281                   | 4,232     | 1,424  | 1,773       | 23,122          | 10,485         | 856       | 4,536           | 3,089                 |
| 50R-1, 60-61   | 611.50          | 73        | 45     | 58           | 1,413           | 364            | 112      | 260             | 133                   | 6,819     | 1,483  | 1,110       | 18,435          | 10,860         | 1,762     | 4,191           | 1,794                 |
| 50R-4, 120-121 | 616.60          | 52        | 96     | 89           | 1,799           | 346            | 280      | 295             | 109                   | 3,528     | 1,783  | 1,392       | 24,272          | 10,235         | 4,113     | 4,364           | 1,813                 |
| 52R-1, 82-83   | 630.92          | 60        | 64     | 74           | 1,440           | 298            | 620      | 247             | 125                   | 3,855     | 1,270  | 1,324       | 18,634          | 8,525          | 8,690     | 3,779           | 1,800                 |
| 52R-6, 115-116 | 638.75          | 54        | 78     | 81           | 1,534           | 490            | 586      | 277             | 73                    | 3,757     | 2,110  | 1,436       | 19,909          | 11,580         | 8,879     | 3,791           | 968                   |
| 53R-1, 107-108 | 640.87          | 67        | 68     | 70           | 1,463           | 427            | 215      | 258             | 74                    | 4,418     | 1,497  | 1,217       | 19,266          | 10,741         | 3,073     | 3,763           | 932                   |
| 53R-3, 122-123 | 644.02          | 75        | 93     | 103          | 1,736           | 372            | 114      | 325             | 99                    | 4,070     | 2,326  | 1,762       | 23,278          | 11,351         | 1,715     | 4,454           | 1,328                 |
| 53R-4, 14-15   | 644.44          | 80        | 48     | 54           | 1,151           | 279            | 110      | 232             | 79                    | 8,046     | 1,190  | 870         | 14,877          | 9,778          | 1,677     | 3,745           | 1,308                 |
| 54R-3, 127-128 | 653.67          | 63        | 82     | 93           | 1,874           | 393            | 104      | 306             | 120                   | 4,019     | 1,919  | 1,600       | 24,927          | 10,711         | 1,458     | 4,454           | 2,062                 |
| 54R-5, 96-97   | 656.36          | 56        | 82     | 80           | 1,651           | 355            | 118      | 361             | 122                   | 3,313     | 1,712  | 1,343       | 21,714          | 10,774         | 1,730     | 4,595           | 1,562                 |
| 55R-1, 131-132 | 660.31          | 65        | 78     | 77           | 1,638           | 312            | 294      | 282             | 126                   | 3,846     | 1,551  | 1,285       | 21,732          | 9,528          | 3,977     | 3,966           | 2,224                 |
| 55R-5, 92-93   | 665.92          | 54        | 55     | 60           | 1,487           | 302            | 61       | 259             | 139                   | 5,206     | 1,493  | 1,235       | 22,266          | 10,182         | 950       | 4,199           | 2,139                 |
| 56R-1, 114-115 | 669.84          | 63        | 76     | 79           | 1,659           | 912            | 188      | 300             | 98                    | 5,060     | 1,589  | 1,526       | 22,539          | 15,534         | 2,672     | 4,380           | 1,503                 |
| 56R-2, 135-136 | 671.55          | 58        | 83     | 86           | 1,785           | 325            | 48       | 300             | 87                    | 4,093     | 1,803  | 1,517       | 24,236          | 10,031         | 797       | 4,459           | 1,316                 |
| 57R-4, 116-117 | 683.96          | 64        | 95     | 104          | 1,934           | 412            | 364      | 353             | 96                    | 3,901     | 1,961  | 1,882       | 25,348          | 10,815         | 5,628     | 4,574           | 1,099                 |
| 57R-6, 133-134 | 687.13          | 77        | 76     | 78           | 1,852           | 341            | 238      | 287             | 102                   | 7,047     | 1,384  | 1,645       | 24,015          | 10,317         | 4,132     | 4,103           | 1,446                 |
| 58R-2, 75-76   | 690.25          | 69        | 98     | 99           | 2,009           | 453            | 186      | 311             | 85                    | 4,890     | 1,861  | 1,758       | 25,926          | 11,922         | 2,586     | 4,496           | 1,063                 |
| 58R-4, 80-81   | 693.30          | 64        | 74     | 83           | 1,861           | 389            | 189      | 305             | 85                    | 4,335     | 1,654  | 1,593       | 25,061          | 10,639         | 2,985     | 4,525           | 1,115                 |
| 59R-3, 117-118 | 701.77          | 58        | 115    | 119          | 2,007           | 400            | 99       | 363             | 104                   | 2,814     | 2,352  | 2,192       | 26,561          | 10,418         | 1,680     | 5,073           | 1,240                 |
| 59R-4, 84-85   | 702.94          | 57        | 72     | 91           | 1,881           | 409            | 54       | 336             | 80                    | 4,270     | 1,846  | 1,760       | 24,396          | 10,258         | 810       | 4,680           | 1,034                 |
| 59R-5, 128-129 | 704.88          | 59        | 72     | 94           | 1,918           | 304            | 114      | 342             | 80                    | 4,094     | 1,851  | 1,929       | 25,024          | 9,128          | 1,814     | 4,961           | 978                   |
| 60R-2, 113-114 | 709.83          | 75        | 93     | 115          | 2,321           | 415            | 26       | 421             | 110                   | 4,151     | 1,978  | 2,350       | 28,949          | 11,490         | 665       | 5,629           | 1,389                 |
| 61R-1, 83-84   | 717.74          | 95        | 58     | 67           | 1,529           | 405            | 189      | 297             | 79                    | 8,784     | 1,352  | 1,430       | 19,959          | 10,397         | 3,446     | 4,561           | 1,110                 |
| 61R-4, 105-106 | 722.46          | 54        | 69     | 108          | 1,692           | 316            | 590      | 316             | 80                    | 3,717     | 1,842  | 2,201       | 21,834          | 8,344          | 10,355    | 4,406           | 1,019                 |
| 61R-5, 116-117 | 724.07          | 63        | 90     | 105          | 2,020           | 354            | 137      | 343             | 91                    | 4,467     | 1,903  | 1,994       | 25,916          | 9,576          | 2,163     | 4,857           | 1,242                 |
| 62R-3, 97-98   | 730.48          | 72        | 105    | 115          | 2,021           | 366            | 41       | 353             | 97                    | 4,087     | 2,373  | 2,235       | 26,087          | 9,317          | 698       | 4,923           | 1,274                 |
| 63R-2, 81-82   | 738.42          | 55        | 82     | 104          | 2,123           | 387            | 0        | 393             | 102                   | 3,170     | 1,954  | 2,080       | 26,803          | 10,005         | 0         | 4,875           | 1,209                 |
| 63R-5, 137-138 | 743.48          | 65        | 84     | 99           | 1,735           | 318            | 132      | 312             | 77                    | 4,221     | 2,099  | 2,177       | 22,487          | 8,690          | 2,107     | 4,348           | 962                   |
| 64R-1, 106-107 | 746.77          | 61        | 79     | 102          | 2,304           | 393            | 0        | 502             | 108                   | 3,946     | 2,201  | 2,079       | 29,038          | 10,358         | 0         | 6,368           | 1,332                 |
| 64R-3, 118-119 | 749.89          | 63        | 100    | 113          | 2,155           | 345            | 0        | 370             | 107                   | 3,644     | 2,476  | 2,440       | 27,303          | 9,182          | 0         | 5,048           | 1,318                 |
| 64R-5, 109-110 | 752.80          | 67        | 64     | 92           | 2,088           | 336            | 0        | 342             | 104                   | 5,376     | 1,731  | 1,733       | 26,046          | 9,307          | 0         | 4,717           | 1,334                 |
| 65R-1, 113-114 | 756.14          | 62        | 105    | 107          | 2,219           | 350            | 59       | 358             | 106                   | 3,574     | 2,743  | 2,266       | 28,225          | 9,261          | 853       | 4,826           | 1,299                 |
| 65R-4, 83-84   | 760.34          | 80        | 89     | 112          | 2,064           | 363            | 29       | 359             | 77                    | 4,821     | 2,143  | 2,448       | 26,700          | 11,542         | 385       | 5,168           | 998                   |
| 66R-1, 114-115 | 765.75          | 78        | 90     | 109          | 1,962           | 325            | 234      | 353             | 71                    | 4,255     | 2,322  | 2,205       | 24,790          | 10,404         | 5,160     | 4,841           | 876                   |
| 66R-5, 100-101 | 771.61          | 66        | 122    | 135          | 2,123           | 293            | 29       | 384             | 75                    | 4,075     | 2,760  | 2,761       | 27,174          | 7,941          | 552       | 5,167           | 883                   |
| 67R-2, 98-99   | 775.43          | 64        | 150    | 163          | 2,170           | 360            | 44       | 384             | 91                    | 2,254     | 3,426  | 3,506       | 28,658          | 9,592          | 732       | 4,965           | 1,013                 |
| 67R-3, 128-129 | 777.23          | 66        | 112    | 130          | 2,031           | 349            | 127      | 356             | 77                    | 4,006     | 2,780  | 2,721       | 26,709          | 8,768          | 2,110     | 4,881           | 958                   |
| 67R-4, 128-129 | 778.73          | 62        | 114    | 138          | 2,084           | 354            | 182      | 379             | 83                    | 3,353     | 2,884  | 2,857       | 26,307          | 8,439          | 3,148     | 5,079           | 1,002                 |
| 68R-1, 116-118 | 785.08          | 64        | 130    | 129          | 2,146           | 315            | 70       | 371             | 92                    | 3,478     | 3,168  | 2,790       | 27,650          | 8,287          | 1,124     | 4,920           | 1,074                 |
| 68R-2, 134-136 | 786.76          | 60        | 133    | 135          | 2,135           | 303            | 41       | 374             | 83                    | 2,984     | 3,314  | 2,896       | 27,043          | 8,619          | 727       | 4,989           | 966                   |
| 69R-2, 129-130 | 795.17          | 63        | 142    | 131          | 2,033           | 329            | 176      | 347             | 70                    | 3,039     | 3,007  | 2,666       | 26,561          | 7,882          | 2,910     | 4,657           | 814                   |
| 69R-3, 96-97   | 796.34          | 59        | 83     | 108          | 2,145           | 312            | 249      | 376             | 92                    | 3,230     | 2,158  | 2,344       | 27,099          | 8,102          | 4,524     | 5,003           | 1,088                 |
| 69R-4, 118-119 | 798.06          | 47        | 80     | 96           | 1,727           | 272            | 344      | 346             | 73                    | 3,676     | 1,721  | 2,134       | 23,028          | 7,359          | 6,871     | 4,822           | 926                   |
| 70R-2, 98-99   | 805.78          | 65        | 132    | 122          | 1,908           | 293            | 352      | 332             | 73                    | 3,676     | 2,872  | 2,434       | 24,602          | 7,330          | 6,490     | 4,448           | 752                   |
| 70R-4, 148-149 | 809.28          | 57        | 105    | 111          | 2,187           | 337            | 53       | 348             | 89                    | 2,932     | 2,066  | 2,422       | 27,540          | 8,607          | 892       | 4,825           | 1,070                 |

|                                 |                  |                        |        | X-ray c                 | liffractior     | n peak intensi | ty (cps) |                 |                       |                        |        | X-ray di                | ffraction p     | eak area (tota | l counts) |                 |                       |
|---------------------------------|------------------|------------------------|--------|-------------------------|-----------------|----------------|----------|-----------------|-----------------------|------------------------|--------|-------------------------|-----------------|----------------|-----------|-----------------|-----------------------|
| Core, section,<br>interval (cm) | Depth<br>(mbsf)  | Smectite<br>+ chlorite | Illite | Chlorite<br>+ kaolinite | (101)<br>Quartz | Plagioclase    | Calcite  | (100)<br>Quartz | (101)<br>Cristobalite | Smectite<br>+ chlorite | Illite | Chlorite<br>+ kaolinite | (101)<br>Quartz | Plagioclase    | Calcite   | (100)<br>Quartz | (101)<br>Cristobalite |
| 70R-5, 148-149                  | 810.78           | 77                     | 113    | 130                     | 1,963           | 366            | 108      | 364             | 77                    | 5,323                  | 2,721  | 2,734                   | 25,656          | 10,378         | 1,887     | 5,038           | 956                   |
| 71R-2, 0-1                      | 812.88           | 53                     | 88     | 90                      | 1,925           | 293            | 192      | 346             | 77                    | 2,761                  | 2,261  | 1,904                   | 24,845          | 7,610          | 3,079     | 4,907           | 981                   |
| 71R-2, 96-97                    | 813.84           | 42                     | 73     | 93                      | 2,136           | 299            | 43       | 365             | 88                    | 1,942                  | 1,988  | 1,982                   | 26,522          | 7,596          | 621       | 5,369           | 1,123                 |
| 71R-3, 80-81                    | 814.96           | 54                     | 96     | 103                     | 2,001           | 284            | 295      | 347             | 89                    | 3,224                  | 2,654  | 1,976                   | 26,139          | 7,160          | 4,930     | 4,800           | 1,032                 |
| 72R-1, 45-46                    | 822.65           | 38                     | 61     | 75                      | 1,753           | 260            | 471      | 325             | 77                    | 2,030                  | 1,667  | 1,814                   | 22,123          | 6,449          | 8,017     | 4,269           | 852                   |
| 72R-1, 116-117                  | 823.36           | 52                     | 70     | 71                      | 1,521           | 250            | 409      | 263             | 67                    | 3,339                  | 1,721  | 1,679                   | 19,281          | 6,289          | 8,681     | 3,676           | 793                   |
| 72R-3, 106-107                  | 826.26           | 49                     | 77     | 89                      | 1,906           | 288            | 339      | 303             | 74                    | 2,563                  | 1,925  | 1,733                   | 24,109          | 7,481          | 5,719     | 4,445           | 908                   |
| 73R-1, 78-79                    | 832.58           | 44                     | 86     | 106                     | 1,977           | 285            | 208      | 365             | 73                    | 2,351                  | 2,017  | 2,256                   | 25,081          | 6,866          | 4,716     | 4,770           | 867                   |
| 73R-3, 118-119                  | 835.98           | 50                     | 80     | 95                      | 1,775           | 244            | 0        | 351             | 60                    | 2,914                  | 2,235  | 2,038                   | 22,724          | 6,617          | 0         | 4,789           | 689                   |
| 73R-5, 114-115                  | 838.94           | 49                     | 82     | 98                      | 1,911           | 263            | 368      | 472             | 71                    | 2,669                  | 2,187  | 1,911                   | 23,975          | 6,483          | 5,921     | 5,605           | 862                   |
| 73R-7, 49-50                    | 841.29           | 60                     | 117    | 118                     | 1,754           | 279            | 291      | 330             | 72                    | 3,508                  | 3,038  | 2,562                   | 23,070          | 7,195          | 4,641     | 4,725           | 954                   |
| 74R-1, 128-129                  | 842.68           | 41                     | 62     | 60                      | 976             | 134            | 1,128    | 182             | 37                    | 1,822                  | 1,180  | 1,282                   | 12,236          | 3,211          | 23,521    | 2,369           | 423                   |
| 74R-2, 56-57                    | 843.46           | 53                     | 89     | 99                      | 1,883           | 298            | 332      | 348             | 74                    | 1,806                  | 2,890  | 2,389                   | 24,322          | 7,046          | 5,793     | 4,731           | 903                   |
| 74R-2, 123-124                  | 844.13           | 62                     | 114    | 124                     | 2,049           | 308            | 255      | 339             | 70                    | 1,967                  | 2,990  | 2,580                   | 25,553          | 7,593          | 4,758     | 4,414           | 796                   |
| 74R-CC, 16-17                   | 845.13           | 62                     | 145    | 146                     | 2,122           | 310            | 0        | 347             | 80                    | 2,426                  | 3,313  | 3,193                   | 27,430          | 7,858          | 0         | 4,713           | 898                   |
| 75R-1, 95-96                    | 851.95           | 74                     | 120    | 137                     | 1,986           | 307            | 357      | 358             | 74                    | 3,555                  | 2,848  | 3,056                   | 25,621          | 7,543          | 5,881     | 4,849           | 820                   |
| 76R-1, 32-33                    | 861.02           | 42                     | 59     | /6                      | 1,249           | 180            | 1,010    | 217             | 4/                    | 1,689                  | 1,572  | 1,692                   | 15,834          | 4,408          | 19,017    | 3,092           | 555                   |
| /6R-1, 69-/0                    | 861.39           | 48                     | 140    | 110                     | 2,006           | 440            | 420      | 340             | 60                    | 1,974                  | 2,988  | 2,646                   | 24,943          | 8,166          | 6,566     | 4,/16           | /81                   |
| 76K-2, 77-78                    | 862.97           | 56                     | 103    | 104                     | 2,077           | 300            | 210      | 3/9             | 86                    | 2,074                  | 2,781  | 2,333                   | 27,179          | 7,795          | 3,671     | 4,913           | 992                   |
| 7/R-2, 97-98                    | 8/2.8/           | 54                     | 90     | 102                     | 2,279           | 368            | 47       | 38/             | 82                    | 3,000                  | 2,130  | 2,274                   | 28,401          | 8,439          | /03       | 5,359           | 1,060                 |
| / OK-Z, 129-130                 | 002.79           | 54                     | 107    | 111                     | 2,130           | 330            | 0        | 3/9             | 97<br>50              | 2,990                  | 3,790  | 2,092                   | 27,393          | 0,937<br>7.096 | 0         | 3,43/<br>4 722  | 1,106                 |
| 70R-3, 31-32                    | 003.31           | 35                     | 40     | 110                     | 2 2 70          | 221            | 0        | 233             | 30                    | 3,943                  | 2,025  | 1,030                   | 20 100          | 7,060<br>8,600 | 0         | 4,755           | 009                   |
| 70R-3, 90-99                    | 003.90<br>886.65 | 40                     | 100    | 119                     | 2,370           | 270            | 247      | 326             | 02<br>76              | 2 4 5 5                | 2 216  | 2,373                   | 24 742          | 0,092<br>7 023 | 7 / 1 9   | 4,900           | 930                   |
| 70R-3, 03-00<br>70P-1 116-117   | 800.05           | 47                     | 00     | 112                     | 2 1 2 0         | 329            | 0        | 320             | 70<br>84              | 2,433                  | 3,310  | 2,809                   | 24,742          | 7,023          | 0,410     | 5 / 78          | 1 227                 |
| 80R-2 89-90                     | 901 39           | 48                     | 120    | 135                     | 2,120           | 335            | 0        | 392             | 81                    | 3,505                  | 6 047  | 3 112                   | 27,327          | 8 389          | 0         | 5 250           | 1,227                 |
| 80R-3 115-116                   | 903.15           | 45                     | 98     | 95                      | 2,130           | 298            | 0        | 355             | 91                    | 3,522                  | 3 287  | 2 207                   | 26 622          | 7 985          | 0         | 5 040           | 1,042                 |
| 81R-3 100-102                   | 912.60           | 54                     | 107    | 121                     | 2,075           | 321            | 78       | 364             | 87                    | 3,266                  | 3 758  | 2,207                   | 20,022          | 8 925          | 1 3 7 7   | 4 91 2          | 1,001                 |
| 82R-2 93-94                     | 920.73           | 49                     | 94     | 112                     | 2,170           | 327            | 43       | 380             | 75                    | 3 401                  | 4 521  | 2,727                   | 27,574          | 7 918          | 744       | 5 535           | 854                   |
| 83R-2, 147-148                  | 930.87           | 54                     | 88     | 112                     | 1.744           | 254            | 427      | 288             | 68                    | 3,014                  | 3,333  | 2,410                   | 22,905          | 6,257          | 7.866     | 4.050           | 754                   |
| 83R-4, 114-115                  | 933.54           | 53                     | 104    | 112                     | 2.021           | 304            | 121      | 364             | 76                    | 4.150                  | 3.617  | 2.625                   | 25.759          | 7.689          | 2.638     | 4.863           | 909                   |
| 83R-6, 147-148                  | 936.87           | 58                     | 103    | 127                     | 1.901           | 324            | 0        | 343             | 72                    | 4.288                  | 3.086  | 2,788                   | 25.342          | 7.916          | 2,030     | 4.847           | 951                   |
| 84R-2, 116-117                  | 940.16           | 57                     | 98     | 117                     | 1,992           | 263            | 152      | 348             | 81                    | 4,285                  | 3,143  | 2,616                   | 25,606          | 6,892          | 2,926     | 4,813           | 1,045                 |
| 84R-3, 130-131                  | 941.80           | 51                     | 78     | 89                      | 1,836           | 306            | 452      | 324             | 84                    | 4,765                  | 2,183  | 1,839                   | 23,286          | 7,128          | 7,966     | 4,479           | 945                   |
| 85R-1, 122-123                  | 948.32           | 44                     | 70     | 85                      | 1,930           | 277            | 45       | 338             | 82                    | 3,891                  | 2,692  | 1,914                   | 24,868          | 7,430          | 1,033     | 4,980           | 1,012                 |
| 85R-3, 118-119                  | 951.28           | 44                     | 77     | 90                      | 1,776           | 303            | 228      | 327             | 80                    | 4,216                  | 1,646  | 2,009                   | 23,466          | 7,080          | 6,273     | 4,833           | 1,076                 |
| 85R-6, 86-87                    | 955.46           | 13                     | 0      | 0                       | 133             | 46             | 128      | 31              | 19                    | 571                    | 0      | 0                       | 1,833           | 1,000          | 3,642     | 644             | 338                   |
| 86R-2, 117-118                  | 959.47           | 42                     | 81     | 93                      | 1,998           | 318            | 0        | 333             | 73                    | 3,354                  | 3,084  | 2,192                   | 26,085          | 7,896          | 0         | 4,617           | 877                   |
| 86R-4, 27-28                    | 961.57           | 14                     | 28     | 25                      | 533             | 69             | 994      | 96              | 26                    | 1,339                  | 740    | 792                     | 6,605           | 1,494          | 25,387    | 1,365           | 314                   |
| 87R-1, 128-129                  | 967.78           | 46                     | 68     | 103                     | 2,116           | 285            | 0        | 366             | 86                    | 3,447                  | 2,920  | 2,209                   | 27,151          | 7,311          | 0         | 5,325           | 1,067                 |
| 87R-3, 104-105                  | 970.54           | 14                     | 0      | 16                      | 210             | 50             | 501      | 38              | 20                    | 790                    | 0      | 518                     | 2,480           | 1,023          | 12,344    | 465             | 302                   |
| 87R-5, 8-9                      | 972.58           | 44                     | 83     | 105                     | 2,038           | 281            | 64       | 348             | 75                    | 2,154                  | 3,304  | 2,320                   | 26,893          | 7,098          | 899       | 4,960           | 884                   |
| 88R-2, 117-118                  | 978.77           | 43                     | 64     | 95                      | 1,872           | 274            | 83       | 345             | 79                    | 2,504                  | 2,738  | 2,278                   | 23,813          | 7,061          | 2,808     | 4,663           | 884                   |
| 88R-4, 90-91                    | 981.50           | 41                     | 71     | 104                     | 1,886           | 256            | 104      | 353             | 89                    | 2,951                  | 3,441  | 2,490                   | 24,769          | 6,551          | 2,403     | 5,169           | 1,029                 |
| 89R-2, 144-145                  | 988.24           | 44                     | 79     | 107                     | 2,088           | 245            | 55       | 359             | 74                    | 2,911                  | 3,099  | 2,228                   | 25,918          | 6,415          | 951       | 5,111           | 839                   |
| 89R-6, 37-38                    | 993.17           | 41                     | 82     | 105                     | 2,168           | 306            | 47       | 400             | 74                    | 3,203                  | 3,234  | 2,481                   | 27,743          | 7,826          | 764       | 5,407           | 868                   |
| 90R-2, 4-5                      | 996.44           | 38                     | 81     | 110                     | 2,101           | 297            | 0        | 387             | 76                    | 2,873                  | 3,659  | 2,521                   | 27,339          | 7,384          | 0         | 5,045           | 845                   |
| 90R-2, 41-42                    | 996.81           | 16                     | 20     | 31                      | 436             | 52             | 1,273    | 76              | 20                    | 1,089                  | 268    | 664                     | 5,127           | 1,163          | 34,479    | 1,139           | 296                   |

|                                 |                 |                        |        | X-ray d                 | liffractior     | n peak intensi | ty (cps) |                 |                       |                        |        | X-ray di                | ffraction p     | eak area (tota | al counts) |                 |                       |
|---------------------------------|-----------------|------------------------|--------|-------------------------|-----------------|----------------|----------|-----------------|-----------------------|------------------------|--------|-------------------------|-----------------|----------------|------------|-----------------|-----------------------|
| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Smectite<br>+ chlorite | Illite | Chlorite<br>+ kaolinite | (101)<br>Quartz | Plagioclase    | Calcite  | (100)<br>Quartz | (101)<br>Cristobalite | Smectite<br>+ chlorite | Illite | Chlorite<br>+ kaolinite | (101)<br>Quartz | Plagioclase    | Calcite    | (100)<br>Quartz | (101)<br>Cristobalite |
| 91R-1, 87-88                    | 1005.47         | 44                     | 65     | 88                      | 2,012           | 252            | 61       | 348             | 79                    | 4,663                  | 2,467  | 2,449                   | 25,884          | 6,879          | 1,431      | 5,049           | 1,096                 |
| 92R-2, 66-67                    | 1016.36         | 41                     | 77     | 100                     | 2,076           | 295            | 35       | 362             | 68                    | 2,651                  | 3,658  | 2,291                   | 26,325          | 7,848          | 901        | 5,074           | 875                   |
| 92R-5, 91-92                    | 1021.11         | 42                     | 72     | 95                      | 2,092           | 244            | 0        | 389             | 83                    | 3,694                  | 2,635  | 2,218                   | 26,218          | 7,040          | 0          | 5,323           | 1,104                 |
| 93R-3, 73-75                    | 1027.63         | 21                     | 21     | 34                      | 429             | 58             | 1,187    | 86              | 20                    | 1,001                  | 714    | 694                     | 5,132           | 1,147          | 25,546     | 1,084           | 223                   |
| 93R-4, 114-116                  | 1029.54         | 65                     | 101    | 131                     | 2,028           | 285            | 142      | 364             | 68                    | 4,448                  | 4,277  | 3,152                   | 26,507          | 7,092          | 2,936      | 4,862           | 860                   |
| 94R-1, 116-118                  | 1034.66         | 64                     | 102    | 130                     | 2,077           | 276            | 91       | 336             | 76                    | 3,880                  | 4,586  | 2,808                   | 26,076          | 6,992          | 1,874      | 4,699           | 800                   |
| 94R-3, 130-131                  | 1037.80         | 40                     | 62     | 100                     | 1,391           | 174            | 823      | 260             | 51                    | 3,018                  | 2,094  | 2,405                   | 17,842          | 4,467          | 16,886     | 3,614           | 804                   |
| 95R-2, 141-142                  | 1046.01         | 62                     | 103    | 135                     | 2,067           | 263            | 111      | 374             | 64                    | 3,930                  | 3,904  | 2,982                   | 26,733          | 7,264          | 2,550      | 4,993           | 810                   |
| 96R-2, 119-120                  | 1055.29         | 57                     | 78     | 102                     | 1,782           | 244            | 389      | 337             | 64                    | 3,824                  | 3,373  | 2,321                   | 22,608          | 6,515          | 7,250      | 4,628           | 696                   |
| 96R-3, 15-16                    | 1055.75         | 56                     | 78     | 97                      | 1,882           | 223            | 413      | 322             | 61                    | 4,100                  | 2,925  | 2,470                   | 23,426          | 5,678          | 7,576      | 4,630           | 740                   |
| 97R-1, 65-66                    | 1062.95         | 47                     | 89     | 111                     | 2,137           | 294            | 0        | 362             | 79                    | 3,185                  | 3,404  | 2,428                   | 26,790          | 7,356          | 0          | 5,073           | 839                   |
| 98R-1, 25-26                    | 1072.15         | 51                     | 97     | 121                     | 1,977           | 253            | 471      | 328             | 64                    | 3,394                  | 3,131  | 2,694                   | 24,449          | 5,668          | 9,963      | 4,464           | 796                   |
| 98R-3, 72-73                    | 1075.62         | 45                     | 86     | 115                     | 1,998           | 258            | 338      | 347             | 72                    | 3,678                  | 2,474  | 2,455                   | 25,544          | 6,148          | 6,648      | 4,852           | 776                   |
| 99R-1, 21-22                    | 1081.71         | 54                     | 117    | 138                     | 2,069           | 287            | 53       | 378             | 77                    | 3,705                  | 4,008  | 3,193                   | 26,444          | 6,906          | 1,099      | 5,017           | 1,001                 |
| 99R-2, 24-25                    | 1083.24         | 49                     | 97     | 127                     | 1,953           | 257            | 224      | 333             | 49                    | 3,169                  | 3,522  | 2,960                   | 24,749          | 6,330          | 4,699      | 4,598           | 594                   |
| 100R-1, 102-103                 | 1092.22         | 44                     | 91     | 125                     | 1,887           | 275            | 82       | 342             | 79                    | 2,445                  | 3,990  | 3,192                   | 24,750          | 6,824          | 3,268      | 4,706           | 1,028                 |
| 100R-2, 24-25                   | 1092.80         | 28                     | 35     | 52                      | 705             | 101            | 1,407    | 138             | 20                    | 2,188                  | 1,111  | 1,069                   | 8,580           | 2,307          | 27,047     | 1,889           | 183                   |
| 101R-1, 51-52                   | 1101.31         | 40                     | 84     | 92                      | 1,705           | 195            | 264      | 289             | 58                    | 2,156                  | 3,226  | 2,138                   | 21,708          | 5,532          | 6,481      | 3,886           | 645                   |
| 102R-1, 68-69                   | 1110.88         | 52                     | 64     | 98                      | 1,886           | 210            | 0        | 331             | 68                    | 3,158                  | 3,426  | 2,203                   | 24,424          | 6,314          | 0          | 4,975           | 841                   |

Note: This table is also available in ASCII format.

\_

 
 Table T6. Normalized relative mineral abundances based on X-ray
 diffraction analyses of random bulk-sediment powders, Site 1174. (See table note. Continued on next three pages.)

|      |                              |                  | Normalized relative mineral abundance<br>(wt%) |          |             |         |                     |
|------|------------------------------|------------------|------------------------------------------------|----------|-------------|---------|---------------------|
|      | Core, section,               | Depth            | Total clay                                     | (        |             |         | (101) Cristobalite/ |
| Unit | Interval (cm)                | (mbst)           | minerais                                       | Quartz   | Plagloclase | Calcite | (100) Quartz        |
| I    | 190-1174A-                   | 0.20             | 40                                             | 25       | 17          |         | 0.20                |
|      | 1H-1, 38-39<br>1H-2, 96-97   | 0.39             | 48<br>50                                       | 35<br>34 | 17          | 0       | 0.38                |
|      | Me                           | ean Unit I:      | 49                                             | 35       | 16          | 0       | 0.34                |
|      | 1H-3 109-110                 | 4.10             | 45                                             | 37       | 18          | 0       | 0.32                |
|      | 2H-5, 130-131                | 10.50            | 50                                             | 35       | 14          | 0       | 0.33                |
|      | 2H-7, 131-132                | 13.51            | 49                                             | 33       | 16          | 2       | 0.28                |
|      | 3H-2, 104-105                | 16.45            | 36                                             | 37       | 26          | 2       | 0.29                |
|      | 3H-4, /5-/6                  | 18.60            | 51                                             | 33       | 16<br>17    | 0       | 0.36                |
|      | 4H-2, 63-64                  | 25.54            | 52                                             | 33       | 15          | 0       | 0.34                |
|      | 4H-4, 129-130                | 29.20            | 56                                             | 30       | 14          | 0       | 0.40                |
| IIA  | 5H-1, 99-100                 | 33.90            | 47                                             | 36       | 16          | 0       | 0.45                |
|      | 5H-2, 134-135                | 35.75            | 45                                             | 34       | 20          | 1       | 0.39                |
|      | 5H-CC, 40-41                 | 39.90            | 45                                             | 35       | 21          | 0       | 0.37                |
|      | /H-2, 132-133                | 54.23            | 42                                             | 3/       | 22          | 0       | 0.45                |
|      | 8H-4 133-134                 | 65.02<br>66.47   | 25<br>26                                       | 35<br>36 | 32<br>38    | 0       | 0.39                |
|      | 1R-1, 71-72                  | 144.42           | 38                                             | 38       | 23          | 1       | 0.42                |
|      | 3R-1, 125-127                | 160.97           | 49                                             | 31       | 19          | 0       | 0.41                |
|      | 4R-2, 44-45                  | 171.35           | 47                                             | 35       | 18          | 0       | 0.34                |
|      | 5R-1, 35-36                  | 179.36           | 44                                             | 38       | 18          | 0       | 0.56                |
|      | 5R-1, 122-123                | 180.23           | 35                                             | 37       | 28          | 0       | 0.45                |
|      | 6R-1, 122-123                | 189.93           | 48                                             | 33       | 19          | 0       | 0.55                |
|      | 7R-1, 93-90<br>8R-1 61-62    | 208.62           | 45                                             | 34       | 20          | 0       | 0.47                |
|      | 9R-1, 116-117                | 218.87           | 43                                             | 36       | 20          | 0       | 0.45                |
|      | 10R-1, 118-119               | 228.39           | 45                                             | 37       | 18          | 0       | 0.49                |
|      | 10R-CC, 15-16                | 229.48           | 42                                             | 36       | 22          | 0       | 0.42                |
|      | 11R-2, 15-16                 | 238.46           | 44                                             | 38       | 18          | 0       | 0.47                |
|      | 12R-1, 112-113               | 247.63           | 46                                             | 37       | 17          | 0       | 0.59                |
|      | 13R-1, 106-10/               | 257.27           | 50<br>42                                       | 33<br>34 | 15          | 1       | 0.54                |
|      | 14R-1, 19-20                 | 256.09           | 42                                             | 36       | 19          | 0       | 0.59                |
|      | 15R-1, 123-124               | 276.73           | 47                                             | 32       | 13          | 7       | 0.49                |
|      | 15R-2, 48-49                 | 277.48           | 51                                             | 33       | 14          | 2       | 0.38                |
|      | 16R-1, 123-124               | 286.33           | 46                                             | 36       | 17          | 2       | 0.38                |
|      | 17R-1, 110-111               | 295.70           | 44                                             | 37       | 18          | 0       | 0.59                |
|      | 18R-2, 67-68                 | 306.47           | 46                                             | 34       | 1/          | 3       | 0.33                |
|      | Mean Su                      | ibunit IIA       | 40                                             | 35       | 10          | 1       | 0.43                |
|      | 100 1 79 70                  | 21 / 70          | 42                                             | 26       | 10          | ว       | 0.45                |
| IIB  | 19R-1, 70-79                 | 314.70<br>314.89 | 45<br>44                                       | 30<br>40 | 19          | 2<br>0  | 0.45                |
|      | 20R-2, 110-111               | 326.10           | 43                                             | 36       | 21          | Ő       | 0.46                |
|      | 20R-3, 50-51                 | 327.00           | 50                                             | 35       | 14          | 0       | 0.34                |
|      | 21R-1, 114-115               | 334.24           | 41                                             | 40       | 18          | 1       | 0.34                |
|      | 21R-CC, 3-4                  | 335.75           | 52                                             | 33       | 12          | 3       | 0.38                |
|      | 22R-1, 25-26                 | 342.65           | 40                                             | 38       | 19          | 2       | 0.30                |
|      | 23R-1,96-97<br>24P-3 117-118 | 352.96           | 47                                             | 37       | 15          | 0       | 0.37                |
|      | 25R-1, 122-123               | 372.52           | 44                                             | 37       | 19          | 0       | 0.71                |
|      | 26R-1, 56-57                 | 381.46           | 49                                             | 36       | 15          | 0       | 0.46                |
|      | 27R-1, 123-124               | 391.73           | 40                                             | 38       | 22          | 0       | 0.71                |
|      | 27R-3, 115-116               | 394.65           | 48                                             | 36       | 16          | 0       | 0.42                |
|      | 28R-1, 124-125               | 401.44           | 43                                             | 38       | 19          | 0       | 0.60                |
|      | 28R-2, 49-50                 | 402.19           | 42                                             | 38       | 20          | 0       | 0.62                |
|      | 275-2,01-02<br>298-3 133-131 | 412.11<br>414 13 | 44<br>47                                       | 36<br>36 | 10<br>17    | 0       | 0.59                |
|      | 29R-CC. 18-19                | 414.63           | 46                                             | 38       | 16          | õ       | 0.41                |
|      | 30R-CC, 5-6                  | 419.45           | 46                                             | 38       | 16          | 0       | 0.40                |
|      | 31R-1, 116-117               | 430.16           | 49                                             | 34       | 17          | 0       | 0.31                |
|      | Mean Su                      | ubunit IIB:      | 45                                             | 37       | 17          | 0       | 0.44                |
|      |                                 |                  | Normalize              | ed relative<br>(w | Indance     | Peak area ratio: |                                     |
|------|---------------------------------|------------------|------------------------|-------------------|-------------|------------------|-------------------------------------|
| Unit | Core, section,<br>interval (cm) | Depth<br>(mbsf)  | Total clay<br>minerals | Quartz            | Plagioclase | Calcite          | (101) Cristobalite/<br>(100) Quartz |
|      | 31R-3, 44-45                    | 432.44           | 44                     | 38                | 17          | 1                | 0.33                                |
|      | 32R-2, 117-118                  | 441.27           | 46                     | 37                | 16          | 0                | 0.36                                |
|      | 32R-5, 130-131                  | 445.90           | 30                     | 29                | 15          | 25               | 0.27                                |
|      | 33R-2, 119-120                  | 450.89           | 43                     | 35                | 22          | 0                | 0.44                                |
|      | 33R-4, 18-19                    | 452.88           | 44                     | 37                | 20          | 0                | 0.56                                |
| IIC  | 34R-3, 96-97                    | 461.86           | 37                     | 41                | 21          | 1                | 0.32                                |
|      | 35K-1, 118-119                  | 468.28           | 44                     | 3/                | 17          | 2                | 0.40                                |
|      | 36P-2, 94-95                    | 409.34           | 40<br>12               | 38                | 16          | 4                | 0.32                                |
|      | 36R-3, 111-112                  | 480.61           | 45                     | 34                | 16          | 5                | 0.27                                |
|      | Mean Su                         | ubunit IIC:      | 42                     | 36                | 17          | 4                | 0.38                                |
|      | 37R-3, 130-131                  | 490.00           | 45                     | 37                | 18          | 0                | 0.44                                |
|      | 37R-4, 117-118                  | 491.37           | 43                     | 37                | 15          | 5                | 0.40                                |
|      | 38R-3, 84-85                    | 499.14           | 42                     | 37                | 17          | 5                | 0.35                                |
|      | 38R-4, 115-116                  | 500.95           | 44                     | 37                | 15          | 3                | 0.47                                |
|      | 38R-6, 62-63                    | 503.42           | 40                     | 34                | 14          | 12               | 0.27                                |
|      | 39R-1, 133-134                  | 506.23           | 47                     | 35                | 15          | 3                | 0.33                                |
|      | 39R-3, 117-118                  | 509.07           | 42                     | 39                | 17          | 2                | 0.48                                |
|      | 40K-4, 118-119                  | 520.28           | 40                     | 38                | 15          | 1                | 0.55                                |
|      | 41R-2, 29-30<br>41R-CC 20-21    | 520.09           | 42                     | 40<br>37          | 13          | 4                | 0.20                                |
|      | 47R-CC, 20-21<br>42R-1 96-97    | 534.86           | 40                     | 36                | 17          | 0                | 0.22                                |
|      | 42R-3, 125-126                  | 538.15           | 52                     | 35                | 13          | 0                | 0.23                                |
|      | 42R-5, 116-117                  | 541.06           | 48                     | 38                | 14          | 0                | 0.25                                |
|      | 43R-3, 99-100                   | 547.59           | 47                     | 38                | 16          | 0                | 0.27                                |
|      | 43R-5, 127-128                  | 550.87           | 43                     | 36                | 16          | 5                | 0.26                                |
|      | 43R-5, 127-128                  | 550.87           | 45                     | 35                | 15          | 5                | 0.26                                |
|      | 43R-6, 129-130                  | 552.39           | 48                     | 34                | 13          | 6                | 0.34                                |
|      | 44R-3, 117-118                  | 557.07           | 50                     | 36                | 14          | 0                | 0.22                                |
|      | 44R-4, 125-126                  | 558.65           | 48                     | 35                | 1/          | 0                | 0.32                                |
| ш    | 43K-1, 72-73                    | 566 60           | 40                     | 20                | 10          | 12               | 0.42                                |
|      | 45R-5, 109-110<br>46R-1 149-150 | 573 79           | 44                     | 30                | 12          | 16               | 0.32                                |
|      | 46R-4, 118-119                  | 577.98           | 50                     | 39                | 11          | 0                | 0.28                                |
|      | 46R-7, 42-43                    | 581.72           | 42                     | 31                | 10          | 17               | 0.21                                |
|      | 47R-1, 149-150                  | 583.39           | 49                     | 36                | 15          | 0                | 0.28                                |
|      | 47R-4, 119-120                  | 587.59           | 57                     | 35                | 9           | 0                | 0.21                                |
|      | 48R-2, 134-135                  | 594.44           | 49                     | 37                | 14          | 0                | 0.20                                |
|      | 48R-5, 101-102                  | 598.61           | 50                     | 38                | 13          | 0                | 0.22                                |
|      | 49R-1, 119-120                  | 602.39           | 38                     | 30                | 10          | 22               | 0.23                                |
|      | 49R-3, 99-100                   | 603.19           | 47<br>54               | 39                | 14          | 0                | 0.08                                |
|      | 50R-4 120-121                   | 616.60           | 14<br>14               | 36                | 13          | 7                | 0.43                                |
|      | 52R-1, 82-83                    | 630.92           | 40                     | 31                | 11          | ,<br>19          | 0.48                                |
|      | 52R-6, 115-116                  | 638.75           | 43                     | 27                | 14          | 17               | 0.26                                |
|      | 53R-1, 107-108                  | 640.87           | 48                     | 34                | 14          | 4                | 0.25                                |
|      | 53R-3, 122-123                  | 644.02           | 51                     | 34                | 14          | 1                | 0.30                                |
|      | 53R-4, 14-15                    | 644.44           | 57                     | 34                | 9           | 0                | 0.35                                |
|      | 54R-3, 127-128                  | 653.67           | 49                     | 38                | 14          | 0                | 0.46                                |
|      | 54R-5, 96-97                    | 656.36           | 4/                     | 36                | 16          | 1                | 0.34                                |
|      | ЗЗК-1, 131-132<br>Меа           | an Unit III:     | 45                     | 35                | 13          | 4                | 0.36                                |
| _    | 55R-5 92-93                     | 665 92           | 50                     | 38                | 12          | 0                | 0.51                                |
|      | 56R-1, 114-115                  | 669.84           | 46                     | 34                | 18          | 2                | 0.34                                |
|      | 56R-2, 135-136                  | 671.55           | 49                     | 38                | 13          | 0                | 0.30                                |
|      | 57R-4, 116-117                  | 683.96           | 44                     | 34                | 13          | 10               | 0.24                                |
|      | 57R-6, 133-134                  | 687.13           | 49                     | 36                | 10          | 5                | 0.35                                |
|      | 58R-2, 75-76                    | 690.25           | 48                     | 37                | 13          | 2                | 0.24                                |
| IV   | 58R-4, 80-81                    | 693.30           | 46                     | 37                | 13          | 4                | 0.25                                |
| -    | 59R-3, 117-118                  | 701.77           | 48                     | 37                | 15          | 1                | 0.24                                |
|      | 59K-4, 84-85                    | 704.99           | 49<br>40               | 38<br>20          | 13<br>12    | U<br>1           | 0.22                                |
|      | 60R-2 113-111                   | 704.00<br>709.83 | 49<br>47               | 30<br>30          | 14          | 0                | 0.20                                |
|      | 61R-1, 83-84                    | 717.74           | 54                     | 35                | 9           | 3                | 0.23                                |
|      | 61R-4, 105-106                  | 722.46           | 41                     | 29                | 10          | 20               | 0.23                                |
|      | 61R-5, 116-117                  | 724.07           | 49                     | 38                | 11          | 2                | 0.26                                |

|      |                                 | Normalized relative mineral abundance<br>(wt%) |                        |          |             |          |                                     |  |  |  |  |  |  |
|------|---------------------------------|------------------------------------------------|------------------------|----------|-------------|----------|-------------------------------------|--|--|--|--|--|--|
| Unit | Core, section,<br>interval (cm) | Depth<br>(mbsf)                                | Total clay<br>minerals | Quartz   | Plagioclase | Calcite  | (101) Cristobalite/<br>(100) Quartz |  |  |  |  |  |  |
|      | 62R-3, 97-98                    | 730.48                                         | 52                     | 37       | 11          | 0        | 0.26                                |  |  |  |  |  |  |
|      | 63R-2, 81-82                    | 738.42                                         | 46                     | 40       | 14          | 0        | 0.25                                |  |  |  |  |  |  |
|      | 63R-5, 137-138                  | 743.48                                         | 52                     | 35       | 11          | 2        | 0.22                                |  |  |  |  |  |  |
|      | 64R-1, 106-107                  | 740.77                                         | 48<br>51               | 39       | 13          | 0        | 0.21                                |  |  |  |  |  |  |
|      | 64R-5, 110-119                  | 749.09                                         | 51                     | 30       | 12          | 0        | 0.20                                |  |  |  |  |  |  |
|      | 65R-1, 113-114                  | 756.14                                         | 52                     | 37       | 11          | 0<br>0   | 0.27                                |  |  |  |  |  |  |
|      | 65R-4, 83-84                    | 760.34                                         | 50                     | 37       | 13          | 0        | 0.19                                |  |  |  |  |  |  |
|      | 66R-1, 114-115                  | 765.75                                         | 47                     | 33       | 12          | 8        | 0.18                                |  |  |  |  |  |  |
|      | 66R-5, 100-101                  | 771.61                                         | 54                     | 36       | 9           | 0        | 0.17                                |  |  |  |  |  |  |
|      | 67R-2, 98-99                    | 775.43                                         | 53                     | 34       | 13          | 0        | 0.20                                |  |  |  |  |  |  |
|      | 67R-3, 128-129                  | 777.23                                         | 53                     | 35       | 10          | 1        | 0.20                                |  |  |  |  |  |  |
|      | 67R-4, 128-129<br>68P-1 116-118 | 785.08                                         | 52                     | 34<br>35 | 10          | 4        | 0.20                                |  |  |  |  |  |  |
|      | 68R-2, 134-136                  | 786.76                                         | 55                     | 34       | 10          | 0        | 0.19                                |  |  |  |  |  |  |
|      | 69R-2, 129-130                  | 795.17                                         | 52                     | 34       | 10          | 4        | 0.17                                |  |  |  |  |  |  |
|      | 69R-3, 96-97                    | 796.34                                         | 45                     | 36       | 10          | 8        | 0.22                                |  |  |  |  |  |  |
|      | 69R-4, 118-119                  | 798.06                                         | 43                     | 34       | 9           | 14       | 0.19                                |  |  |  |  |  |  |
|      | 70R-2, 98-99                    | 805.78                                         | 50                     | 31       | 8           | 11       | 0.17                                |  |  |  |  |  |  |
|      | 70R-4, 148-149                  | 809.28                                         | 47                     | 40       | 12          | 0        | 0.22                                |  |  |  |  |  |  |
|      | 70R-5, 148-149                  | 810.78                                         | 55                     | 34       | 11          | 0        | 0.19                                |  |  |  |  |  |  |
|      | /IR-2, 0-1<br>710 2 06 07       | 812.88                                         | 48                     | 36       | 12          | 5        | 0.20                                |  |  |  |  |  |  |
|      | 71R-2,90-97<br>71P-3 80-81      | 010.04<br>817.06                               | 45<br>10               | 4Z<br>34 | 0           | 0<br>0   | 0.21                                |  |  |  |  |  |  |
|      | 72R-1, 45-46                    | 822.65                                         | 37                     | 32       | 10          | 20       | 0.22                                |  |  |  |  |  |  |
|      | 72R-1, 116-117                  | 823.36                                         | 43                     | 30       | 8           | 19       | 0.22                                |  |  |  |  |  |  |
|      | 72R-3, 106-107                  | 826.26                                         | 42                     | 35       | 11          | 13       | 0.20                                |  |  |  |  |  |  |
|      | 73R-1, 78-79                    | 832.58                                         | 43                     | 36       | 10          | 10       | 0.18                                |  |  |  |  |  |  |
|      | 73R-3, 118-119                  | 835.98                                         | 53                     | 37       | 10          | 0        | 0.14                                |  |  |  |  |  |  |
|      | 73R-5, 114-115                  | 838.94                                         | 45                     | 34       | 9           | 13       | 0.15                                |  |  |  |  |  |  |
|      | /3K-/, 49-50                    | 841.29                                         | 55                     | 30       | 5           | 8<br>50  | 0.20                                |  |  |  |  |  |  |
|      | 74K-1, 120-129<br>74D-2 56-57   | 042.00<br>843.46                               | 20<br>47               | 30       | 5<br>10     | 52<br>13 | 0.18                                |  |  |  |  |  |  |
| IV   | 74R-2, 123-124                  | 844.13                                         | 48                     | 31       | 11          | 10       | 0.18                                |  |  |  |  |  |  |
|      | 74R-CC, 16-17                   | 845.13                                         | 55                     | 34       | 11          | 0        | 0.19                                |  |  |  |  |  |  |
|      | 75R-1, 95-96                    | 851.95                                         | 49                     | 31       | 9           | 10       | 0.17                                |  |  |  |  |  |  |
|      | 76R-1, 32-33                    | 861.02                                         | 29                     | 20       | 6           | 44       | 0.18                                |  |  |  |  |  |  |
|      | 76R-1, 69-70                    | 861.39                                         | 46                     | 29       | 11          | 14       | 0.17                                |  |  |  |  |  |  |
|      | 76R-2, 77-78                    | 862.97                                         | 48                     | 35       | 11          | 7        | 0.20                                |  |  |  |  |  |  |
|      | //K-Z, 9/-98                    | 8/2.8/                                         | 48                     | 41       | 12          | 0        | 0.20                                |  |  |  |  |  |  |
|      | 78R-2, 129-130<br>78R-3 31-32   | 883 31                                         | 57<br>60               | 32       | 8           | 0        | 0.20                                |  |  |  |  |  |  |
|      | 78R-3, 98-99                    | 883.98                                         | 53                     | 36       | 11          | 0        | 0.19                                |  |  |  |  |  |  |
|      | 78R-5, 65-66                    | 886.65                                         | 49                     | 28       | 9           | 14       | 0.19                                |  |  |  |  |  |  |
|      | 79R-1, 116-117                  | 890.46                                         | 55                     | 35       | 10          | 0        | 0.22                                |  |  |  |  |  |  |
|      | 80R-2, 89-90                    | 901.39                                         | 67                     | 25       | 8           | 0        | 0.20                                |  |  |  |  |  |  |
|      | 80R-3, 115-116                  | 903.15                                         | 56                     | 34       | 10          | 0        | 0.23                                |  |  |  |  |  |  |
|      | 81R-3, 100-102                  | 912.60                                         | 5/                     | 32       | 11          | 0        | 0.20                                |  |  |  |  |  |  |
|      | 02K-2, 93-94<br>83D-2 147-148   | 920.75                                         | 51                     | 30<br>27 | 9           | 15       | 0.15                                |  |  |  |  |  |  |
|      | 83R-2, 147-148<br>83R-4 114-115 | 933 54                                         | 58                     | 31       | 8           | 2        | 0.19                                |  |  |  |  |  |  |
|      | 83R-6, 147-148                  | 936.87                                         | 57                     | 34       | 9           | 0        | 0.20                                |  |  |  |  |  |  |
|      | 84R-2, 116-117                  | 940.16                                         | 56                     | 33       | 8           | 3        | 0.22                                |  |  |  |  |  |  |
|      | 84R-3, 130-131                  | 941.80                                         | 47                     | 32       | 7           | 14       | 0.21                                |  |  |  |  |  |  |
|      | 85R-1, 122-123                  | 948.32                                         | 55                     | 36       | 9           | 0        | 0.20                                |  |  |  |  |  |  |
|      | 85R-3, 118-119                  | 951.28                                         | 45                     | 35       | 8           | 12       | 0.22                                |  |  |  |  |  |  |
|      | 85K-6,86-8/                     | 955.46<br>050 47                               | 18                     | 24<br>25 | 8<br>10     | 50       | 0.52                                |  |  |  |  |  |  |
|      | 00R-2, 11/-118<br>86R-4 27.28   | 759.4/<br>961 57                               | 55<br>21               | 55<br>12 | 2           | 0<br>64  | 0.19                                |  |  |  |  |  |  |
|      | 87R-1. 128-129                  | 967.78                                         | 55                     | 36       | 9           | 0        | 0.20                                |  |  |  |  |  |  |
|      | 87R-3, 104-105                  | 970.54                                         | 13                     | 13       | 4           | 69       | 0.65                                |  |  |  |  |  |  |
|      | 87R-5, 8-9                      | 972.58                                         | 55                     | 35       | 10          | 0        | 0.18                                |  |  |  |  |  |  |
|      | 88R-2, 117-118                  | 978.77                                         | 52                     | 33       | 10          | 5        | 0.19                                |  |  |  |  |  |  |
|      | 88R-4, 90-91                    | 981.50                                         | 57                     | 32       | 8           | 3        | 0.20                                |  |  |  |  |  |  |
|      | 89R-2, 144-145                  | 988.24                                         | 56                     | 35       | 9           | 0        | 0.16                                |  |  |  |  |  |  |
|      | 89K-0, 3/-38                    | 993.17<br>006 11                               | 55                     | 35       | 10          | 0        | 0.16                                |  |  |  |  |  |  |
|      | JUN-2, 4-J                      | 770.44                                         | 20                     | 22       | 7           | U        | 0.17                                |  |  |  |  |  |  |

# Table T6 (continued).

|      |                                 |                 | Normalize              | ed relative<br>(w | Peak area ratio: |         |                                     |
|------|---------------------------------|-----------------|------------------------|-------------------|------------------|---------|-------------------------------------|
| Unit | Core, section,<br>interval (cm) | Depth<br>(mbsf) | Total clay<br>minerals | Quartz            | Plagioclase      | Calcite | (101) Cristobalite/<br>(100) Quartz |
|      | 90R-2, 41-42                    | 996.81          | 13                     | 10                | 3                | 74      | 0.26                                |
|      | 91R-1, 87-88                    | 1005.47         | 55                     | 37                | 8                | 0       | 0.22                                |
|      | 92R-2, 66-67                    | 1016.36         | 57                     | 32                | 10               | 0       | 0.17                                |
|      | 92R-5, 91-92                    | 1021.11         | 54                     | 37                | 9                | 0       | 0.21                                |
|      | 93R-3, 73-75                    | 1027.63         | 19                     | 10                | 3                | 68      | 0.21                                |
|      | 93R-4, 114-116                  | 1029.54         | 61                     | 30                | 7                | 2       | 0.18                                |
|      | 94R-1, 116-118                  | 1034.66         | 63                     | 29                | 7                | 0       | 0.17                                |
|      | 94R-3, 130-131                  | 1037.80         | 38                     | 23                | 5                | 34      | 0.22                                |
|      | 95R-2, 141-142                  | 1046.01         | 59                     | 31                | 8                | 2       | 0.16                                |
| N7   | 96R-2, 119-120                  | 1055.29         | 53                     | 27                | 7                | 12      | 0.15                                |
| IV   | 96R-3, 15-16                    | 1055.75         | 51                     | 30                | 6                | 13      | 0.16                                |
|      | 97R-1, 65-66                    | 1062.95         | 57                     | 34                | 9                | 0       | 0.17                                |
|      | 98R-1, 25-26                    | 1072.15         | 48                     | 28                | 6                | 18      | 0.18                                |
|      | 98R-3, 72-73                    | 1075.62         | 48                     | 33                | 7                | 12      | 0.16                                |
|      | 99R-1, 21-22                    | 1081.71         | 61                     | 31                | 8                | 0       | 0.20                                |
|      | 99R-2, 24-25                    | 1083.24         | 55                     | 30                | 8                | 8       | 0.13                                |
|      | 100R-1, 102-103                 | 1092.22         | 58                     | 28                | 9                | 5       | 0.22                                |
|      | 100R-2, 24-25                   | 1092.80         | 26                     | 14                | 4                | 57      | 0.10                                |
|      | 101R-1, 51-52                   | 1101.31         | 51                     | 27                | 8                | 14      | 0.17                                |
|      | Mea                             | n Unit IV:      | 49                     | 32                | 10               | 9       | 0.21                                |
| V    | 102R-1, 68-69                   | 1110.88         | 59                     | 33                | 8                | 0       | 0.17                                |

Note: This table is also available in ASCII format.

 Table T7. Structural data, Hole 1174B. (See table notes. Continued on next eight pages.)

| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Cr az.<br>(°) | Cr dip<br>(°) | Cr<br>line | Cr<br>I.plunge | Pm<br>az. | Pm<br>dip | Identifier        | Notes                                                           | Comments |
|---------------------------------|-----------------|---------------|---------------|------------|----------------|-----------|-----------|-------------------|-----------------------------------------------------------------|----------|
| 190-1174B                       |                 |               |               |            |                | 270       |           |                   |                                                                 |          |
| 1R                              | 143.7           |               |               |            |                | 191       |           |                   | Highly disturbed mud and sands                                  |          |
| 2R                              | 150.1           |               |               |            |                |           |           |                   | Highly disturbed mud and sands                                  |          |
| 3R                              | 159.7           |               |               |            |                |           |           |                   | Highly disturbed mud and sands                                  |          |
| 4R                              | 169.4           |               |               |            |                |           |           |                   | Highly disturbed mud and sands                                  |          |
| 5R                              | 179.0           |               |               |            |                |           |           |                   | Highly disturbed mud and sands                                  |          |
| 6R-1                            | 188.7           |               |               |            |                |           |           | Bed               | Horizontal                                                      |          |
| 6R-2                            | 190.2           |               |               |            |                |           |           | Bed               | Horizontal                                                      |          |
| 6R                              | 188.7           |               |               |            |                |           |           | <b>CI</b>         | Planar fissility, anastomosing microlayering                    |          |
| 6R-1, 122-133                   | 190.0           |               |               |            |                |           |           | Slump             | Or convolute lamination, 5 mm length                            |          |
| /K<br>7D 1                      | 198.4           |               |               |            |                |           |           |                   | Rightly disturbed mud and sands                                 |          |
| 7 K-1<br>9 D                    | 208.0           |               |               |            |                |           |           | Rod               | Horizontal, silty clays and sands with planar                   |          |
| OK                              | 200.0           |               |               |            |                |           |           | beu               | fissile intervals                                               |          |
| 8R-1, 54-56                     | 208.6           |               |               |            |                |           |           | Deformation bands |                                                                 |          |
| 9R                              | 217.7           |               |               |            |                |           |           |                   | Planar fissility, anastomosing microlayering                    |          |
| 9R-2, 29-30                     | 219.5           | 0             | 4             |            |                | 335       | 4         | Bed               | (84-101)                                                        |          |
| 9R-1, 30-35                     | 218.0           | 90            | 60-90         |            |                |           | 60-90     | Deformation bands | 9 bands                                                         |          |
| 9R-1, 50-55                     | 218.2           | 270           | 60            |            |                |           | 60        | Deformation bands | 2 bands                                                         |          |
| 9R-1, 68-72                     | 218.4           |               |               |            |                |           |           | Deformation bands | 3 bands                                                         |          |
| 10R-1, 19-23                    | 227.4           | 23            | 36            |            |                |           | 36        | Bed               |                                                                 |          |
| 10R-1, 94-101                   | 228.2           | 159           | 14            |            |                |           | 14        | Bed               | Laminations                                                     |          |
| 10R-1, 94-101                   | 228.2           | 341           | 52            |            |                |           | 52        | Deformation bands |                                                                 |          |
| 10R-1, 94-101                   | 228.2           | 345           | 46            |            |                |           | 46        | Deformation bands |                                                                 |          |
| 10R-1, 94-101                   | 228.2           | 330           | 46            |            |                |           | 46        | Deformation bands |                                                                 |          |
| 10R-1, 42-114                   | 228.0           | 90            | 34            |            |                |           | 34        | Deformation bands |                                                                 |          |
| 10R-2, 56-62                    | 229.3           | 341           | 45            |            |                |           | 45        | Deformation bands |                                                                 |          |
| 10K-2, 39-02                    | 229.5           | 207           | 40            |            |                |           | 40        | Deformation bands | Apparent din only                                               |          |
| 11R-1, 21-20<br>11R-2 13-15     | 237.0           | 161           | 20<br>69      |            |                | 2/1       | 20<br>69  | Deformation bands | (5-18)                                                          |          |
| 11R-2, 13-15                    | 238.4           | 325           | 69            |            |                | 241       | 69        | Deformation bands | (5-19)                                                          |          |
| 12R-1, 76-84                    | 247.3           | 90            | 60            |            |                |           | 60        | Deformation bands | Apparent dip only 4 bands (61 59 53 54)                         |          |
| 12R-1, 76-84                    | 247.3           | 270           | 41            |            |                |           | 41        | Deformation bands | Apparent dip only                                               |          |
| 12R-1, 9-20                     | 246.6           | 90            | 53            |            |                |           | 53        | Deformation bands | Apparent dip only, 3 bands (48, 53, 60)                         |          |
| 13R-1, 112-125                  | 257.4           | 135           | 7             |            |                | 244       | 7         | Bed               | (112-125)                                                       |          |
| 13R-2, 104-104                  | 258.7           | 0             | 0             |            |                | 360       | 0         | Bed               | Horizontal                                                      |          |
| 13R-2, 75-75                    | 258.5           | 27            | 4             |            |                | 280       | 4         | Bed               | (62-75)                                                         |          |
| 13R-3, 6-6                      | 259.3           | 1             | 10            |            |                | 21        | 10        | Bed               | (1-10)                                                          |          |
| 13R-2, 56-58                    | 258.3           | 176           | 54            |            |                | 208       | 54        | Deformation bands | (49-60)                                                         |          |
| 13R-2, 56-58                    | 258.3           | 179           | 60            |            |                | 211       | 60        | Deformation bands | (49-61)                                                         |          |
| 14R-1, 15-20                    | 266.0           |               |               |            |                |           |           | Deformation bands | 5 bands: deflection of broken edge suggests<br>reverse movement |          |
| 14R-CC, 8-10                    | 266.3           |               |               |            |                |           |           | Deformation bands | 2 bands: deflection of broken edge suggests<br>reverse movement |          |
| 15R-1.0-3                       | 275.5           |               |               |            |                |           |           | Deformation bands | 6 bands                                                         |          |
| 15R-1, 2-4                      | 275.5           |               |               |            |                |           |           | Deformation bands | 1 band                                                          |          |
| 15R-1, 15-16                    | 275.7           |               |               |            |                |           |           | Deformation bands | 2 bands, 2 mm wide, dipping                                     |          |
| 15R-1, 18-19                    | 275.7           |               |               |            |                |           |           | Deformation bands | 3 bands, two shallow and one steep dipping                      |          |
| 15R-1, 20-27                    | 275.7           |               |               |            |                |           |           | Deformation bands | 1 band, bed-deformation band angle 15                           |          |
| 15R-1, 38-42                    | 275.9           |               |               |            |                |           |           | Deformation bands | 2 bands, 1mm wide, bed-deformation band angle 31                |          |
| 15R-1, 68-73                    | 276.2           |               |               |            |                |           |           | Deformation bands | 3 bands, 1-2 mm wide, bed-deformation band angle 63             |          |
| 15R-1, 68-73                    | 276.2           |               |               |            |                |           |           | Deformation bands | 1 band, narrow, bed-deformation band angle 50                   |          |
| 15R-1, 80-84                    | 276.3           |               |               |            |                |           |           | Deformation bands | 1 band, 1-2 mm wide, bed-deformation band angle 45              |          |
| 15R-1, 80-84                    | 276.3           |               |               |            |                |           |           | Deformation bands | 2 bands, 0.5 mm wide, bed-deformation band angle 62             |          |
| 15R-1, 102-107                  | 276.5           |               |               |            |                |           |           | Deformation bands | 2 bands, 0.5-3 mm, bed-deformation band angle 43                |          |
| 15R-2, 17-30                    | 277.2           | 150           | 34            |            |                | 200       | 34        | Deformation bands | (14-33); no: 6                                                  |          |
| 15R-2, 17-30                    | 277.2           | 0             | 54            |            |                | 50        | 54        | Deformation bands | (4-33); no: 3                                                   |          |
| 15R-2, All                      | 277.0           | 0             | 0             |            |                |           | 0         | Bed               | Horizontal                                                      |          |
| 15R-CC, 2-7                     | 277.5           | 25            | 53            |            |                | 51        | 53        | Deformation bands | (2-7), average of 4 band dip, 1-3 mm thick                      |          |
| 15R-CC, 2-7                     | 2/7.5           | 180           | 45            |            |                | 206       | 45        | Deformation bands | (2-7), average of 1 band dips, <1 mm thick                      | Drobable |
| I JR-CC, 7-14                   | 277.0           | 150           | 49            |            |                | 21/       | 49        |                   | (7-1+), average of 6 band dip, 1-5 mm thick                     | FICUADIY |

don't trust pmagedge effects?

| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Cr az.<br>(°) | Cr dip<br>(°) | Cr<br>line | Cr<br>I.plunge | Pm<br>az.  | Pm<br>dip | Identifier             | Notes                                                     | Comments     |
|---------------------------------|-----------------|---------------|---------------|------------|----------------|------------|-----------|------------------------|-----------------------------------------------------------|--------------|
|                                 | ( )             | ()            | ()            |            | 1. 5.          |            | . 1       |                        |                                                           |              |
| 15R-CC, 16-20                   | 277.7           | 180           | 42            |            |                | 47         | 42        | Deformation bands      | (16-20), average of 5 band dip, 1 mm thick                |              |
| 15R-CC, 16-20                   | 277.7           | 0             | 47            |            |                | 227        | 47        | Deformation bands      | (16-20), average of 5 band dip, <1 mm thick)              |              |
| 15R-CC, 21-25                   | 277.7           |               |               |            |                |            |           | Deformation bands      | 6 bands, <1 mm thick                                      |              |
| 15R-CC, 21-25                   | 277.7           |               |               |            |                |            |           | Deformation bands      | 3 bands, piece so small                                   |              |
| 16R                             | 285.1           | 0             | 0             |            |                | 25         | 0         | Bed                    |                                                           |              |
| 16R-1, 115-122                  | 286.3           | 130           | 62            |            |                | 25         | 62        | Deformation bands      |                                                           |              |
| 10K-1, 113-122                  | 286.3           | 140           | 63            |            |                | 33         | 63        | Deformation bands      | (00.112)                                                  |              |
| 17R-2, 103-112                  | 297.2           | 120           | 56            |            |                | 20<br>151  | 56        | Deformation bands      | (99-112)                                                  |              |
| 17R-2, 103-112                  | 297.2           | 350           | 50            |            |                | 209        | 50        | Deformation bands      | (89-99)                                                   |              |
| 17R-2, 93-99                    | 297.1           | 180           | 57            |            |                | 39         | 57        | Deformation bands      | (89-99)                                                   |              |
| 18R-1 41-42                     | 304.7           | 70            | 47            |            |                | 40         | 47        | Deformation bands      | (37-46)                                                   |              |
| 18R-1, 41-42                    | 304.7           | 42            | 42            |            |                | 12         | 42        | Deformation bands      | (37-46)                                                   |              |
| 18R-1, 41-42                    | 304.7           | 238           | 9             |            |                | 208        | 9         | Deformation bands      | (37-46)                                                   | Corrected cr |
|                                 |                 |               |               |            |                |            |           |                        |                                                           | az., cr dip  |
| 18R-1, 50-52                    | 304.8           | 67            | 67            |            |                | 37         | 67        | Deformation bands      | (37-46)                                                   |              |
| 18R-1, 53-56                    | 304.8           | 42            | 53            |            |                |            | 53        | Deformation bands      | (53-69)                                                   |              |
| 18R-1, 60-62                    | 304.9           | 72            | 64            |            |                |            | 64        | Deformation bands      | (53-69)                                                   |              |
| 18R-1, 60-62                    | 304.9           | 236           | 26            |            |                |            | 26        | Deformation bands      | (53-69)                                                   |              |
| 18R-2, 0-35                     | 306.0           | 194           | 31            |            |                | 54         | 31        | Fracture               | Parallel to the bedding, widespread lineated              | Coherent     |
| 18R-2, 0-35                     | 306.0           | 187           | 60            |            |                | 47         | 60        | Fracture               | Axial cleavage? In a growing fault fold, reverse          | Declination  |
| 100 2 0 25                      | 204.0           |               |               | 100        | •              |            |           |                        | sense                                                     |              |
| 18R-2, 0-35                     | 306.0           |               |               | 180        | 0              |            |           | Intersection lineation |                                                           |              |
| 18R-2, 0-35                     | 306.0           | 220           | 45            | 280        | 30             | 211        |           | Slickenlines           | Present in all the surfaces, shear sense not clear        |              |
| 18R-4, 120-125                  | 310.0           | 339           | 45            |            |                | 211        | 45        | Deformation bands      | (120-136)                                                 |              |
| 18R-4, 120-125                  | 310.0           | 33/           | 4/            |            |                | 209        | 47        | Deformation bands      | (120-136)                                                 |              |
| 18R-4, 27-50                    | 309.2           | 199           | 30            |            |                |            | 30        | Bed                    | Lie view wheel                                            |              |
| 1 or others                     | 307.3           | 0             | 0             |            |                |            | 0         | Bed                    | Horizontal                                                |              |
| I9K                             | 514.0           | 0             | 0             |            |                |            | 0         | веа                    | bands                                                     |              |
| 20R                             | 323.5           | 0             | 0             |            |                |            | 0         | Fissility              | Up to 5° dip; no deformation bands                        |              |
| 21R                             | 333.1           | 0             | 0             |            |                |            | 0         |                        | Bioturbation - bedding, fissility rarely observed         |              |
| 22R                             | 342.4           | 0             | 0             |            |                |            | 0         | Fissility              | Rarely observed                                           |              |
| 23R                             | 352.0           | 0             | 0             |            |                |            | 0         | Bed                    |                                                           |              |
| 24R                             | 361.7           | 0             | 0             |            |                |            | 0         | Bed                    |                                                           |              |
| 25R                             | 371.3           | 0             | 0             |            |                |            | 0         | Fissility              |                                                           |              |
| 26R                             | 380.9           |               |               |            |                |            |           |                        | Highly disturbed                                          |              |
| 27R-2                           | 392.0           | 230           | 42            |            |                |            | 42        | Deformation bands      |                                                           |              |
| 28R                             | 400.2           | 0             | 0             |            |                |            | 0         | Bed and fissility      |                                                           |              |
| 29R-1                           | 409.8           | 0             | 0             |            |                |            | 0         | Bed                    |                                                           |              |
| 29R-2                           | 411.3           | 0             | 0             |            |                |            | 0         | Bed                    |                                                           |              |
| 29R-3, 108-111                  | 413.9           | 170           | 48            |            |                | 351        | 48        | Deformation bands      | (103-116)                                                 |              |
| 29R-3, 108-111                  | 413.9           | 28            | 48            |            |                | 209        | 48        | Deformation bands      | (103-116)                                                 |              |
| 29K-3, 111-113                  | 413.9           | 39            | 48            |            |                | 220        | 48        | Deformation bands      | (103-116)                                                 |              |
| 29K-3, 12-10                    | 412.9           | 208           | 12            |            |                | 320<br>101 | 12        | Bed                    | (13-23)                                                   |              |
| 29K-3, 109-113                  | 413.9           | 150           | 19            |            |                | 220        | 19        | Fracture zone          | (109-113)                                                 |              |
| 29R-3, 107-109                  | 413.9           | 130           | 20<br>42      |            |                | 222        | 42        | Fracture zone          | (107 - 109)                                               |              |
| 29K-3, 33-30<br>20D 2 55 58     | 413.4           | 180           | 43            |            |                | 122        | 43        | Practure Zone          | (48-63)                                                   |              |
| 29R-3, 33-38<br>30R             | 415.4           | 100           | 0             |            |                | 132        | 0         | Bed                    | (48-03)                                                   |              |
| 31R                             | 429 N           |               |               |            |                |            |           |                        |                                                           |              |
| 32R                             | 438.6           |               |               |            |                |            |           |                        |                                                           |              |
| 32R-1. 0-0                      | 438.6           | 0             | 0             |            |                |            | 0         | Bed                    |                                                           |              |
| 32R-2, 0-0                      | 440.1           | 0<br>0        | Ő             |            |                |            | Ő         | Bed                    |                                                           |              |
| 32R-3, 0-0                      | 441.6           | 0<br>0        | Ő             |            |                |            | Ő         | Bed                    |                                                           |              |
| 32R-4, 59-59                    | 443.7           | 35            | 9             |            |                | 18         | 9         | Bed                    | (55-64)                                                   |              |
| 32R-5, 124-124                  | 445.8           | 336           | 10            |            |                | 268        | 10        | Bed                    | (122-132)                                                 |              |
| 32R-6, 81-81                    | 446.9           | 111           | 14            |            |                | 337        | 14        | Bed                    | (63-95)                                                   |              |
| 33R-1, 141-146                  | 449.6           | 0             | 0             |            |                |            | 0         | Bed                    |                                                           |              |
| 33R-1, 65-65                    | 448.9           | 240           | 8             |            |                | 10         | 8         | Bed                    | (54-80)                                                   |              |
| 33R-3, 40-40                    | 451.6           | 309           | 6             |            |                | 289        | 6         | Bed                    | (4-45)                                                    |              |
| 33R-5, 70-72                    | 454.9           | 7             | 30            |            |                | 52         | 30        | Bed                    | (66-84)                                                   |              |
| 33R-3, 127-130                  | 452.5           |               |               |            |                |            |           | Fault                  | Normal fault 1-5 mm apparent displacement;                |              |
| 33R-3, 140-150                  | 452.7           |               |               |            |                |            |           | Fault                  | Normal fault 1-5 mm apparent displacement;<br>length 6 cm |              |
| 34R-1, 42-52                    | 458.4           | 185           | 45            |            |                | 25         | 45        | Fracture zone          | Coring induced?                                           |              |
| 34R-1, 52-down                  | 458.4           | 0             | 0             |            |                |            | 0         | Bed                    | <b>,</b>                                                  |              |
| 34R-2, 0-0                      | 459.4           | 0             | 0             |            |                |            | 0         | Bed                    |                                                           |              |
| 34R-3, 0-0                      | 460.9           | 0             | 0             |            |                |            | 0         | Bed                    |                                                           |              |

| Core, section,                   | Depth<br>(mbsf) | Cr az.    | Cr dip | Cr<br>line | Cr<br>L plunge | Pm<br>az | Pm<br>din | Identifier        | Notes                                                      | Comments |
|----------------------------------|-----------------|-----------|--------|------------|----------------|----------|-----------|-------------------|------------------------------------------------------------|----------|
| interval (eni)                   | (11631)         | ()        | ()     | inte       | i.plulige      | u2.      | uip       | lacitalici        | - Totes                                                    | comments |
| 34R-4, 0-0                       | 462.4           | 0         | 0      |            |                |          | 0         | Bed               |                                                            |          |
| 34R-5, 16-84                     | 464.4           | _         |        |            |                |          |           | Rubble interval   | No evidences of internal deformation                       |          |
| 34R-5, 84-100                    | 464.8           | 0         | 90     |            |                |          | 90        | Bed               |                                                            |          |
| 34R-CC, 0-20<br>35R-1 0-30       | 465.0           | 0         | 90     |            |                |          | 90        | Bubble interval   |                                                            |          |
| 35R-1, 27-62                     | 467.8           | 336       | 57     |            |                | 49       | 57        | Fracture set      |                                                            |          |
| 35R-1, 27-62                     | 467.8           | 321       | 37     |            |                | 34       | 37        | Fracture set      |                                                            |          |
| 35R-1, 27-62                     | 467.8           | 344       | 53     |            |                | 57       | 53        | Fracture set      |                                                            |          |
| 35R-1, 27-62                     | 467.8           | 335       | 48     |            |                | 48       | 48        | Fracture set      |                                                            |          |
| 35R-1, 27-62                     | 467.8           | 90        |        | 90         | 45             |          |           | Slickenline       |                                                            |          |
| 35R-1, 30-115                    | 467.8           | 346       | 44     |            |                |          | 44        | Bed               | (15-30), representative measurement                        |          |
| 35K-2, 15-30                     | 468.8           | 2/0       | /5     |            |                |          | / S<br>00 | Bed               | Apparent only                                              |          |
| 35R-2, 35-38                     | 469.0           | 134       | 45     |            |                |          | 45        | Bed               | (32-40)                                                    |          |
| 35R-CC, 0-0                      | 469.7           |           |        |            |                |          |           | Rubble interval   | Coring induced?                                            |          |
| 36R-1, 12-14                     | 476.6           | 0         | 90     |            |                |          | 90        | Bed               | 5                                                          |          |
| 36R-2                            | 478.0           | 0         | 0      |            |                |          | 0         | Bed               |                                                            |          |
| 36R-3                            | 479.5           | 0         | 0      |            |                |          | 0         | Bed               |                                                            |          |
| 36R-4                            | 481.0           | 0         | 0      |            |                |          | 0         | Bed               |                                                            |          |
| 30K-3<br>27D 1                   | 482.5           | 0         | 0      |            |                |          | 0         | Bed               |                                                            |          |
| 37R-3 114-116                    | 463.7           | 42        | 32     |            |                | 50       | 32        | Fracture          | (85-125)                                                   |          |
| 37R-4, 38-40                     | 490.6           | 273       | 36     |            |                | 358      | 36        | Fracture          | (26-63 (87?))                                              |          |
| 37R-5, 10-12                     | 491.8           | 155       | 32     |            |                | 180      | 32        | Fracture          | (0 (10)-50)                                                |          |
| 37R-2, 112-114                   | 488.3           | 194       | 8      |            |                | 354      | 8         | Bed               | (104-116 (?))                                              |          |
| 37R-2, 88-89                     | 488.1           | 270       | 4      |            |                | 70       | 4         | Bed               | (79-104)                                                   |          |
| 37R-5, 66-67                     | 492.4           | 0         | 2      |            |                | 25       | 2         | Bed               | (58-69)                                                    |          |
| 38R-6, 99-105                    | 503.8           | 248       | 71     |            |                | 308      | 71        | Fracture          | Fracture zone (90-150)                                     |          |
| 38R-6, 102-104<br>38R-6, 102-104 | 503.8           | 165       | 41     |            |                | 225      | 41        | Fracture          | Fracture zone (90-150)                                     |          |
| 38R-6, 118-124                   | 504.0           | 203       | 41     |            |                | 263      | 41        | Fracture          | Fracture zone (90-150)                                     |          |
| 38R-6, 134-137                   | 504.2           | 157       | 27     |            |                | 217      | 27        | Fracture          | Fracture zone (90-150)                                     |          |
| 38R-6, 134-137                   | 504.2           | 157       | 43     |            |                | 217      | 43        | Fracture          | Fracture zone(90-150)                                      |          |
| 38R-6, 140-143                   | 504.2           | 155       | 40     |            |                | 215      | 40        | Fracture          | Fracture zone (90-150)                                     |          |
| 38R-6, 140-143                   | 504.2           |           |        | 155        | 40             |          |           | Slickenline       | Fracture zone (90-150)                                     |          |
| 38R-6, 134-137                   | 504.2           |           |        | 204        | 15             |          |           | Slickenline       | Fracture zone(90-150)                                      |          |
| 38R-6, 140-143                   | 504.2           | 111       | 27     | 230        | 20             | 170      | 27        | Slickenline       | Fracture zone (90-150)                                     |          |
| 38R-7, 3-8                       | 504.4<br>504.4  | 111       | 57     | 212        | 60             | 67       | 57        | Slickenline       | Fracture zone                                              |          |
| 38R-7, 4-5                       | 504.3           | 180       | 10     | 212        | 00             | 247      | 10        | Bed               |                                                            |          |
| 38R-4, 83-91                     | 500.7           | 0         | 2      |            |                | 300      | 2         | Bed               | (82-92)                                                    |          |
| 38R-1, 80-81                     | 496.1           | 180       | 8      |            |                | 305      | 8         | Bed               | (57-99)                                                    |          |
| 39R-1, 29-31                     | 505.2           | 195       | 19     |            |                | 35       | 19        | Fracture          | (25-41)                                                    |          |
| 39R-1, 29-31                     | 505.2           |           |        | 204        | 10             | 200      |           | Slickenline       | (25-41)                                                    |          |
| 39R-1, 29-29                     | 505.2           | 186       | 10     |            |                | 26       | 10        | Bed               | (25-41)                                                    |          |
| 39R-3, 90-90<br>39R-3 32-32      | 508.9           | 90<br>117 | 4      |            |                | 300      | 1         | Bed               | (92-110)                                                   |          |
| 39R-4, 36-44                     | 500.2           | 289       | 38     |            |                | 297      | 38        | Deformation bands | Found in ash laver                                         |          |
| 39R-4, 36-44                     | 509.8           | 315       | 55     |            |                | 323      | 55        | Deformation bands | Found in ash layer                                         |          |
| 40R                              | 514.6           | 0         | 0      |            |                |          | 0         | Bed               | 2                                                          |          |
| 40R-4, 86-86                     | 520.0           | 294       | 10     |            |                | 251      | 10        | Deformation band  | 1-mm-wide deformation band associated with veins; (83-104) |          |
| 40R-4, 84-90                     | 520.0           |           |        |            |                |          |           | Veins             | Curved dark veins                                          |          |
| 40R-5, 80-85                     | 521.4           | 220       | 39     |            |                | 295      | 39        | Fault             | 1-2 mm wide; (50-110)                                      |          |
| 40R-CC, 21-24                    | 523.8           |           |        |            |                |          |           | vein              | (calcite?)                                                 |          |
| 41R                              | 524.3           | 0         | 0      |            |                |          | 0         | Bed               | Horizontal                                                 |          |
| 41R-1, 7-10                      | 524.4           |           |        |            |                | 200      |           | Vein              | Sediment-filled veins, perpendicular to bedding            |          |
|                                  |                 |           |        |            |                |          |           |                   | (5-15)                                                     |          |
| 41R-1, 25-31                     | 524.6           | 190       | 55     |            |                |          | 55        | Normal fault      | 5-mm normal displacement                                   |          |
| 41R-2, 125-150                   | 527.2           |           |        |            |                |          |           | Вгессіа           | Steeply inclined fractures, probably drilling              |          |
| 41R-3, 133-150                   | 528.7           |           |        |            |                |          |           | Breccia           | Steeply inclined fractures, 2 sets, interstitial mud       |          |
| 42R-1, 130-132                   | 535.2           | 62        | 21     |            |                | 107      | 21        | Normal fault      | 2-mm offset                                                |          |
| 42R-1, 68-68                     | 534.6           | 244       | 11     |            |                |          | 11        | Bed               | (65-80)                                                    |          |
| 42R-2, All                       | 535.4           | 0         | 0      |            |                |          | 0         | Bed               | Rest of core horizontal                                    |          |
| 43R-2, 55-66                     | 545.7           | ?         | 90     |            |                |          | 90        | Vein              | Subvertical, sediment-filled veins                         |          |
| 43R-2, 70-77                     | 545.8           | ?         | 90     |            |                |          | 90        | Vein              | Subvertical, sediment-filled veins                         |          |
| 4 JR-4, IU-21                    | J40.J           |           |        |            |                |          |           | rauli             | Apparent 090, 45 in core race; branching fault             |          |

| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Cr az.<br>(°) | Cr dip<br>(°) | Cr<br>line | Cr<br>I.plunge | Pm<br>az.   | Pm<br>dip | Identifier         | Notes                                          | Comments |
|---------------------------------|-----------------|---------------|---------------|------------|----------------|-------------|-----------|--------------------|------------------------------------------------|----------|
|                                 |                 | .,            | .,            |            |                |             |           |                    |                                                |          |
| 43R-4, 27-36                    | 548.4           | 200           | 74            |            |                |             | -         | Slickenline        | 1 (( + /21 + /)                                |          |
| 43R-4, 41-46                    | 548.5           | 288           | /6            |            |                |             | /6        | Reverse fault      | 1-mm reverse offset (21-46)                    |          |
| 43K-4, 33-02                    | 548.7           | 280           | 90            |            |                | 250         | 90        | Normal lault       | <1-mm onset (47-63)                            |          |
| 43R-4, 00-09<br>13P-1 102-100   | 540.0           | 200           | 44            | 90         | 60             | 530         | 44        | Slickenline        |                                                |          |
| 43R-4, 102-109<br>43R-4 102-109 | 549.2           | 274           | 74            | 90         | 00             | 314         | 74        | Fault              |                                                |          |
| 43R-5, 37-47                    | 550.0           | 214           | 70            |            |                | 184         | 70        | Normal fault       | <1-mm offset (31-75)                           |          |
| 43R-6, 79-94                    | 552.0           | 205           | 71            |            |                | 225         | 71        | Normal fault       | <1-mm offset (78-99)                           |          |
| 44R-1, 18-25                    | 553.1           | 159           | 58            |            |                | 344         | 58        | Fault              | No clear offset (12-37)                        |          |
| 44R-2, 42-55                    | 554.9           | 67            | 8             |            |                | 172         | 8         | Bed                | (42-55)                                        |          |
| 44R-2, 99-106                   | 555.4           | 162           | 63            |            |                | 177         | 63        | Normal fault       | 1-cm apparent offset (82-114)                  |          |
| 44R-3, 39-46                    | 556.3           | 110           | 72            |            |                | 280         | 72        | Normal fault       | Unknown amount of offset                       |          |
| 44R-3, 48-65                    | 556.5           | 209           | 70            |            |                | 19          | 70        | Normal fault       | 1- to 5-mm-wide zone (48-65)                   |          |
| 44R-4, 0-150                    | 278.7           | 0             | 0             |            |                |             | 0         | Bed                | Horizontal                                     |          |
| 44R-4, 0-14                     | 557.5           | 154           | 73            |            |                | 104         | 73        | Fault              | Curviplanar zone of two faults (0-14)          |          |
| 44R-4, 54-67                    | 558.0           | 32            | 73            |            |                | 42          | 73        | Fault              | (49-71)                                        |          |
| 45R-1, 10-14                    | 562.7           |               |               |            |                |             |           | Fault              | Rounded piece, no orientation                  |          |
| 45R-1, 0-150                    | 563.4           |               | 0             |            |                |             | 0         | Bed                | No clear bedding, but subhorizontal based on   |          |
| 4(0 2 (2 74                     | 5745            | 215           | <b>7</b> 0    |            |                | 100         | (0        | Normal fault       | burrows                                        |          |
| 40K-Z, 03-74                    | 575 1           | 515           | 00<br>50      |            |                | 20          | 00<br>50  |                    | (117 144)                                      |          |
| 40R-2, 123-130                  | 574.6           | S             | 52            |            |                | 50          | 32        | Fault              | (117-144)<br>Horizontal                        |          |
| 40R-2, 1-130<br>46R-3 59-62     | 575.0           |               | 0             |            |                |             | 0         | Eault              | 3-mm offset apparent orientation 270, 80       |          |
| 46R-4 1-150                     | 577.6           |               | 0             |            |                |             | 0         | Red                | Horizontal bedding, based on bioturbation      |          |
| 46R-5 1-150                     | 5791            |               | 0             |            |                |             | ő         | Bed                | Horizontal bedding, based on bioturbation      |          |
| 46R-6 63-82                     | 580.5           | 172           | 75            |            |                | 242         | 75        | Fault              | Curviplanar steep fault (63-82)                |          |
| 47R-1, 49-55                    | 582.4           | 32            | 40            |            |                | 72          | 40        | Deformation bands  | 3 deformation bands in ash laver               |          |
|                                 | 002             | 52            |               |            |                | · <b>-</b>  |           | Derormation Sanas  | (48-68)                                        |          |
| 47R-2, 52-62                    | 584.0           | 198           | 90            |            |                | 238         | 90        | Fault              | Curviplanar, probably the same fault that next |          |
|                                 |                 |               |               |            |                |             |           |                    | one (36,61)                                    |          |
| 47R-2, 61-73                    | 584.1           | 9             | 65            |            |                | 39          | 65        | Fault              | 15-mm normal offset (61-98)                    |          |
| 47R-2, 69-91                    | 584.2           | 45            | 59            |            |                | 75          | 59        | Fault              | 20-mm normal offset (61-98)                    |          |
| 4/R-2, 0-0                      | 583.4           | 0             | 0             |            |                | 1.15        | 0         | Bed                | Horizontal bedding, based on bioturbation      |          |
| 4/R-3, 45-55                    | 585.4           | 150           | 63            |            |                | 145         | 63        | Fault              | 23-mm normal offset (43-57)                    |          |
| 4/R-3, 121-130                  | 586.2           | 143           | 6/            |            |                | 133         | 6/        | Fault              | Narrow fault (116-134)                         |          |
| 47R-4, 0-0                      | 587.0           | 0             | 0             |            |                |             | 0         | Bed                | Horizontal bedding, based on bioturbation      |          |
| 47R-3, 0-0                      | 580 /           | 0             | 0             |            |                |             | 0         | Bed                | Horizontal bedding, based on bioturbation      |          |
| 47R-0, 0-0<br>48R-2 101-103     | 594 1           | 328           | 9             |            |                | 333         | 9         | Bed                | (99-111)                                       |          |
| 48R-4, 4-15                     | 596.2           | 302           | 87            |            |                | 292         | 87        | Fault              | 5-mm normal offset, curviplanar and            |          |
|                                 | 570.2           | 502           | 07            |            |                | 272         | 07        | ruure              | anastomosing                                   |          |
|                                 |                 |               |               |            |                |             |           |                    | (6-23)                                         |          |
| 49R-1, 64-89                    | 602.0           | 0             | 90            |            |                |             | 90        | Fault              | Anastamozing, near vertical fault; 0.5-mm      |          |
| (05.4 All                       |                 |               |               |            |                |             |           |                    | normal displacement                            |          |
| 49R-1, All                      | 601.2           |               |               |            |                |             |           | Horizontal bedding |                                                |          |
| 49R-2, All                      | 602.7           |               |               |            |                |             |           | Horizontal bedding |                                                |          |
| 49K-3, All                      | 604.Z           | 100           | 77            |            |                | 220         | 77        | Forizontal bedding | (68,80)                                        |          |
| 50P-1 08-117                    | 612.0           | 100           | 80            |            |                | 220         | 80        | Fault              | (08-80)                                        |          |
| 50R-1, 98-117                   | 612.0           | 350           | 60            |            |                | 225         | 60        | Slickenline        | (56-115)                                       |          |
| 50R-2 73-73                     | 611.6           | 315           | 14            |            |                |             | 14        | Bedding            | (70-78)                                        |          |
| 50R-1, 121-121                  | 612.1           | 147           | 12            |            |                | 207         | 12        | Bedding            | (110-125)                                      |          |
| 51R                             | 620.5           | 0             | 0             |            |                |             | 0         | Bed                | ()                                             |          |
| 52R                             | 630.1           | 0             | 0             |            |                |             | 0         | Bed                |                                                |          |
| 53R                             | 639.8           | 0             | 0             |            |                |             | 0         | Bed                |                                                |          |
| 54R-2, 70-88                    | 651.7           | 88            | 80            |            |                | 38          | 80        | Fracture           | (63-94)                                        |          |
| 54R-2, 70-88                    | 651.7           |               |               | 270        | 51             |             |           | Slickenline        | Measured on core face                          |          |
| 54R-3, 116-127                  | 653.6           | 124           | 32            |            |                | 118         | 32        | Fracture           | (110-128)                                      |          |
| 54R-3, 116-127                  | 653.6           | 197           | 31            |            |                | 191         | 31        | Fracture           | (110-128)                                      |          |
| 54R-3, 116-127                  | 653.6           | 336           | 24            |            |                | 330         | 24        | Fracture           | (110-128)                                      |          |
| 54R-3, 80-91                    | 653.6           |               |               |            |                |             |           | Fracture           |                                                |          |
| 54R-3, 80-91                    | 653.3           |               |               | 270        | 51             | _           |           | Slickenline        | Measured on core face (270/20 - get az. tr)    |          |
| 54R-3, 22-31                    | 652.7           | 129           | 30            | a – 1      | a -            | 84          | 30        | Fracture           | (22-31)                                        |          |
| 54K-3                           | 652.4           |               | ~             | 270        | 35             | <b>71</b> · | ~         | Slickenline        | Measured on core face (270/35 - get az. tr)    |          |
| 54K-4, 36-36                    | 654.3           | 14            | 8             |            |                | 314         | 8         | Red                | (U-30)<br>(20.08)                              |          |
| 54K-4, 92-93                    | 054.8           | 257           | 6             |            |                |             | 6         | bea<br>Rod         | (۵۷-۷۵)                                        |          |
| 54K-/, 51-51                    | 650./           | 256           | 8             |            |                |             | ð         | bed<br>Rod         |                                                |          |
| 56R-1, 0-0                      | 669 7           |               | 0             |            |                |             | 0         | Bed                |                                                |          |
| 50R-1, 0-0<br>57R-2 07-07       | 687 2           | 228           | a             |            |                | 272         | a         | Bed                |                                                |          |
| J/ N-J, J/-J/                   | 002.5           | 200           |               |            |                | 215         |           | beu                |                                                |          |

| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Cr az.<br>(°) | Cr dip<br>(°) | Cr<br>line | Cr<br>I.plunge | Pm<br>az. | Pm<br>dip | Identifier    | Notes                                          | Comments |
|---------------------------------|-----------------|---------------|---------------|------------|----------------|-----------|-----------|---------------|------------------------------------------------|----------|
|                                 |                 | ()            | ()            |            | 1 5.           |           | - 1-      |               |                                                |          |
| 58R-2, 22-40                    | 689.8           |               |               |            |                |           |           | Fractures     | Coring-induced? Horizontal slickenlines        |          |
| 58R-2, 78-120                   | 690.5           | -             | _             |            |                |           |           | Fractures     | Coring-disturbed interval                      |          |
| 59R-1, All                      | 697.6           | 0             | 0             |            |                |           | 0         | Bedding       | Heavy drilling breakage                        |          |
| 59R-2, All                      | 699.1           | 0             | 0             |            |                |           | 0         | Bedding       | Heavy drilling breakage                        |          |
| 59R-3, All                      | 700.6           | 0             | 0             |            |                |           | 0         | Bedding       | Heavy drilling breakage                        |          |
| 59K-4, All                      | 702.1           | 0             | 0             |            |                |           | 0         | Bedding       | Heavy drilling breakage                        |          |
| 59K-5, All                      | 705.0           | 0             | 0             |            |                |           | 0         | Bedding       | Heavy drilling breakage                        |          |
| 59R-0, All                      | 705.1           | 0             | 90            |            |                |           | 90        | Eault         | (80.96 only apparent)                          |          |
| 60R-5 58-60                     | 713.8           | 301           | 12            |            |                | 279       | 12        | Red           | (57-65)                                        |          |
| 61R-1 0-37                      | 716.9           | 0             | 90(?)         |            |                | 180       | 90(2)     | Fault         | (0-39)                                         |          |
| 61R-4, 133-137                  | 722.7           | 270           | 31            |            |                | 247       | 31        | Fracture zone | (130-141)                                      |          |
| 61R-5, 19-25                    | 723.1           | 218           | 36            |            |                | 218       | 36        | Fracture zone | (14-29)                                        |          |
| 61R-5, 19-25                    | 723.1           |               |               | 37         | 44             | 360       |           | Slickenline   | (14-29)                                        |          |
| 62R-4, 145-148                  | 732.5           | 11            | 25            |            |                | 96        | 25        | Fractures     | (140-148)                                      |          |
| 62R-5, 46-47                    | 733.0           | 288           | 34            |            |                | 253       | 34        | Fractures     | (30-40)                                        |          |
| 62R-5, 50-52                    | 733.0           | 348           | 41            |            |                | 313       | 41        | Fractures     | (30-41)                                        |          |
| 62R-5, 15-16                    | 732.7           | 346           | 41            |            |                |           | 41        | Fracture      | (6-16)                                         |          |
| 63R-6, 52-59                    | 744.1           | 6             | 60            |            |                | 46        | 60        | Fracture      | (50-59)                                        |          |
| 63R-6, 60-64                    | 744.2           | 10            | 56            |            |                | 50        | 56        | Fracture      | (50-59?) Highly disturbed region               |          |
| 63R-6, 60-64                    | 744.2           | 358           | 51            |            |                | 38        | 51        | Fracture      | (50-59?) Highly disturbed region               |          |
| 63R-6, 101-105                  | 744.6           | 349           | 42            |            |                |           | 42        | Fracture      | (95-112)                                       |          |
| 64R-1, 103-150                  | 746.7           | 0             | 7             |            |                |           | 7         | Bed           |                                                |          |
| 64R-1, 44-51                    | 746.1           | 12            | 43            |            |                |           | 43        | Fracture      |                                                |          |
| 64R-1, 44-51                    | 746.1           |               |               | 63         | 15             |           |           | Slickenline   |                                                |          |
| 64R-2, 3-5                      | 747.2           | 196           | 18            |            |                | 46        | 18        | Fracture      | (3-17)                                         |          |
| 64R-2, 3-5                      | 747.2           | 33            | 32            |            |                | 243       | 32        | Fracture      | (3-17)                                         |          |
| 64R-2, 27-30                    | /4/.5           | 44            | 39            |            |                | 264       | 39        | Fracture      | (20-34)                                        |          |
| 64R-2, 38-42                    | 747.6           | 252           | 42            |            |                | 265       | 42        | Fracture      | (35-48)                                        |          |
| 64K-Z, 81-8/                    | 748.0           | 323           | 30<br>70      |            |                |           | 30<br>70  | Fracture zone |                                                |          |
| 64R-2, 98-102                   | 740.2           | 40            | 70<br>26      |            |                |           | 70        | Fracture zone |                                                |          |
| 64R-2, 96-102                   | 740.Z           | 233           | 20<br>40      |            |                | 50        | 20        | Fracture zone | (69.80)                                        |          |
| 64R-2, 69-80                    | 747.9           | 20            | 40            | 70         | 30             | 50        | 40        | Slickenline   | (09-80)                                        |          |
| 64R-2 69-80                     | 747.9           | 198           | 16            | 70         | 50             | 228       | 16        | Fracture zone | (69-80)                                        |          |
| 64R-3, 37-44                    | 749.1           | 0             | 8             |            |                | 220       | 8         | Bed           |                                                |          |
| 64R-5, 0-3                      | 751.7           | 114           | 22            |            |                | 73        | 22        | Bed           | (0-9)                                          |          |
| 64R-5, 0-3                      | 751.7           | 185           | 12            |            |                | 144       | 12        | Bed           | (0-9)                                          |          |
| 65R-1, 32-39                    | 755.3           | 205           | 60            |            |                |           | 60        | Dark seam     | (27-52)                                        |          |
| 65R-1, 124-135                  | 756.2           | 90            | 59            |            |                |           | 59        | Fault         | 2-mm normal displacement, apparent only        |          |
| 65R-2, 22-33                    | 756.7           | 152           | 80            |            |                | 132       | 80        | Fault         | 1-mm displacement (0-33)                       |          |
| 65R-2, 106-115                  | 757.6           | 142           | 72            |            |                | 187       | 72        | Normal fault  | (106-115)                                      |          |
| 65R-4, 1-12                     | 759.5           | 270           | 90            |            |                |           | 90        | Fracture      | No slickensides                                |          |
| 65R-5, 76-87                    | 761.8           | 135           | 59            |            |                | 152       | 59        | Fracture      | Biscuit 76-87                                  |          |
| 65R-6, 67-68                    | 763.2           | 18/           | 23            |            |                |           | 23        | Bed           |                                                |          |
| 65R-6, 15-35                    | 762.7           | 218           | 19            |            |                |           | 19        | Bed           | 100 from Zoonhung                              |          |
| 66K-1, 1-15U                    | 764.0           | 226           | 7             |            |                | 227       | 7         | Bed           | <10° from Zoopnycos                            |          |
| 66D 2 1 150                     | 767.0           | 220           | 22            |            |                | 527       | 22        | Bed           | (83-93)                                        |          |
| 66R-3 0-18                      | 767.6           | 234           | 23<br>74      |            |                | 42        | 23<br>74  | Fracture      | (0-18)                                         |          |
| 66R-3 21-22                     | 767.8           | 45            | 19            |            |                | 85        | 19        | Fracture zone | (0-22)                                         |          |
| 66R-4, 44-53                    | 769.5           | 187           | 66            |            |                | 167       | 66        | Fracture      | (44-82); slickenlines subperpendicular to core |          |
| ,                               |                 |               |               |            |                |           |           |               | axis                                           |          |
| 66R-4, 93-105                   | 770.0           | 172           | 70            |            |                | 120       | 70        | Fracture      | (93-105); no slickensides                      |          |
| 66R-4, 111-127                  | 770.2           | 18            | 62            |            |                | 328       | 62        | Fracture zone | (111-127)                                      |          |
| 66R-5, 29-36                    | 770.9           | 129           | 52            |            |                | 129       | 52        | Fracture zone | (29-53); polished surface                      |          |
| 66R-5, 29-36                    | 770.9           | 0             | 0             |            |                | 360       | 0         | Fracture      | (29-53)                                        |          |
| 66R-5, 29-36                    | 770.9           |               |               | 15         | 37             |           |           | Slickenline   | Slickenlines on above fracture                 |          |
| 66R-5, 29-36                    | 770.9           | 255           | 53            |            |                |           | 53        | Fracture      | Drilling fracture                              |          |
| 67R-1, All                      | 774.2           | 0             | 7             |            |                |           | 7         | Bed           | Subhorizontal to                               |          |
| 67R-2, All                      | 774.4           | 0             | 7             |            |                |           | 7         | Bed           | Subhorizontal to                               |          |
|                                 |                 | _             | _             |            |                |           | _         |               | 5-10°                                          |          |
| 67R-3, All                      | 775.9           | 0             | 7             |            |                |           | 7         | Bed           | Subhorizontal to 5-10°                         |          |
| 67R-4, 22-23                    | 777.7           | 180           | 8             |            |                |           | 8         | Bed           | (1-33)                                         |          |
| 67R-5, 52-53                    | 779.5           | 233           | 15            |            |                | 3         | 15        | Bed           | (35-55)                                        |          |
| 67R-6, 72-73                    | 781.2           | 216           | 13            |            |                | 236       | 13        | Bed           | (60-87)                                        |          |
| 67R-6, 110-142                  | 781.5           |               |               |            |                | 14        |           | Fracture zone |                                                |          |
| 67R-6, 110-142                  | 781.5           | 302           | 62            |            |                |           | 62        | Fracture      | Set 1                                          |          |

| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Cr az.<br>(°) | Cr dip<br>(°) | Cr<br>line | Cr<br>I.plunge | Pm<br>az. | Pm<br>dip | Identifier     | Notes                                                                                 | Comments |
|---------------------------------|-----------------|---------------|---------------|------------|----------------|-----------|-----------|----------------|---------------------------------------------------------------------------------------|----------|
| 67R-6, 110-142                  | 781.5           | 288           | 19            |            |                |           | 19        | Fracture       | Set 2                                                                                 |          |
| 67R-7, 35-52                    | 782.3           | 200           | .,            |            |                |           |           | Fracture zone  | Octagonal set of fractures, coring induced                                            |          |
| 67R-7, 77-100                   | 782.7           |               |               |            |                |           |           | Fracture zone  | Rounded pieces at the bottom, coring induced                                          |          |
| 67R-8, 1-18                     | 783.5           |               |               |            |                |           |           | Fracture zone  | Rounded large pieces, coring induced                                                  |          |
| 68R-1, 107-108                  | 785.0           | 42            | 15            |            |                | 32        | 15        | Bed            | (76-120)                                                                              |          |
| 68R-3, 30-42                    | 787.2           | 30            | 19            |            |                |           | 19        | Fracture zone  | Set 15-mm spacing                                                                     |          |
| 68R-3, 30-42                    | 787.2           | 37            | 46            |            |                |           | 46        | Fracture zone  | Set 15-mm spacing                                                                     |          |
| 68R-CC, 4-6                     | 787.4           | 52            | 85            |            |                |           | 85        | Fault          | 5-mm normal offset, too small piece,<br>slickenlines downdip                          |          |
| 69R-1, 0-26                     | 793.6           | 17            | 10            |            |                | 237       | 10        | Bed            | (0-26)                                                                                |          |
| 69R-2, 72-129                   | 794.6           | 150           | 19            |            |                | 300       | 19        | Bed            | (72-119)                                                                              |          |
| 69R-3, 33-62                    | 795.7           | 15            | 19            |            |                | 245       | 19        | Bed            | (33-62)                                                                               |          |
| 69R-4, 25-26                    | 797.1           | 14            | 12            |            |                | 244       | 12        | Bed            | (0-65)                                                                                |          |
| 69R-4, 94-104                   | 797.8           | 270           | 90            |            |                | 30        | 90        | Fracture       | (68-120)                                                                              |          |
| 69R-5, 53-70                    | 798.9           | 120           | 19            |            |                | 275       | 19        | Bed            | (33-70)                                                                               |          |
| 69R-6, 125-125                  | 801.1           | 0             | 27            |            |                | 230       | 27        | Bed            | (90-127)                                                                              |          |
| 69R-6, 129-135                  | 801.2           |               |               |            |                |           |           | Fractured zone | 6-mm-thick polished flakes, 2-cm blocks                                               |          |
| 69R-6, 144-149                  | 801.3           |               |               |            |                |           |           | Fissile zone   | 10-mm-wide zone of strong parting fissility                                           |          |
| 69R-7, 0-38                     | 801.4           |               |               |            |                |           |           | Bed            |                                                                                       |          |
| 69R-7, 38-80                    | 801.8           | 180           | 20            |            |                | 40        | 20        | Bed            | Zoophycos average                                                                     |          |
| 69R-8, 27-36                    | 803.1           | 203           | 71            |            |                | 63        | 71        | Normal fault   | (27-36)                                                                               |          |
| 69R-8, 27-36                    | 803.1           |               | 10            | 113        | 85             | 45        | 10        | Slickenlines   | Near vertical downdip                                                                 |          |
| 70R-1, 30-40                    | 803.6           | 90            | 12            | 300        | 23             | 45        | 12        | Zoophycos      | (13-143)                                                                              |          |
| 70R-2, 44-46                    | 805.2           | 32            | 19            |            |                | 292       | 19        | Zoophycos      | (10-45)                                                                               |          |
| /UK-2, 62-63                    | 805.4           | 40            | 15            |            |                | 2/3       | 15        | Zoopnycos      | (59-73)                                                                               |          |
| 70R-5, 111-111                  | 807.4<br>808.0  | 54            | 10            |            |                | 239       | 10        | Zoopnycos      | (33-134)                                                                              |          |
| 70R-4, 17-41                    | 000.0<br>007.0  | 27            | 47            |            |                | 57        | 47        | Practured Zone |                                                                                       |          |
| 70R-4, 4-0                      | 007.0<br>808.4  | 36            | 4/            |            |                | 16        | 4/        | Zoonhycos      | (0-6)                                                                                 |          |
| 70R-4, 30-38                    | 800.4           | 36            | 32            |            |                | 40        | 32        | Bed            | (47-04)                                                                               |          |
| 70R-5, 27-27                    | 810.1           | 315           | 30            |            |                | 355       | 30        | Bed            | (73-76)                                                                               |          |
| 70R-5 130-130                   | 810.6           | 43            | 25            |            |                | 63        | 25        | Bed            | (129-135)                                                                             |          |
| 70R-4, 48-76                    | 808.3           | .5            | 20            |            |                | 0.5       | 20        | Fracture zone  | 4-cm spacing between fractures                                                        |          |
| 70R-4, 77-83                    | 808.6           |               |               |            |                |           |           | Fracture zone  | 1- to 2-cm spacing between fractures                                                  |          |
| 70R-4, 83-150                   | 808.6           |               |               |            |                |           |           | Fracture zone  | 3-cm blocky fracture; slickensides                                                    |          |
| 70R-5, 1-110                    | 809.3           |               |               |            |                |           |           | Fracture zone  | 2- to 6-cm spacing; blocky                                                            |          |
| 70R-5, 110-123                  | 810.4           |               |               |            |                |           |           | Fracture zone  | 2- to 5-mm scale of fragments                                                         |          |
| 70R-5, 123-152                  | 810.5           |               |               |            |                |           |           | Fracture zone  | 1- to 4-cm spacing                                                                    |          |
| 71R-2, 19-28                    | 813.1           |               |               |            |                |           |           | Bed            | Parallel bioturbation; 90, 30 in core face.                                           |          |
| 71R-2, 30-38                    | 813.2           | 41            | 38            |            |                | 1         | 38        | Fracture       | Bedding parallel, fracture set 1                                                      |          |
| 71R-2, 30-38                    | 813.2           | 295           | 54            |            |                | 255       | 54        | Fracture       | Fracture set 2                                                                        |          |
| 71R-2, 49-77                    | 813.4           | 226           | 71            |            |                | 106       | 71        | Fracture       | Fracture set                                                                          |          |
|                                 |                 |               |               |            |                |           |           |                | (as above, rotated)                                                                   |          |
| 71R-2, 49-77                    | 813.4           | 102           | 84            |            |                | 342       | 84        | Fracture       | Fracture set                                                                          |          |
| 710 2 40 77                     | 0124            | 207           | 12            |            |                | 07        | 10        | Eno otruno     | (as above, rotated)                                                                   |          |
| /IK-2,49-//                     | 013.4           | 206           | 13            |            |                | 00        | 15        | Fracture       | Set forms lenses in core face                                                         |          |
| /IK-2,/0-90                     | 013./           | 200           | 15            |            |                |           | 15        | Bed?           |                                                                                       |          |
| 71R-3, 10-33<br>71R-3, 50-80    | 814.5           | 197           | 1             |            |                |           | 51        | Eracture zone  | Blocky fragments up to 3 cm on average                                                |          |
| / IN-5, 50-00                   | 014.7           |               |               |            |                |           |           |                | slickenlined                                                                          |          |
| 71R-3, 80-94                    | 815.0           |               |               |            |                |           |           | Fracture zone  |                                                                                       |          |
| 71R-CC, 0-31                    | 815.2           |               |               |            |                |           |           | Fracture zone  |                                                                                       |          |
| 72R-1, 46-46                    | 822.7           | 283           | 47            |            |                |           | 47        | Fracture set   | (46-60?) coherent hemipelagite                                                        |          |
| 72R-1, 48-55                    | 822.7           | 355           | 58            |            |                |           | 58        | Fracture set   | (46-60?) coherent hemipelagite                                                        |          |
| 72R-1, 111-123                  | 823.3           | 164           | 44            |            |                |           | 44        | Fracture set   | Shattered zone, with inclined fabric, fragments<br>5-1 cm                             |          |
| 72R-1, 120-130                  | 823.4           |               |               |            |                |           |           | Fracture set   | Shattered zone, apparent dip in core face: 270, 14                                    |          |
| 72R-1, 145-148                  | 823.7           | 199           | 60            |            |                |           | 60        | Fracture set   | Highly fractured zone, fragments 2-5 cm                                               |          |
| /2R-2, 0-10                     | 823.7           | 193           | 70            |            |                |           | 70        | Fracture set   | (0-10)                                                                                |          |
| /2R-2, 27-34                    | 824.0           | 203           | 65            |            |                |           | 65        | Fracture set   |                                                                                       |          |
| 72R-2, 27-34                    | 824.0           | 328           | 43            |            |                |           | 43        | Fracture set   |                                                                                       |          |
| /2K-2, 43-4/                    | 824.1           | 163           | 44            |            |                |           | 44        | Fracture set   | Annount din is see free 270, 20                                                       |          |
| /2K-2, 54-5/                    | 824.2           | 247           | 20            |            |                |           | 20        | Fracture set   | Apparent dip in core face: 2/0, 30                                                    |          |
| /2K-2,/U-/3                     | 0∠4.4<br>824 7  | 24/<br>100    | 5U<br>51      |            |                |           | 5U<br>51  | Fracture set   |                                                                                       |          |
| 72R-2, 102-110                  | 024./<br>824.7  | 100           | וכ            |            |                |           | 51        | Fracture set   | Apparent din in core face: 270 51: set 1                                              |          |
| 72R-2, 102-110                  | 874.7           |               |               |            |                |           |           | Fracture set   | Apparent dip in core face, 270, 31, set 1<br>Apparent dip in core face, 90, 14, set 2 |          |
| 72R-2, 102-110                  | 824 7           | ٥             | 0             |            |                |           | ٥         | Fracture set   | Horizontal fracture: set 3                                                            |          |
| 72R-3, 65-70                    | 825.9           | 188           | 60            |            |                | 118       | 60        | Fracture set   |                                                                                       |          |
|                                 |                 |               |               |            |                |           |           |                |                                                                                       |          |

| Core, section,<br>interval (cm)  | Depth<br>(mbsf) | Cr az.<br>(°) | Cr dip<br>(°) | Cr<br>line | Cr<br>I.plunge | Pm<br>az. | Pm<br>dip | Identifier        | Notes                                                      | Comments |
|----------------------------------|-----------------|---------------|---------------|------------|----------------|-----------|-----------|-------------------|------------------------------------------------------------|----------|
| 72R-3, 65-70                     | 825.9           | 334           | 11            |            |                | 264       | 11        | Fracture set      |                                                            |          |
| 72R-3, 65-70                     | 825.9           | 190           | 55            |            |                | 120       | 55        | Fracture set      |                                                            |          |
| 72R-3, 65-70                     | 825.9           | 263           | 28            |            |                | 193       | 28        | Fracture set      |                                                            |          |
| 72R-4, 5-9                       | 826.8           | 354           | 48            |            |                | 284       | 48        | Fracture set      |                                                            |          |
| 72R-2, 98-102                    | 824.7           | 180           | 26            |            |                |           | 26        | Fracture          | Bedding parallel                                           |          |
| 72R-2, 88-92                     | 824.6           | 216           | 35            |            |                |           | 35        | Fracture          |                                                            |          |
| 72R-1, 70-73                     | 822.9           | 270           | 7             |            |                |           | 7         | Bed               |                                                            |          |
| 73R-1, 0-7                       | 831.8           |               |               |            |                |           |           |                   | Zone of ductile deformation - drill mud                    |          |
| /3R-1, /-15                      | 831.9           |               |               |            |                |           |           |                   | Shattered zone, mm-cm size fragments                       |          |
| /3R-2, 0-150                     | 833.3           |               |               |            |                |           |           |                   | Fractured and shattered zone, fragments 2-30               |          |
| 73R-2, 134-140                   | 834.6           |               |               |            |                |           |           | Fractures         | Inclined fabric, apparent dip in core face: 270, 45        |          |
| 73R-3, 14-20                     | 834.9           | 0             | 66            |            |                |           | 66        | Fracture set      | Inclined fractures, set 1, up to 3-cm spacing              |          |
| 73R-3, 14-20                     | 834.9           | 0             | 14            |            |                |           | 14        | Fracture set      | Inclined fractures, set 2, ~5-mm spacing                   |          |
| 73R-3, 47-120                    | 835.3           |               |               |            |                |           |           | Shattered zone    | No fabric evident; lenticular fragments 2 mm -             |          |
| 720 4 122 120                    | 0275            | 170           | 40            |            |                |           | 40        | F                 | I CM SIZE.                                                 |          |
| 7 3K-4, 123-130                  | 037.5           | 1/0           | 49            |            |                |           | 49        | Fracture          | Fragments up to 4 cm across, in shattered zone             |          |
| 73R-4, 123-130<br>73R-4, 137-150 | 837.7           | 155           | 21            |            |                |           | 21        | Fidelure<br>Fold? | Typically planar features (Zoonhycos) show                 |          |
| / 51(-+, 15/-150                 | 057.7           |               |               |            |                |           |           |                   | subtle fold                                                |          |
| 73R-5, 44-45                     | 838.2           | 315           | 21            |            |                |           | 21        | Fracture          | Planar surfaces                                            |          |
| 73R-5, 62-64                     | 838.4           | 46            | 39            |            |                |           | 39        | Fracture          |                                                            |          |
| 73R-5, 112-115                   | 838.9           | 321           | 40            |            |                |           | 40        | Fracture          | Bedding parallel, incoherent hemipelagite                  |          |
| 73R-5, 133-145                   | 839.1           | 27            | 45            |            |                |           | 45        | Fracture          | Bedding parallel, incoherent hemipelagite                  |          |
| 73R-5, 141-143                   | 839.2           | 54            | 30            |            |                |           | 30        | Bed               | (133-147) relatively steep dips indicated by               |          |
|                                  |                 |               |               |            |                |           |           |                   | Zoophycos                                                  |          |
| 73R                              | 831.8           |               |               |            |                |           |           |                   |                                                            |          |
| 73R-6, 0-20                      | 839.3           |               |               |            |                |           |           |                   | Soft drill-mud appearance, hides shattered                 |          |
| 720 ( 00 02                      | 0 40 2          | 212           |               |            |                | 6.2       | 5.4       | F                 | mudstone                                                   |          |
| / 3K-6, 89-92                    | 840.Z           | 312           | 54            |            |                | 52        | 54        | Fracture          | With slicks, at base of deformed mudstone                  |          |
| 7 3K-0, 80-131                   | 040.Z           | 0             | 0             |            |                |           | 0         | Bed               | Apparent dia: 00 5                                         |          |
| / 3K-/, I-0/<br>74D 1 10 22      | 040.0<br>041 6  | 224           | 20            |            |                | 51        | 20        | Bed               | Apparent dip: 90, 5                                        |          |
| 74R-1, 19-25                     | 041.0<br>942.2  | 224           | 20            |            |                | 214       | 30        | Bed               | (1-55) concretent bioturbated hemipelagites                |          |
| 74R-1, 80-85                     | 842.2           | 270           | 20            |            |                | 260       | 20        | Eracture          | (05-92)<br>(65-92) downdin slickenlines                    |          |
| 74R-1, 03-00<br>74R-1 93-98      | 842.2           | 2/0           | 20<br>41      |            |                | 200       | 20<br>41  | Red               | (64-97)                                                    |          |
| 74R-7, 75-70                     | 843 7           | 322           | 24            |            |                | 352       | 24        | Bed               | (62-83)                                                    |          |
| 74R-2 107-110                    | 844.0           | 348           | 30            |            |                | 18        | 30        | Bed               | (100-123)                                                  |          |
| 74R-2, 123-131                   | 844.1           | 313           | 54            |            |                | 183       | 54        | Fracture          | (123-131) slickensided                                     |          |
| 74R-3, 14-22                     | 844.5           | 168           | 51            |            |                |           | 51        | Fault             | Healed, curviplanar, offset unknown                        |          |
| 74R-3, 44-45                     | 844.8           | 305           | 17            |            |                |           | 17        | Bed               | Based on aligned Zoophycos                                 |          |
| 75R-1, 33-34                     | 851.3           |               |               |            |                |           |           | Bed               | Coherent mudstone, defined by aligned                      |          |
| 75R-1, 135-136                   | 852.4           |               |               |            |                |           |           | Bed               | Zoophycos (16-44)<br>Coherent mudstone, defined by aligned |          |
|                                  | 0.007           |               |               |            |                |           |           | D. J              | Zoophycos (127-150)                                        |          |
| 76R-1, All                       | 860.7           |               |               |            |                |           |           | веа               | No bedding apparent; aligned 2 <i>00phycos</i>             |          |
| 77R-1 11-12                      | 870 5           | 233           | 26            |            |                | 320       | 26        | Bed               | (0-15)                                                     |          |
| 77R-1, 92-93                     | 871.3           | 131           | 23            |            |                | 313       | 23        | Bed               | (81-105)                                                   |          |
| 77R-2, 18-19                     | 872.1           | 335           | 21            |            |                | 298       | 21        | Bed               | (3-28)                                                     |          |
| 77R-2, 129-30                    | 873.2           | 333           | 19            |            |                | 295       | 19        | Bed               | (123-140)                                                  |          |
| 77R-3, 109-110                   | 874.5           | 114           | 12            |            |                | 334       | 12        | Bed               | (103-120)                                                  |          |
| 77R-4, 134-135                   | 876.2           | 139           | 19            |            |                | 334       | 19        | Bed               | (127-140)                                                  |          |
| 78R-1, 0-80                      | 880.0           | 0             | 0             |            |                |           | 0         | Bed               | (0-80)                                                     |          |
| 78R-1, 102-148                   | 881.0           | 204           | 14            |            |                |           | 14        | Bed               | (102-148)                                                  |          |
| 78R-2, 0-21                      | 881.5           | 0             | 0             |            |                |           | 0         | Bed               |                                                            |          |
| 78R-2, 21-65                     | 881.7           | 207           | 7             |            |                | 232       | 7         | Bed               | (21-65)                                                    |          |
| 78R-2, 65-132                    | 882.2           | 0             | 0             |            |                |           | 0         | Bed               |                                                            |          |
| 78R-3, 0-100                     | 883.0           | 180           | 12            |            |                | 260       | 12        | Bed               | (0-100)                                                    |          |
| 78R-4, 0-150                     | 884.5           | 270           | 10            |            |                | 40        | 10        | Bed               | (0-150)                                                    |          |
| 78R-5, 6-67                      | 886.1           | 180           | 12            |            |                |           | 12        | Bed               | (0-67)                                                     |          |
| 78R-5, 68-100                    | 886.7           | 145           | 9             |            |                |           | 9         | Bed               | (68-100)                                                   |          |
| 79R-1, 94-94                     | 890.2           | 296           | 9             |            |                |           | 9         | Bed               | (67-119)                                                   |          |
| /9R-2, 32-76                     | 891.1           | 0             | 3             |            |                |           | 3         | Bed               | (32-760                                                    |          |
| 80R-1, 64-73                     | 899.6           | 42            | 63            | 4.0-       |                |           | 63        | Fracture zone     | (/U-/S); with slickenlines                                 |          |
| δUK-1,64-/3                      | 899.6           |               |               | 100        | //             |           |           | Slickenlines      | Officer 2 mm down dia dialog lines                         |          |
| OUK-1, 18-24                     | 899.2           | 155           | 27            |            |                | 2/0       | 25        |                   | Chiset 3 mm, downalp slickenlines                          |          |
| OUK-2, 42-44                     | 900.9           | 155           | 25            |            |                | 260       | 25        | bea<br>Bad        | (50-45)                                                    |          |
| ouk-4, 51-32                     | 903.8           | 270           | /             |            |                | 93        | /         | Dea               | (0-40)                                                     |          |

904.0

343

Depth Cr az. Cr dip Cr Cr Pm (mbsf) (°) (°) line l.plunge az.

71

Pm

dip

71

Pm

166

# Table T7 (continued).

Core, section, interval (cm)

80R-4, 48-61

| Identifier   | Notes                                | Comments |
|--------------|--------------------------------------|----------|
| Fracture     | (8-48); slickenlined                 |          |
| Slickenlines | (8-48) on above fracture             |          |
| Bed          | (123-150)                            |          |
| Fracture     | (123-150); with downdip slickenlines |          |
| Bed          | (10-40)                              |          |
| Bed          | (11-35)                              |          |
| Fractures    | With slickenlines                    |          |
| Bed          | (90-135)                             |          |
| Bed          | (0-17)                               |          |
| Bed          | (50-85)                              |          |
| Bed          | (0-27)                               |          |
| Bed          | (69-79)                              |          |
| Bed          |                                      |          |

| 80R-4, 48-61   | 904.0   | 5.5 |    | 12 | 63 | 183 |    | Slickenlines           | (8-48) on above fracture                          |
|----------------|---------|-----|----|----|----|-----|----|------------------------|---------------------------------------------------|
| 80R-4, 131-132 | 904.8   | 163 | 17 |    |    | 243 | 17 | Bed                    | (123-150)                                         |
| 80R-4, 131-132 | 904.8   | 80  | 67 |    |    | 160 | 67 | Fracture               | (123-150); with downdip slickenlines              |
| 80R-5, 19-20   | 905.2   | 130 | 15 |    |    | 275 | 15 | Bed                    | (10-40)                                           |
| 80R-6, 33-34   | 906.8   | 147 | 18 |    |    | 257 | 18 | Bed                    | (11-35)                                           |
| 81R-1, 26-30   | 908.9   |     |    |    |    |     |    | Fractures              | With slickenlines                                 |
| 81R-1, 123-121 | 909.8   | 49  | 23 |    |    | 294 | 23 | Bed                    | (90-135)                                          |
| 81R-3, 16-17   | 911.8   | 194 | 21 |    |    | 271 | 21 | Bed                    | (0-17)                                            |
| 81R-4, 77-78   | 913.9   | 50  | 15 |    |    |     | 15 | Bed                    | (50-85)                                           |
| 81R-5, 11-12   | 914.7   | 137 | 19 |    |    | 257 | 19 | Bed                    | (0-27)                                            |
| 82R-3, 69-70   | 921.7   | 13  | 13 |    |    | 245 | 13 | Bed                    | (69-79)                                           |
| 83R-2, 34-34   | 929.7   | 322 | 19 |    |    | 172 | 19 | Bed                    |                                                   |
| 83R-3, 98-98   | 931.9   | 348 | 14 |    |    | 293 | 14 | Bed                    | (96-150)                                          |
| 83R-5, 13-14   | 934.0   | 0   | 12 |    |    |     | 12 | Bed                    | (13-17)                                           |
| 84R-3, 25-44   | 940.8   | 357 | 75 |    |    |     | 75 | Fluid escape structure | (0-45)                                            |
| 84R-5, 118-125 | 944.7   |     |    |    |    |     |    | Fracture zone          | Curviplanar blocks 1-3 cm with few slickenlines   |
| 84R-6, 31-31   | 945.3   | 0   | 0  |    |    |     | 0  | Bed                    | (15-31)                                           |
| 85R-1, 0-0     | 947.1   | 0   | 0  |    |    |     | 0  | Bed                    | Based on aligned Zoophycos                        |
| 86R-1, 27-27   | 957.1   | 180 | 10 |    |    |     | 10 | Bed                    | (5-54)                                            |
| 86R-3, 11-11   | 959.9   | 135 | 6  |    |    |     | 6  | Bed                    | (0-16)                                            |
| 86R-3, 42-52   | 960.2   | 191 | 70 |    |    | 141 | 70 | Fracture               | (17-90)                                           |
| 86R-3, 134-150 | 961.1   | 33  | 90 |    |    |     | 90 | Fault                  | 7-mm normal displacement                          |
| 86R-4, 64-74   | 961.9   | 24  | 60 |    |    |     | 60 | Fracture zone          | Drilling induced?                                 |
| 86R-5, 114-114 | 963.9   | 38  | 22 |    |    | 195 | 22 | Bed                    | (96-116)                                          |
| 86R-6, 108-108 | 965.4   | 317 | 19 |    |    | 247 | 19 | Bed                    | (58-112)                                          |
| 87R-2, 21-23   | 968.2   | 185 | 23 |    |    |     | 23 | Bed                    |                                                   |
| 87R-2, 62-95   | 968.6   | 328 | 42 |    |    |     | 42 | Fracture zone          | Drilling induced?                                 |
| 87R-4, 57-60   | 971.6   | 171 | 19 |    |    |     | 19 | Bed                    | (48-73)                                           |
| 87R-4, 5-7     | 971.1   | 317 | 17 |    |    | 67  | 17 | Bed                    | (0-16)                                            |
| 87R-4, 85-92   | 971.9   | 302 | 68 |    |    |     | 68 | Fracture               | (85-125) Drilling induced?                        |
| 88R-1, 94-94   | 977.0   | 270 | 5  |    |    | 360 | 5  | Bed                    | (25-115)                                          |
| 88R-3, 66-66   | 979.8   | 90  | 15 |    |    | 263 | 15 | Bed                    | (60-80)                                           |
| 89R-3, 39-40   | 988.7   | 0   | 10 |    |    |     | 10 | Bed                    | (29-108)                                          |
| 90R-1, 78-78   | 995.7   | 0   | 7  |    |    |     | 7  | Bed                    | (65-95)                                           |
| 90R-1, 43-43   | 995.3   | 331 | 18 |    |    | 351 | 18 | Bed                    | (30-45)                                           |
| 91R-1, 1-150   | 1004.6  | 0   | 0  |    |    |     | 0  | Bed                    | No bedding apparent; aligned Zoophycos            |
|                |         |     |    |    |    |     |    |                        | suggest horizontal                                |
| 91R-2, 1-150   | 1006.1  | 0   | 0  |    |    |     | 0  | Bed                    | No bedding apparent; aligned Zoophycos            |
|                |         |     |    |    |    |     |    |                        | suggest horizontal                                |
| 92R-1, 123-150 | 1015.4  |     |    |    |    |     |    | Foliated breccia       | 40-cm-thick interval of polished fractures        |
| 020 2 0 1/     | 1015 7  |     |    |    |    |     |    | Fallstad based         | forming a subhorizontal set                       |
| 92R-2, 0-16    | 1015.7  |     |    |    |    |     |    | Foliated breccia       | Continutation of above (1- to 3-cm scale          |
| 020 2 127 120  | 10171   | 250 | 47 |    |    | 250 | 47 | Fracture               | (07.145) downdin dickonlines                      |
| 92R-2, 137-130 | 1017.1  | 230 | 47 |    |    | 230 | 47 | Fracture               | (97-145) downdip slickenlines                     |
| 92R-2, 143-140 | 1017.2  | 90  | 40 |    |    | 105 | 40 | Flacture               | above                                             |
| 92R-2 77-97    | 1016 5  |     |    |    |    |     |    | Fracture zone          | Strongly polished pronounced curviplanar          |
| 92R-1 1-150    | 1014.2  | 0   | 0  |    |    |     | 0  | Red                    | Bioturbation indicates subborizontal              |
| 93R-1 33-33    | 1074.2  | 86  | 50 |    |    |     | 50 | Fracture               | (40): downdin slickenlines: single fracture not a |
| , ss ss        | 102 1.2 | 00  | 50 |    |    |     | 50 | Thecare                | set                                               |
| 93R-1, 67-79   | 1024.6  |     |    |    |    |     |    | Fracture zone          | 8-cm-thick zone of angular polished fracture      |
| 93R-3, 29-30   | 1027.2  | 0   | 16 |    |    | 288 | 16 | Fracture zone          | (119-135): slickenlines                           |
| 93R-3, 119-135 | 1028.1  | 322 | 54 |    |    | 250 | 54 | Bed                    | (119-135) general bioturbation indication         |
| 93R-4, 23-27   | 1028.6  | 46  | 45 |    |    | 86  | 45 | Bed                    | (20-30) general bioturbation indication           |
| 93R-4, 70-90   | 1029.1  | 116 | 90 |    |    |     | 90 | Fracture               | Highly polished open fracture surface, no         |
| ,              |         |     |    |    |    |     |    |                        | slickenlines                                      |
| 93R-5, 9-11    | 1030.0  | 314 | 40 |    |    |     | 40 | Bed                    | (0-14)                                            |
| 94R-1, 32-32   | 1033.8  | 38  | 24 |    |    | 68  | 24 | Bed                    | (20-50)                                           |
| 94R-2, 85-85   | 1035.9  | 180 | 10 |    |    | 150 | 10 | Bed                    | (70-100)                                          |
| 94R-3, 1-150   | 1036.5  | 0   | 0  |    |    |     | 0  | Bed                    |                                                   |
| 94R-4, 1-150   | 1038.0  | 0   | 0  |    |    |     | 0  | Bed                    |                                                   |
| 94R-5, 1-150   | 1039.5  | 0   | 0  |    |    |     | 0  | Bed                    |                                                   |
| 95R            | 1043.1  | 0   | 0  |    |    |     | 0  | Bed                    |                                                   |
| 96R-1, 36-37   | 1053.0  | 143 | 5  |    |    |     | 5  | Bed                    | (21-77)                                           |
| 96R-2          | 1054.1  | 0   | 0  |    |    |     | 0  | Bed                    |                                                   |
| 96R-3          | 1055.6  | 0   | 0  |    |    |     | 0  | Bed                    |                                                   |
| 96R-4, 4-5     | 1057.1  | 23  | 15 |    |    | 83  | 15 | Bed                    | (0-30)                                            |
| 97R            | 1062.3  | 0   | 0  |    |    |     | 0  | Bed                    |                                                   |
| 98R-1          | 1071.9  | 0   | 0  |    |    |     | 0  | Bed                    |                                                   |
|                |         |     |    |    |    |     |    |                        |                                                   |

# Table T7 (continued).

| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Cr az.<br>(°) | Cr dip<br>(°) | Cr<br>line | Cr<br>I.plunge | Pm<br>az. | Pm<br>dip | lc  | lentifier | Notes                                                                    | Comments |
|---------------------------------|-----------------|---------------|---------------|------------|----------------|-----------|-----------|-----|-----------|--------------------------------------------------------------------------|----------|
| 98R-2                           | 1073.4          | 0             | 0             |            |                |           | 0         | Bed |           |                                                                          |          |
| 98R-3, 9-28                     | 1075.0          | 0             | 6             |            |                |           | 6         | Bed |           |                                                                          |          |
| 98R-4                           | 1076.0          | 0             | 0             |            |                |           | 0         | Bed |           |                                                                          |          |
| 98R-5                           | 1076.4          | 0             | 0             |            |                |           | 0         | Bed |           |                                                                          |          |
| 99 All                          | 1081.5          | 0             | 0             |            |                |           | 0         | Bed |           |                                                                          |          |
| 100 All                         | 1091.2          | 0             | 0             |            |                |           | 0         | Bed |           |                                                                          |          |
| 101 All                         | 1100.8          |               |               |            |                |           |           |     |           | Highly fragmented hemipelagites and<br>volcaniclastic (drilling induced) |          |
| 102 All                         | 1110.2          |               |               |            |                |           |           |     |           | Highly fragmented hemipelagites and<br>volcaniclastic (drilling induced) |          |

Notes: Cr az. = azimuth of plane in core reference frame, Cr plunge = plunge of plane in core reference frame, Cr line = azimuth of line in core reference frame, Cr l.dip = dip of line in core reference frame, Pm az. = azimuth of plane in paleomagnetic reference frame, Pm dip = dip of plane in paleomagnetic reference frame, paired values in parentheses, in Notes column, record interval of coherent drilling biscuit used in paleomagnetic reorientation. This table is also available in ASCII format.

# Table T8. Nannofossil events recognized, Site 1174.

| Nannofossil<br>zones | Datum events                                 | Age<br>(Ma) | Depth<br>(mbsf) | Average<br>sedimentation<br>rate*<br>(m/m.y.) |
|----------------------|----------------------------------------------|-------------|-----------------|-----------------------------------------------|
| NN21b                | FAD Emiliania huxleyi acme                   | 0.085       | 59.25 ± 3.77    |                                               |
| NN21a                | FAD Emiliania huxleyi                        | 0.26        | 166.90 ± 4.81   |                                               |
| NN20                 | LAD Pseudoemiliania lacunosa                 | 0.46        | 292.18 ± 5.29   | 685.4                                         |
|                      | LAD Reticulofenestra asanoi                  | 0.8         | 554.68 ± 1.96   |                                               |
|                      | FAD Reticulofenestra asanoi                  | 1.06        | 596.14 ± 5.44   |                                               |
|                      | FAD Gephyrocapsa oceanica                    | 1.77        | 641.50 ± 2.09   |                                               |
| NN19                 | LAD Discoaster brouweri                      | 1.95        | 652.47 ± 3.00   |                                               |
| NN18                 | LAD Discoaster pentaradiatus                 | 2.52        | 671.28 ± 0.33   |                                               |
| NN17                 | LAD Discoaster surculus                      | 2.55        | 676.08 ± 4.47   |                                               |
| NN16                 | LAD Reticulofenestra pseudoumbilicus (>7 µm) | 3.75        | 739.87 ± 6.20   |                                               |
| NN15                 | LAD Amaurolithus spp.                        | 4.0         | 763.35 ± 15.50  |                                               |
| NN14                 | FCAD Discoaster asymmetricus                 | 4.13        | 796.08 ± 0.73   |                                               |
| NN12                 | LAD Discoaster quinqueramus                  | 5.54        | 779.69 ± 1.50   |                                               |
| NN11b                | FAD Amaurolithus ssp.                        | 7.2         | 843.24 ± 1.57   |                                               |
| NN11a                | FAD Discoaster quinqueramus                  | 8.6         | 871.05 ± 7.57   | 54.8                                          |
| NN10b                | LAD Reticulofenestra pseudoumbilicus (>7 µm) | 8.8         | 890.41 ± 3.27   |                                               |
| NN10a                | LAD Discoaster hamatus                       | 9.63        | 898.96 ± 5.29   |                                               |
| NN9                  | FAD Discoaster hamatus                       | 10.7        | 918.52 ± 2.02   |                                               |
| NN8                  | FAD Catinaster coalitus                      | 10.9        | 954.14 ± 1.79   |                                               |
| NN7                  | FAD Discoaster kugleri                       | 11.8        | 1067.89 ± 9.27  |                                               |
|                      | LAD Orthorhabdus serratus                    | 12.3        | 1067.89 ± 8.27  |                                               |
|                      | LCAD Cyclicargolithus floridanus             | 13.2        | 1088.99 ± 4.99  |                                               |
|                      | FAD Reticulofenestra pseudoumbilicus (>7 μm) | 13.4        | 1106.90 ± 4.40  |                                               |

Notes: FAD = first appearance datum, LAD = last appearance datum, FCAD = first common appearance datum, LCAD = last common occurrence datum. \* = uncorrected for compaction.

**Table T9.** Interval and depth constraints of calcareous nannofossil events, Site1174.

|       |                                          | Inter        | val (cm)     | Depth   | (mbsf)  |
|-------|------------------------------------------|--------------|--------------|---------|---------|
| Event |                                          | Тор          | Bottom       | Тор     | Bottom  |
|       |                                          | 190-1174A-   | 190-1174A-   |         |         |
| В     | <i>Emiliania huxleyi</i> acme            | 7H-CC        | 8H-2, 74-75  | 55.49   | 63.02   |
|       |                                          | 190-1174B-   | 190-1174B-   |         |         |
| В     | Emiliania huxleyi                        | 3R-CC        | 4R-CC        | 162.90  | 171.71  |
| Т     | Pseudoemiliania lacunosa                 | 16R-CC       | 17R-CC       | 286.90  | 297.48  |
| Т     | Reticulofenestra asanoi                  | 43R-CC       | 44R-3, 75-76 | 552.73  | 556.65  |
| В     | Reticulofenestra asanoi                  | 47R-CC       | 48R-CC       | 590.69  | 601.58  |
| В     | Gephyrocapsa oceanica                    | 52R-CC       | 53R-3, 79-80 | 639.41  | 643.59  |
| Т     | Discoaster brouweri                      | 53R-CC       | 54R-CC       | 645.70  | 659.24  |
| Т     | Discoaster pentaradiatus                 | 56R-2, 75-76 | 56R-CC       | 670.95  | 671.61  |
| Т     | Discoaster surculus                      | 56R-CC       | 57R-2, 75-76 | 671.61  | 680.55  |
| Т     | Reticulofenestra pseudoumbilicus (>7 μm) | 62R-CC       | 63R-CC       | 733.68  | 746.07  |
| Т     | Amaurolithus spp.                        | 65R-5, 74-75 | 65R-CC       | 761.94  | 764.93  |
| В     | Discoaster asymmetricus (common)         | 66R-3, 75-76 | 66R-4, 71-72 | 768.35  | 769.81  |
| Т     | Discoaster quinqueramus                  | 67R-4, 75-76 | 67R-6, 75-76 | 778.19  | 781.19  |
| В     | Amaurolithus ssp.                        | 73R-CC       | 74R-3, 41-42 | 841.68  | 844.81  |
| В     | Discoaster quinqueramus                  | 76R-CC       | 79R-CC       | 863.47  | 893.68  |
| Т     | Reticulofenestra pseudoumbilicus (>7 μm) | 76R-CC       | 79R-CC       | 863.47  | 893.68  |
| Т     | Discoaster hamatus                       | 79R-CC       | 80R-4, 75-76 | 893.68  | 904.25  |
| В     | Discoaster hamatus                       | 81R-CC       | 82R-2, 74-75 | 816.50  | 920.54  |
| В     | Catinaster coalitus                      | 85R-4, 75-76 | 85R-CC       | 952.35  | 955.93  |
| В     | Discoaster kugleri                       | 96R-CC       | 98R-CC       | 1058.62 | 1077.16 |
| Т     | Orthorhabdus serratus                    | 96R-CC       | 98R-CC       | 1058.62 | 1077.16 |
| Т     | Cyclicargolithus floridanus (common)     | 99R-CC       | 100R-CC      | 1084.00 | 1093.97 |
| В     | Reticulofenestra pseudoumbilicus (>7 μm) | 101R-CC      | 102R-CC      | 1102.50 | 1111.30 |

Note: B = bottom occurrence, T = top occurrence.

| Boundary             | Depth<br>(mbsf) | Event                     |
|----------------------|-----------------|---------------------------|
| Pleistocene/Pliocene | 641.50 ± 2.09   | B Gephyrocapsa oceanica   |
| late/early Pliocene  | 686.00          | Gauss (O)                 |
| Pliocene/Miocene     | 779.69 ± 1.90   | T Discoaster quinqueramus |
| late/middle Miocene  | 954.14 ± 1.79   | B Catinaster coalitus     |

# Table T10. Epoch boundaries, Hole 1174B.

Notes: (O) = onset. B = bottom occurrence, T = top occurrence.

| Epoch       | Zones | Core, section,<br>interval (cm)                                                                                  | Depth<br>(mbsf) | Preservation                                   | Abundance                                      | Braarudosphaera bigelowii | Calcidiscus tropicus<br>Calcidiscus leptoporus | Calcidiscus macintyrei | Ceratolithus cristatus | Ceratolithus cristatus var. telesmus | Coccolithus pelagicus | Curtolithus penglicus (with bar) | Cyclonerus annaus<br>Discoaster brouweri | Discoaster pentaradiatus | Discoaster spp. | Discoaster variabilis | Discosphaera tubifera | Emiliania huxleyi     | Florisphaera profunda                                                   | Gephyrocapsa muellerae     | Gephyrocapsa oceanica                                                                       | <i>Gephyrocapsa</i> spp. (<2 µm)          | Hayaster perplexus | Helicosphaera carteri                               | Helicosphaera carteri var. walichii | Helicosphaela Inversa<br>Helicosphaera sellii | Holodiscolithus macroporus | Neosphaera coccolithomorpha | Oolithotus fragilis | Pontosphaera discopora | Pontosphaera japonica | Portugentaria Inauropora<br>Preudoemiliania lacunosa | Pseudoemiliania ovata | Reticulaofenestra asanoi | Reticulofenestra pseudoumbilicus (>7 µm) | Reticulofenestra pseudoumbilicus (5–7 µm) | Reticulofenestra spp. | Reticulofenstra minuta | Relicatoreristra minutala | knabaospnaera clavigera<br>Rhabdosphaera clavigera var. stylifera |
|-------------|-------|------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------|------------------------------------------------|---------------------------|------------------------------------------------|------------------------|------------------------|--------------------------------------|-----------------------|----------------------------------|------------------------------------------|--------------------------|-----------------|-----------------------|-----------------------|-----------------------|-------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|-----------------------------------------------------|-------------------------------------|-----------------------------------------------|----------------------------|-----------------------------|---------------------|------------------------|-----------------------|------------------------------------------------------|-----------------------|--------------------------|------------------------------------------|-------------------------------------------|-----------------------|------------------------|---------------------------|-------------------------------------------------------------------|
|             | NN21b | 190-1174A-<br>1H-CC<br>2H-CC<br>3H-CC<br>4H-CC<br>5H-CC<br>7H-CC                                                 |                 | M<br>M<br>G<br>M<br>P                          | C<br>F<br>C<br>C<br>R                          | R                         | C<br>R<br>F<br>F<br>C                          |                        | F<br>R<br>R<br>R       |                                      | R<br>R                | R<br>R                           | R                                        |                          | F               |                       | F                     | D<br>D<br>D<br>D<br>D |                                                                         | C<br>C<br>C<br>C<br>C<br>A | A<br>A<br>A<br>A<br>A                                                                       | C<br>F<br>F<br>C                          | F                  | F<br>F<br>C<br>F<br>C                               | F                                   |                                               | F                          |                             |                     |                        | R                     | F<br>F<br>R                                          | : F                   | R                        | F<br>R<br>F                              |                                           | F                     | C<br>F                 |                           | F<br>F                                                            |
|             | NN21a | 8H-2, 74-75<br>8H-CC<br>1R-6, 75-76<br>1R-CC<br>2R-CC<br>3R-CC<br>4R-CC                                          | 63.02<br>149.38 | P<br>P<br>P<br>M<br>M                          | R<br>F<br>F<br>C<br>F<br>C                     | R                         |                                                |                        | F                      |                                      | F<br>F                | C<br>R I<br>R                    | F                                        |                          | C               | F                     |                       | A<br>A<br>A<br>A      | C<br>A<br>C<br>A<br>C<br>A                                              | A<br>A<br>A<br>C<br>A      | D<br>A<br>A<br>A<br>A<br>A                                                                  | A<br>A<br>C<br>C<br>C<br>A                |                    | C<br>C<br>C<br>F<br>F<br>R                          | C<br>C<br>R                         |                                               |                            |                             |                     |                        |                       | R F                                                  | ;<br>; F              | :                        |                                          |                                           |                       | C<br>C                 |                           | С                                                                 |
| Pleistocene | NN20  | 5R-CC<br>6R-CC<br>7R-CC<br>9R-CC<br>10R-CC<br>11R-CC<br>12R-CC<br>13R-CC<br>14R-CC<br>15R-CC<br>16R-CC           |                 | P<br>P<br>P<br>P<br>M<br>M<br>M<br>M<br>M<br>M | R<br>F<br>C<br>F<br>F<br>F<br>F<br>F<br>F<br>R | F                         | F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F |                        | ĸ                      |                                      | R<br>R<br>R           | D<br>F<br>C<br>R                 |                                          |                          | ĸ               |                       |                       |                       | C<br>A<br>C<br>C<br>A<br>A<br>C<br>C<br>A<br>A<br>A<br>A<br>A<br>A      |                            | A A C A C C C C C C A                                                                       |                                           |                    | F<br>R<br>F<br>C<br>F<br>F<br>R<br>F<br>F<br>R      | R<br>F<br>R                         | R<br>R<br>F                                   |                            | F                           | F                   |                        | R                     | F<br>F<br>R                                          | :<br>:<br>{<br>{      | R                        |                                          |                                           | F<br>C<br>F<br>C      |                        |                           |                                                                   |
|             | NN19  | 17R-CC<br>18R-CC<br>19R-CC<br>20R-CC<br>21R-CC<br>23R-2, 73-74<br>24R-CC<br>25R-CC<br>25R-CC<br>26R-CC<br>27R-CC | 354.23          | М<br>Р<br>М<br>Р<br>М<br>Р<br>М<br>Р           | F<br>C<br>F<br>C<br>F<br>F<br>R<br>B           | F                         | C<br>F<br>C<br>C<br>C<br>C<br>F<br>F<br>R      | F                      | R<br>F<br>R            | R                                    | R<br>F                | R I<br>R<br>F                    | F                                        | R                        | R               | С                     |                       |                       | A<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | A                          | A<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | A<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>A |                    | C<br>C<br>F<br>C<br>R<br>F<br>R<br>F<br>R<br>F<br>R | R<br>F<br>F                         |                                               |                            |                             |                     |                        |                       | F<br>C<br>F<br>F<br>F<br>C                           | F<br>R<br>R<br>C<br>F | R                        | F                                        |                                           | F<br>R<br>F<br>F      | R                      | F                         | F                                                                 |

 Table T11. Calcareous nannofossil range chart, Zones NN21b–NN19. (See table notes. Continued on next three pages.)

| Epoch       | Zones | Core, section,<br>interval (cm)                                                                                                    | Depth<br>(mbsf) | Preservation                                   | Abundance                                      | Scapholithus fossilis | Scyphosphaera spp. | Solidopons petrae | Sphenolithus grandis | Sphenolithus spp. | Syracosphaera pulchra | Syracosphaera spp.    | Umbellosphaera irregularis | Umbellosphaera tenuis | Umbilicosphaera hulburtiana | Umbilicosphaera rotula | Umbilicosphaera sibogae var. foliosa | Umbilicosphaera sibogae var. sibogae |
|-------------|-------|------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------|------------------------------------------------|-----------------------|--------------------|-------------------|----------------------|-------------------|-----------------------|-----------------------|----------------------------|-----------------------|-----------------------------|------------------------|--------------------------------------|--------------------------------------|
|             | NN21b | 190-1174A-<br>1H-CC<br>2H-CC<br>3H-CC<br>4H-CC<br>5H-CC<br>7H-CC                                                                   |                 | M<br>G<br>G<br>P                               | C<br>F<br>C<br>C<br>R                          | F                     |                    |                   |                      | R<br>F            | F<br>F<br>F           | F<br>F<br>F           | F                          | F<br>F<br>F           | F<br>F                      |                        | F<br>F                               | C<br>C<br>F<br>C                     |
|             | NN21a | 8H-2, 74-75<br>8H-CC<br>1R-6, 75-76<br>1R-CC<br>2R-CC<br>3R-CC                                                                     | 63.02<br>149.38 | P<br>P<br>P<br>M<br>M                          | R<br>F<br>F<br>C<br>F                          | с                     |                    |                   |                      | C<br>F            |                       | C<br>C                |                            | F                     |                             |                        | F                                    | C<br>C<br>C                          |
| Pleistocene | NN20  | 4R-CC<br>5R-CC<br>6R-CC<br>7R-CC<br>8R-CC<br>9R-CC<br>10R-CC<br>11R-CC<br>12R-CC<br>13R-CC<br>13R-CC<br>14R-CC<br>15R-CC<br>16R-CC |                 | M<br>P<br>P<br>M<br>M<br>M<br>M<br>M<br>M<br>M | C<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>R |                       |                    |                   |                      | R<br>R            |                       | F<br>R<br>F<br>R      | F                          | R                     | R<br>F<br>R                 |                        | F<br>F<br>F<br>F                     | F<br>F<br>F<br>R<br>F<br>F           |
|             | NN19  | 17R-CC<br>18R-CC<br>19R-CC<br>20R-CC<br>22R-CC<br>22R-CC<br>23R-2, 73-74<br>24R-CC<br>25R-CC<br>25R-CC<br>26R-CC<br>27R-CC         | 354.23          | M<br>P<br>M<br>P<br>M<br>P<br>M<br>P           | F<br>R<br>C<br>F<br>R<br>C<br>F<br>F<br>R<br>B | F                     |                    | R                 |                      | R<br>F<br>R       | F<br>R<br>F           | F<br>F<br>R<br>R<br>F |                            | F<br>F<br>R<br>F      | F                           |                        |                                      | C<br>F<br>F                          |

| Epoch       | Zones   | Core, section,<br>interval (cm) | Depth<br>(mbsf) | Preservation | Abundance   | Braarudosphaera bigelowii | Calcidiscus tropicus<br>Calcidiscus lentonorus | Calcidiscus macintyrei | Ceratolithus cristatus | Ceratolithus cristatus var. telesmus | Coccolithus pelagicus | Coccolithus pelagicus (with bar) | Optional dimana<br>Discoaster brouweri | Discoaster pentaradiatus | Discoaster spp. | Discoaster variabilis | Discosphaera tubifera | Emiliania huxleyi | Florisphaera profunda | Gephyrocapsa muellerae | Gephyrocapsa oceanica | Gephyrocapsa spp. (<2 µm)<br>Havaster perplexus | , , , , , , , , , , , , , , , , , , , | Helicosphaera carteri var. walichii | Helicosphaera inversa | Helicosphaera sellii | Holodiscolithus macroporus | Neosphaera coccolithomorpha | Doutronhous tragilis | rontospitaeta aiscopora<br>Pontosphaeta japonica | Pontosphaera multipora | Pseudoemiliania lacunosa | Pseudoemiliania ovata | Reticulaofenestra asanoi | Reticulofenestra pseudoumbilicus (>7 µm) | Reticulofenestra pseudoumbilicus (5–7 µm) | Reticulofenestra spp. | Reticulofenstra minuta<br>Baticulofenstra minutula | Rhabdosphaera clavigera | Rhabdosphaera clavigera var. stylifera |
|-------------|---------|---------------------------------|-----------------|--------------|-------------|---------------------------|------------------------------------------------|------------------------|------------------------|--------------------------------------|-----------------------|----------------------------------|----------------------------------------|--------------------------|-----------------|-----------------------|-----------------------|-------------------|-----------------------|------------------------|-----------------------|-------------------------------------------------|---------------------------------------|-------------------------------------|-----------------------|----------------------|----------------------------|-----------------------------|----------------------|--------------------------------------------------|------------------------|--------------------------|-----------------------|--------------------------|------------------------------------------|-------------------------------------------|-----------------------|----------------------------------------------------|-------------------------|----------------------------------------|
|             |         | 28R-CC<br>29R-CC<br>30R-CC      |                 | M<br>M<br>P  | F<br>F<br>R |                           | C<br>F<br>C                                    |                        |                        |                                      | R<br>F                | F<br>F                           |                                        |                          |                 |                       |                       |                   | C<br>C<br>A           | A<br>A<br>A            | A<br>A<br>A           | D<br>D                                          | F<br>R                                |                                     |                       |                      |                            |                             |                      |                                                  |                        | R<br>F<br>C              | R                     |                          | R                                        |                                           | F                     |                                                    |                         |                                        |
|             |         | 31R-CC                          |                 | P            | R           |                           | ć                                              |                        |                        |                                      |                       |                                  |                                        |                          |                 |                       |                       |                   | C                     | D                      | C                     | C<br>₄                                          |                                       |                                     |                       |                      |                            |                             |                      |                                                  |                        | C                        | c                     |                          |                                          |                                           |                       | (                                                  | 2                       |                                        |
|             |         | 33R-CC                          |                 | P            | R           |                           |                                                |                        |                        |                                      |                       |                                  |                                        |                          |                 |                       |                       |                   | A                     | D                      | С                     | A                                               |                                       |                                     |                       |                      |                            |                             |                      |                                                  |                        | C                        | R                     | F                        | _                                        |                                           |                       | (                                                  | 2                       |                                        |
|             |         | 34R-CC<br>35R-CC                |                 | P<br>P       | C           |                           | F                                              |                        |                        |                                      |                       |                                  |                                        |                          |                 |                       |                       |                   | A<br>A                | D<br>D                 | C                     | А                                               | ŀ                                     |                                     |                       |                      |                            |                             |                      |                                                  |                        | C                        | F<br>C                |                          | к                                        |                                           |                       |                                                    |                         |                                        |
|             |         | 36R-CC                          |                 | М            | F           |                           | F                                              |                        |                        |                                      |                       |                                  |                                        |                          |                 |                       |                       |                   | С                     | Α                      | C                     | D                                               | F                                     |                                     |                       | R                    |                            |                             |                      | R                                                | ł                      | F                        | F                     |                          |                                          |                                           |                       | -                                                  |                         |                                        |
|             |         | 37R-CC<br>38R-CC                |                 | M            | C           |                           | F                                              | :                      |                        |                                      | R                     | к                                |                                        |                          |                 |                       |                       |                   | С                     | D<br>D                 | C                     | A<br>A                                          |                                       |                                     |                       |                      |                            |                             |                      |                                                  |                        | C                        | F                     |                          |                                          |                                           |                       | F                                                  |                         |                                        |
|             |         | 39R-CC                          |                 | М            | C           |                           | F                                              | 1                      |                        |                                      |                       |                                  | F                                      |                          |                 |                       |                       |                   | Ā                     | D                      | Ă                     | A                                               |                                       |                                     |                       |                      |                            |                             |                      |                                                  |                        | F                        | F                     |                          |                                          |                                           |                       | R                                                  |                         |                                        |
|             |         | 40R-CC                          |                 | Р            | R           |                           | F                                              | 1                      |                        |                                      |                       |                                  |                                        |                          |                 |                       |                       |                   | D                     | С                      | С                     | С                                               |                                       |                                     |                       |                      |                            |                             |                      |                                                  |                        | C                        | С                     |                          |                                          |                                           | F                     | CI                                                 | -                       |                                        |
|             | NIN110  | 41R-CC                          |                 | М            | R           |                           |                                                |                        |                        |                                      |                       |                                  |                                        |                          |                 |                       |                       |                   |                       |                        | D                     |                                                 |                                       |                                     |                       |                      |                            |                             |                      |                                                  |                        |                          |                       |                          |                                          |                                           |                       |                                                    |                         |                                        |
| Pleistocene | ININ 19 | 42R-CC<br>43R-CC                |                 | Р            | R           |                           | F                                              |                        |                        |                                      |                       |                                  |                                        |                          |                 |                       |                       |                   | А                     | А                      | c                     | D                                               |                                       |                                     |                       |                      | F                          |                             |                      |                                                  | F                      | C                        | F                     | F                        |                                          |                                           |                       | c                                                  |                         |                                        |
|             |         | 44R-3, 75-76                    | 556.65          | P            | F           |                           | F                                              |                        |                        |                                      |                       |                                  |                                        |                          |                 |                       |                       |                   | C                     | A                      | Ā                     | A                                               | С                                     |                                     |                       |                      | -                          |                             |                      |                                                  | -                      | A                        | C                     | F                        |                                          |                                           |                       | -                                                  |                         |                                        |
|             |         | 44R-CC                          |                 | Р            | R           |                           | C                                              | 2                      |                        |                                      |                       | (                                | 2                                      |                          |                 |                       |                       |                   | А                     | С                      | А                     | С                                               |                                       |                                     |                       |                      |                            |                             |                      |                                                  |                        | C                        | С                     | С                        |                                          |                                           |                       | A                                                  | 2                       |                                        |
|             |         | 45R-CC                          |                 | P            | R           |                           | A                                              |                        |                        |                                      |                       |                                  |                                        |                          |                 |                       |                       |                   | C                     | A                      |                       | A                                               | -                                     |                                     |                       |                      |                            |                             |                      | -                                                |                        | C                        | ~                     | A                        |                                          |                                           | A                     | A                                                  |                         |                                        |
|             |         | 46R-CC<br>47R-4 56-57           | 586 96          | M            | C           |                           | r C                                            | -                      |                        |                                      | R                     | к                                |                                        |                          |                 |                       |                       |                   | R                     | C                      | c                     | D<br>D                                          | R                                     | R                                   |                       |                      |                            |                             |                      | F                                                | F                      |                          | c                     | F                        |                                          |                                           |                       |                                                    |                         |                                        |
|             |         | 47R-CC                          | 500.70          | P            | C           |                           | Ċ                                              | 2                      |                        |                                      | ĸ                     |                                  |                                        |                          |                 |                       |                       |                   | C                     | F                      | c                     | D                                               |                                       | Ň                                   |                       |                      | F                          |                             |                      |                                                  |                        | C                        | c                     |                          |                                          |                                           | R                     | С                                                  |                         |                                        |
|             |         | 48R-CC                          |                 | Р            | F           |                           | C                                              |                        |                        |                                      | F                     |                                  |                                        |                          |                 |                       |                       |                   | A                     | F                      | A                     | D                                               |                                       |                                     |                       |                      |                            |                             | F                    |                                                  | F                      | C                        | C                     |                          |                                          |                                           |                       | F                                                  |                         |                                        |
|             |         | 49R-CC                          |                 |              | В           |                           |                                                |                        |                        |                                      |                       |                                  |                                        |                          |                 |                       |                       |                   |                       |                        |                       |                                                 |                                       |                                     |                       |                      |                            |                             |                      |                                                  |                        |                          |                       |                          |                                          |                                           |                       |                                                    |                         |                                        |
|             |         | 50R-CC                          |                 | Р            | F           |                           | C                                              |                        |                        |                                      | F                     | _                                |                                        |                          |                 | _                     |                       |                   | С                     | С                      | Α                     | D                                               | _                                     |                                     |                       |                      |                            |                             |                      | F                                                |                        | C                        | C                     |                          |                                          |                                           |                       | F                                                  |                         | F                                      |
|             |         | 51R-CC                          |                 | P            | F           |                           | F                                              |                        |                        |                                      | р                     | F                                |                                        |                          |                 | R                     |                       |                   | A                     | A                      | C                     | A                                               | R                                     | р                                   |                       | г                    |                            |                             |                      | F                                                |                        | C                        | F                     |                          |                                          | R                                         |                       | ĸ                                                  |                         |                                        |
|             |         | 52K-CC<br>53R-3 79-80           | 643 59          | P            | F           |                           | г (                                            | . F                    |                        |                                      | к<br>F                | г                                |                                        |                          |                 |                       |                       |                   | A<br>C                | F<br>A                 | C                     | A<br>D                                          | r<br>C                                | к                                   |                       | F                    |                            |                             |                      | г                                                |                        | A<br>C                   | C<br>۵                |                          |                                          |                                           |                       | н<br>С (                                           | -                       |                                        |
|             |         | 53R-CC                          | 213.37          | P            | R           |                           | 0                                              | F<br>F                 | R                      |                                      |                       |                                  | F                                      |                          |                 |                       |                       |                   | D                     | C                      |                       | A                                               |                                       |                                     |                       |                      |                            |                             |                      |                                                  |                        | C                        | C                     |                          |                                          |                                           |                       | (                                                  | -                       |                                        |
|             |         |                                 |                 |              | 1 U.        |                           |                                                |                        |                        |                                      |                       |                                  |                                        | - 1                      |                 |                       |                       |                   |                       |                        |                       |                                                 |                                       |                                     |                       |                      |                            |                             |                      |                                                  |                        | - 1                      |                       |                          |                                          |                                           |                       |                                                    |                         | 1                                      |

Table T11 (continued).

# Notes: Abundance: D = dominant, A = abundant, C = common, F = few, R = rare. Preservation: P = poor, M = moderate, G = good. See "Biostratigraphy," p. 9, in the "Explanatory Notes" chapter. This table is also available in ASCII format.

| Epoch       | Zones | Core, section,<br>interval (cm)                                                                                                                                                                                                                                                                                                                | Depth<br>(mbsf)            | Preservation                                              | Abundance                                               | Scapholithus fossilis | Scyphosphaera spp. | Solidopons petrae | Sphenolithus grandis | Sphenolithus spp. | Syracosphaera pulchra | Syracosphaera spp. | Umbellosphaera irregularis | Umbellosphaera tenuis | Umbilicosphaera hulburtiana | Umbilicosphaera rotula | Umbilicosphaera sibogae var. foliosa | Umbilicosphaera sibogae var. sibogae |
|-------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------|---------------------------------------------------------|-----------------------|--------------------|-------------------|----------------------|-------------------|-----------------------|--------------------|----------------------------|-----------------------|-----------------------------|------------------------|--------------------------------------|--------------------------------------|
| Pleistocene | NN19  | 28R-CC<br>29R-CC<br>30R-CC<br>31R-CC<br>32R-CC<br>33R-CC<br>35R-CC<br>35R-CC<br>36R-CC<br>37R-CC<br>38R-CC<br>40R-CC<br>40R-CC<br>41R-CC<br>42R-CC<br>43R-CC<br>44R-3, 75-76<br>44R-3, 75-76<br>44R-CC<br>45R-CC<br>44R-CC<br>45R-CC<br>45R-CC<br>45R-CC<br>45R-CC<br>45R-CC<br>50R-CC<br>50R-CC<br>51R-CC<br>52R-CC<br>53R-3, 79-80<br>53R-CC | 556.65<br>586.96<br>643.59 | $\Sigma \Sigma P P P P P Z \Sigma Z P P P P P P P P P P $ | F F R R R C C F C C C R R B R F R R C C C F B F F C F R |                       |                    |                   |                      | R                 | R F                   | F<br>F<br>F<br>F   |                            | F                     |                             |                        | R<br>F<br>F<br>F<br>F                | R<br>F<br>R<br>F<br>F<br>F<br>F      |

| Epoch            | Zone            | Core, section,<br>interval (cm)                                                          | Depth<br>(mbsf)                      | Preservation<br>Abundance                                                                                                | Amaurolithus amplificus | Amaurolithus delicatus<br>Amaurolithus primus | Amaurolithus tricorniculatus | Angulolithina arca | Calcidiscus leptoporus     | Calcialiscus macintyrei<br>Calcialiscus promacintyrei | Calcialiscus tropicus | Catinaster calyculus | Catinaster coalitus | Catinaster spp. | Ceratolithus cristatus | Coccolithus miopelagicus | Coccolithus pelagicus<br>Corcolithus pelagicus (with har) |   | Coronocyclus nitescens<br>Crvatococcoliithus mediaperforatus | Cyclicargolithus floridanus | Discoaster asymmetricus | Discoaster bellus | Discoaster bergeni | Discoaster boili<br>Discoaster braarudii | Discoaster brouweri   | Discoaster calcaris | Discoaster challengeri | Discoaster deflandrei | Discoaster hamatus | Discoaster kugleri | Discoaster musicus | Discoaster neorectus | Discoaster pansus | Discoaster pentaraalatus | Discouster perunionnus<br>Disconster prepentaradiatus | Discoaster quinqueramus | Discoaster spp.  | Discoaster subsurculus | Discoaster surculus | Discoaster tamaiis<br>Discoaster triradiatus | Discoaster variabilis<br>Discoaster variabilis | Florisphaera profunda |
|------------------|-----------------|------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------|------------------------------|--------------------|----------------------------|-------------------------------------------------------|-----------------------|----------------------|---------------------|-----------------|------------------------|--------------------------|-----------------------------------------------------------|---|--------------------------------------------------------------|-----------------------------|-------------------------|-------------------|--------------------|------------------------------------------|-----------------------|---------------------|------------------------|-----------------------|--------------------|--------------------|--------------------|----------------------|-------------------|--------------------------|-------------------------------------------------------|-------------------------|------------------|------------------------|---------------------|----------------------------------------------|------------------------------------------------|-----------------------|
| late<br>Pliocene | NN18<br>NN17    | 190-1174B-<br>54R-CC<br>55R-CC<br>56R-2, 75-76<br>56R-CC<br>57R-2, 75-76<br>57R-4, 75-76 | 670.95<br>680.55<br>683.55           | P R<br>P R<br>P F<br>P R<br>P R<br>P R                                                                                   |                         |                                               |                              |                    | C<br>C<br>C<br>C<br>C<br>C | C<br>C<br>C<br>C                                      | c                     |                      |                     |                 |                        |                          | с                                                         | C |                                                              |                             | F                       |                   |                    |                                          | C<br>C<br>C<br>C<br>C |                     |                        |                       |                    | с                  |                    |                      |                   | F                        |                                                       |                         | F<br>C           |                        | F<br>C<br>C         | C                                            | F F                                            | A<br>A<br>D<br>A<br>A |
|                  | NN16            | 58R-CC<br>58R-3, 75-76<br>58R-CC<br>59R-CC<br>60R-CC<br>61R-CC<br>62R-CC                 | 691.75                               | <ul> <li>P</li> <li>F</li> <li>P</li> <li>R</li> <li>P</li> <li>R</li> <li>P</li> <li>R</li> <li>P</li> <li>F</li> </ul> |                         |                                               |                              |                    | C<br>C<br>C                | C<br>C<br>F<br>F                                      | C                     | 2                    |                     |                 |                        |                          | F<br>F                                                    | C |                                                              |                             | F<br>F<br>R<br>R        |                   |                    |                                          | C<br>F<br>A<br>R<br>R |                     |                        |                       |                    | C<br>R             |                    |                      |                   | F<br>C<br>F<br>R         |                                                       |                         | C<br>F<br>C<br>R |                        | C<br>R<br>C<br>F    | C<br>F                                       | F<br>C<br>F                                    | D<br>A<br>A<br>A<br>A |
| early<br>Piocene | NN15            | 63R-4, 74-75<br>63R-CC<br>64R-2, 71-72<br>64R-4, 77-78<br>54R-CC<br>65R-5, 74-75         | 741.34<br>747.91<br>750.97<br>761.74 | PR<br>B<br>B<br>B<br>PR                                                                                                  |                         |                                               |                              |                    | С                          | С                                                     |                       |                      |                     |                 | F                      |                          | с                                                         |   |                                                              |                             | С                       |                   |                    |                                          | C                     |                     |                        |                       |                    |                    |                    |                      |                   | A                        |                                                       |                         |                  |                        |                     |                                              | c<br>c                                         | : C<br>: A            |
|                  | NN14<br>NN13-12 | 65R-CC<br>66R-3, 72-73<br>66R-4, 71-72<br>66R-CC<br>67R-4, 75-76                         | 739.82<br>769.81<br>778.19           | PR<br>PR<br>PR<br>B<br>PR                                                                                                |                         | F                                             |                              |                    | С                          | c                                                     |                       |                      |                     |                 |                        |                          |                                                           |   |                                                              |                             | C<br>C                  |                   |                    |                                          |                       |                     |                        |                       |                    |                    |                    |                      |                   | F                        |                                                       |                         | C                |                        |                     |                                              | C                                              | C<br>C<br>C           |
|                  | NN11b           | 67R-6, 75-76<br>67R-CC<br>68R-CC<br>69R-CC<br>70R-CC                                     | 781.19                               | P C<br>M C<br>B<br>P C<br>P R                                                                                            |                         | R                                             |                              |                    | C<br>R<br>F                | F<br>F<br>F                                           | F                     |                      |                     |                 |                        |                          |                                                           |   |                                                              |                             | R                       |                   |                    |                                          | F                     |                     |                        |                       |                    |                    |                    |                      |                   |                          |                                                       | F<br>R<br>R             | A                |                        | F<br>R<br>R         | I                                            | R<br>R F<br>R<br>A                             | C                     |
| late<br>Miocene  | NN111-          | 71R-CC<br>72R-CC<br>73R-CC<br>74R-3, 41-42<br>74R-CC                                     | 844.81                               | P C<br>P R<br>M F<br>P F<br>B                                                                                            | с                       | F                                             | R<br>C                       | R                  | F                          | F                                                     | F                     |                      |                     |                 |                        |                          | С                                                         |   |                                                              |                             |                         |                   |                    |                                          |                       |                     |                        | R                     |                    | R<br>C             |                    |                      | F                 | F                        |                                                       | R<br>A<br>C             |                  |                        | F<br>C<br>C         | I                                            | F<br>C<br>F<br>F                               | •                     |
|                  | ININTTA         | 75R-CC<br>76R-CC                                                                         |                                      | P R<br>P R                                                                                                               |                         |                                               |                              |                    |                            |                                                       |                       |                      |                     |                 |                        |                          | с                                                         |   |                                                              |                             |                         |                   | C<br>C             |                                          |                       | с                   |                        |                       |                    | C<br>A             |                    |                      | C<br>F            |                          |                                                       | C<br>C                  | A                |                        | F                   |                                              | C<br>A                                         |                       |

# Table T12. Calcareous nannofossil range chart, Zones NN18–NN6. (See table notes. Continued on next three pages.)

128

# Reticulofenestra pseudoumbilicus (5–7 µm) Reticulofenestra pseudoumbilicus (>7 µm) Umbilicosphaera sibogae var. sibogae Helicosphaera carteri var. Walichii *Gephyrocapsa* spp. (<2 µm) Sphenolithus heteromorphus Scyphosphaera pulcherrima Triquetrorhabdulus milowii Triquetrorhabdulus rugosus Pseudoemiliania lacunosa Reticulofenestra minutula Rhabdosphaera clavigera Scyphosphaera globulata Helicosphaera intermedia Scyphosphaera ventriosa Helicosphaera granulata Pontosphaera multipora Sphenolithus moriformis Helicosphaera orientalis Reticulofenestra minuta Scyphosphaera tubifera Helicosphaera waltrans Umbilicosphaera rotula Pontosphaera japonica Pseudoemiliania ovata Orthorhabdus serratus Umbilicosphaera jafari Helicosphaera vedderi Reticulofenestra haqii Sphenolithus grandis Helicosphaera carteri Reticulofenestra spp. Hughesius gizoensis Helicosphaera stalis Scapholithus fossilis Helicosphaera sellii Helicosphaera spp. Hayella challengeri Sphenolithus abies Sphenolithus spp. Preservation Abundance Core, section, Depth (mbsf) Epoch Zone interval (cm) 190-1174B-R R F Р 54R-CC F А A C A F NN18 Р С 55R-CC С С F А late Р С 56R-2, 75-76 D С 670.95 А Pliocene NN17 Р С 56R-CC R R R F А С 57R-2, 75-76 680.55 Ρ С А А Р 57R-4, 75-76 683.55 с с А Р 58R-CC С А А Р R 58R-3, 75-76 691.75 A А С А R F 58R-CC Р D NN16 F С F 59R-CC Р С F FF F R Α А А Р 60R-CC R R F B R D Р 61R-CC С С F А А 62R-CC Р С С С А R А F 63R-4, 74-75 741.34 early Piocene 63R-CC Р С с с А А A A С B B 64R-2, 71-72 747.91 NN15 64R-4, 77-78 750.97 В 54R-CC А R 65R-5, 74-75 D 761.74 Р А 65R-CC Р R D С С С С С NN14 66R-3, 72-73 R 739.82 Р R А А 66R-4, 71-72 769.81 Р R A D А B P R P C M C B NN13-12 66R-CC 67R-4, 75-76 778.19 67R-6, 75-76 781.19 C F F A D С 67R-CC D F A C R RR F 68R-CC С 69R-CC Р C D C C F F F NN11b R 70R-CC Р А 71R-CC Р С CF C C С A A late R Miocene Р 72R-CC D 73R-CC М F A C C C С С С С 74R-3, 41-42 844.81 Р F С D С С В 74R-CC NN11a R R 75R-CC Р FΑ С A A 76R-CC Р А А

| Epoch             | Zone                         | Core, section,<br>interval (cm)                                                                                                                                                                       | Depth<br>(mbsf)            | Preservation                                                                                     | Abundance<br>Amourolithus amulificus           | Amaurolithus delicatus | Amaurolithus primus | Amaurolithus tricorniculatus | Anguloutning arca | Calcidiscus repropor us<br>Calcidiscus macintyrei | Calcidiscus premacintyrei | Calcidiscus tropicus | Catinaster calyculus | Catinaster coalitus   | Catinaster spp. | Ceratolithus cristatus<br>Coccolithus miopelaaicus | Coccolithus pelagicus | Coccolithus pelagicus (with bar) | Coronocyclus nitescens | Cryptococcolithus mediaperforatus | Cyclicargolithus floridanus<br>Discoaster asymmetricus | Discoaster bellus | Discoaster bergeni | Discoaster bollii | Discoaster braarudii<br>Discoaster brouweri | Discoaster calcaris | Discoaster challengeri | Discoaster deflandrei                | Discoaster exilis<br>Discoaster hamatus | Discoaster kugleri              | Discoaster musicus | Discoaster neorectus | Discoaster pansus | Discousier peritaratatus | Discoaster petaliformis<br>Discoaster prenentaradiatus | Discoaster quinqueramus | Discoaster spp.                           | Discoaster subsurculus | Discoaster surculus | Discoaster turnalis<br>Discoaster triradiatus | Discoaster variabilis | Florisphaera profunda |
|-------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------|---------------------|------------------------------|-------------------|---------------------------------------------------|---------------------------|----------------------|----------------------|-----------------------|-----------------|----------------------------------------------------|-----------------------|----------------------------------|------------------------|-----------------------------------|--------------------------------------------------------|-------------------|--------------------|-------------------|---------------------------------------------|---------------------|------------------------|--------------------------------------|-----------------------------------------|---------------------------------|--------------------|----------------------|-------------------|--------------------------|--------------------------------------------------------|-------------------------|-------------------------------------------|------------------------|---------------------|-----------------------------------------------|-----------------------|-----------------------|
| late<br>Miocene   | NN10b<br>NN10a<br>NN9<br>NN8 | 77R-CC<br>78R-CC<br>79R-CC<br>80R-4, 75-76<br>80R-CC<br>81R-CC<br>82R-2, 74-75<br>82R-CC<br>83R-3, 85-86<br>83R-CC<br>84R-CC<br>85B-4, 75-76                                                          | 904.25<br>920.54<br>931.75 | P<br>P<br>P<br>P<br>P<br>P                                                                       | B<br>F<br>C<br>B<br>C<br>R<br>C<br>B<br>R<br>R |                        |                     |                              |                   | F                                                 |                           | F<br>C               | C<br>F               | D<br>C<br>C<br>A<br>C | А               |                                                    | c<br>c<br>c           |                                  |                        |                                   |                                                        | F<br>C            |                    | c<br>c            | C<br>F                                      | C<br>F              | C<br>C<br>F            | C                                    | C<br>C R                                | F<br>R<br>F                     |                    | F                    | c                 | с                        | C                                                      | -                       | F                                         | F                      |                     |                                               | F                     |                       |
| middle<br>Miocene | NN7                          | 858-4, / 5-76<br>858-CC<br>86R-CC<br>87R-3, 46-47<br>87R-CC<br>88R-CC<br>90R-2, 77-78<br>90R-CC<br>91R-CC<br>92R-CC<br>93R-CC<br>94R-CC<br>94R-CC<br>94R-CC<br>95R-CC<br>99R-CC<br>100R-CC<br>101R-CC | 952.33<br>969.96<br>997.17 | Р<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В<br>В | ĸ Ŗ Ŗ B B F Ŗ Ŗ F Ŗ Ŗ C C Ŗ B Ŗ C F Ŗ Ŗ        |                        |                     |                              |                   | C C<br>F C<br>F                                   | F                         | С                    |                      | A                     |                 | C<br>C<br>C<br>F                                   | C C C C F F C C A     |                                  | F<br>F<br>C<br>F       | F<br>R                            | A<br>F<br>F<br>F<br>C<br>C<br>A<br>A                   |                   |                    | F<br>C            | C                                           |                     | FC                     | C<br>A<br>F<br>C<br>C<br>C<br>C<br>C | A<br>C<br>C<br>C<br>A<br>F<br>F<br>C    | A<br>F<br>F<br>F<br>R<br>R<br>R |                    |                      | C                 |                          |                                                        |                         | A<br>F<br>A<br>F<br>C<br>C<br>C<br>C<br>A |                        |                     |                                               |                       |                       |

# Table T12 (continued).

Notes: D = dominant, A = abundant, C = common, F = few, R = rare, P = poor, M = moderate, G = good. See "Biostratigraphy," p. 9, in the "Explanatory Notes" chapter. This table is also available in ASCII format.

## Reticulofenestra pseudoumbilicus (5–7 µm) Reticulofenestra pseudoumbilicus (>7 µm) Umbilicosphaera sibogae var. sibogae Helicosphaera carteri var. Walichii Gephyrocapsa spp. (<2 µm) Sphenolithus heteromorphus Scyphosphaera pulcherrima Triquetrorhabdulus milowii Triquetrorhabdulus rugosus Pseudoemiliania lacunosa Reticulofenestra minutula Rhabdosphaera clavigera Scyphosphaera globulata Helicosphaera intermedia Scyphosphaera ventriosa Helicosphaera granulata Pontosphaera multipora Sphenolithus moriformis Helicosphaera orientalis Reticulofenestra minuta Scyphosphaera tubifera Helicosphaera waltrans Umbilicosphaera rotula Pontosphaera japonica Pseudoemiliania ovata **Orthorhabdus serratus** Umbilicosphaera jafari Helicosphaera vedderi Reticulofenestra haqii Sphenolithus grandis Helicosphaera carteri Reticulofenestra spp. Hughesius gizoensis Helicosphaera stalis Scapholithus fossilis Helicosphaera sellii Helicosphaera spp. Hayella challengeri Sphenolithus abies Sphenolithus spp. Preservation Abundance Depth (mbsf) Epoch Zone Cor В 77R-CC NN10b 78R-CC В F NN10a 79R-CC Р F С C C С А M C 80R-4, 75-76 904.25 С С С A C B C 80R-CC NN9 C C C 81R-CC Р C A A C F F С late Miocene R CF 82R-2, 74-75 920.54 Р D С 82R-CC Р R C B R D 83R-3, 85-86 931.75 Р A D C A F F NN8 83R-CC 84R-CC Р A A Р R 85R-4, 75-76 952.35 C A С F Р R 85R-CC А 86R-CC Р R F D C C C С C C В 87R-3, 46-47 969.96 87R-CC В В 88R-CC F С 89R-CC Р A C A A С С C C Р R R 90R-2, 77-78 997.17 D NN7 Р 90R-CC FF C C A A F F 91R-CC М F СD F C F F A C FF F F 92R-CC Р R middle A A R Miocene 93R-CC Р с с C A A C С Р C C с с 94R-CC R С C A C C С FF A A F 95R-CC Р FR С С F A A A A 96R-CC Р R F С С С A A A A В 97R-CC 98R-CC Р R F DA F C С F F F С 99R-CC М R C A С С R A A F NN6 100R-CC F Р С F F F F A A А F 101R-CC P R А А R 102R-CC Р А А

Table T12 (continued).

# Chapter 5, Site 1174

SHIPBOARD SCIENTIFIC PARTY

**Table T13.** Depths and ages of magnetic chrons andsubchrons identified, Site 1174.

| Depth   | (mbsf)  |          |          |                    | Age   |
|---------|---------|----------|----------|--------------------|-------|
| Тор     | Bottom  | Polarity | Chron    | Subchron           | (Ma)  |
| 0.00    | 544.70  | Ν        | Brunhes  |                    | 0.00  |
| 544.70  | 686.00  | R        | Matuyama |                    | 0.78  |
| 686.00  | 697.85  | N        | Gauss    |                    | 2.58  |
| 697.85  | 702.45  | R        |          | Kaena              | 3.04  |
| 702.45  | 705.15  | N        |          | C2An.2n            | 3.11  |
| 705.15  | 710.35  | R        |          | Mammoth            | 3.22  |
| 710.35  | 727.85  | N        |          | C2An.3n            | 3.33  |
| 727.85  | 731.70  | R        | Gilbert  |                    | 3.58  |
| 731.70  | 732.70  | N        |          | Cochiti (C3n.1n) ? | 4.18  |
| 732.70  | 737.75  | R        |          | C3n.2r ?           | 4.29  |
| 737.75  | 738.55  | N        |          | Nunivak (C3n.2n) ? | 4.48  |
| 738.55  | 738.95  | N        |          | ?                  |       |
| 738.95  | 751.80  | R        |          | ?                  |       |
| 751.80  | 761.55  | N        |          | Nunivak (C3n.2n) ? | 4.48  |
| 761.55  | 767.25  | R        |          | C3n.3r ?           | 4.62  |
| 767.25  | 774.99  | N        |          | Sidufjall (C3n.3n) | 4.80  |
| 774.99  | 784.50  | R        |          | C3n.4r ?           | 4.89  |
| 784.50  | 793.92  | N        |          | Thvera (3n.4n) ?   | 4.98  |
| 793.92  | 802.12  | R        |          | C3n.5r ?           | 5.23  |
| 802.12  | 807.25  | N        | C3A      | C3An.1n            | 5.89  |
| 807.25  | 812.55  | R        |          | C3A.1r             | 6.14  |
| 812.55  | 814.21  | N        |          | C3An.2n            | 6.27  |
| 814.21  | 832.10  | R        |          | C3Ar               | 6.57  |
| 832.10  | 841.55  | N        | C3B      | C3Bn               | 6.94  |
| 841.55  | 842.95  | R        |          | C3Br.1r            | 7.09  |
| 842.95  | 843.80  | N        |          | C3Br.1n            | 7.14  |
| 843.80  | 860.95  | R        |          | C3Br.2r            | 7.17  |
| 860.95  | 862.70  | N        | C4       | C4n.1n             | 7.43  |
| 862.70  | 863.24  | R        |          | C4n.1r             | 7.56  |
| 863.24  | 875.90  | N        |          | C4n.2n             | 7.65  |
| 875.90  | 880.40  | R        |          | C4r.1r             | 8.07  |
| 880.40  | 881.75  | N        |          | C4r.2n             | 8.23  |
| 881.75  | 890.15  | R        |          | C4r.2r             | 8.26  |
| 890.15  | 892.20  | N        |          | C4An               | 8.70  |
| 892.20  | 893.59  | N        |          | C4Ar.1n            | 9.23  |
| 893.59  | 899.85  | R        |          | C4Ar.2n            | 9.31  |
| 899.85  | 901.40  | R        |          | C4Ar.3r            | 9.64  |
| 901.40  | 906.35  | N        | C5       | C5n.1n             | 9.74  |
| 906.35  | 906.90  | R        |          | C5n.1r             | 9.88  |
| 906.90  | 947.15  | Ν        |          | C5n.2n             | 9.92  |
| 947.15  | 950.00  | R        |          | C5r.1r             | 10.95 |
| 950.00  | 954.55  | Ν        |          | C5r.1n             | 11.05 |
| 954.55  | 956.90  | Ν        |          | ?                  | ?     |
| 956.90  | 1033.60 | Ν        |          | C5r.2r             | 11.10 |
| 1033.60 | 1052.65 | Ν        | C5A?     | C5An.1n            | 11.94 |
| 1052.65 |         | Ν        |          | C5AAn              | 12.99 |

Notes: N = normal, R = reversed. ? = uncertain subchron boundary.

| Table T1 | <b>4.</b> Pore fluid | compositions, | Site 1174. | (See table | note. Co | ontinued o | on next page.) | ) |
|----------|----------------------|---------------|------------|------------|----------|------------|----------------|---|
|          |                      |               |            |            |          |            |                |   |

| Hole, core, section,<br>interval (cm) | Depth<br>(mbsf) | pH (ISE) | Alk (T)<br>(mM) | SAL (R)<br>(psu) | Cl (T)<br>(mM)     | SO <sub>4</sub> (I)<br>(mM) | Na (l)<br>(mM) | Mg(T)<br>(mM) | Ca (l)<br>(mM) | Ca(T)<br>(mM) | K (l)<br>(mM)         | H <sub>4</sub> SiO <sub>4</sub><br>(S) (µM) | NH <sub>4</sub> (S)<br>(mM) |
|---------------------------------------|-----------------|----------|-----------------|------------------|--------------------|-----------------------------|----------------|---------------|----------------|---------------|-----------------------|---------------------------------------------|-----------------------------|
| 190-1174A-                            |                 |          |                 |                  |                    |                             |                |               |                |               |                       |                                             |                             |
| 1H-1, 140-150                         | 1.40            | 8.08     | 5.59            | 35.0             | 558.5              | 26.72                       | 483            | 51.2          | 10.07          | 9.9           | 12.2                  | 559                                         | 0.14                        |
| 1H-2, 140-150                         | 2.90            | 8.42     | 33.66           | 34.5             | 560.0              | 4.62                        | 485            | 47.6          | 5.07           | 5.1           | 12.2                  | 568                                         | 0.68                        |
| 1H-3, 109-119                         | 4.09            | 7.96     | 38.72           | 34.5             | 565.0              | 0.00                        | 493            | 45.2          | 4.02           | 3.7           | 11.8                  | 566                                         | 1.34                        |
| 2H-2, 135-150                         | 6.04            | 8.42     | 51.31           | 35.0             | 570.0              | 0.00                        | 514            | 41.2          | 4.13           | 3.9           | 12.1                  | 576                                         | 5.30                        |
| 2H-3, 140-150                         | 7.59            | 8.18     | 49.06           | 35.0             | 572.0              | 1.00                        | 516            | 40.1          | 4.07           | 4.0           | 12.0                  | 662                                         | 4.85                        |
| 2H-4, 140-150                         | 9.09            | 8.10     | 49.30           | 35.0             | 573.0              | 0.00                        | 518            | 39.4          | 3.94           | 3.9           | 12.3                  | 602                                         | 5.02                        |
| 2H-5, 135-150                         | 10.54           | 7.97     | 50.31           | 35.0             | 574.0              | 1.34                        | 519            | 40.0          | 4.00           | 3.8           | 12.1                  | 588                                         | 5.82                        |
| 2H-6, 135-150                         | 12.04           | 7.89     | 44.95           | 35.5             | 574.0              | 1.23                        | 517            | 37.8          | 4.00           | 3.7           | 12.4                  | 646                                         | 6.61                        |
| 2H-7, 140-150                         | 13.59           | 7.91     | 47.62           | 35.5             | 576.0              | 0.00                        | 521            | 38.1          | 3.98           | 3.7           | 12.4                  | 623                                         | 7.08                        |
| 3H-2, 108-123                         | 16.48           | 8.02     | 47.12           | 35.5             | 576.0              | 1.37                        | 521            | 37.5          | 4.40           | 4.0           | 12.1                  | 719                                         | 6.54                        |
| 3H-4, 80-150                          | 18.64           | 7.89     | 47.67           | 35.5             | 576.0              | 0.00                        | 521            | 37.7          | 4.21           | 4.0           | 11.9                  | 647                                         | 6.83                        |
| 3H-6, 95-105                          | 21.49           | 7.83     | 47.92           | 35.5             | 577.0              | 0.00                        | 524            | 37.2          | 4.32           | 4.1           | 11.8                  | 761                                         | 6.27                        |
| 4H-2, 140-150                         | 26.30           | 7.97     | 45.76           | 35.0             | 575.0              | 2.63                        | 522            | 36.3          | 4.63           | 4.6           | 11.7                  | 662                                         | 5.08                        |
| 4H-4, 135-150                         | 29.25           | 8.04     | 48.38           | 35.0             | 575.0              | 0.00                        | 523            | 36.6          | 4.80           | 4.8           | 11.5                  | 609                                         | 6.15                        |
| 4H-5, 90-105                          | 30.30           | 7.49     | 44.27           | 35.0             | 576.0              | 0.58                        | 523            | 35.4          | 4.52           | 4.5           | 11.6                  | 645                                         | 6.01                        |
| 5H-2, 135-150                         | 35.75           | 8.28     | 44.68           | 35.0             | 575.0              | 0.00                        |                | 34.3          | 4.29           | 4.3           | 11.7                  | 700                                         |                             |
| 5H-4, 135-150                         | 38.75           | 8.25     | 44.83           | 35.0             | 575.0              | 0.00                        | 526            | 34.0          | 4.21           | 4.0           | 11.6                  | 654                                         | 6.46                        |
| 7H-2, 135-150                         | 54.25           | 7.96     | 44.03           | 35.0             | 574.0              | 0.00                        |                | 34.5          | 3.07           | 2.7           | 11.5                  | 667                                         |                             |
| 8H-4, 135-150                         | 66.48           |          |                 | 35.0             |                    | 14.79                       |                |               | 6.01           |               | 11.4                  | 387                                         |                             |
| 100 11740                             |                 |          |                 |                  |                    |                             |                |               |                |               |                       |                                             |                             |
| 190-11/4B-                            | 1 40 00         | 7 7 2    | 42.42           | 25.0             |                    | 2.00                        |                | 27.2          | 1 (0           | 4.5           | 11 5                  | (())                                        |                             |
| 1K-6, 135-150                         | 149.98          | 7.73     | 43.42           | 35.0             |                    | 2.88                        |                | 37.Z          | 4.68           | 4.5           | 11.5                  | 663<br>720                                  | 0.27                        |
| 2R-CC, 0-12                           | 150.58          | 1.74     | 30.01           | 32.0             | 5 <del>7</del> 2 0 | 2.97                        |                | 31.4          | 4.55           | 4.5           | 9.5                   | /38                                         | 9.37                        |
| 3R-1, 135-150                         | 161.05          |          |                 | 33.5             | 5/3.0              | 0.61                        |                | 27.9          | 4.58           | 5.0           | 9.4                   | 822                                         | 11.58                       |
| 4R-2, 46-61                           | 171.36          | 7.00     | 21 74           | 33.5             | 5/3.0              | 0.50                        | 5.01           | 27.2          | 4.91           | 5.1           | 9.5                   | 937                                         | 12.73                       |
| SR-1, 40-60                           | 179.40          | 7.80     | 31.76           | 34.0             | 574.0              | 1.13                        | 521            | 27.5          | 4.83           | 5.1           | 9.1                   | 893                                         | 10.51                       |
| 6R-1, 125-150                         | 189.95          | 7.84     | 31.66           | 34.0             | 575.0              | 0.90                        | 521            | 27.3          | 4.98           | 5.3           | 8.5                   | 865                                         | 12.28                       |
| /R-1, 98-123                          | 199.38          | 7.94     | 30.22           | 34.0             | 579.0              | 0.46                        | 525            | 26.5          | 4./6           | 5.3           | 8.3                   | 838                                         | 12.44                       |
| 8R-1, 64-84                           | 208.64          | 8.06     | 27.80           | 34.0             | 5/6.0              | 1.32                        | 522            | 27.1          | 5.12           | 5.5           | 7.9                   | /64                                         | 9.09                        |
| 9R-1, 125-150                         | 218.95          | 8.08     | 29.14           | 34.0             | 5/6.0              | 0.00                        |                | 25.7          | 5.16           | 5.6           | 7.5                   | /44                                         |                             |
| 10R-1, 120-150                        | 228.40          | 8.00     | 26.02           | 33.5             | 575.0              | 0.38                        | 521            | 25.2          | 5.20           | 5.5           | 7.2                   | 754                                         | 11.21                       |
| 11R-2, 50-80                          | 238.80          | 7.87     | 23.45           | 33.0             | 575.0              | 0.46                        | 524            | 22.8          | 5.14           | 5.8           | 6.8                   | 1005                                        | 10.80                       |
| 12R-1, 120-150                        | 247.70          | 7.96     | 23.89           | 33.5             | 573.0              | 2.22                        | 522            | 21.1          | 5.74           | 6.8           | 7.0                   | 893                                         | 11.67                       |
| 13R-2, 120-150                        | 258.90          | 7.79     | 20.55           | 33.0             | 571.0              | 0.54                        | 525            | 19.9          | 7.23           | 4.6           | 7.0                   | 1086                                        | 10.85                       |
| 14R-1, 21-38                          | 266.01          |          |                 | 32.5             | 572.0              | 1.48                        |                | 16.5          | 8.77           | 8.2           | 7.0                   | 1134                                        | 9.48                        |
| 15R-1, 125-150                        | 276.75          | 7.67     | 15.48           | 32.5             | 572.0              | 1.33                        | 529            | 14.5          | 9.19           | 7.0           | 6.8                   | 1269                                        | 8.16                        |
| 16R-1, 125-150                        | 286.35          | 7.87     | 16.16           | 32.0             | 572.0              | 1.14                        | 525            | 13.9          | 9.36           | 10.2          | 6.6                   | 1219                                        | 8.14                        |
| 17R-1, 120-150                        | 295.80          | 7.87     | 14.42           | 32.0             | 568.0              | 1.79                        | 521            | 12.4          | 10.94          | 11.2          | 7.2                   | 1183                                        | 7.47                        |
| 18R-2, 120-150                        | 307.00          | 7.96     | 12.46           | 32.0             | 567.5              | 0.01                        | 521            | 9.3           | 13.00          | 14.1          | 6.1                   | 1219                                        | 5.69                        |
| 19R-1, 125-150                        | 315.25          | 7.82     | 10.22           | 32.0             | 567.0              | 1.38                        | 519            | 8.2           | 12.66          | 15.0          | 6.1                   | 1201                                        | 5.54                        |
| 20R-2, 120-150                        | 326.20          | 7.90     | 8.81            | 32.0             | 566.0              | 1.85                        | 519            | 6.3           | 14.30          | 16.0          | 6.1                   | 1034                                        | 4.67                        |
| 21R-1, 118-150                        | 334.28          | 7.82     | 8.07            | 32.0             | 572.0              | 0.48                        | 526            | 6.4           | 13.49          | 14.9          | 6.2                   | 982                                         | 4.94                        |
| 22R-1, 33-51                          | 342.73          |          |                 | 32.0             | 572.0              | 2.97                        |                | 9.6           | 13.79          | 15.0          | 6.4                   | 920                                         | 4.21                        |
| 23R-1, 100-150                        | 353.00          | 7.93     | 7.05            | 32.0             | 578.0              | 1.44                        | 530            | 8.1           | 13.27          | 14.6          | 5.6                   | 440                                         | 4.30                        |
| 24R-3, 121-146                        | 365.91          | 7.74     | 9.13            | 32.0             | 577.5              | 0.49                        | 529            | 7.8           | 13.86          | 15.2          | 6.1                   | 1080                                        | 5.25                        |
| 25R-1, 125-150                        | 372.55          | 7.80     | 11.01           | 32.5             | 580.0              | 1.36                        | 535            | 9.0           | 13.64          | 13.3          | 6.3                   | 948                                         | 5.32                        |
| 26R-CC, 5-22                          | 381.53          |          |                 | 33.0             | 582.0              | 0.52                        |                | 8.7           | 11.87          | 13.2          | 5.6                   | 833                                         |                             |
| 27R-1, 125-150                        | 391.75          | 8.02     | 9.47            | 33.0             | 584.0              | 0.95                        | 541            | 10.7          | 13.66          | 13.6          | 6.3                   | 854                                         |                             |
| 28R-1, 125-150                        | 401.45          | 7.77     | 9.02            | 33.0             | 586.0              | 1.74                        | 544            | 10.7          | 14.35          | 13.7          | 6.0                   | 1069                                        |                             |
| 29R-3, 135-165                        | 414.15          | 7.87     | 8.58            | 33.5             | 586.0              | 2.38                        | 541            | 10.1          | 15.17          | 16.4          | 5.4                   | 849                                         |                             |
| 31R-1, 115-150                        | 430.15          | 8.07     | 3.31            | 33.5             | 586.5              | 0.89                        | 536            | 7.9           | 16.64          | 18.1          | 3.8                   | 200                                         |                             |
| 32R-2, 120-150                        | 441.30          | 8.11     | 3.80            | 33.0             | 588.0              | 1.55                        | 536            | 8.5           | 17.45          | 19.0          | 3.5                   | 168                                         |                             |
| 33R-2, 120-150                        | 450.90          | 8.13     | 3.25            | 33.0             | 590.0              | 0.89                        | 538            | 6.7           | 19.74          | 20.6          | 2.8                   | 197                                         |                             |
| 34R-3, 100-150                        | 461.90          | 8.10     | 1.89            | 32.5             | 585.5              | 2.27                        | 534            | 8.5           | 18.18          | 19.1          | 2.9                   | 168                                         |                             |
| 35R-1, 120-150                        | 468.30          |          |                 | 33.0             | 597.0              | 0.99                        |                | 8.1           | 19.59          | 20.8          | 2.8                   | 200                                         |                             |
| 36R-3, 110-150                        | 480.60          | 8.34     | 1.89            | 32.5             | 578.0              | 1.61                        | 527            | 6.9           | 17.99          | 19.6          | 3.2                   | 131                                         |                             |
| 37R-4, 120-150                        | 491.40          | 8.25     | 2.28            | 32.5             | 595.5              | 1.51                        | 544            | 7.4           | 18.15          | 19.4          | 3.3                   | 418                                         |                             |
| 38R-4, 120-150                        | 501.00          |          |                 | 32.5             | 594.0              | 1.70                        |                | 6.5           | 17.87          | 18.7          | 3.3                   | 107                                         |                             |
| 39R-3, 120-150                        | 509.10          | 7.72     | 3.43            | 32.5             | 583.5              | 0.43                        | 536            | 5.4           | 18.13          | 18.9          | 3.7                   | 1045                                        |                             |
| 40R-4, 125-150                        | 520.35          | 7.85     | 4.44            | 32.0             | 562.5              | 3.40                        | 514            | 8.6           | 17.97          | 19.8          | 3.2                   | 648                                         |                             |
| 41R-2, 0-30                           | 525.80          |          |                 | 32.0             | 569.0              | 1.59                        |                | 6.4           | 17.58          | 18.4          | 3.1                   | 91                                          |                             |
| 42R-5, 120-150                        | 541.10          |          |                 | 32.0             | 561.0              | 2.04                        |                | 2.1           | 16.90          |               | 2.7                   | 134                                         | 1.58                        |
| 43R-3 100-150                         | 547 60          |          |                 | 32.0             | 554 0              | 0.61                        |                |               | 17 45          |               | 2.7                   | 151                                         | 1 40                        |
| 44R-3 120-150                         | 557 10          |          |                 | 31.5             | 5575               | 2 21                        |                | 73            | 17 23          | 18 1          | 2.2                   | 120                                         | 1 25                        |
| 45R-3, 120-150                        | 566.80          |          |                 | 31.0             | 560.0              | 1 5 2                       |                | 7.J<br>5.6    | 17 00          | 19.1          | 2./<br>7 /            | 120                                         | 1 20                        |
| 46R_A 120-130                         | 578 00          |          |                 | 21 0             | 5420               | 1.55                        |                | 75            | 17.20          | 10 2          | ∠. <del>Ч</del><br>ЭЭ | 12/                                         | 0.84                        |
| 47P_A 120-130                         | 587 40          | 8 20     | 5 60            | 30.5             | 5/1 5              | 1.75                        | 407            | 7.J<br>5 2    | 17.20          | 10.5          | 2.2                   | 117                                         | 0.04                        |
| 100-1 120-130                         | 602 40          | 0.00     | 5.09            | 30.0             | 540.0              | 1.00                        | 77/            | 5.5           | 17.30          | 12.0          | 2.0                   | 117                                         | 0.23                        |
| 50P_/ 120-130                         | 616 60          | 8 20     | 7 20            | 20.0             | 5/10.0             | 1.4/                        | 501            | 5.9           | 10 10          | 10.7          | 2.Z                   | 2/2                                         | 0.77                        |
| JUN-4, 120-130                        | 010.00          | 0.20     | 1.20            | 50.0             | JHI.U              | 1.24                        | 201            | 5.0           | 10.12          | 17.1          | 1.7                   | 242                                         |                             |

# Table T14 (continued).

| Hole, core, section,<br>interval (cm) | Depth<br>(mbsf) | pH (ISE) | Alk (T)<br>(mM) | SAL (R)<br>(psu) | Cl (T)<br>(mM) | SO <sub>4</sub> (I)<br>(mM) | Na (l)<br>(mM) | Mg(T)<br>(mM) | Ca (l)<br>(mM) | Ca(T)<br>(mM) | K (l)<br>(mM) | H₄SiO₄<br>(S) (μM) | NH <sub>4</sub> (S)<br>(mM) |
|---------------------------------------|-----------------|----------|-----------------|------------------|----------------|-----------------------------|----------------|---------------|----------------|---------------|---------------|--------------------|-----------------------------|
| 51R-1, 0-31                           | 620.50          |          |                 | 31.5             | 535.0          |                             |                | 8.6           |                | 18.3          |               |                    |                             |
| 52R-6, 120-150                        | 638.80          |          |                 | 30.0             | 530.0          |                             |                | 5.7           |                | 20.4          |               | 120                |                             |
| 53R-3, 15-45                          | 642.95          | 8.03     | 11.53           | 30.0             | 532.0          | 1.90                        | 496            | 5.1           | 17.32          | 19.7          | 1.9           | 295                |                             |
| 54R-5, 120-150                        | 656.60          |          |                 | 30.0             | 516.0          | 2.89                        |                | 6.0           | 18.62          | 19.7          | 1.7           |                    |                             |
| 56R-1, 120-150                        | 669.90          |          |                 | 30.0             | 512.0          | 1.79                        |                | 4.4           | 18.11          | 19.5          | 1.8           | 141                |                             |
| 57R-4, 120-150                        | 684.00          | 8.49     | 16.67           | 29.5             | 511.5          | 2.40                        | 480            | 5.3           | 18.79          | 20.4          | 1.8           | 137                |                             |
| 59R-3, 120-150                        | 701.80          |          |                 | 29.5             | 505.5          | 2.25                        |                | 5.0           | 19.84          | 20.2          | 1.5           |                    |                             |
| 60R-2, 115-150                        | 709.85          |          |                 | 29.0             | 496.0          | 3.23                        |                | 5.0           | 20.20          | 22.4          | 1.5           | 172                |                             |
| 61R-5, 120-150                        | 724.10          |          |                 | 30.0             | 492.5          | 2.62                        |                | 5.1           | 21.08          | 23.2          | 1.4           |                    |                             |
| 62R-3, 120-150                        | 730.70          |          |                 | 30.0             | 489.5          | 3.46                        |                |               | 20.70          |               | 1.3           |                    |                             |
| 64R-3, 120-150                        | 749.90          |          |                 | 30.0             | 488.0          | 3.64                        |                |               | 20.93          |               | 1.3           | 148                |                             |
| 66R-1, 120-150                        | 765.80          |          |                 | 28.0             | 489.0          | 4.91                        |                | 6.4           | 20.87          | 22.6          | 1.2           |                    |                             |
| 67R-4, 135-150                        | 778.79          |          |                 | 29.0             | 489.5          | 5.13                        |                |               | 19.96          |               | 1.4           |                    |                             |
| 68R-1, 120-150                        | 785.10          |          |                 | 29.5             | 489.0          | 6.30                        |                | 9.0           | 20.63          | 22.5          | 1.7           |                    |                             |
| 69R-4, 120-150                        | 798.07          |          |                 | 28.0             | 492.0          | 0.62                        |                | 6.9           | 2.45           | 22.7          | 0.6           |                    |                             |
| 70R-2, 120-150                        | 806.00          |          |                 | 29.0             | 496.0          | 6.77                        |                | 8.8           | 20.58          | 23.6          | 1.7           | 235                |                             |
| 71R-1, 1-27                           | 812.51          |          |                 | 28.0             | 496.0          | 5.14                        |                | 6.2           | 21.03          | 24.1          | 1.4           | 218                |                             |
| 72R-1, 17-38                          | 822.37          |          | 17.73           | 28.0             |                | 8.52                        |                | 5.1           | 23.43          | 28.0          | 1.6           |                    |                             |
| 73R-3, 120-150                        | 836.00          |          |                 | 28.0             | 497.0          | 5.92                        |                | 5.2           | 22.99          | 27.9          | 1.3           |                    |                             |
| 73R-6, 24-60                          | 839.54          |          |                 | 30.0             | 496.0          | 5.85                        |                | 5.4           | 23.53          | 27.9          | 1.4           |                    |                             |
| 74R-2, 0-40                           | 842.90          |          |                 | 30.0             | 495.5          | 5.07                        |                | 5.6           | 22.11          | 25.5          | 1.4           |                    |                             |
| 75R-2, 0-28                           | 852.50          | 8.22     | 17.57           | 28.5             | 477.0          | 5.82                        | 442            | 5.0           | 24.66          | 26.5          | 1.4           | 233                |                             |
| 76R-1, 38-60                          | 861.08          |          |                 | 28.0             | 474.0          | 5.18                        |                | 6.7           | 22.26          | 26.0          | 1.3           | 271                |                             |
| 79R-1, 120-150                        | 890.50          | 7.82     | 15.74           | 29.5             | 472.0          | 6.68                        | 428            | 7.5           | 25.12          | 28.4          | 1.5           |                    |                             |
| 80R-3, 120-150                        | 903.20          |          |                 | 29.5             | 477.0          | 7.67                        |                | 10.1          | 24.58          | 26.8          | 1.7           | 334                |                             |
| 81R-3, 102-150                        | 912.62          |          |                 | 29.5             | 478.0          | 8.84                        |                | 10.8          | 24.67          | 28.3          | 2.1           | 299                |                             |
| 82R-2, 98-125                         | 920.78          |          |                 | 28.5             | 477.0          | 6.38                        |                | 6.3           | 25.28          | 29.5          | 1.5           | 328                |                             |
| 83R-4, 116-150                        | 933.56          |          |                 | 27.8             | 476.0          | 5.80                        |                | 6.0           | 26.04          | 29.8          | 1.3           |                    |                             |
| 84R-2, 120-150                        | 940.20          |          |                 | 28.0             | 466.0          | 5.70                        |                | 4.7           | 25.84          | 30.5          | 1.3           | 397                |                             |
| 85R-3, 120-150                        | 951.30          | 7.65     | 13.96           | 27.5             | 467.0          | 7.97                        | 415            | 7.3           | 27.90          | 32.6          | 1.6           |                    |                             |
| 86R-2, 120-150                        | 959.50          |          |                 | 28.5             | 464.0          | 7.23                        |                | 5.6           | 29.52          | 32.9          | 1.4           |                    |                             |
| 87R-2, 120-150                        | 969.20          | 7.92     | 16.37           | 28.5             | 467.0          | 6.15                        | 418            | 7.7           | 28.78          | 30.3          | 1.3           | 316                |                             |
| 88R-2, 120-150                        | 978.80          |          |                 | 28.0             | 476.0          | 7.36                        |                | 10.9          | 30.97          | 28.8          | 1.5           |                    |                             |
| 89R-3, 0-30                           | 988.30          |          |                 | 28.5             | 481.0          | 6.85                        |                | 8.2           | 30.43          | 32.5          | 1.6           | 448                |                             |
| 90R-1, 120-150                        | 996.10          |          |                 | 29.5             | 488.0          | 8.80                        |                | 11.4          | 30.56          | 32.9          | 1.7           |                    |                             |
| 91R-1, 100-150                        | 1005.60         |          |                 | 30.0             | 489.0          | 10.00                       |                | 8.6           | 34.62          | 37.9          | 1.5           |                    |                             |
| 92R-6, 0-30                           | 1021.70         |          |                 | 29.5             |                |                             |                |               |                |               |               |                    |                             |
| 93R-4, 120-150                        | 1029.60         |          |                 | 28.0             | 473.0          | 5.82                        |                | 6.9           | 35.56          | 38.7          | 1.2           |                    |                             |
| 94R-1, 120-150                        | 1034.70         |          |                 | 30.0             | 490.0          | 9.27                        |                |               | 36.68          |               | 1.6           |                    |                             |
| 95R-1, 39-71                          | 1043.49         | 7.38     | 8.12            | 29.0             | 475.0          | 8.20                        | 395            | 6.3           | 39.40          | 45.4          | 1.5           |                    |                             |
| 96R-2, 120-150                        | 1055.30         |          |                 | 29.0             | 481.0          | 7.71                        |                | 9.1           | 44.11          | 47.1          | 2.7           | 282                |                             |
| 97R-1, 90-150                         | 1063.20         |          |                 | 29.0             | 493.0          | 6.46                        |                |               | 48.08          |               | 1.2           |                    |                             |
| 98R-3, 76-106                         | 1075.66         | 7.13     | 9.17            | 31.0             | 513.0          | 8.71                        | 410            | 8.6           | 53.00          | 55.3          | 1.6           |                    |                             |
| 99R-2, 29-69                          | 1083.29         |          |                 | 34.5             | 546.0          | 9.34                        |                | 14.9          | 59.73          | 60.1          | 2.0           |                    |                             |
| 100R-1, 106-136                       | 1092.26         |          |                 | 33.0             | 543.0          | 7.46                        |                |               | 64.01          |               | 1.5           |                    |                             |
| 101R-1, 0-13                          | 1100.80         |          |                 | 33.0             | 547.5          | 9.54                        |                | 21.2          | 68.63          | 62.2          | 1.5           |                    |                             |
| 102R-1, 5-21                          | 1110.25         |          |                 | 32.0             |                |                             |                |               |                |               |               |                    |                             |
| , =                                   |                 |          |                 |                  |                |                             |                |               |                |               |               |                    |                             |

Note: ISE = ion selective electrode, T = titration, R = refractometry, I = ion, S = spectrophotometry.

**Table T15.** Headspace gas and vacutainer analysis, Site 1174. (See table**note.** Continued on next page.)

| Core, section,<br>interval (cm) | Depth<br>(mbsf)  | Sample<br>method | C <sub>1</sub> /C <sub>2</sub> | C <sub>1</sub><br>(ppm) | C <sub>2</sub><br>(ppm) | C <sub>2</sub> =<br>(ppm) | C₃<br>(ppm) | C <sub>3</sub> =<br>(ppm) |
|---------------------------------|------------------|------------------|--------------------------------|-------------------------|-------------------------|---------------------------|-------------|---------------------------|
| 100 11744                       |                  |                  |                                |                         |                         |                           |             |                           |
| 190-11/4A-<br>1H_1 135-1/0      | 1 35             | нс               |                                | 3                       | 0.0                     | 0.0                       | 0.0         | 0.0                       |
| 2H-4 118-119                    | 8.87             | VAC              | 1 176 223                      | 940 978                 | 0.0                     | 0.0                       | 0.0         | 0.0                       |
| 2H-5, 0-5                       | 9.19             | HS               | 1,170,225                      | 2 714                   | 0.0                     | 0.0                       | 0.0         | 0.0                       |
| 2H-5, 110-111                   | 10.29            | VAC              | 1.341.373                      | 938.961                 | 0.7                     | 0.0                       | 0.0         | 0.0                       |
| 3H-5, 0-5                       | 19.34            | HS               | .,                             | 4,423                   | 0.0                     | 0.0                       | 0.0         | 0.0                       |
| 4H-4, 0-5                       | 27.90            | HS               |                                | 3,915                   | 0.0                     | 0.0                       | 0.0         | 0.0                       |
| 5H-5, 0-5                       | 38.90            | HS               |                                | 2,441                   | 0.0                     | 0.0                       | 0.0         | 2.3                       |
| 7H-2, 0-5                       | 52.90            | HS               |                                | 2,171                   | 0.0                     | 0.0                       | 0.0         | 0.0                       |
| 8H-4, 0-5                       | 65.13            | HS               |                                | 2,463                   | 0.0                     | 0.0                       | 0.0         | 0.0                       |
| 190-1174B-                      |                  |                  |                                |                         |                         |                           |             |                           |
| 1R-6 0-5                        | 148 63           | н                |                                | 3 342                   | 0.0                     | 0.0                       | 0.0         | 0.0                       |
| 3R-2, 0-5                       | 161.20           | HS               | 10.491                         | 4,196                   | 0.4                     | 0.0                       | 0.0         | 0.0                       |
| 4R-2, 0-5                       | 170.90           | HS               | 3.519                          | 5,631                   | 1.6                     | 0.4                       | 0.0         | 0.0                       |
| 5R-2, 0-5                       | 180.50           | HS               | 4,684                          | 3,747                   | 0.8                     | 0.0                       | 0.0         | 0.0                       |
| 6R-2, 0-5                       | 190.20           | HS               | 1,962                          | 6,867                   | 3.5                     | 0.5                       | 0.0         | 0.0                       |
| 7R-1, 0-5                       | 198.40           | HS               | 5,713                          | 2,285                   | 0.4                     | 0.0                       | 0.0         | 0.0                       |
| 8R-1, 64-84                     | 208.64           | HS               | 1,553                          | 4,504                   | 2.9                     | 0.0                       | 0.0         | 0.0                       |
| 9R-2, 0-5                       | 219.20           | HS               | 1,474                          | 2,653                   | 1.8                     | 0.0                       | 0.0         | 0.0                       |
| 10R-2, 0-5                      | 228.70           | HS               | 1,435                          | 4,161                   | 2.9                     | 0.0                       | 0.0         | 0.0                       |
| 11R-2, 0-5                      | 238.30           | HS               | 1,755                          | 2,808                   | 1.6                     | 0.0                       | 0.0         | 0.0                       |
| 12R-1, 120-150                  | 247.70           | HS               | 759                            | 1,594                   | 2.1                     | 0.0                       | 0.0         | 0.0                       |
| 13R-2, 0-5                      | 257.70           | HS               | 1,033                          | 4,547                   | 4.4                     | 0.6                       | 0.0         | 0.0                       |
| 14R-1, 0-5                      | 265.80           | HS               | 2,161                          | 6,915                   | 3.2                     | 0.0                       | 0.0         | 0.0                       |
| 15R-2, 0-5                      | 277.00           | H2               | 2,608                          | 5,/3/                   | 2.2                     | 0.0                       | 0.0         | 0.0                       |
| 10K-1, U-5                      | 285.10           | H2               | 3,134                          | 38,229                  | 12.2                    | 0.0                       | 1.0         | 0.0                       |
| 17R-2, U-3                      | 290.10           | ПЗ               | 2,016                          | 1 2 2 5                 | 9.8                     | 0.0                       | 2.5         | 0.0                       |
| 10R-5, U-5                      | 215 50           | ПС               | 1 274                          | 2 057                   | 2.0                     | 0.0                       | 0.0         | 0.0                       |
| 20R-2 0-5                       | 325.00           | НС               | 1,274                          | 3,037                   | 2.4                     | 0.0                       | 0.0         | 0.0                       |
| 20R-2, 0-5                      | 333 10           | HS               | 1,001                          | 2 809                   | 2.6                     | 0.0                       | 0.0         | 0.0                       |
| 22R-1, 48-51                    | 342.88           | HS               | 2,101                          | 10,714                  | 5.1                     | 0.0                       | 0.0         | 0.0                       |
| 23R-2, 0-5                      | 353.50           | HS               | 1.955                          | 7.623                   | 3.9                     | 0.0                       | 0.0         | 0.0                       |
| 24R-3, 0-5                      | 364.70           | HS               | 2.908                          | 16.284                  | 5.6                     | 0.3                       | 0.0         | 0.0                       |
| 25R-1, 0-5                      | 371.30           | HS               | 2,250                          | 9,448                   | 4.2                     | 0.0                       | 0.8         | 0.0                       |
| 26R-1, 0-5                      | 380.90           | HS               | 4,357                          | 11,764                  | 2.7                     | 0.0                       | 0.5         | 0.0                       |
| 27R-3, 0-5                      | 393.50           | HS               | 3,681                          | 19,875                  | 5.4                     | 0.0                       | 2.0         | 0.0                       |
| 28R-1, 0-5                      | 400.20           | HS               | 3,405                          | 32,689                  | 9.6                     | 0.0                       | 0.0         | 0.0                       |
| 29R-3, 0-5                      | 412.80           | HS               | 2,558                          | 7,162                   | 2.8                     | 0.0                       | 0.0         | 0.0                       |
| 31R-3, 0-5                      | 432.00           | HS               | 1,252                          | 2,002                   | 1.6                     | 0.0                       | 0.0         | 0.0                       |
| 32R-5, 0-5                      | 444.60           | HS               | 1,589                          | 1,589                   | 1.0                     | 0.0                       | 0.0         | 0.0                       |
| 33R-3, 0-5                      | 451.20           | HS               | 2,652                          | 10,875                  | 4.1                     | 0.0                       | 7.4         | 0.0                       |
| 34R-4, 0-5                      | 462.40           | HS               | 2,131                          | 6,820                   | 3.2                     | 0.3                       | 7.1         | 0.0                       |
| 35R-2, 0-5                      | 468.60           | HS               | 2,003                          | 7,409                   | 3./                     | 0.0                       | 6.2         | 0.0                       |
| 36K-4, U-5                      | 481.00           | H2               | 2,018                          | 9,485                   | 4./                     | 0.0                       | 11.4        | 0.0                       |
| 37R-3, U-3                      | 491.70<br>501.20 | ПС               | 1,074                          | 19,000                  | 0.5                     | 0.0                       | 22.1        | 0.0                       |
| 39R-3 0-5                       | 507.90           | HS               | 2,520                          | 11 406                  | 2.8                     | 0.0                       | 7.0         | 0.0                       |
| 40R-5 0-5                       | 520.60           | HS               | 3 305                          | 22 141                  | 6.7                     | 0.0                       | 17.8        | 0.0                       |
| 41R-3, 0-5                      | 527.30           | HS               | 2.071                          | 14,288                  | 6.9                     | 0.0                       | 26.4        | 0.0                       |
| 42R-4, 0-5                      | 538.40           | HS               | 2.265                          | 2,718                   | 1.2                     | 0.0                       | 0.0         | 0.0                       |
| 43R-4, 0-5                      | 548.10           | HS               | 1,412                          | 1,271                   | 0.9                     | 0.0                       | 0.0         | 0.0                       |
| 44R-3, 0-5                      | 555.90           | HS               | 2,079                          | 6,030                   | 2.9                     | 0.0                       | 0.0         | 0.0                       |
| 45R-3, 0-5                      | 565.60           | HS               | 1,670                          | 8,185                   | 4.9                     | 0.0                       | 14.8        | 0.0                       |
| 46R-4, 0-5                      | 576.80           | HS               | 1,599                          | 8,313                   | 5.2                     | 0.0                       | 19.4        | 0.0                       |
| 47R-3, 0-5                      | 584.90           | HS               | 2,141                          | 12,629                  | 5.9                     | 0.0                       | 20.3        | 0.0                       |
| 48R-5, 0-5                      | 597.60           | HS               | 1,856                          | 12,439                  | 6.7                     | 0.0                       | 22.8        | 0.0                       |
| 49R-3, 0-5                      | 604.20           | HS               | 1,332                          | 4,927                   | 3.7                     | 0.0                       | 13.9        | 0.0                       |
| 50R-5, 0-5                      | 616.90           | HS               | 1,366                          | 12,154                  | 8.9                     | 0.0                       | 29.1        | 0.0                       |
| 51R-3, 0-5                      | 623.50           | HS               | 1,163                          | 5,931                   | 5.1                     | 0.0                       | 19.2        | 0.0                       |
| 52R-6, 0-5                      | 637.60           | HS               | 1,165                          | 5,009                   | 4.3                     | 0.0                       | 12.1        | 0.0                       |
| 53R-4, 0-5                      | 644.30           | HS               | 1,121                          | 6,838                   | 6.1                     | 0.0                       | 15.1        | 0.0                       |
| 55K-4, U-5                      | 663.50           | H2               | 917                            | 6,235                   | 6.8                     | 0.0                       | 11.1        | 0.0                       |
| 50R 4 0 5                       | 091.00<br>702.10 | Ц2               | 45/                            | 1,598                   | 3.5<br>1 P              | 0.0                       | 4.4         | 0.0                       |
| 39K-4, U-3                      | 712 20           | нс<br>СП         | 333<br>199                     | 277<br>2 100            | 1.ð                     | 0.0                       | 2.9<br>1 1  | 0.0                       |
| 61R-6 0-5                       | 713.20           | 113<br>2H        | 400<br>170                     | 2,190<br>2677           | 4.3<br>5 7              | 0.0                       | 4.4<br>2.0  | 0.0                       |
| 5 IN-0, 0-5                     | 12-1.70          | 115              | 7/0                            | 2,077                   | 5.7                     | 0.0                       | 5.7         | 0.0                       |

# Table T15 (continued).

| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Sample<br>method | C <sub>1</sub> /C <sub>2</sub> | C <sub>1</sub><br>(ppm) | C <sub>2</sub><br>(ppm) | C <sub>2</sub> =<br>(ppm) | C <sub>3</sub><br>(ppm) | C <sub>3</sub> =<br>(ppm) |
|---------------------------------|-----------------|------------------|--------------------------------|-------------------------|-------------------------|---------------------------|-------------------------|---------------------------|
| 62R-5, 0-5                      | 732.50          | HS               | 382                            | 2,901                   | 7.6                     | 0.0                       | 4.4                     | 0.0                       |
| 63R-5, 0-5                      | 742.10          | HS               | 422                            | 3,756                   | 8.9                     | 0.0                       | 4.2                     | 0.0                       |
| 64R-4, 0-5                      | 750.20          | HS               | 282                            | 1,213                   | 4.3                     | 0.0                       | 1.9                     | 0.0                       |
| 65R-1, 0-5                      | 755.00          | HS               | 231                            | 1,063                   | 4.6                     | 0.0                       | 0.0                     | 0.0                       |
| 65R-5, 0-5                      | 761.00          | HS               | 306                            | 3,240                   | 10.6                    | 0.0                       | 3.7                     | 0.0                       |
| 66R-1, 0-5                      | 764.60          | HS               | 231                            | 1,063                   | 4.6                     | 0.0                       | 0.0                     | 0.0                       |
| 67R-4, 0-5                      | 777.44          | HS               | 185                            | 924                     | 5.0                     | 0.0                       | 0.0                     | 0.0                       |
| 68R-2, 0-5                      | 785.40          | HS               | 169                            | 860                     | 5.1                     | 0.0                       | 0.0                     | 0.0                       |
| 69R-5, 0-5                      | 798.37          | HS               | 154                            | 432                     | 2.8                     | 0.0                       | 0.0                     | 0.0                       |
| 70R-3, 0-5                      | 806.30          | HS               | 157                            | 657                     | 4.2                     | 0.0                       | 1.8                     | 0.0                       |
| 71R-3, 0-5                      | 814.16          | HS               | 138                            | 221                     | 1.6                     | 0.0                       | 0.0                     | 0.0                       |
| 72R-3, 0-5                      | 825.20          | HS               | 101                            | 423                     | 4.2                     | 0.0                       | 2.0                     | 0.0                       |
| 73R-4, 0-5                      | 836.30          | HS               | 156                            | 1,029                   | 6.6                     | 0.0                       | 2.5                     | 0.0                       |
| 74R-3, 0-5                      | 844.40          | HS               | 137                            | 1,750                   | 12.8                    | 0.0                       | 4.3                     | 0.0                       |
| 75R-1, 145-150                  | 852.45          | HS               | 104                            | 883                     | 8.5                     | 0.0                       | 3.6                     | 0.0                       |
| 76R-2, 0-5                      | 862.20          | HS               | 41                             | 99                      | 2.4                     | 0.0                       | 0.0                     | 0.0                       |
| 77R-5, 0-5                      | 876.40          | HS               | 41                             | 99                      | 2.4                     | 0.0                       | 0.0                     | 0.0                       |
| 78R-3, 0-5                      | 883.00          | HS               | 32                             | 54                      | 1.7                     | 0.0                       | 0.0                     | 0.0                       |
| 79R-2, 0-5                      | 890.80          | HS               | 58                             | 276                     | 4.8                     | 0.0                       | 0.0                     | 0.0                       |
| 80R-5, 0-5                      | 905.00          | HS               | 35                             | 94                      | 2.7                     | 0.0                       | 0.0                     | 0.0                       |
| 81R-4, 0-5                      | 913.10          | HS               | 55                             | 339                     | 6.2                     | 0.0                       | 0.0                     | 0.0                       |
| 82R-2, 0-5                      | 919.80          | HS               | 47                             | 375                     | 7.9                     | 0.0                       | 2.7                     | 0.0                       |
| 83R-6, 0-5                      | 935.40          | HS               | 48                             | 493                     | 10.3                    | 0.0                       | 3.7                     | 0.0                       |
| 84R-5, 0-5                      | 943.50          | HS               | 39                             | 1,002                   | 25.5                    | 0.0                       | 10.0                    | 0.0                       |
| 85R-4, 0-5                      | 951.60          | HS               | 31                             | 716                     | 23.4                    | 0.0                       | 11.0                    | 0.0                       |
| 86R-3, 0-5                      | 959.80          | HS               | 34                             | 419                     | 12.3                    | 0.0                       | 5.2                     | 0.0                       |
| 87R-3, 0-5                      | 969.50          | HS               | 31                             | 1,021                   | 33.0                    | 0.0                       | 12.4                    | 0.0                       |
| 88R-3, 0-5                      | 979.10          | HS               | 25                             | 1,049                   | 42.6                    | 0.0                       | 21.1                    | 0.0                       |
| 89R-5, 0-5                      | 991.30          | HS               | 15                             | 125                     | 8.2                     | 0.0                       | 4.7                     | 0.0                       |
| 90R-2, 0-5                      | 996.40          | HS               | 22                             | 250                     | 11.5                    | 0.0                       | 6.3                     | 0.0                       |
| 91R-2, 0-5                      | 1006.10         | HS               | 29                             | 328                     | 11.4                    | 0.0                       | 3.3                     | 0.0                       |
| 92R-2, 0-5                      | 1015.70         | HS               | 22                             | 315                     | 14.2                    | 0.0                       | 6.4                     | 0.0                       |
| 93R-3, 0-5                      | 1026.90         | HS               | 20                             | 272                     | 13.9                    | 0.0                       | 7.3                     | 0.0                       |
| 94R-4, 0-5                      | 1038.00         | HS               | 29                             | 473                     | 16.4                    | 0.0                       | 6.1                     | 0.0                       |
| 95R-4, 0-5                      | 1047.60         | HS               | 30                             | 492                     | 16.6                    | 0.0                       | 6.6                     | 0.0                       |
| 96R-3, 0-5                      | 1055.60         | HS               | 29                             | 1,805                   | 61.4                    | 0.0                       | 25.5                    | 0.0                       |
| 97R-2, 0-5                      | 1063.80         | HS               | 27                             | 189                     | 7.0                     | 0.0                       | 2.9                     | 0.0                       |
| 98R-4, 0-5                      | 1075.96         | HS               | 33                             | 469                     | 14.0                    | 0.0                       | 5.2                     | 0.0                       |
| 99R-2, 0-5                      | 1083.00         | HS               | 27                             | 408                     | 15.3                    | 0.0                       | 6.0                     | 0.0                       |
| 100R-1, 106-126                 | 1092.26         | HS               | 20                             | 385                     | 19.2                    | 0.0                       | 10.4                    | 0.0                       |
| 101R-1, 0-5                     | 1100.80         | HS               | 21                             | 335                     | 16.3                    | 0.0                       | 8.1                     | 0.0                       |
| 102R-1, 5-21                    | 1110.25         | HS               | 29                             | 382                     | 13.1                    | 0.0                       | 0.0                     | 0.0                       |

Note: HS = headspace, VAC = vacutainer.

**Table T16.** Carbon, nitrogen, sulfur, and hydrogen analyses, Site 1174.(See table note. Continued on next three pages.)

| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Inorganic C<br>(wt%) | CaCO <sub>3</sub><br>(wt%) | TOC<br>(wt%) | Organic C<br>(wt%) | N<br>(wt%) | S<br>(wt%) | H (mg HC/<br>of sedimen |
|---------------------------------|-----------------|----------------------|----------------------------|--------------|--------------------|------------|------------|-------------------------|
|                                 |                 |                      |                            |              |                    |            |            |                         |
| 90-11/4A-                       | 0.20            | 0.02                 | 0.20                       | NIA          | NIA                | NIA        | NIA        | NIA                     |
| 111-1, 30-39                    | 0.30            | 0.03                 | 0.29                       |              | INA<br>NA          |            | INA<br>NA  | INA<br>NA               |
| 111-2, 90-97                    | 2.40            | 0.19                 | 7.43                       | INA<br>NA    | NA<br>NA           | NA<br>NA   | NA<br>NA   | NA<br>NA                |
| 2H-5, 109-110                   | 10.49           | 0.89                 | 2.68                       | 0.94         | 0.61               | 0.12       | 0.09       | 0.49                    |
| 2H-7 131-132                    | 13 50           | 0.32                 | 3.13                       | NA           | NA                 | NA         | NA         | NA                      |
| 3H-2 104-105                    | 16.44           | 0.57                 | 1 55                       | NA           | NA                 | NA         | NA         | NA                      |
| 3H-4 76-77                      | 18.60           | 0.10                 | 1.33                       | NA           | NA                 | NA         | NA         | NA                      |
| 3H-6 85-86                      | 21 39           | 0.16                 | 1 35                       | NA           | NA                 | NA         | NA         | NA                      |
| 4H-2, 64-65                     | 25.54           | 0.13                 | 1.10                       | NA           | NA                 | NA         | NA         | NA                      |
| 4H-4, 130-131                   | 29.20           | 0.13                 | 1.10                       | NA           | NA                 | NA         | NA         | NA                      |
| 5H-1, 99-100                    | 33.89           | 0.11                 | 0.98                       | NA           | NA                 | NA         | NA         | NA                      |
| 5H-2, 134-135                   | 35.74           | 0.42                 | 3.57                       | 1.00         | 0.57               | 0.11       | 0.07       | 0.49                    |
| 5H-CC, 40-41                    | 39.89           | 0.28                 | 2.36                       | NA           | NA                 | NA         | NA         | NA                      |
| 7H-2, 131-132                   | 54.21           | 0.23                 | 1.97                       | NA           | NA                 | NA         | NA         | NA                      |
| 8H-4 134-135                    | 66 47           | 0.11                 | 0.92                       | NA           | NA                 | NA         | NA         | NA                      |
| 90-1174B-                       | 00.17           | 0.11                 | 0.72                       | 101          |                    |            | 107        |                         |
| 1R-1. 69-70                     | 144.39          | 0.38                 | 3.23                       | 0.94         | 0.55               | 0.07       | 0.09       | 0.48                    |
| 3R-1, 125-127                   | 160.95          | 0.31                 | 2.59                       | NA           | NA                 | NA         | NA         | NA                      |
| 4R-2, 43-44                     | 171.33          | 0.70                 | 5.89                       | 1.55         | 0.84               | 0.10       | 0.06       | 0.52                    |
| 5R-1, 35-36                     | 179.35          | 0.34                 | 2.83                       | NA           | NA                 | NA         | NA         | NA                      |
| 5R-1, 122-123                   | 180.22          | 0.27                 | 2.29                       | NA           | NA                 | NA         | NA         | NA                      |
| 6R-1, 121-122                   | 189.91          | 0.28                 | 2.34                       | NA           | NA                 | NA         | NA         | NA                      |
| 7R-1, 94-95                     | 199.34          | 0.45                 | 3.80                       | 1.08         | 0.62               | 0.09       | 0.09       | 0.52                    |
| 8R-1, 60-61                     | 208.60          | 0.41                 | 3.42                       | NA           | NA                 | NA         | NA         | NA                      |
| 9R-1, 122-123                   | 218.92          | 0.16                 | 1.39                       | NA           | NA                 | NA         | NA         | NA                      |
| 10R-1, 118-119                  | 228.38          | 0.41                 | 3.42                       | NA           | NA                 | NA         | NA         | NA                      |
| 10R-CC 17-18                    | 229.49          | 0.47                 | 3.96                       | NA           | NA                 | NA         | NA         | NA                      |
| 11R-2 16-17                     | 238.46          | 0.40                 | 3.34                       | 1.00         | 0.60               | 0.11       | 0.06       | 0.56                    |
| 12R-1, 113-114                  | 247.63          | 0.18                 | 1.50                       | NA           | NA                 | NA         | NA         | NA                      |
| 13R-1, 105-106                  | 257.25          | 0.33                 | 2.79                       | 0.94         | 0.60               | 0.12       | 0.11       | 0.62                    |
| 13R-2, 118-119                  | 258.88          | 0.35                 | 2.95                       | NA           | NA                 | NA         | NA         | NA                      |
| 14R-1, 19-20                    | 265.99          | 0.17                 | 1.42                       | NA           | NA                 | NA         | NA         | NA                      |
| 15R-1, 123-124                  | 276.73          | 1.84                 | 15.39                      | NA           | NA                 | NA         | NA         | NA                      |
| 15R-2, 48-49                    | 277.48          | 0.61                 | 5.14                       | NA           | NA                 | NA         | NA         | NA                      |
| 16R-1, 124-125                  | 286.34          | 0.45                 | 3.81                       | 1.10         | 0.64               | 0.13       | 0.09       | 0.60                    |
| 17R-1, 111-112                  | 295.71          | 0.36                 | 3.05                       | NA           | NA                 | NA         | NA         | NA                      |
| 18R-2, 66-67                    | 306.46          | 0.52                 | 4.34                       | NA           | NA                 | NA         | NA         | NA                      |
| 18R-4, 80-81                    | 309.60          | 0                    | 0                          | NA           | NA                 | NA         | NA         | NA                      |
| 19R-1, 77-78                    | 314.77          | 0.32                 | 2.74                       | 0.78         | 0.45               | 0.10       | 0.07       | 0.53                    |
| 19R-1, 123-124                  | 315.23          | 0.45                 | 3.80                       | NA           | NA                 | NA         | NA         | NA                      |
| 20R-2, 111-112                  | 326.11          | 0.25                 | 2.11                       | NA           | NA                 | NA         | NA         | NA                      |
| 20R-3, 51-52                    | 327.01          | 0.13                 | 1.14                       | NA           | NA                 | NA         | NA         | NA                      |
| 21R-1, 115-116                  | 334.25          | 0.45                 | 3.79                       | 0.83         | 0.37               | 0.11       | 0          | 0.47                    |
| 21R-CC, 4-5                     | 335.76          | 1.05                 | 8.74                       | NA           | NA                 | NA         | NA         | NA                      |
| 22R-1, 26-27                    | 342.66          | 0.57                 | 4.79                       | NA           | NA                 | NA         | NA         | NA                      |
| 23R-1, 97-98                    | 352.97          | 0.45                 | 3.75                       | NA           | NA                 | NA         | NA         | NA                      |
| 24R-3, 117-118                  | 365.87          | 0.42                 | 3.53                       | 0.87         | 0.44               | 0.10       | 0.06       | 0.53                    |
| 25R-1, 122-123                  | 372.52          | 0.10                 | 0.88                       | NA           | NA                 | NA         | NA         | NA                      |
| 26R-1, 55-56                    | 381.45          | 0.35                 | 2.99                       | 0.73         | 0.37               | 0.06       | 0          | 0.59                    |
| 27R-1, 124-125                  | 391.74          | 0.26                 | 2.20                       | NA           | NA                 | NA         | NA         | NA                      |
| 27R-3, 116-117                  | 394.66          | 0.26                 | 2.21                       | NA           | NA                 | NA         | NA         | NA                      |
| 28R-1, 123-124                  | 401.43          | 0.36                 | 3.03                       | 0.67         | 0.30               | 0.12       | 0.05       | 0.61                    |
| 28R-2, 46-47                    | 402.16          | 0.17                 | 1.48                       | NA           | NA                 | NA         | NA         | NA                      |
| 29R-2, 80-81                    | 412.10          | 0.07                 | 0.65                       | NA           | NA                 | NA         | NA         | NA                      |
| 29R-3, 135-136                  | 414.15          | 0.15                 | 1.29                       | NA           | NA                 | NA         | NA         | NA                      |
| 29R-CC, 17-18                   | 414.62          | 0.16                 | 1.40                       | NA           | NA                 | NA         | NA         | NA                      |
| 30R-CC, 3-4                     | 419.43          | 0.05                 | 0.48                       | NA           | NA                 | NA         | NA         | NA                      |
| 31R-1, 115-116                  | 430.15          | 0.30                 | 2.55                       | NA           | NA                 | NA         | NA         | NA                      |
| 31R-3, 43-44                    | 432.43          | 0.34                 | 2.91                       | 0.73         | 0.38               | 0.10       | 0.07       | 0.54                    |
| 32R-2, 116-117                  | 441.26          | 0.34                 | 2.86                       | NA           | NA                 | NA         | NA         | NA                      |
| 32R-5, 129-130                  | 445.89          | 2.88                 | 24.06                      | NA           | NA                 | NA         | NA         | NA                      |
| 33R-2, 119-120                  | 450.89          | 0.13                 | 1.16                       | NA           | NA                 | NA         | NA         | NA                      |
| 33R-4, 18-19                    | 452.88          | 0.12                 | 1.05                       | NA           | NA                 | NA         | NA         | NA                      |
| 34R-3, 97-98                    | 461.87          | 0.30                 | 2.51                       | NA           | NA                 | NA         | NA         | NA                      |
| 35R-1, 118-119                  | 468.28          | 0.33                 | 2.80                       | 0.68         | 0.34               | 0.11       | 0.19       | 0.58                    |
| 35R-2, 94-95                    | 469.54          | 0.12                 | 1.05                       | NA           | NA                 | NA         | NA         | NA                      |

| Core, section,<br>interval (cm) | Depth<br>(mbsf)  | Inorganic C<br>(wt%) | CaCO <sub>3</sub><br>(wt%) | TOC<br>(wt%) | Organic C<br>(wt%) | N<br>(wt%)  | S<br>(wt%) | H (mg HC/g<br>of sediment) |
|---------------------------------|------------------|----------------------|----------------------------|--------------|--------------------|-------------|------------|----------------------------|
| 36R-2 133-134                   | 479 33           | 0.40                 | 3 36                       | 0.90         | 0.50               | 0.09        | 0.12       | 0.53                       |
| 36R-3, 111-112                  | 480.61           | 0.47                 | 3.98                       | 0.85         | 0.37               | 0.11        | 0          | 0.53                       |
| 37R-3, 131-132                  | 490.01           | 0.10                 | 0.89                       | NA           | NA                 | NA          | NA         | NA                         |
| 37R-4, 118-119                  | 491.38           | 0.66                 | 5.52                       | NA           | NA                 | NA          | NA         | NA                         |
| 38R-3, 85-86                    | 499.15           | 0.41                 | 3.43                       | 0.76         | 0.35               | 0.11        | 0          | 0.56                       |
| 38K-4, 115-116                  | 500.95           | 0.53                 | 4.46                       | 0.93         | 0.39               | 0.11        | 0.07       | 0.60                       |
| 30R-0, 03-04<br>30P-1 13/-135   | 506.24           | 0.85                 | /.11                       | 0 03         | 0.36               | 1NA<br>0.00 | 0          | 0.57                       |
| 39R-3, 118-119                  | 509.08           | 0.25                 | 2.16                       | NA           | NA                 | NA          | NA         | NA                         |
| 40R-4, 118-119                  | 520.28           | 0.22                 | 1.89                       | NA           | NA                 | NA          | NA         | NA                         |
| 41R-2, 28-29                    | 526.08           | 0.43                 | 3.64                       | 0.75         | 0.32               | 0.11        | 0.13       | 0.56                       |
| 41R-CC, 19-20                   | 528.99           | 0.20                 | 1.73                       | NA           | NA                 | NA          | NA         | NA                         |
| 42R-1, 97-98                    | 534.87           | 0.11                 | 0.97                       | NA           | NA                 | NA          | NA         | NA                         |
| 42R-3, 126-127                  | 538.16           | 0.18                 | 1.54                       | NA           | NA                 | NA          | NA         | NA                         |
| 42K-5, 117-118                  | 541.07           | 0.28                 | 2.34                       | NA           | NA                 | NA          | NA         | NA                         |
| 43R-5, 90-99<br>13P-5 127-128   | 550.87           | 0.11                 | 0.93<br>5.66               | NA<br>NA     | NA<br>NA           | NA          | NA<br>NA   | NA<br>NA                   |
| 43R-6, 130-131                  | 552.40           | 0.70                 | 5.91                       | NA           | NA                 | NA          | NA         | NA                         |
| 44R-3, 118-119                  | 557.08           | 0.28                 | 2.41                       | NA           | NA                 | NA          | NA         | NA                         |
| 44R-4, 124-125                  | 558.64           | 0.23                 | 1.96                       | NA           | NA                 | NA          | NA         | NA                         |
| 45R-1, 73-74                    | 563.33           | 0.12                 | 1.07                       | NA           | NA                 | NA          | NA         | NA                         |
| 45R-3, 108-109                  | 566.68           | 1.27                 | 10.65                      | NA           | NA                 | NA          | NA         | NA                         |
| 46R-1, 149-150                  | 573.79           | 1.28                 | 10.72                      | NA           | NA                 | NA          | NA         | NA                         |
| 46R-4, 118-119                  | 577.98           | 0.27                 | 2.31                       | NA           | NA                 | NA          | NA         | NA                         |
| 46K-7, 42-43                    | 581./2           | 1.3/                 | 11.49                      | NA           | NA                 | NA          | NA         | NA                         |
| 47R-1, 149-130<br>47R-4 119-120 | 587 59           | 0.21                 | 2.06                       | NA           | NA                 | NΔ          | NΑ         | ΝA                         |
| 48R-2, 134-135                  | 594.44           | 0.15                 | 1.32                       | NA           | NA                 | NA          | NA         | NA                         |
| 48R-5, 101-102                  | 598.61           | 0.14                 | 1.22                       | NA           | NA                 | NA          | NA         | NA                         |
| 49R-1, 119-120                  | 602.39           | 1.69                 | 14.09                      | NA           | NA                 | NA          | NA         | NA                         |
| 49R-3, 99-100                   | 605.19           | 0.28                 | 2.38                       | NA           | NA                 | NA          | NA         | NA                         |
| 50R-1, 61-62                    | 611.51           | 0.53                 | 4.42                       | 0.77         | 0.24               | 0.09        | 0.14       | 0.61                       |
| 50R-4, 119-120                  | 616.59           | 0.73                 | 6.11                       | NA           | NA                 | NA          | NA         | NA                         |
| 52R-1, 83-84                    | 630.93           | 1.16                 | 9.70                       | NA           | NA                 | NA          | NA         | NA                         |
| 52R-0, 110-117                  | 640.88           | 0.12                 | 1.42                       | NA           | NA                 | NΔ          | NΑ         | ΝA                         |
| 53R-3, 127-128                  | 644.07           | 0.12                 | 1.12                       | NA           | NA                 | NA          | NA         | NA                         |
| 53R-4, 15-16                    | 644.45           | 0.41                 | 3.47                       | 0.60         | 0.18               | 0.09        | 0.11       | 0.76                       |
| 54R-3, 126-127                  | 653.66           | 0.34                 | 2.89                       | 0.72         | 0.38               | 0.11        | 0.33       | 0.6                        |
| 54R-5, 97-98                    | 656.37           | 0.65                 | 5.44                       | NA           | NA                 | NA          | NA         | NA                         |
| 55R-1, 132-133                  | 660.32           | 0.59                 | 4.97                       | 0.83         | 0.23               | 0.10        | 0          | 0.63                       |
| 55R-2, 46-47                    | 660.96           | 2.00                 | 16.72                      | NA           | NA                 | NA          | NA         | NA                         |
| 55K-5, 91-92                    | 665.91           | 0.36                 | 3.00                       | 0.64         | 0.28               | 0.09        | 0.04       | 0.62                       |
| 56R-2 134-135                   | 671 54           | 0.43                 | 5.02<br>1.40               | 0.77<br>NA   | 0.51<br>NA         | 0.10<br>NA  | 0.10<br>NA | 0.64<br>NA                 |
| 57R-4, 117-118                  | 683.97           | 0.65                 | 5.43                       | NA           | NA                 | NA          | NA         | NA                         |
| 57R-6, 134-135                  | 687.14           | 0.69                 | 5.76                       | NA           | NA                 | NA          | NA         | NA                         |
| 58R-2, 75-76                    | 690.25           | 0.42                 | 3.55                       | 0.64         | 0.21               | 0.10        | 0.15       | 0.60                       |
| 58R-4, 80-81                    | 693.30           | 0.46                 | 3.87                       | NA           | NA                 | NA          | NA         | NA                         |
| 59R-3, 117-118                  | 701.77           | 0.25                 | 2.12                       | NA           | NA                 | NA          | NA         | NA                         |
| 59R-4, 84-85                    | 702.94           | 0.07                 | 0.58                       | NA           | NA                 | NA          | NA         | NA                         |
| 59K-5, 128-129                  | 704.88           | 0.11                 | 0.96                       | NA<br>NA     | INA<br>NA          | INA<br>NA   | NA<br>NA   |                            |
| 61R-4 106-107                   | 709.83           | 0.63                 | 5.26                       | NA           | NA                 | NA          | NA         | NA                         |
| 61R-5, 119-120                  | 724.09           | 0.44                 | 3.68                       | NA           | NA                 | NA          | NA         | NA                         |
| 62R-3, 98-99                    | 730.48           | 0.10                 | 0.87                       | NA           | NA                 | NA          | NA         | NA                         |
| 63R-2, 81-82                    | 738.41           | 0.06                 | 0.56                       | NA           | NA                 | NA          | NA         | NA                         |
| 63R-5, 137-138                  | 743.47           | 0.24                 | 2.07                       | 0.66         | 0.41               | 0.12        | 0.17       | 0.66                       |
| 64R-1, 106-107                  | 746.76           | 0.10                 | 0.83                       | NA           | NA                 | NA          | NA         | NA                         |
| 64K-3, 119-120                  | /49.89           | 0.18                 | 1.51                       | NA<br>0.21   | NA<br>0.25         | NA          | NA<br>0.10 | NA                         |
| 04K-3, 109-110<br>65D-1 114 115 | 152.19<br>756 11 | 0.06                 | U.5U                       | U.31         | U.25               | U.U8        | U.19       | U.64                       |
| 65R-4 84-85                     | 760.34           | 0.07                 | 0.62                       | NA           | NA                 | NA          | NA         | NA                         |
| 66R-1, 113-114                  | 765.73           | 0.66                 | 5.55                       | NA           | NA                 | NA          | NA         | NA                         |
| 66R-5, 99-100                   | 771.59           | 0.16                 | 1.34                       | NA           | NA                 | NA          | NA         | NA                         |
| 67R-2, 99-100                   | 775.43           | 0.16                 | 1.36                       | NA           | NA                 | NA          | NA         | NA                         |
| 67R-3, 129-130                  | 777.23           | 0.53                 | 4.42                       | NA           | NA                 | NA          | NA         | NA                         |
| 67R-4, 127-128                  | 778.71           | 0.35                 | 2.93                       | 0.65         | 0.29               | 0.09        | 0.13       | 0.66                       |
| 68R-1, 116-118                  | 785.06           | 0.25                 | 2.11                       | NA           | NA                 | NA          | NA         | NA                         |

| Core, section,<br>interval (cm)  | Depth<br>(mbsf) | Inorganic C<br>(wt%) | CaCO <sub>3</sub><br>(wt%) | TOC<br>(wt%) | Organic C<br>(wt%) | N<br>(wt%) | S<br>(wt%) | H (mg HC/g of sediment) |
|----------------------------------|-----------------|----------------------|----------------------------|--------------|--------------------|------------|------------|-------------------------|
| 68R-2, 134-136                   | 786.74          | 0.19                 | 1.60                       | NA           | NA                 | NA         | NA         | NA                      |
| 69R-2, 129-130                   | 795.16          | 0.21                 | 1.75                       | NA           | NA                 | NA         | NA         | NA                      |
| 69R-3, 96-97                     | 796.33          | 0.47                 | 3.98                       | NA           | NA                 | NA         | NA         | NA                      |
| 69R-4, 118-119                   | 798.05          | 1.16                 | 9.71                       | NA           | NA                 | NA         | NA         | NA                      |
| 70R-2, 98-99                     | 805.78          | 0.96                 | 8.01                       | NA           | NA                 | NA         | NA         | NA                      |
| 70R-4, 148-149                   | 809.28          | 0.21                 | 1.75                       | 0.43         | 0.22               | 0.10       | 0.79       | 0.65                    |
| 70R-5, 148-149                   | 810.78          | 0.32                 | 2.73                       | NA           | NA                 | NA         | NA         | NA                      |
| 71R-2, 3-4                       | 812.91          | 0.29                 | 2.49                       | NA           | NA                 | NA         | NA         | NA                      |
| 71R-2, 96-97                     | 813.84          | 0.49                 | 4.15                       | NA           | NA                 | NA         | NA         | NA                      |
| /TR-3, /9-80                     | 814.95          | 0.42                 | 3.55                       | NA           | NA                 | NA         | NA         | NA                      |
| 72K-1, 44-45                     | 822.64          | 1.32                 | 11.04                      | NA<br>NA     | NA<br>NA           | NA<br>NA   | NA<br>NA   | NA<br>NA                |
| 72R-1, 113-110                   | 826.24          | 2.34                 | 6 5 2                      | INA<br>NA    |                    |            | INA<br>NA  | INA<br>NA               |
| 72R-3, 104-103                   | 832.50          | 0.78                 | 4 16                       | NA           | NA                 | NA         | NA         | NA                      |
| 73R-3, 115-116                   | 835.95          | 0.42                 | 1 77                       | 0.42         | 0.21               | 0.09       | 0.07       | 0.68                    |
| 73R-5, 113-114                   | 838.93          | 0.72                 | 6.00                       | NA           | NA                 | NA         | NA         | NA                      |
| 73R-7, 50-51                     | 841.30          | 0.20                 | 1.68                       | 0.45         | 0.25               | 0.10       | 0.22       | 0.71                    |
| 74R-1, 128-129                   | 842.68          | 4.00                 | 33.36                      | NA           | NA                 | NA         | NA         | NA                      |
| 74R-2, 55-56                     | 843.45          | 0.67                 | 5.64                       | NA           | NA                 | NA         | NA         | NA                      |
| 74R-2, 124-125                   | 844.14          | 1.06                 | 8.89                       | NA           | NA                 | NA         | NA         | NA                      |
| 74R-CC, 17-18                    | 845.14          | 0.13                 | 1.16                       | 0.26         | 0.12               | 0.10       | 0.15       | 0.70                    |
| 75R-1, 96-97                     | 851.96          | 0.55                 | 4.64                       | NA           | NA                 | NA         | NA         | NA                      |
| 76R-1, 33-34                     | 861.03          | 2.83                 | 23.63                      | NA           | NA                 | NA         | NA         | NA                      |
| 76R-1, 68-69                     | 861.38          | 0.66                 | 5.52                       | NA           | NA                 | NA         | NA         | NA                      |
| 76R-2, 78-79                     | 862.98          | 0.44                 | 3.68                       | NA           | NA                 | NA         | NA         | NA                      |
| 77R-2, 99-100                    | 872.89          | 0.19                 | 1.62                       | 0.41         | 0.22               | 0.11       | 0.09       | 0.63                    |
| 78R-2, 132-133                   | 882.82          | 0.04                 | 0.40                       | NA           | NA                 | NA         | NA         | NA                      |
| 78R-3, 99-100                    | 883.99          | 0.07                 | 0.59                       | NA           | NA                 | NA         | NA         | NA                      |
| 78R-5, 63-64                     | 886.63          | 7.81                 | 65.08                      | NA           | NA                 | NA         | NA         | NA                      |
| 79R-1, 117-118                   | 890.47          | 0.08                 | 0.70                       | 0.23         | 0.15               | 0.10       | 0.05       | 0.65                    |
| 80R-2, 88-89                     | 901.38          | 0.06                 | 0.50                       | NA           | NA                 | NA         | NA         | NA                      |
| 80R-3, 116-117                   | 903.16          | 0.12                 | 1.07                       | NA           | NA                 | NA         | NA         | NA                      |
| 81R-3, 98-100                    | 912.58          | 0.42                 | 3.53                       | NA           | NA                 | NA         | NA         | NA                      |
| 82R-2, 93-94                     | 920.73          | 0.11                 | 0.98                       | NA           | NA                 | NA         | NA         | NA                      |
| 83R-2, 147-148                   | 930.87          | 1.45                 | 12.10                      | NA           | NA                 | NA         | NA         | NA                      |
| 83R-4, 114-115                   | 933.54          | 0.23                 | 1.95                       | 0.45         | 0.22               | 0.10       | 0          | 0.64                    |
| 83R-6, 147-148                   | 936.87          | 0.06                 | 0.51                       | NA           | NA                 | NA         | NA         | NA                      |
| 04K-Z, 113-110                   | 940.15          | 0.91                 | 7.30                       | INA<br>NA    |                    |            | INA<br>NA  | INA<br>NA               |
| 04K-3, 131-13Z                   | 941.01          | 1.01                 | 0.45                       | NA<br>0.10   |                    |            |            | INA<br>1 1 7            |
| 85P-1 121-122                    | 944.20          | 0.00                 | 0.37                       | 0.10<br>NA   | 0.03<br>NA         | NA         | 0.04<br>NA | NA                      |
| 85P-3 117-118                    | 940.31          | 1 10                 | 0.77                       | NA           | NA                 | NA         | NA         | NA                      |
| 85R-6 87-88                      | 955.47          | 4 77                 | 39.80                      | NA           | NA                 | NA         | NA         | NA                      |
| 86R-2 116-117                    | 959.46          | 0.07                 | 0.63                       | NA           | NA                 | NA         | NA         | NA                      |
| 86R-4, 27-28                     | 961.57          | 6.59                 | 54.89                      | NA           | NA                 | NA         | NA         | NA                      |
| 87R-1, 128-129                   | 967.78          | 0.06                 | 0.58                       | 0.29         | 0.22               | 0.10       | 0.09       | 0.68                    |
| 87R-3, 104-105                   | 970.54          | 5.88                 | 49.05                      | NA           | NA                 | NA         | NA         | NA                      |
| 87R-5, 8-9                       | 972.58          | 0.22                 | 1.85                       | NA           | NA                 | NA         | NA         | NA                      |
| 88R-2, 118-119                   | 978.78          | 0.45                 | 3.78                       | NA           | NA                 | NA         | NA         | NA                      |
| 88R-4, 91-92                     | 981.51          | 0.33                 | 2.80                       | NA           | NA                 | NA         | NA         | NA                      |
| 89R-2, 144-145                   | 988.24          | 0.30                 | 2.52                       | NA           | NA                 | NA         | NA         | NA                      |
| 89R-6, 36-37                     | 993.16          | 0.09                 | 0.77                       | 0.31         | 0.21               | 0.11       | 0.04       | 0.65                    |
| 90R-2, 7-8                       | 996.47          | 0.06                 | 0.57                       | NA           | NA                 | NA         | NA         | NA                      |
| 90R-2, 39-40                     | 996.79          | 7.94                 | 66.20                      | NA           | NA                 | NA         | NA         | NA                      |
| 91R-1, 86-87                     | 1005.46         | 0.28                 | 2.40                       | 0.58         | 0.29               | 0.10       | 0          | 0.69                    |
| 92R-2, 66-67                     | 1016.36         | 0.09                 | 0.75                       | NA           | NA                 | NA         | NA         | NA                      |
| 92R-5, 91-92                     | 1021.11         | 0.23                 | 1.99                       | NA           | NA                 | NA         | NA         | NA                      |
| 93R-3, /3-/5                     | 1027.63         | 6.33                 | 52.79                      | NA           | NA                 | NA         | NA         | NA                      |
| 75K-4, 114-110<br>010 1 112 110  | 1029.54         | 0.35                 | 2.93<br>1 1 5              | INA<br>NA    | INA<br>NA          | INA<br>NA  | INA<br>NA  | INA<br>NA               |
| 24π-1, 110-11δ<br>0/10-2 120 121 | 1027 00         | 0.49<br>1 Q4         | 4.13                       | INA<br>NA    | INA<br>NIA         | INA<br>NA  |            | INA<br>NIA              |
| 24N-2, 12U-121<br>05D-2 112 112  | 1037.00         | 1.04                 | 3 15                       | INA<br>NA    | INA<br>NA          | NA<br>NA   | INA<br>NA  | INA<br>NA               |
| 96R-2 118-110                    | 1055 29         | 0.37                 | 6.14                       | NA           | NΔ                 | NΔ         | NA         | NΔ                      |
| 96R-3 16-17                      | 1055.20         | 0.73                 | 4 99                       | NΔ           | NΔ                 | NΔ         | NΔ         | NΔ                      |
| 97R-1 66-67                      | 1062.96         | 0.12                 | 1.05                       | 0.35         | 0.23               | 0.09       | 0.19       | 0.65                    |
| 98R-1, 25-26                     | 1072.50         | 1 47                 | 12.27                      | NA           | NA                 | NA         | NA         | NA                      |
| 98R-3, 71-72                     | 1075.61         | 0.95                 | 7.99                       | NA           | NA                 | NA         | NA         | NA                      |
| 99R-1, 21-22                     | 1081.71         | 0.09                 | 0.77                       | 0.89         | 0.80               | 0.11       | 0.31       | 0.66                    |
| 99R-2, 23-24                     | 1083.23         | 0.56                 | 4.68                       | NA           | NA                 | NA         | NA         | NA                      |
|                                  |                 |                      |                            |              |                    |            |            |                         |

# Table T16 (continued).

| Core, section,<br>interval (cm) | Depth<br>(mbsf) | Inorganic C<br>(wt%) | CaCO <sub>3</sub><br>(wt%) | TOC<br>(wt%) | Organic C<br>(wt%) | N<br>(wt%) | S<br>(wt%) | H (mg HC/g<br>of sediment) |
|---------------------------------|-----------------|----------------------|----------------------------|--------------|--------------------|------------|------------|----------------------------|
| 100R-1, 103-104                 | 1092.23         | 0.18                 | 1.50                       | NA           | NA                 | NA         | NA         | NA                         |
| 100R-2, 23-24                   | 1092.79         | 5.41                 | 45.11                      | NA           | NA                 | NA         | NA         | NA                         |
| 101R-1, 50-51                   | 1101.30         | 1.12                 | 9.36                       | NA           | NA                 | NA         | NA         | NA                         |
| 102R-1, 69-70                   | 1110.89         | 0.06                 | 0.53                       | 0.19         | 0.13               | 0.07       | 0.05       | 0.79                       |

Note: TOC = total organic carbon, HC = hydrocarbon.

**Table T17.** Total bacterial populations in sediments,Site 1174.

| Depth   | Bacterial cel             | ls (cells/cm <sup>3</sup> ) |
|---------|---------------------------|-----------------------------|
| (mbsf)  | Hole A                    | Hole B                      |
|         |                           |                             |
| 2.49    | $1.47 \times 10^{8}$      |                             |
| 9.98    | $4.65 \times 10^{\prime}$ |                             |
| 12.03   | $2.51 \times 10^{7}$      |                             |
| 16.74   | $1.15 \times 10^{\prime}$ |                             |
| 26.24   | 1.74 × 10 <sup>6</sup>    |                             |
| 35.74   | $1.47 \times 10^{7}$      |                             |
| 54.24   | $1.93 \times 10^{7}$      |                             |
| 66.47   | 6.71 × 10 <sup>5</sup>    |                             |
| 170.89  |                           | $2.07 \times 10^{6}$        |
| 180.49  |                           | $1.59 \times 10^{6}$        |
| 219.21  |                           | $1.85 \times 10^{6}$        |
| 247.70  |                           | $2.41 \times 10^{6}$        |
| 286.34  |                           | $2.71 \times 10^{6}$        |
| 324.70  |                           | $6.11 \times 10^{6}$        |
| 352.99  |                           | $1.60 \times 10^{6}$        |
| 391.74  |                           | $2.68 \times 10^{5}$        |
| 430.50  |                           | $1.08 \times 10^{5}$        |
| 450.90  |                           | $2.77 \times 10^{5}$        |
| 490.50  |                           | $2.39 \times 10^{5}$        |
| 520.35  |                           | $5.88 \times 10^{4}$        |
| 547.60  |                           | $1.59 \times 10^{4}$        |
| 578.00  |                           | BD                          |
| 598.65  |                           | $4.76 \times 10^{4}$        |
| 623.49  |                           | BD                          |
| 656.49  |                           | BD                          |
| 669.90  |                           | BD                          |
| 709.85  |                           | BD                          |
| 743.60  |                           | BD                          |
| 778.64  |                           | $7.30 \times 10^{5}$        |
| 796.47  |                           | $7.95 \times 10^{5}$        |
| 813.87  |                           | BD                          |
| 826.27  |                           | BD                          |
| 835.99  |                           | BD                          |
| 873.41  |                           | BD                          |
| 901.40  |                           | BD                          |
| 940.19  |                           | BD                          |
| 978.79  |                           | BD                          |
| 1021.10 |                           | BD                          |
| 1055.60 |                           | BD                          |
| 1091.30 |                           | BD                          |

Note: BD = below detection ( $\sim 6 \times 10^4$  cells/cm<sup>3</sup>).

**Table T18.** Comparison of near-surface sediment bacterial populations at Site 1174 with data from nine otherODP sites with different overlying-water depths.

|                            | ODP      | Depth  | Total bacteria           |
|----------------------------|----------|--------|--------------------------|
| Location                   | leg-site | (mbsf) | (cells/cm <sup>3</sup> ) |
| Demonster                  | 112 (01  | 150    | 1.05109                  |
| Peru margin                | 112-681  | 150    | $1.05 \times 10^{-5}$    |
| Santa Barbara Basin        | 146-893  | 577    | $1.27 \times 10^{9}$     |
| Japan Sea                  | 128-798  | 900    | $7.82 \times 10^{8}$     |
| Woodlark Basin             | 180-1115 | 1150   | $2.83 \times 10^{8}$     |
| Cascadia margin            | 146-890  | 1326   | $6.95 	imes 10^{8}$      |
| Woodlark Basin             | 180-1109 | 2211   | $3.28 \times 10^{8}$     |
| Juan de Fuca Ridge         | 139-857  | 2419   | $8.28 	imes 10^8$        |
| Cascadia margin            | 146-888  | 2516   | $5.32 \times 10^{8}$     |
| Lau Basin                  | 135-834  | 2703   | $6.12 \times 10^{8}$     |
| Woodlark Basin             | 180-1108 | 3188   | $2.67 \times 10^{8}$     |
| Amazon Fan                 | 155-940  | 3195   | $5.62 \times 10^{8}$     |
| Amazon Fan                 | 155-934  | 3432   | $6.04 	imes 10^{8}$      |
| Eastern Equatorial Pacific | 138-851  | 3760   | $2.08 \times 10^{8}$     |
| Nankai Trough              | 190-1173 | 4791   | $7.23 \times 10^{7}$     |
| 5                          | 190-1174 | 4751   | $1.47 \times 10^{8}$     |
|                            |          |        |                          |

| Core, Total sample weight (g) |         | Bulk PFT peak area |        |                      |         | Drilling fluid (µL)/sediment (g) |        |         |         |        |
|-------------------------------|---------|--------------------|--------|----------------------|---------|----------------------------------|--------|---------|---------|--------|
| section                       | Outside | Quarter            | Center | (g/cm <sup>3</sup> ) | Outside | Quarter                          | Center | Outside | Quarter | Center |
| 190-1174A                     | -       |                    |        |                      |         |                                  |        |         |         |        |
| 4H-2                          | 4.11    | 3.36               | 2.45   | 1.64                 | 1,163   | 412                              | 296    | 1.3     | 0.3     | 0.2    |
| 190-1174B                     | -       |                    |        |                      |         |                                  |        |         |         |        |
| 4R-1                          | 2.70    | 2.13               | 2.70   | 1.83                 | 15,022  | 36,237                           | 26,432 | 32.7    | 102.5   | 57.9   |
| 5R-1                          | 3.20    | 3.79               | 3.81   | 1.67                 | 1,060   | 1,216                            | 9,745  | 1.5     | 1.5     | 14.3   |
| 31R-1                         | 2.14    | ND                 | 1.17   | 2.11                 | 3,476   | ND                               | 152    | 9.3     | ND      | BD     |
| 31R-2                         | ND      | 1.03               | 1.66   | 1.92                 | ND      | 4,439                            | 198    | ND      | 25.8    | BD     |
| 32R-1                         | 1.58    | 2.28               | 2.88   | 1.85                 | 5,675   | 3,063                            | 4,093  | 21.3    | 7.5     | 8.0    |
| 32R-3                         | 2.06    | 1.13               | 2.74   | 2.23                 | 15,896  | 254                              | 2,377  | 46.9    | 0.1     | 4.8    |
| 32R-5                         | 1.39    | 1.63               | 1.51   | 1.86                 | 58,215  | 1,473                            | 435    | 259.9   | 4.7     | 0.9    |

Table T19. Drilling fluid intrusion estimated based on PFT tracer experiments, Site 1174.

Notes: ND = no data. BD = below detection (0.01  $\mu$ L drilling fluid).

**Table T20.** Fluorescent microsphere tracer experiments, Site 1174.

| Core      | Total s | sample weig | ht (g) | Microsp | Microspheres/sediment (g) |        |  |  |  |
|-----------|---------|-------------|--------|---------|---------------------------|--------|--|--|--|
| section   | Outside | Quarter     | Center | Outside | Quarter                   | Center |  |  |  |
| 190-1174A | -       |             |        |         |                           |        |  |  |  |
| 4H-2      | 4.11    | 3.36        | 2.45   | 21,381  | 0                         | 0      |  |  |  |
| 190-1174B | -       |             |        |         |                           |        |  |  |  |
| 4R-1      | 2.70    | 2.13        | 2.70   | 78      | 106                       | 48     |  |  |  |
| 5R-1      | 3.20    | 3.79        | 3.81   | 13      | 0                         | 0      |  |  |  |
| 31R-1     | 2.14    | ND          | 1.17   | 0       | ND                        | 0      |  |  |  |
| 31R-2     | ND      | 1.03        | 1.66   | ND      | 0                         | 46     |  |  |  |
| 32R-1     | 1.58    | 2.28        | 2.88   | 0       | 0                         | 0      |  |  |  |
| 32R-3     | 2.06    | 1.13        | 2.74   | 55      | 0                         | 23     |  |  |  |
| 32R-5     | 1.39    | 1.63        | 1.51   | 0       | 0                         | 65     |  |  |  |

Note: ND = no data.
\_

**Table T21.** Formation factor data from the needle-probe method, Hole 1174A.

| Core. section. | Depth  | Lithologic _ | Formatic | Formation factor |  |  |
|----------------|--------|--------------|----------|------------------|--|--|
| interval (cm)  | (mbsf) | type         | x        | у                |  |  |
| 190-1174-      |        |              |          |                  |  |  |
| 1H-2, 115      | 2.65   | Clayey silt  |          | 2.76             |  |  |
| 1H-2, 140      | 2.90   | Clayey silt  | 2.67     |                  |  |  |
| 2H-2, 7        | 4.76   | Clayey silt  | 3.10     | 3.32             |  |  |
| 2H-2, 82       | 5.51   | Clayey silt  | 3.47     | 3.69             |  |  |
| 2H-3, 64       | 6.83   | Clayey silt  | 3.21     | 3.55             |  |  |
| 2H-3, 133      | 7.52   | Clayey silt  | 3.26     | 3.00             |  |  |
| 2H-5, 122      | 10.41  | Clayey silt  | 3.48     | 3.61             |  |  |
| 2H-6, 69       | 11.38  | Clayey silt  | 3.91     | 4.00             |  |  |
| 3H-1, 70       | 14.60  | Clayey silt  | 2.92     | 3.29             |  |  |
| 3H-1, 142      | 15.32  | Sandy silt   | 5.21     | 5.65             |  |  |
| 3H-2, 15       | 15.55  | Sandy silt   | 5.65     | 6.22             |  |  |
| 3H-2, 91       | 16.31  | Clayey silt  | 3.11     | 3.31             |  |  |
| 3H-3, 87       | 17.50  | Clayey silt  | 3.16     | 3.36             |  |  |
| 3H-4, 60       | 18.44  | Clayey silt  | 3.59     | 3.61             |  |  |
| 3H-5, 85       | 20.19  | Clayey silt  | 3.56     | 3.52             |  |  |
| 4H-2, 4        | 24.94  | Clayey silt  | 3.75     | 3.90             |  |  |
| 4H-3, 33       | 26.73  | Clayey silt  | 4.25     | 4.37             |  |  |
| 4H-3, 36       | 26.76  | Sandy silt   |          | 5.71             |  |  |
| 4H-4, 94       | 28.84  | Sandy silt   | 4.35     | 4.56             |  |  |
| 5H-1, 107      | 33.97  | Clayey silt  | 3.69     | 4.25             |  |  |
| 5H-1, 128      | 34.18  | Sandy silt   | 4.92     | 5.31             |  |  |
| 5H-2, 4        | 34.44  | Clayey silt  | 3.98     | 4.66             |  |  |
| 5H-4, 107      | 38.47  | Clayey silt  | 4.19     | 3.94             |  |  |
| 5H-CC, 30      | 39.79  | Clayey silt  | 3.62     | 3.71             |  |  |
| 7H-1, 76       | 52.66  | Clayey silt  | 3.70     | 3.87             |  |  |
| 7H-4, 1        | 54.78  | Sand         | 4.21     | 4.42             |  |  |
| 8H-2, 46       | 62.74  | Sand         | 4.65     | 5.03             |  |  |
| 8H-3, 25       | 63.88  | Sand         | 4.99     | 5.12             |  |  |
| 8H-4, 110      | 66.23  | Sand         | 5.69     | 5.94             |  |  |

Note: x and y = probe axis.

| Core. section. Dept     |        | Con  | Temp | Formation factor |              |              |               |              |
|-------------------------|--------|------|------|------------------|--------------|--------------|---------------|--------------|
| interval (cm)           | (mbsf) | x    | у    | Z                | (°C)         | x            | у             | Z            |
| 190-1174B-              |        |      |      |                  |              |              |               |              |
| 7R-1, 84                | 199.24 | 1.10 | 1.16 | 1.03             | 25.7         | 4.89         | 4.64          | 5.23         |
| 8R-1, 53                | 208.53 | 1.03 | 0.99 | 0.72             | 25.7         | 5.21         | 5.41          | 7.44         |
| 9R-1, 77                | 218.47 | 1.08 | 1.10 | 0.92             | 25.2         | 4.91         | 4.83          | 5.81         |
| 9R-2, 35                | 219.55 | 1.09 | 1.12 | 0.79             | 25.1         | 4.88         | 4.74          | 6.75         |
| 10R-1, 11Z              | 228.32 | 1.03 | 0.05 | 0.80             | 25.5<br>26.1 | 5.10         | 4.89          | 6.63<br>7.24 |
| 11R-1 57                | 229.20 | 1.09 | 1.03 | 0.75             | 20.1         | 1 89         | 5.18          | 5.76         |
| 11R-2, 11               | 238.41 | 1.19 | 1.12 | 0.83             | 25.5         | 4.48         | 4.78          | 6.42         |
| 12R-1, 108              | 247.58 | 0.94 | 0.91 | 0.76             | 25.4         | 5.70         | 5.84          | 7.04         |
| 12R-1, 69               | 247.19 | 1.13 | 1.10 | 0.89             | 25.4         | 4.71         | 4.84          | 6.01         |
| 13R-1, 103              | 257.23 | 1.10 | 1.00 | 0.88             | 24.8         | 4.81         | 5.26          | 6.02         |
| 13R-2, 65               | 258.35 | 1.12 | 1.01 | 0.85             | 24.8         | 4.72         | 5.23          | 6.19         |
| 13R-3, 3                | 259.23 | 0.92 | 0.90 | 0.75             | 24.9         | 5.75         | 5.90          | 7.10         |
| 15R-1, 28               | 2/5./8 | 0.66 | 0.83 | 0.95             | 25.0         | 7.99         | 6.35          | 5.59         |
| 10K-1, 04<br>17P-1 11/  | 203.94 | 1.03 | 1.00 | 0.91             | 26.2         | 5.25         | 5.05          | 5.97         |
| 17R-2,45                | 296.55 | 0.89 | 0.93 | 0.73             | 26.2         | 6.10         | 5.84          | 7.46         |
| 18R-2, 68               | 306.48 | 1.09 | 1.07 | 0.80             | 26.0         | 4.97         | 5.06          | 6.71         |
| 18R-4, 77               | 309.57 | 1.02 | 1.03 | 0.80             | 25.8         | 5.28         | 5.20          | 6.70         |
| 19R-1, 74               | 314.74 | 1.05 | 1.03 | 0.79             | 25.8         | 5.15         | 5.22          | 6.80         |
| 20R-1,136               | 324.86 | 0.81 | 0.85 | 0.66             | 25.8         | 6.65         | 6.31          | 8.21         |
| 20R-2, 106              | 326.06 | 0.97 | 0.88 | 0.72             | 26.2         | 5.60         | 6.14          | 7.52         |
| 20R-3, 53               | 327.03 | 0.92 | 0.90 | 0.75             | 26.2         | 5.92         | 6.01          | 7.20         |
| 20R-3, 53               | 327.03 | 0.91 | 0.90 | 0.75             | 26.2         | 5.94         | 6.05          | 7.26         |
| 21R-1, 117<br>21P-2 84  | 335 11 | 0.87 | 0.87 | 0.69             | 25.8         | 5.80         | 6.16          | 7.82         |
| 23R-2, 73               | 354.23 | 0.72 | 0.90 | 0.69             | 25.8         | 7.51         | 6.01          | 7.85         |
| 24R-1, 83               | 362.53 | 0.78 | 0.93 | 0.72             | 25.8         | 6.92         | 5.75          | 7.45         |
| 24R-3, 116              | 365.86 | 0.95 | 0.90 | 0.71             | 25.8         | 5.67         | 5.96          | 7.60         |
| 25R-2, 3                | 372.83 | 0.80 | 0.87 | 0.61             | 25.9         | 6.74         | 6.23          | 8.81         |
| 27R-1, 121              | 391.71 | 0.81 | 0.85 | 0.70             | 26.2         | 6.69         | 6.37          | 7.74         |
| 27R-2, 83               | 392.83 | 0.92 | 0.96 | 0.80             | 26.2         | 5.90         | 5.65          | 6.78         |
| 27R-3, 64               | 394.14 | 0.86 | 0.86 | 0.68             | 26.2         | 6.34         | 6.34          | 8.02         |
| 28K-1,82                | 401.02 | 0.89 | 0.94 | 0.82             | 26.2         | 6.1Z         | 5.79          | 0.03<br>7.22 |
| 20R-2, 40<br>29R-2, 72  | 402.10 | 0.80 | 0.83 | 0.74             | 26.2         | 6.18         | 6.40          | 7.55<br>8.04 |
| 29R-3, 129              | 414.09 | 0.88 | 0.86 | 0.73             | 26.0         | 6.10         | 6.24          | 7.43         |
| 31R-2, 88               | 431.38 | 0.80 | 0.81 | 0.68             | 25.5         | 6.66         | 6.62          | 7.92         |
| 31R-3, 44               | 432.44 | 0.82 | 0.75 | 0.54             | 25.5         | 6.49         | 7.12          | 9.99         |
| 32R-6, 58               | 446.68 | 0.75 | 0.77 | 0.68             | 25.5         | 7.16         | 6.94          | 7.93         |
| 33R-2, 58               | 450.28 | 0.79 | 0.81 | 0.64             | 25.5         | 6.76         | 6.62          | 8.42         |
| 33R-4, 88               | 453.58 | 0.66 | 0.79 | 0.65             | 25.5         | 8.06         | 6.75          | 8.28         |
| 34K-Z, 79               | 460.19 | 0.68 | 0.78 | 0.51             | 25.6         | 7.86         | 6.85<br>7.94  | 10.49        |
| 34R-4, 95<br>35R-2 65   | 405.55 | 0.77 | 0.00 | 0.52             | 25.6         | 7.00<br>8.28 | 7.60<br>13.60 | 9.64         |
| 36R-2, 54               | 478.54 | 0.85 | 0.69 | 0.49             | 25.9         | 6.36         | 7.80          | 11.02        |
| 36R-4, 113              | 482.13 | 0.65 | 0.67 | 0.53             | 25.9         | 8.34         | 8.06          | 10.10        |
| 37R-1, 71               | 486.41 | 0.79 | 0.75 | 0.59             | 25.8         | 6.78         | 7.19          | 9.12         |
| 37R-3, 128              | 489.98 | 0.79 | 0.81 | 0.74             | 26.0         | 6.81         | 6.71          | 7.30         |
| 37R-6, 71               | 493.91 | 0.68 | 0.68 | 0.52             | 26.4         | 8.00         | 8.04          | 10.43        |
| 38R-1, 49               | 495.79 | 0.72 | 0.75 | 0.57             | 25.1         | 7.41         | 7.12          | 9.26         |
| 38K-2, 62               | 497.42 | 0.78 | 0.74 | 0.52             | 25.1         | 6.85         | 7.20          | 10.19        |
| 30R-4, 110<br>30P-1 130 | 506.20 | 0.72 | 0.69 | 0.44             | 25.5         | 7.45         | 7.09<br>8.20  | 12.08        |
| 39R-4, 116              | 510.56 | 0.84 | 0.80 | 0.74             | 26.0         | 6.46         | 6.72          | 7.26         |
| 39R-5, 67               | 511.57 | 0.79 | 0.81 | 0.71             | 25.9         | 6.84         | 6.64          | 7.60         |
| 39R-6, 46               | 512.86 | 0.95 | 0.91 | 0.85             | 26.0         | 5.71         | 5.91          | 6.32         |
| 40R-2, 86               | 516.96 | 0.83 | 0.92 | 0.75             | 25.5         | 6.41         | 5.81          | 7.13         |
| 40R-4, 113              | 520.23 | 0.74 | 0.72 | 0.67             | 25.5         | 7.26         | 7.43          | 8.02         |
| 40R-6, 112              | 523.22 | 0.81 | 0.70 | 0.70             | 25.5         | 6.57         | 7.63          | 7.59         |
| 41R-2, 69               | 526.49 | 0.74 | 0.66 | 0.55             | 27.4         | 7.52         | 8.36          | 10.05        |
| 41K-3, 15<br>12D 2 21   | 527.45 | U./4 | U.84 | 0.61             | 25.4<br>26.5 | 7.26         | 0.33          | 8.69<br>8.50 |
| 42R-2,01                | 528 80 | 0.72 | 0.04 | 0.04             | 20.3<br>26 5 | 7.52<br>7.47 | 0.32<br>6 47  | 0.3U<br>8 9/ |
| 42R-5. 52               | 540.42 | 0.76 | 0.68 | 0.54             | 26.2         | 7.15         | 7.99          | 10.06        |
| 42R-7, 11               | 543.01 | 0.78 | 0.79 | 0.60             | 26.0         | 6.91         | 6.87          | 8.93         |

| Table | T22.                  | Electrical | cond    | luctivity | and  | formatio | on f | actor ( | data f | for cu | bes, | Hole |
|-------|-----------------------|------------|---------|-----------|------|----------|------|---------|--------|--------|------|------|
| 1174B | 6. ( <mark>See</mark> | e table no | ote. Co | ontinue   | d on | next two | o pa | ages.)  |        |        |      |      |

# Table T22 (continued).

| Core section           | Denth                   | th Conductivity (S/m) |      |      | Temn         | Formation factor |              |       |
|------------------------|-------------------------|-----------------------|------|------|--------------|------------------|--------------|-------|
| interval (cm)          | erval (cm) (mbsf) x y z | Z                     | (°C) | x    | у            | Z                |              |       |
| 43R-3, 84              | 547.44                  | 0.79                  | 0.72 | 0.58 | 26.9         | 6.99             | 7.57         | 9.55  |
| 43R-5, 125             | 550.85                  | 0.74                  | 0.76 | 0.56 | 26.4         | 7.40             | 7.14         | 9.72  |
| 43R-6, 22              | 551.32                  | 0.74                  | 0.76 | 0.53 | 26.4         | 7.39             | 7.13         | 10.35 |
| 44R-2, 64              | 555.04                  | 0.78                  | 0.76 | 0.58 | 26.1         | 6.90             | 7.13         | 9.41  |
| 44R-4, 115             | 558.55                  | 0.72                  | 0.80 | 0.54 | 26.4         | 7.57             | 6.78         | 9.99  |
| 45R-2, 76              | 564.86                  | 0.76                  | 0.65 | 0.4/ | 26.1         | 7.12             | 8.2/         | 11.58 |
| 45R-4, 105<br>46R-2 81 | 574 61                  | 0.69                  | 0.76 | 0.52 | 26.1         | 7.60<br>8.05     | 7.14<br>8.07 | 10.41 |
| 46R-4, 75              | 577.55                  | 0.70                  | 0.63 | 0.35 | 26.1         | 7.78             | 8.61         | 15.40 |
| 46R-6, 80              | 580.60                  | 0.76                  | 0.65 | 0.49 | 26.1         | 7.08             | 8.29         | 11.00 |
| 47R-2, 96              | 584.36                  | 0.69                  | 0.75 | 0.64 | 26.1         | 7.81             | 7.22         | 8.41  |
| 47R-4, 56              | 586.96                  | 0.73                  | 0.68 | 0.47 | 26.1         | 7.41             | 7.92         | 11.49 |
| 48R-2, 100             | 594.10                  | 0.90                  | 0.65 | 0.48 | 26.2         | 6.02             | 8.31         | 11.21 |
| 48R-4, 82              | 596.92                  | 0.70                  | 0.64 | 0.45 | 26.2         | 7.79             | 8.40         | 12.06 |
| 48K-6,81               | 599.91                  | 0.64                  | 0.65 | 0.48 | 26.0         | 8.40<br>8.50     | 8.34<br>7.60 | 11.14 |
| 49R-2, 82              | 605.52                  | 0.03                  | 0.71 | 0.44 | 26.0         | 7.60             | 7.00         | 10.56 |
| 50R-2, 60              | 613.00                  | 0.85                  | 0.83 | 0.67 | 26.0         | 6.38             | 6.53         | 8.10  |
| 50R-4, 46              | 615.86                  | 0.54                  | 0.64 | 0.50 | 26.0         | 9.95             | 8.38         | 10.88 |
| 52R-1, 84              | 630.94                  | 0.91                  | 0.83 | 0.69 | 26.7         | 5.98             | 6.61         | 7.91  |
| 52R-3, 72              | 633.82                  | 0.87                  | 0.73 | 0.61 | 26.7         | 6.26             | 7.54         | 9.02  |
| 52R-6, 117             | 638.77                  | 0.68                  | 0.75 | 0.51 | 26.7         | 8.05             | 7.30         | 10.64 |
| 53R-1, 105             | 640.85                  | 0.81                  | 0.82 | 0.61 | 26.7         | 6.75             | 6.65         | 8.91  |
| 53R-2,00               | 641.90                  | 0.73                  | 0.64 | 0.69 | 26.7         | 9.68             | 0.49<br>8 23 | 9.20  |
| 54R-2, 40              | 651.30                  | 0.80                  | 0.00 | 0.57 | 26.3         | 6.80             | 7.63         | 8.85  |
| 54R-4, 66              | 654.56                  | 0.62                  | 0.66 | 0.49 | 26.3         | 8.73             | 8.20         | 10.98 |
| 54R-6, 37              | 657.27                  | 0.51                  | 0.52 | 0.41 | 26.3         | 10.64            | 10.47        | 13.17 |
| 55R-2, 98              | 661.48                  | 0.70                  | 0.67 | 0.53 | 26.5         | 7.76             | 8.19         | 10.32 |
| 55R-4, 116             | 664.66                  | 0.68                  | 0.61 | 0.51 | 26.5         | 8.07             | 8.92         | 10.60 |
| 55R-6, 63              | 667.13                  | 0.68                  | 0.66 | 0.49 | 26.5         | 8.05             | 8.29         | 11.06 |
| 56K-2,81               | 6/1.01                  | 0.70                  | 0.68 | 0.46 | 26.8         | 7.78<br>8.40     | 8.07         | 11.8/ |
| 57R-2, 82              | 683.26                  | 0.05                  | 0.09 | 0.48 | 20.8         | 7 35             | 6.24         | 9.62  |
| 57R-6, 55              | 686.35                  | 0.61                  | 0.56 | 0.54 | 26.8         | 9.02             | 9.87         | 10.17 |
| 58R-2, 67              | 690.17                  | 0.67                  | 0.61 | 0.45 | 26.8         | 8.12             | 8.94         | 12.10 |
| 58R-4, 77              | 693.27                  | 0.63                  | 0.63 | 0.47 | 26.8         | 8.71             | 8.75         | 11.68 |
| 59R-2, 32              | 699.42                  | 0.68                  | 0.59 | 0.45 | 26.8         | 8.12             | 9.27         | 12.08 |
| 59R-5, 45              | 704.05                  | 0.58                  | 0.53 | 0.44 | 26.8         | 9.47             | 10.29        | 12.47 |
| 60R-2, 44              | 709.14                  | 0.59                  | 0.58 | 0.41 | 26.8         | 9.32             | 9.40         | 13.53 |
| 61R-2 93               | 719.04                  | 0.32                  | 0.62 | 0.47 | 20.0         | 8 34             | 0.07<br>9.35 | 11.02 |
| 61R-4, 66              | 722.06                  | 0.54                  | 0.50 | 0.38 | 26.6         | 10.05            | 10.54        | 14.19 |
| 61R-6, 56              | 724.96                  | 0.52                  | 0.58 | 0.41 | 26.6         | 10.55            | 9.47         | 13.43 |
| 62R-2, 126             | 729.26                  | 0.61                  | 0.55 | 0.44 | 26.7         | 9.03             | 10.00        | 12.40 |
| 62R-3, 98              | 730.48                  | 0.54                  | 0.52 | 0.38 | 27.0         | 10.25            | 10.63        | 14.36 |
| 62R-4, 126             | 732.26                  | 0.51                  | 0.53 | 0.37 | 28.0         | 10.98            | 10.57        | 15.28 |
| 63R-2, 85              | /38.45                  | 0.56                  | 0.54 | 0.40 | 27.5         | 9.8/             | 10.21        | 13./1 |
| 63R-4, 71              | 741.31                  | 0.55                  | 0.57 | 0.39 | 20.0         | 9.98             | 9.05         | 13.64 |
| 64R-2, 70              | 747.90                  | 0.58                  | 0.50 | 0.40 | 20.0         | 9.48             | 11.11        | 13.79 |
| 64R-4, 86              | 751.06                  | 0.52                  | 0.54 | 0.40 | 27.1         | 10.69            | 10.29        | 13.82 |
| 64R-5, 108             | 752.78                  | 0.53                  | 0.56 | 0.38 | 27.2         | 10.43            | 9.81         | 14.53 |
| 65R-2, 74              | 757.24                  | 0.58                  | 0.54 | 0.40 | 27.0         | 9.54             | 10.12        | 13.71 |
| 65R-4, 80              | 760.30                  | 0.59                  | 0.58 | 0.42 | 25.8         | 9.16             | 9.31         | 12.75 |
| 65R-6, 40              | 762.90                  | 0.61                  | 0.54 | 0.42 | 25.8         | 8.88             | 9.87         | 12.92 |
| 66K-1, 116             | /65./6                  | 0.53                  | 0.55 | 0.39 | 26.0         | 10.16            | 9.89         | 13./6 |
| 66R-5, 97              | 700.37                  | 0.56                  | 0.65 | 0.44 | 26.0         | 9.30             | 0.04<br>9.51 | 12.41 |
| 67R-2, 34              | 774.78                  | 0.58                  | 0.55 | 0.37 | 27.4         | 9.48             | 10.03        | 14.83 |
| 67R-4, 38              | 777.82                  | 0.58                  | 0.53 | 0.38 | 27.4         | 9.62             | 10.45        | 14.50 |
| 67R-6, 56              | 781.00                  | 0.57                  | 0.52 | 0.41 | 27.4         | 9.68             | 10.59        | 13.52 |
| 68R-2, 35              | 785.75                  | 0.58                  | 0.54 | 0.39 | 27.4         | 9.56             | 10.24        | 14.37 |
| 69R-2, 37              | 794.24                  | 0.53                  | 0.55 | 0.39 | 27.1         | 10.49            | 10.08        | 14.24 |
| 69R-4, 34              | 797.21                  | 0.53                  | 0.50 | 0.39 | 27.1         | 10.42            | 10.94        | 14.01 |
| 09K-6,50               | 804.00                  | 0.52                  | 0.48 | 0.38 | 2/.1<br>27.1 | 10.67            | 11.4/        | 14.54 |
| 70R-2, 19<br>70R-5, 50 | 809.80                  | 0.33                  | 0.32 | 0.37 | 27.1         | 11.78            | 12.00        | 15.31 |
| 71R-3, 1               | 814.17                  | 0.53                  | 0.56 | 0.44 | 27.1         | 10.47            | 9.84         | 12.44 |

# Table T22 (continued).

| Core section           | Denth            | Conductivity (S/m) |      | Temp For |              | ormation fac | tor            |       |
|------------------------|------------------|--------------------|------|----------|--------------|--------------|----------------|-------|
| interval (cm)          | (mbsf)           | x                  | у    | Z        | (°C)         | х            | у              | Z     |
| 700 1 74               | 000.04           | 0.24               | 0.27 | 0.22     | 267          | 14.22        | 14.00          | 14.24 |
| /2K-1, /4              | 822.94           | 0.34               | 0.37 | 0.33     | 26.7         | 16.22        | 14.83          | 16.34 |
| 73R-5,103              | 838.98           | 0.47               | 0.37 | 0.42     | 26.7         | 13 11        | 14.77          | 13.12 |
| 73R-6, 118             | 840.48           | 0.45               | 0.35 | 0.39     | 20.2         | 12.17        | 12.06          | 14.03 |
| 73R-7, 57              | 841.37           | 0.54               | 0.55 | 0.44     | 27.5         | 10.35        | 10.11          | 12.58 |
| 74R-1, 40              | 841.80           | 0.60               | 0.54 | 0.47     | 27.1         | 9.18         | 10.12          | 11.65 |
| 74R-2, 99              | 843.89           | 0.60               | 0.58 | 0.45     | 27.1         | 9.13         | 9.44           | 12.30 |
| 74R-3, 33              | 844.73           | 0.51               | 0.59 | 0.41     | 27.1         | 10.74        | 9.34           | 13.29 |
| 75R-1, 93              | 851.93           | 0.56               | 0.56 | 0.40     | 27.1         | 9.89         | 9.86           | 13.81 |
| 76R-1, 69              | 861.39           | 0.63               | 0.66 | 0.43     | 27.1         | 8.81         | 8.29           | 12.95 |
| 77R-3, 83              | 874.23           | 0.62               | 0.63 | 0.36     | 28.4         | 9.10         | 8.97           | 15.51 |
| 77R-5, 67              | 877.07           | 0.61               | 0.60 | 0.40     | 28.0         | 9.14         | 9.37           | 14.17 |
| //R-6, 2               | 8/7.92           | 0.66               | 0.62 | 0.38     | 27.9         | 8.42         | 9.00           | 14.82 |
| /8K-1,//               | 880.//           | 0.60               | 0.63 | 0.40     | 28.0         | 9.3/         | 8.93           | 14.00 |
| 78R-2, 150<br>78R-4 26 | 002.00<br>884 76 | 0.71               | 0.79 | 0.40     | 20.5         | 7.95<br>0.10 | 0.50           | 12.27 |
| 79R-2 18               | 890 98           | 0.58               | 0.57 | 0.37     | 20.3         | 9.67         | 9.85           | 15 31 |
| 80R-2, 24              | 900.74           | 0.59               | 0.56 | 0.38     | 28.7         | 9.60         | 10.18          | 14.89 |
| 80R-4, 72              | 904.22           | 0.60               | 0.55 | 0.40     | 28.7         | 9.52         | 10.37          | 14.29 |
| 80R-6, 45              | 906.95           | 0.61               | 0.58 | 0.37     | 28.7         | 9.33         | 9.75           | 15.17 |
| 81R-2, 68              | 910.78           | 0.63               | 0.61 | 0.40     | 28.5         | 9.04         | 9.29           | 14.24 |
| 81R-4, 80              | 913.9            | 0.63               | 0.63 | 0.39     | 28.5         | 8.99         | 8.94           | 14.49 |
| 82R-3, 90              | 921.95           | 0.58               | 0.55 | 0.37     | 28.5         | 9.79         | 10.33          | 15.15 |
| 83R-2, 25              | 929.65           | 0.55               | 0.54 | 0.37     | 27.8         | 10.08        | 10.28          | 15.01 |
| 83R-5, 53              | 934.43           | 0.70               | 0.48 | 0.32     | 27.8         | 8.03         | 11.54          | 17.41 |
| 83R-6, 48              | 935.88           | 0.57               | 0.40 | 0.37     | 27.8         | 9.77         | 13.83          | 14.89 |
| 84R-2, 48              | 939.48           | 0.59               | 0.56 | 0.40     | 27.8         | 9.48         | 9.90           | 14.03 |
| 84K-4, 146             | 945.00           | 0.55               | 0.55 | 0.37     | 27.8         | 10.06        | 10.11          | 14.88 |
| 84K-0,00               | 945.00           | 0.47               | 0.49 | 0.34     | 27.8         | 0.26         | 0.45           | 10.20 |
| 85R-2,70               | 952 30           | 0.58               | 0.59 | 0.39     | 28.5         | 9.20         | 10 37          | 16.01 |
| 85R-6, 70              | 955.30           | 0.55               | 0.55 | 0.34     | 28.8         | 10.29        | 10.41          | 16.50 |
| 86R-2, 110             | 959.40           | 0.55               | 0.55 | 0.31     | 27.5         | 10.01        | 10.02          | 17.94 |
| 86R-4, 58              | 961.88           | 0.50               | 0.50 | 0.32     | 27.4         | 11.10        | 11.10          | 17.14 |
| 86R-6, 74              | 965.04           | 0.50               | 0.56 | 0.36     | 27.4         | 11.12        | 9.89           | 15.38 |
| 87R-1, 24              | 966.74           | 0.56               | 0.51 | 0.35     | 27.7         | 9.90         | 10.83          | 15.87 |
| 87R-3, 41              | 969.91           | 0.53               | 0.54 | 0.36     | 27.8         | 10.50        | 10.27          | 15.50 |
| 87R-5, 3               | 972.53           | 0.51               | 0.52 | 0.32     | 27.5         | 10.87        | 10.58          | 17.17 |
| 88R-2, 116             | 978.76           | 0.54               | 0.53 | 0.31     | 26.9         | 10.09        | 10.37          | 17.68 |
| 88R-4, 92              | 981.52           | 0.55               | 0.52 | 0.32     | 26.9         | 9.94         | 10.61          | 17.29 |
| 89R-2, 141             | 988.21           | 0.56               | 0.52 | 0.31     | 20.1<br>26.1 | 9.66         | 10.47          | 17.54 |
| 80P-6 3/               | 990.34<br>003.17 | 0.30               | 0.33 | 0.32     | 26.1         | 10.74        | 10.27          | 17.77 |
| 90R-1 48               | 995 38           | 0.54               | 0.30 | 0.30     | 20.1         | 11.08        | 10.77          | 18.25 |
| 90R-2, 4               | 996.44           | 0.48               | 0.49 | 0.30     | 27.2         | 11.40        | 11.26          | 18.21 |
| 91R-2, 91              | 1007.01          | 0.43               | 0.48 | 0.30     | 27.2         | 12.87        | 11.43          | 18.65 |
| 92R-2, 66              | 1016.36          | 0.56               | 0.49 | 0.27     | 27.2         | 9.84         | 11.16          | 20.14 |
| 92R-4, 70              | 1019.40          | 0.40               | 0.47 | 0.33     | 27.2         | 13.71        | 11.79          | 16.81 |
| 92R-5, 38              | 1020.58          | 0.39               | 0.45 | 0.29     | 27.2         | 14.22        | 12.31          | 19.16 |
| 93R-2, 20              | 1025.60          | 0.46               | 0.46 | 0.33     | 27.2         | 12.01        | 12.00          | 16.92 |
| 93R-4, 113             | 1029.53          | 0.44               | 0.49 | 0.30     | 27.2         | 12.41        | 11.16          | 18.46 |
| 94R-2, 71              | 1035.71          | 0.42               | 0.47 | 0.30     | 27.0         | 12.99        | 11.68          | 18.50 |
| 94R-4, 85              | 1038.85          | 0.49               | 0.50 | 0.32     | 27.0         | 11.14        | 11.07          | 17.21 |
| 95K-1, 33              | 1043.43          | 0.40               | 0.42 | 0.30     | 26.4         | 13.61        | 12.88          | 18.19 |
| 93K-3, 4               | 1040.14          | 0.54               | 0.40 | 0.2/     | 20.4<br>27.1 | 10.05        | 11.89<br>11.41 | 20.03 |
| 96R-2, 33              | 1054.45          | 0.45               | 0.48 | 0.29     | ∠/.I<br>27 1 | 10.35        | 11.41          | 17.19 |
| 97R-7 96               | 1064 76          | 0.35               | 0.47 | 0.52     | 27.1         | 10.55        | 12.06          | 19 94 |
| 97R-4, 110             | 1067.90          | 0.46               | 0.47 | 0.27     | 26.6         | 11.87        | 11.53          | 19.65 |
| 98R-1.26               | 1072.16          | 0.48               | 0.44 | 0.26     | 27.2         | 11.50        | 12.65          | 21.34 |
| 98R-5, 56              | 1076.98          | 0.44               | 0.46 | 0.25     | 27.4         | 12.65        | 11.95          | 21.94 |
| 99R-1, 19              | 1081.69          | 0.47               | 0.48 | 0.25     | 27.3         | 11.65        | 11.41          | 22.01 |
| 100R-1, 97             | 1092.17          | 0.46               | 0.46 | 0.27     | 27.4         | 12.05        | 12.01          | 20.38 |
| 100R-2, 39             | 1092.95          | 0.33               | 0.35 | 0.22     | 27.0         | 16.42        | 15.57          | 25.38 |
| 101R-1, 51             | 1101.31          | 0.43               | 0.46 | 0.25     | 27.0         | 12.91        | 11.99          | 22.43 |

Note: x, y, z = probe axis. This table is also available in **ASCII** format.

**Table T23.** Summary of downhole temperature measurements, Hole 1174A.

| Depth<br>(mbsf) | Tool  | Measurement<br>location | In situ temperature<br>(°C) |
|-----------------|-------|-------------------------|-----------------------------|
| 0.0             | Adara | Mudline                 | 1.50                        |
| 32.9            | Adara | Bottom of Core 4H       | 8.74                        |
| 65.5            | DVTP  | After Core 8H           | 12.98                       |
| 160.8           | DVTP  | After Core 3R           | Bad thermistor              |
| 209.1           | DVTP  | After Core 8R           | Unsuccessful                |

Note: DVTP = Davis-Villinger temperature probe.