Core Photo

1184A-1W WASH CORE

Core Descriptions Visual Core Descriptions, Site 1184

				Si	te	1184	Hole	AC	Core 3R Cored 144.0-153.7 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES	SAMPLE	DESCRIPTION
-1 -2 -3 -4 -5 -7	6 5 4 3 2 1								RD FORAMINIFER NANNOFOSSIL OOZE AGE: early Miocene Major Lithology: FORAMINIFER NANNOFOSSIL OOZE is white (N9) and homogenous. No discrete structures are present, but texture suggests pervasive bioturbation. The sediment contains ≤10% siliceous microfossils.

Core Descriptions Visual Core Descriptions, Site 1184

				Si	te	1184	Hole	AC	ore 4R Cored 153.7-163.3 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES	SAMPLE	DESCRIPTION
-1 -2 -3 -4 -5 -6 -7 -7								⊤ CAR — SS — SS	FORAMINIFER NANNOFOSSIL OOZE AGE: early Miocene Major Lithology: FORAMINIFER NANNOFOSSIL OOZE is white (N9) and homogenous. No discrete structures are present, but texture suggests pervasive bioturbation. The sediment contains 5-10% siliceous microfossils. In Sections 6 and 7, there is a subtle greenish color. A single 1-mm-thick diffuse dark layer in Section 1 at 16 cm contains rare glass shards.
-9	L							PAL	

Core Descriptions Visual Core Descriptions, Site 1184

				Si	te	1184	Hole	AC	ore 6R Cored 172.9-182.5 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES	SAMPLE	DESCRIPTION
-1 - -2 - -3 - -5 -	4 3 2 1								FORAMINIFER NANNOFOSSIL OOZE AGE: early Miocene Major Lithology: FORAMINIFER NANNOFOSSIL OOZE is white (N9) and homogenous. Texture suggests pervasive bioturbation. Distinct burrows are rare, but light gray (N7) filled burrows contain glass shards. Very subtle, slightly darker layers are present in Section 4 at 29, 38, 55, and 60 cm. Dark specks are rare throughout.

			Si	te	1184	Hole	AC	Core 7R Cored 182.5-191.8 mbsf
-1 - -2 - -3 -	3 2 1 3 SECTION	GRAPHIC	DISTURB.		1184 STRUCTURE	ACCESSORIES		Core 7R Cored 182.5-191.8 mbsf DESCRIPTION DESCRIPTION FORAMINIFER NANNOFOSSIL OOZE AGE: early Miocene Major Lithology: FORAMINIFER NANNOFOSSIL OOZE is white (N9) and homogenous. Discrete burrows are rare and are filled with light gray (N7) sediment. Very subtle, slightly darker layers are present in at the bottom of Section 3. Rare dark specks are common throughout. Texture suggests pervasive bioturbation. Minor Lithology: VITRIC ASH is present in Section 2, 145-150 cm and Section 6, 31-37 cm. Glass shards are coarse silt to fine sand. Ash is mixed
-5 - -6 - -7 -	6 5 4						SS	31-37 cm. Glass shards are coarse silt to fine sand. Ash is mixed by bioturbation into surrounding sediment. Light green interval in Section 2, 95-100 cm is possibly a highly mixed ash layer. Additional ash layers are suggested by the color of burrows in Section 1, 22 cm and Section 2, 70 cm.
							► PAL	-

				Sit	e 1	1184	Hole	A Co	ore 11R Cored 206.4-210.9 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES	SAMPLE	DESCRIPTION
		222	222	Î		•••••		- PAL	
- 1 -	1							- CAR	AGE: middle to late Eocene
								— XRD	D Major Lithology:
-2 -	2			÷		↓ … 	<u></u> ↔	— хвр	LITHIC VITRIC TUFF, very pale brown (10YR 7/4) to red (2.5YR 4/8) in Sections 1 and 2, and light greenish gray (5G 7/1) in Section 3, with a color change along an inclined vein in Section 3, 4-9 cm. The TUFF is poorly sorted, with grain sizes ranging from very
-3 -	с						11		coarse to very fine sand. Grains vary from subrounded to subangular. Massive, but weak bedding seen in some intervals. Accretionary lapilli, ≤8 mm in diameter, are abundant in some
-4 -			222 2222	Ļ		♦			intervals (e.g., Section 2, 23-43 cm.).

				Sit	e 1	1184	Hole	AC	ore	13R	Со	ored	220.4-230.0 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES	SAMPLE					DESCRIPTION
-1- -2 - -3 - -4 - -5 -			ĿĸĊŔŀĊĊĸĊĸĊĸĊĸĊĊŔĊĊŔĊĊŔĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊĊ	$\neg / / \downarrow / /$			#			- LITHIC AGE: m Major L LITHIC grain si include subhori Accretic 73-100 interval the long	: VITRIC TI middle Eoc Lithology: C VITRIC T izes from t e altered b rizontal an ionary lapi 0 cm. The ⁻ ils, a faint ug dimensio	TUFF, r fine sa basaltic nd high illi are o TUFF i layerin ions of	massive, poorly sorted, with a range of and to pebble. Grains are angular and a glass and lithics. The core contains ly inclined white calcite-zeolite veins. generally rare, but are common in Section 1, is thin bedded to massive. In massive ng is imparted by subhorizontal alignment of grains.

			Si	te '	1184	Hole	Α	Core	14R		Cor	red	230.0-239.6 mbsf
METERS	GBAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE					DESCRIPTION
-1 - -2 - -3 - -3 - -4 - -5 - -6 - -5 - -7 - 9 - -8 -					•••••••				► LITHIC AGE: r Major I LITHIC gray to to fine and ac subhor contair veins. presen cm; Se is seer	VITF middl Lithol C VITI sand ccretion s su Accretion thro cection n in S	RIC TU e Eoce logy: RIC TU t olive (l. Majo onary I tal alig ubhoriz etionar bughou a 4, 30- Section	JFF ene (5Y 9, or cor lapilli. nmen contal ry lap ut the -105 (6, 55	poorly sorted, thin bedded to massive, olive W1 - 5Y 6/1). Grain size varies from medium mponents include altered basalt fragments . A faint layering is imparted by nt of the long dimensions of grains. The core and highly inclined white calcite-zeolite billi and broken accretionary lapilli are to core and are common in Section 1, 30-50 cm; and Section 5, 75-95 cm. A reddish stain 5-70 cm.

				Sit	e 1	1184	Hole	Α	Cor	'e 1	16R		Со	red	1 1	244.4-249.2 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE						D	DESCRIPTION
- 1 - -2 - -3 - -4 - 5	4 3 2 1								KRD	L L L L L L L L L L L L L L L L L L L	LITHIC N AGE: m Major Li LITHIC N (5YR 4/4 TUFF is grain siz are pres Section Within th elongate size vari in Sectio cm. The LITI CC, 28 o lithic fra subroun Lithic fra and ves vesicula red to di	VITF iddla ithol VITF 4) in sett CC, his in e gra CC, his in e gra CC, his in e gra cm, gme aded agm. icula ar an usky	RIC TU e Ecoc logy: RIC T nterva n bedd rangin in Se , 28 c nterva ains to from c 4 and VITR is cor ents. $\frac{1}{2}$ d log y red.	UFF, and the second of the second of the second of the second of the second of the sec	, gro Gra om 1 a e T to b sed glas cros ight 10% n co	reenish gray (5G 6/1), with a reddish brown tion 1, 19-80 cm. In Section 1, 0-80 cm, the ain supported, and poorly sorted, with fine to coarse sand. Accretionary lapilli at 60 cm. From Section 1, 80 cm through core contains a single normally graded bed. TUFF is poorly sorted and massive, but be aligned subhorizontally. Maximum grain sand in Section 1 to granule to small pebble pale green vein spans Section 2, 20-75 F from Section 1, 80 cm through Section 1 of 60% altered glass shards and 40% ss grains are dark, rounded to ress and commonly contain a zeolitic core. t gray to pink, subangular, ≤1 cm across, % of the lithic fragments are highly olor; about 5% of the lithic fragments are are cemented by zeolite.

				Sit	:e 1	1184	Hole	A Co	ore	17R	C	ored	1 249.2-258.9 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES	SAMPLE					DESCRIPTION
-			222	1	<u> </u>								
-1 -2 -3 -4 -5 -6 -7	6 5 4 3 2 1 1									AGE: mi Major Li LITHIC V poorly si core is p thick) sp progress granule- 50 cm th Section pebble-s present red (7.51 The LITH (general and 20% fragmen pinkish-l pumiceo and iron armored altered I	/ITRIC iddle Ed thology VITRIC orted. (part of a anning sive cha a and pe ne core 7, 50 cl sized la at Sect R 4/8) h HIC VIT Ily suba 6 matrix ts inclu brown I pus (hig olack g	TUFF ocene /: TUFF, Contains a single Cores anges in abble-si is norm m, there pilli. A (ion 3, 1 halo spa fRIC TL angular x (mostl ide, in a lapilli (n ghly ves stained s is see llass.	, greenish gray (5G 6/1), massive and very hs 10 to 15% pebble-sized angular lapilli. This every thick bed (approximately 25 meters 18R, 17R and the lower part of 16R, with in average grain size and proportion of sized lapilli. From Section 1, 0 cm, to Section 5, nally graded. From Section 5, 50 cm, to re is a lower proportion of granule- and 3-cm-diameter, dark gray, lithic pebble is 105 cm, and a pale green (5G 7/2) vein with a bans Section 4, 45-65 cm. UFF is composed of 45% lithic fragments r and subequant), 35% altered glass shards, tly altered glass particles). The lithic approximate order of decreasing abundance: nonvesicular to moderately vesicular), white sicular) or granular lapilli, gray basaltic lapilli, d lapilli. Accretionary lapilli are rare. One en in Section 2, 116 cm; it has 1-mm nucleus of

				Sit	ie 1	1184	Hole	Α	Core	18R	Cored 258.9-268.5 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE		DESCRIPTION
-1 - -2 - -3 - -4 - -5 - -6 - -7 - -8 - -8 -									THS	LITHIC VI AGE: mid Major Lith LITHIC VI gray (5Y ash and li (approxim lower par and propo through 3 Core 17R clast-supp From Sec reversely 30 cm, the less than thin beds sand. Bro lithologies In Section 40% lithic showing a 30% alter include, in pinkish-gi and gray and iron-o	//TRIC TUFF iddle Eocene thology: //TRIC TUFF, greenish gray (5GY 6/1) to dark greenish / 5/1), very poorly sorted, and consisting mostly of coarse lapilli. This core is part of a single very thick bed mately 25 meters thick) spanning Cores 18R, 17R and the urt of 16R, with progressive changes in average grain size portion of granule- and pebble-sized lapilli. In Sections 1 3 of this core and into the lower 2 meters of overlying R, the TUFF has relatively constant grain size. It is poported with 20% granule- and pebble-sized angular lapilli. Section 4, 0 cm, through Section 6, 30 cm, the TUFF is y graded with 5-10% granule-sized clasts. From Section 6, hrough Section CC, 22 cm the TUFF is normally graded with n 5% granule-sized clasts. In Section 7 the TUFF contains is with grain sizes alternating between fine and medium iroken accretionary lapilli are abundant in the finer es. Veins of zeolite are present in Section 3, 112-123 cm. ons 1 through 5, the LITHIC VITRIC TUFF is composed of ic fragments (generally subangular and subequant, but a wide range of morphologies including jagged outlines), pred glass shards and 30% matrix. The lithic fragments in approximate order of decreasing abundance: gray lapilli (nonvesicular to moderately vesicular), black y basaltic lapilli, white pumiceous (highly vesicular) lapilli, -oxide-stained lapilli. Accretionary lapilli are sparse in 1 and 2, absent in Sections 3 and 4, and abundant in 5. Many broken fragments of accretionary lapilli are in Sections 5 to CC.

				Sit	e '	1184	Hole	AC	ore	19R	Core	d 268.5-27	8.1 mbs	f
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES	SAMPLE				DESCRIPTION		
-1 · -2 · -3 · -4 · -5 · -6 · -7 ·						₽ ==== ₽		XRI		LITHIC V AGE: mid Major Lit LITHIC V gray (5G 3/3). Rec are eithe poorly sc moderate Section 0 and lapill Reversel Alternatir cm and 5 Section 1 The LITH compose subequa fragment pinkish-b pumiceon and iron-	ITRIC TUFF ddle Eocene hologies: ITRIC TUFF Y 6/1) to da ldish brown r massive o rted; interva ely sorted (S CC, 0-72 cm i, with large y graded be og finer and section 7, 1: , 0-70 cm (- IC VITRIC T d of 30% lit nt), 40% alt s include, ir rown lapilli us (highly vo oxide-staine	F to LITHIC VITRIC F to LITHIC VITRIC rk gray (N4) and da intervals are bedc r very thin bedded. als with better-defi Section 1, 75-79 cm n). The TUFF is mo (≤2 cm) lapilli in Section (≤2 cm) lapilli in Section (carser beds are 10-150 cm. Accretion -1 cm) and in Section TUFF and LITHIC V thic fragments (generic ered glass shards n approximate order (nonvesicular to me esicular) or granular ed lapilli.	LAPILLI-TUFF ark reddish bro ded; greenish g . The core is ge ned bedding a n, Section 7, 10 ostly composed ections 3 throu occur in Section present in Sec ionary lapilli ard ion CC, 0-35 cr /ITRIC LAPILLI herally subangu and 30% matri er of decreasin noderately vesi ar lapilli, gray b	² , greenish wn (5YR ray intervals enerally re 07-150 cm, and of coarse ash gh 7. 1 2, 55-130 cm. tion 5, 0-65 e present in n (2-4 mm). TUFF are ular and ix. The lithic g abundance: cular), white pasaltic lapilli,

				Sit	е	1184	Hole	Α	Со	re	22R		Cor	ed	297.3-306.9 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE						DESCRIPTION
-1 - -2 - -3 - -3 - -5 - -7 - -7 -			n fra an						THS		LITHIC LITHIC LITHIC AGE: m Major L From Sc LITHIC greenist fragmer sorted. Iapilli cc the top 75-135. and two cm, rest altered to 5 cm, to subal TUFF ir rims an fragmer lapilli ar Carboni 73 cm, core in From Sc LAPILL 5-mm la to subro shards. subhorit are darf 16 mm, minor c	VITR LAPI iiddle iithold VITR h gra nts. T The a parse of Se of Se	IC TU LLIST E Eoce ogies: n 1 thi IC TU y (5G exture average cm-dia erip-u vely. T shard d the ass fra ownwa d the ass fra ass fra ass fra ass fra ass fra ass fra ownwa d the fass fra ass fra ownwa d the fass fra ass fra a	IFF, L FONE rough IFF to 4/1), e is v ge gra aduall 1. Th ametu up cla The T ds, 4(agme ard to top o agme ard to top o agme tion 6 g half have to top o action 6 g half have to top o agme to top o agme ard to to top o a com, top o agme to top o agme to top o a com, top o a to top o a to top o a to top o a to top o a to top o a to top o a to to to to to to to to to to to to to	ITHIC VITRIC LAPILLI-TUFF, and a Section 6, 90 cm, the core consists of a LITHIC VITRIC LAPILLI-TUFF, dark with 15-20% granule- to pebble-sized lithic rery coarse-grained, massive, and poorly ain size and abundance of granule-sized ly upward from Section 5, 75 cm, through e core is normally graded in Section 5 from er angular clast occurs in Section 1 at 25 cm, sts, 3- and 5-cm, in Section 3 at 33 and 40 UFF and LAPILLI-TUFF consist of 35% 0% lithic lapilli and 25% matrix. The amount nts increases whereas that of lithic lapilli to the bottom of Section 5. The bottom of f Section 6 show banding and better sorting nts. Altered glass fragments range from 1 re mainly subangular and elongate. Some a re vesicular. Lithic lapilli range from 1 mm lapilli dominant in Section 3, and are angular ant to elongate. Lapilli in the LITHIC VITRIC talline rock fragments with altered glassy roxide stains, and plagioclase-rich rock), rounded, equant, 3- to 7-mm accretionary ts of armored lapilli occur in the TUFF. nents, ~2 cm long, are found in Section 2 at a ta 65 cm on surfaces between pieces of t. through Section CC, the rock is N5/1), clast-supported, with rounded 2- to LISTONE consists mainly (~95%) of rounded e lithic lapilli with minor (<1%) altered glass interlocking contacts and show a subtle on, consistent with compaction. The lapilli us shades of gray, range in size from <1 to ar, and are cemented with white zeolite and

				Si	te	1184	Hole	A Co	ore 23	R Cored 306.9-316.6 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES	SAMPLE		DESCRIPTION
Γ		999÷	444							HIC LAPILLISTONE
	1		~~~						AG	E: middle Eocene
									Maj	or Lithology:
									LITI is m 1, 0 cm. LAF Cor	HC LAPILLISTONE has granule- to small-pebble-sized lapilli, oderately sorted, and is dark greenish gray (5G 4/1) in Section -9 cm, changing to brownish yellow (10YR 6/6) in Section 1, 9-82 Horizontal calcite veins occur in Section 1 at 59-61 cm. This HLLISTONE is a downward continuation of the lower part of e 22R.
									The lithi frag to 1 con with mat con	LAPILLISTONE consists mainly (~80%) of yellow to brown c lapilli, with less abundant (~15%) gray lithic lapilli. The lithic ments are mainly subrounded, equant and range in size from ~1 3 mm, with an average of ~3 mm. The lapilli have interlocking tacts and show a subtle subhorizontal orientation, consistent compaction. Some of the lapilli are vesicular. Fine-grained ash rix is present but very hard to distinguish from lapilli. Cement sists of white zeolite and minor carbonate.

				Sit	e 1 [.]	184	Hole	Α	Core	24R	Cored 316.6-326.2 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE		DESCRIPTION
- 1 -2 -3 -4 -5 -6										✓ VITRIC AGE: m Major L VITRIC poorly s dark gra Section compos 17 cm t VITRIC small po weak re althoug apparen gradatic Section and Sec the larg The VIT (genera and 25° of decre lapilli (r (biobly)	LITHIC TUFF and VITRIC LITHIC LAPILLI-TUFF hiddle Eocene ithologies: LITHIC TUFF and VITRIC LITHIC LAPILLI-TUFF are sorted with angular to subangular grains, and vary from ay (N3) to dark reddish gray (10R 4/1) to weak red (10R 5/2). 1, 0-17 cm is dark gray massive LITHIC LAPILLISTONE sed mostly of coarse ash and granule-sized lapilli. Section 1, o Section 2, 50 cm is dark reddish gray massive very coarse LITHIC TUFF with grain size ranging from medium sand to ebble. Section 2, 50 cm to Section 8, 140 cm is a single bed or ed VITRIC LITHIC TUFF. Fabric is dominantly massive h poorly defined bedding (subhorizontal to ~20 degrees of nt dip) occurs in some intervals. Bed also contains onal increases and decreases in pebble content (≤50% in 4, 80-100 cm; 5% in Section 2, 120 cm to Section 3, 30 cm ction 4, 100-110 cm). Maximum lapilli size exceeds 3 cm, and er lapilli are subrounded, red, fragments of TUFF. TRIC LITHIC TUFF is composed of 50% lithic fragments ally subrounded and subequant), 25% altered glass shards % matrix. The lithic fragments include, in approximate order easing abundance: iron-oxide-stained lapilli, pinkish-brown honvesicular to moderately vesicular), white pumiceous vesicular) or fing-grained crystalling lapilli, and gray.
-8 -9	7		×** *** *** *** ***							basaltic whole c lapilli. C Section occur w	2 Iapilli. Accretionary lapilli are sparse (1%) throughout the sore. Sections 3–4 and 6–8 contain examples of reworked One of the clearest examples of reworking can be found in 7 where red clay coated accretionary and armored lapilli within a rounded 2-cm lapillus.
-10)- -										

				Sit	e 1	1184	Hole	Α	Core	25R	Cored 326.2-335.9 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE		DESCRIPTION
-1 -2 -3 -4 -5	6 5 4 3 2 1									 VITRIC AGE: n Major VITRIC massiv size. L pebble exceed cm). C and pin greenia reflects oxidati fragme The VI composition subequiparticle abund (nonversion) 	C LITHIC TUFF and VITRIC LITHIC LAPILLI-TUFF middle Eocene Lithologies: C LITHIC TUFF and VITRIC LITHIC LAPILLI-TUFF are ve and poorly sorted, with gradual changes in average grain apilli are rounded to subrounded. The proportion of e-sized lithic lapilli varies from 15% to 60%. The largest lapilli d 3 cm in diameter (e.g., Section 4 at 0-3 cm; Section 7 at 70 olor changes are gradual. Color varies from gray (5YR 6/1) nkish gray (5YR 6/2) to pale red (2.5YR 6/2), and is dark sh gray (5G 4/1) in Section 3, 0-45 cm. The color variation s both the relative abundance of red lithic lapilli and on of the matrix. An elongate (4 cm by 0.1 cm) wood ent(?) occurs in Section 8, 87 cm. TRIC LITHIC TUFF and VITRIC LITHIC LAPILLI-TUFF are used of 60% lithic fragments (generally subrounded and uant), 20% altered glass shards and 20% matrix (fine es). The lithic fragments include, in approximate order of ance: iron-oxide-stained lapilli, pinkish-brown lapilli esicular to moderately vesicular), white pumiceous (highly lar) or fine-grained crystalline lapilli, and gray basaltic.
-7 -8 -9										lapilli. Rewor Core 2 pebble	Accretionary lapilli are sparse (1%) throughout the core. king of the LITHIC VITRIC TUFF can be seen throughout 25R. The clearest examples of reworking can be seen in the a-sized lapilli in Sections 6–8.

Γ				Sit	e 1	184	Hole	Α	Core	26R	Cored 335.9-345.6 mbsf
METERS	SECTION	GRAPHIC	ГГТН.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE		DESCRIPTION
									·		
- 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9									XRD	 ✓ VITRIC AGE: n Major L VITRIC discern to subrigrain si lapilli vi occurs to weal abunda The VIT 50% litt altered in apprilapilli, p white p lapilli, a Rework 26R. Tv and fro lapilli u the oth 	LITHIC LAPILLI-TUFF hiddle Eocene Lithologies: CLITHIC LAPILLI-TUFF is massive without clearly able internal bedding. Lapilli are poorly sorted, subangular bunded, and ≤10 mm in size. There are no apparent trends in ze through the core. The proportion of pebble-sized lithic aries from 20% to 40%. A clast of reworked tuff >8 cm long Section 5, 98-106 cm. Color varies from brown (7.5YR 5/2) K red (2.5YR 4/2) to gray (N6) and reflects both the relative ance of red lithic lapilli and oxidation of the matrix. TRIC LITHIC LAPILLI-TUFF has an average composition of hic fragments (generally subrounded and subequant), 25% glass shards and 25% matrix. The lithic fragments include, oximate order of decreasing abundance: iron-oxide-stained binkish-brown lapilli (nonvesicular to moderately vesicular), umiceous (highly vesicular) or fine-grained crystalline and gray basaltic lapilli. Accretionary lapilli are rare. sing of the LAPILLI-TUFF can be seen throughout Core wo large pebbles are found in Section 5 from 19.5 to 22 cm m 99 to 105.5 cm. The larger of the two contains smaller p to 2 cm in size and broken accretionary lapilli. In contrast, er pebble is aphanitic.
-10) -										

				Sit	ie 1	184	Hole	Α	Core	27R	Cored	345.6-355.3 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE			DESCRIPTION
		****	~~~									
	1	×**** ×**** ×**** ×****	4,4,4, 7,2,2,2 7,2,2,2,2 7,2,2,2,2 7,2,2,2,2 7,2,2,2,2							VITRIC LI LAPILLIS	THIC LAPILLI TONE	-TUFF and VITRIC LITHIC
-1	-	****	222 222							AGE: mide	dle Eocene	
		× × × × × × × × × × × × × × ×	××× ××× ×××							Major Lith	ologies:	
-2	2	×××× ×××× ××××× ××××	222 XXX XXX XXX XXX							VITRIC LI very dark poorly sor	THIC LAPILLI gray (5YR 3/1 ted, massive,	I-TUFF and LAPILLISTONE is gray (N5) to 1) to brown (7.5YR 4/2), and contains rounded to subangular lapilli up to 3 cm
-3	3	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>~~~</u> *** *** ***							to Section changes a abundanc	Grain size ind 5, 80 cm and are gradual ar e of red lithic	creases gradually from the base of the core d then decreases gradually to the top. Color nd seem to reflect both the relative lapilli and oxidation of the matrix.
-4		x X X X x X X X	××× ××× ××× ×××							The VITRI	C LITHIC LAF TONE are cor	PILLI-TUFF and VITRIC LITHIC mposed of 50% lithic fragments (generally
-5	4	× × × × × × × × × × × × × × × × × ×	××× ××× ×××							matrix. Th decreasing lapilli (non	ed and subeq le lithic fragmo g abundance ivesicular to r	uant), 25% altered glass shards and 25% ents include, in approximate order of : iron-oxide-stained lapilli, pinkish-brown moderately vesicular), gray basaltic lapilli,
-6	5	***** ***** ****	<u> </u>					<u> </u>	SS	and white lapilli. Acc Reworking	pumiceous (I retionary lapil of the LITHIC	highly vesicular) or fine-grained crystalline lli are rare (<1%) apart from Section 4. C VITRIC TUFF can be seen in lapilli and
-7		**** **** ****	*** *** ***							Minor Lith	ologies:	re 27R.
-8		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~ *** *** *** ***							ZEOLITIC is laminate clast occu	TUFF, 5-cm ed, with a sha irs in the lowe	thick (Section 5, 29-34 cm), light gray (N7), irp base and erosional top. A small rip-up er cm of the overlying LAPILLI-TUFF.

				Sit	e '	1184	Hole	Α	Core	28R	Co	ored	355.	3-365.	0 mb	osf	
T METERS	1 SECTION	GRAPHIC		DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE	∽ VITRIC L AGE: mi	LITHIC L	_APILLI	DESCR	IPTION	LITHIC L	APILLISTO	DNE
		***** ****** ******								Major Lit	thologie	s:					
-2	7									VITRIC L LAPILLIS greenish massive,	LITHIC L STONE n gray (1 , with rou	APILLI are gre 0Y 4/1) unded t	-TUFF a eenish gr) to gray to suban	nd VITRIC ay (5GY 5 (5Y 5/1), gular lapill	CLITHIC 5/1, 10Y 0 poorly so li ≤3 cm.	6/1) to darl orted and Minimum g	k grain
-3	Э									size is m has a slig gradual. cm, and	nedium to ghtly hig White v Section	to coars gher pe veins oc 1 5, 60-6	se sand. rcentage ccur at S 68 cm.	The interve of pebble ection 1, 3	val from § es. Color 3-15 cm,	Section 3, r changes a Section 2,	0-60 cm are , 64-70
-4 -5	4							:	XRD	The core subround matrix (fi order of (nonvesi	e is com ded and ine parti decreas icular to	posed of I subeq icles). T sing abu moder	of 50% li uant), 2 The lithic undance rately ve	thic fragm 5% altered fragment : pinkish-b sicular), g	ents (ge I glass sl s include prown lap ray basa	nerally hards and e, in appro pilli altic lapilli,	25% ximate
-6	5									fine-grain fine-grain except in seen in la	ned crys ned crys n Sectior apilli and	ed Iapill stalline n 4. Rev d pebbl	li, and wi lapilli. A working les throu	nite pumic ccretionar of the LITH ghout Cor	eous (hij y lapilli a HC VITR e 28R.	ghly vesici are rare (<1 RIC TUFF c	ılar) or 1%) xan be
-7		***** ***** ***** *****															
-8	9			//													
-9	2		(XX) (XX) (XX) (XX) (XX)														

				Sit	t e '	1184	Hole	Α	Core	929R		Core	ed	365.0-374.7 mbsf	
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE					DESCRIPTION	
-1· -2· -3·			A A A A A A A A A A A A A A A A A A A					x	RD	LITHIC AGE: I Major VITRIC LAPIL with all clast-s contine 3-cm c subtle lapilli if fragme The cc and 45 pervas fragme mostly pinkisł plagioo lapilli, rip-up and pl per se Sectio crystal	C LAF middl Lithol C LITH LIST(bunda suppo ues th diame revel increa ent is ore is 5% m sively ents a y sube h gray vclase which clasts lagioc ection) n 3 a z	PILLI-TU le Eocer logies: HIC LAF ONE are ant (15-2 orted, ve hrough o eter, but rse grad ase in at present compos hare foun- elongate y and in hare con s of VITF clase-ric); some t 103 cn grains to	JFF to ne PILLI- e dar 20%) overly cov	I-TUFF and VITRIC LITHIC rk greenish gray (5G 4/1) and very coarse, b) granule- and pebble-sized lithic lapilli; boorly sorted, and massive. This bed dying Core 28R. The largest lapilli are 2- to st are less than 1-cm diameter. There is in Sections 3 through 5 as the larger lithic dance. A circular, 1-cm diameter, black wood Section 5 at 17 cm. of 5% altered glass shards, 50% lithic lapilli, lassy fragments are altered either m to blue-green clay. Most of the glassy large (>8 mm) red lithic clasts. Lithics are d subangular. Lithic lapilli are dominantly de slightly vesicular, nonvesicular and eties. Next in abundance are gray-green etely altered to clay. Other types include LITHIC TUFF, oxidized red-brown lapilli, pilli. Accretionary lapilli occur sparsely (≤12 oxidized. An armored lapillus is present in he matrix is granular and contains subangula her with finer material.	d ,

				Sit	e 1	184 H	lole /	A Core	30R Cored 374.7-384.4 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES	SAMPLE	DESCRIPTION
-1. -2. -3. -4. -5.	6 5 4 3 2 1 1 MY 3 MY 3							— PAL — XRD — XRD	 VITRIC LITHIC LAPILLI-TUFF, VITRIC LITHIC LAPILLISTONE, and VITRIC LITHIC TUFF, AGE: middle Eocene Major Lithologies: From Section 1, 0 cm to Section 3, 118 cm, the core is LITHIC LAPILLI-TUFF, dark greenish-gray (5G 4/1) to gray (N4), consisting of pebble-sized lithic lapilli (10% to 40%) in a matrix of coarse, poorly sorted ash. The relative average grain size through this interval shows subtle changes: reversely graded from Section 3, 118 cm through Section 2, 80 cm; normally graded from Section 2, 80 cm through Section 1, 0 cm and into the overlying Core 28R. The LITHIC LAPILLI-TUFF consists of 5% altered glass shards, 35—80% lithic lapilli, 15—60% matrix and ~1% accretionary lapilli. The amount of compaction generally increases down core, with a maximum in Section 3 at 74—87 cm where interlocking lapilli are present. The glass is altered to light greenish gray clay. The lithic fragments are, on average, 4 mm, although lapilli up to 5 cm in diameter occur. The largest lapilli (generally equant and rounded) are rip-up clasts of VITRIC LITHIC TUFF. Accretionary lapilli are present throughout. Carbonized wood occurs in Section 1 at 74 cm. From Section 3, 118 cm to Section 5, 13 cm, the core is LITHIC LAPILLISTONE, fining upward to gray (N4) LITHIC TUFF. The LITHIC TUFF contains 95% lithic fragments and 5% matrix. The larger lapilli are predominantly subangular and elongate, 1—4 mm in size (average ~2 mm) and form bands that are 2 to 3 cm thick. The smaller lapilli are predominantly subangular and elongate, 1—4 mm in size (average ~2 mm) and form bands that are 2 to 3 cm thick. The smaller lapilli are predominantly subangular and elongate, 1—4 mm in size (average ~2 mm) and form bands that are 2 to 3 cm thick. The smaller lapilli are predominantly subangular and elongate, 1—4 mm in size (average ~2 mm) and form bands that are 2 to 3 cm thick. The smaller lapilli are predominantly subangular and elongate, 1—4 mm in size (average ~2 mm) and form ban
-8 -9	8 7 8 0.452034-0.452034-0.4520			Į ↓ ×		\$`\$`\$`\$`.		— XRD	textures, and white slightly vesicular lapilli. Accretionary lapilli fragments are rare. Section 5, 13-92 cm is massive LITHIC TUFF, dark greenish gray (5GY 4/1), composed of pebble-sized accretionary lapilli in an ash matrix. Section 5, 92 cm to Section 6, 24 cm, has four normally graded beds of LITHIC TUFF that are dark gray (N4), very coarse to medium-grained, with sharp or scoured bases. Flattened wood fragments or other organic debris are found in Section 5, 100 cm and in Section 6, 9 cm. The relatively fine-grained LITHIC TUFF has

bands that are rich in whole and broken accretionary lapilli. TheLITHIC TUFF consists of 80% ash matrix and 20% accretionarylapilli. Pyrite is present, concentrated mainly in the areas rich inbroken accretionary lapilli. Alternating coarse- (~4 mm) and fine-grained (<1 mm) lapilli and ash layers extend from Section 5,117 cm to Section 6, 24 cm.

From Section 6, 24 cm through Section CC, the core is normallygraded LITHIC TUFF and LITHIC LAPILLI-TUFF. Color varies fromdark greenish gray (5BG 4/1) to dark gray (N3) to weak red (10R4/2). The LITHIC TUFF contains 30% lithic fragments, 5% accretionary lapilli and 65% silt-sized matrix. Carbonized woodfragments are rare. The largest lithic fragments are 4 mm in size; themajority are 1—2 mm. Lithic fragments include gray basaltic lapilli, pinkish brownish gray lapilli, greenish gray lapilli andplagioclase-rich lapilli. Oxidized reddish brown (2.5YR 4/4) roundedgranule-sized lapilli are common, and are abundant in Section 6 at50-60 cm. Accretionary lapilli are numerous, locally making up ~50% of the rock.

				Sit	te '	1184	Hole	Α	Core	e 31F	R	Core	d	384.4-394.1 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE				ſ	DESCRIPTION
-1 -2 -3 -4 -5									SS SS THS	VITF AGE Majo VITF 3/1), With relat very poss and and inter Sect The 10-1 Glas in siz glass sube nonv light	RIC LIT E: midd or Litho RIC LIT , has a nin this tively si fine sa sible cr severa accreti vals (e tion 1, 0 VITRIC 5% alt ss shar ze from s. Lithio equant. vesicula -gray, s	HIC TUFF le Eocene blogies: THIC TUFF general fi interval ai harp base and. Seve oss-lamin I coarse-g onary lapi $2.3, Sectio0-15 cm aC LITHIC 1ered glassds are ang1 <1 to 6 ncs are \leq 10. Lithics alar to sparsparsely v$	F, da ining re s es vi eral l grain illi a grain illi a grain illi a on 2 and TUF TUF s sh ugula mm. 0 mi ure n rselv	ark gray (N3) to dark greenish gray (5Y g upward trend from Section 7 to Section 1. everal normally graded beds with arying in grain size from very coarse to ayers have an apparent 10-degree dip. A d interval occurs in Section 6 at 60-70 cm, ned laminae occur in Section 7. Lithic lapilli re generally rare, but are common in some 2, 45-55 cm). Glass shards are abundant in Section 1, 89 cm. F in Sections 6 and 7 is composed of hards, 40-45% lithics, and 45% matrix. ar to subrounded and subelongate, ranging The top of Section 7 appears to have fresh m in size, and are mainly subangular and nostly aphanitic, pinkish brown, and y vesicular. Other lithics include cular fragments. Rip-up clasts of LITHIC
-7 -8	9							·	THS	VITF matr oxyh	RIC TU rix is co nydroxi	FF and ac omposed o de grains,	ccre of fi s, an	tionary lapilli ≤9 mm are also present. The ne glass shards, lithic ash, rare iron d other intergranular material.
-9		××××× ×××××	222 222 222			****								

				Sit	e 1	184	Hole	Α	Core	32R	Cored	394.1-403.8 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE			DESCRIPTION
- 1 -2 -3 -4 -5 -6 -7 -8 -9									XRD	VITRIC I AGE: mi Major Li VITRIC I black (10 ranges f indistinc between Section 5, 100 ci remaind beds wit proportio The VITI 15–25% shards a from <1 subequa nonvesia glass sh	ITHIC TUFF ddle Eocene hologies: ITHIC TUFF is Y 2/1), with su om medium sa bedding and 9 0.3 mm and 2 2, 126 cm; Sec n; and Section er of the core of n the same rar n of altered glass re angular to s o 4 mm. Lithics are ular to sparse ards, lithic ash	s light greenish gray (5G 7/1) to greenish ubangular to rounded grains. Grain size and to granule. Poorly sorted intervals with gradational variation in average grain size mm are present from Section 1, 0 cm to ction 4, 0-110 cm; Section 4, 130 cm to Section 5, 130 cm to Section 7, 120 cm. The contains parallel, inclined (up to 10 degrees) age in grain size. Color variation reflects ass shards and matrix. IFF in Sections 4 through 8 is composed of shards, 40–60% lithic, and 30% matrix. Glass subrounded and subelongate, ranging in size s are ≤10 mm, and are mainly subangular and mostly aphanitic, pinkish brown, and ly vesicular. The matrix is composed of fine a, and other intergranular material.
					•	-						

	Site ²	1184 Hole	A Co	ore 33R Cored 403.8-413.5 mbsf
METERS SECTION GRAPHIC LITH.	DISTURB. BIOTURB.	STRUCTURE ACCESSORIES	SAMPLE	DESCRIPTION
-1 - -1 - -2 - -2 - -3 - -5 - -6 - -5 - -6 - -7 - -7 -		=== === ==== ===== ===== =====	- XRD	 LITHIC VITRIC TUFF AGE: middle Eocene Major Lithologies: LITHIC VITRIC TUFF is dark greenish gray (5G 4/1) to greenish gray (5G 4/1) and has subangular to rounded grains. Grain size ranges from medium sand to granule. Section 1, 0-100 cm is medium bedded, medium to very coarse sand-sized ash with parallel, inclined beds and both normal and reverse grading within beds. Section 1, 100 cm to Section 6, 118 cm is poorly sorted, very thickly bedded, very coarse sand-sized ash with subtle reverse grading, and bedding contacts defined by lapilli concentrations at the tops of beds. The LITHIC VITRIC TUFF is composed of 35% altered glass shards, 40% lithics, and 25% matrix. Glass shards are angular to subrounded and subelongate, ranging in size from <1 mm to 4 mm. Lithics are ≤10 mm in size, and are mainly subangular and subequant. Lithics are mostly aphanitic, pinkish brown, and nonvesicular to sparsely vesicular. The matrix is composed of fine glass shards, lithic ash, and other intergranular material.

				Sit	:e 1	1184	Hole	A Co	ore 35	5R	Cored	423.2-	432.9	mbsf	
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES	SAMPLE				DESCRIPT	TION		
-1 · -2 · -3 · -4 · -5 · -7 · -8 ·						####		XRD	LIT VIT AG Ma LIT LA (10 rar be Se VIT be gra ter spa Co ma rar ma pin is o wit	THIC VITF TRIC LAP GE: middle ajor Lithole THIC VITF PILLISTC OGY 4/1), nges from ds defined ection 3, 9 TRIC TUF dded mas adual chan hd to be si ans Section omponents atrix. Glas nging in si ainly suba hkish brow composed th white ce	RIC TUFF, PILLISTON e Eocene ogies: RIC LAPILL DNE are gr with suba coarse sa d by abund 7-104 cm F. The rer ssive LITHI nges in av ubhorizoni on 4, 57-1 s are 25% s shards a ize from <1 ingular and vn, and no d of fine gl ement.	LITHIC VITF IE LI-TUFF and reenish gray ngular to sub and to pebble dant lapilli ar and Section mainder of th IC VITRIC L/ rerage grain tal. A carbon 22 cm. altered glas are angular to 1 to 4 mm. Li d subequant onvesicular to ass shards a	LITHIC VIT (10Y 6/1) t brounded g e. Section 1 nd very coa 8, 57-75 cr le core is co APILLISTO size within hate-filled vo s shards, 4 o subrounc thics are <1 Lithics are o sparsely v and other in	I-TUFF and FRIC to dark gree grains. Grain 1, 0-60 cm h arse sand-s m consist of omposed of NE. There a beds. Elony ein 1.3-cm 40% lithics, ded and sub 10 mm in siz e mostly ap vesicular. T ntergranular	LITHIC enish gray n size has parallel ized ash. f LITHIC f thickly are gate grains wide and 35% belongate, ze, and are hanitic, 'he matrix r material

METERS SECTION GRAPHIC LLTH. BIOTURB. BIOTURB. STRUCTURE ACCESSORIES DESCUILINE	
LITHIC VITRIC TUFF to LITHIC VITRIC LAPILLI-TUFF AGE: middle Eocene Maior Lithologies: LITHIC VITRIC TUFF is greenish black (10Y 2/1) to dark gray (10GY 3/1), with an overall coarsening-upward tren the core, culminating with beds of LITHIC VITRIC LAPILL dark gray (N3) in Section 1, to 70 cm. The TUFF is modium-bedded, with in beds varying in average grain size and abundance and 1 lithics. Laminae within the very coarse TUFF in Sections at approximately 25-30 degrees, and are interpreted as sedimentary cross bedding. Within the relatively fine-orre region in Section 7, is a zone of calcite veins with 1-mm / (Section 7, iso-144 cm) and a band with abundant wood (Section 7, iso-144 cm) and a band with abund	greenish d through LI-TUFF, derately to v coarse dividual types of 1 and 2 dip ained crystals I fragments posed of ash matrix. angular to 2 mm. r and porvesicular

Site 1184 Hole A Core 39R Cored 461.9-471.5 mbsf													
METERS SECTION GRAPHIC LITH. DISTURB. BIOTURB. STRUCTURE ACCESSORIES	SAMPLE	DESCRIPTION											
$-1 - 1 - 1 + \frac{1}{2} \times \times$		LITHIC VITRIC TUFF AGE: middle Eocene Major Lithologies: LITHIC VITRIC TUFF, dark greenish gray (10Y 3/1), is poorly to very poorly sorted and has grain sizes varying from very fine to coarse sand. There is a general fining-upward trend through the core. Beds are massive, with both normally and reversely graded intervals within beds. Calcite veins of variable orientation are spaced at approximately 50-cm intervals. The matrix consists mostly of fine glass shards and lithic ash. The core can be divided into two main lithologies: From the top of Section 1 to Section 5, 100 cm, the core is fine sand-sized LITHIC VITRIC TUFF consisting of 2—20% glass shards, 10-30% lithic fragments, 2% accretionary lapilli and 50—80% matrix. Altered glass shards are either blue-green or brighter green with black rims; rare calcite rims are observed. Shards are equant to irregular and mostly subrounded. They average 1 mm, with a maximum of 2 mm. Some glass shards are black and fresh; the proportion of fresh glass is ≤20% of the total glass. Lithics are <1 mm to 5 cm, subequant to subelongate, and mostly subangular. They include four main types: pink vesicular lapilli (80% of lithic lapilli); white vesicular lapilli; pink, white, greenish or violet pumice; and rare translucent colorless lithic lapilli. Accretionary lapilli are sparse in the top of Section 1, and increase in abundance toward Section 2 at 54—74 cm, where armored lapilli are also present. Accretionary lapilli are generally sparse throughout the lower part of the core. Some accretionary lapilli have iron oxyhydroxide rims. Abundant accretionary lapilli are present in Section 7, the core is medium sand-sized LITHIC VITRIC TUFF consisting of 15-20% glass shards, 20—25% lithics and ~65% matrix. The glass shards are dull blue to yellowish black, with black rims. Shards are <0.05 to 10 mm, averaging ~1 mm, and angular to subrounded (mainly subangular). Some glass shards have fresh interiors with altered rims. Lithic fragments are pinkish-brown to gray, <0.05 to 10 mm, mainly											

				Sit	e f	1184	Hole	A Co	ore 4	40R	Core	d 471.5-481.1 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES	SAMPLE		DESCRIPTION		
				-								
						1			\sim	LITHIC VI	TRIC TUFF	
-1.		**** **** ***** ****	~~~ ~~~~ ~~~~							AGE: mic Major Lith	ldle Eocene nology:	
-2 ·	2	<pre>x*x*x x*x*x*x x*x*x*x x*x*x*x x*x*x*x x*x*x*x x*x*x*x x*x*x*x</pre>	××× ××× ××× ×××							LITHIC V moderate Horizonta sand-size	ITRIC TUFF ly to poorly I beds of m d ash span	, gray (N5) to light gray (N6), is composed of sorted ash with lapilli in some intervals. oderately to poorly sorted, fine to coarse Section 3, 115-125 cm and Section 4, 127 cm t
-3 · -4 ·	3	x*x*x*x x*x*x*x x*x*x*x x*x*x*x x*x*x*x x*x*x*x x*x*x*x x*x*x*x	××× ××× ××× ××× ×××					- THS		Section 5 133 cm to The rema fine, med 3–6 mm,	, 71 cm. Ho o Section 4, inder of the tum bedded are present	rizontal ash laminae are present in Section 3, 31 cm. Section 1, 0-25 cm is reversely graded. core is composed of alternating coarse and LITHIC VITRIC TUFF. Accretionary lapilli, in Section 3, 100-105 cm and Section 4, 120-12
-5	Ţ	×××× ×××× ×××××				•••••				cm. Color Section 3	grades fror , 123-130 ci	n gray to pinkish gray (5YR 7/1, 5YR 6/2) in n and Section 5, 50-67 cm.
-5								— XRD		The LITH lithics, an subround <1 to 3 m and sube nonvesice glass sha cement.	IC VITRIC T d 60% matr ed and sube m. Lithics ar quant. The ular to spars rds, lithic as	UFF is composed of 15% glass shards, 25% ix. Glass shards are subangular to elongate to subequant, and range in size from $e \le 6$ mm, and are mainly angular to subangular oredominant lithics are aphanitic, gray, and ely vesicular. The matrix is composed of fine th, and other intergranular material with white

			Si	te	1184	Hole	Α	Core	e 41R	Corec	481.1-490.7 mbsf
METERS	SECTION	GRAPHIC LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE			DESCRIPTION
	_	-									
-1. -2. -3. -4. -5. -6. -7.	6 5 4 3 2 1					<i>6.0.6</i> ,6		THS	 LITHIC M AGE: mi Major Lit LITHIC M 1 to Sect with lithic coarse a VITRIC I (N6), is p interval i pebble-s with sub subhoriz grain siz graded s gray (10) Compon Glass sh subequa found at are ≤10 n The precision sparsely lithic ash Accretion 	(ITRIC TUFF a ddle Eocene hology: (ITRIC TUFF tion 2, 97 cm, c lapilli. The b sh in Section APILLI-TUFF present from S s composed of ize lapilli. Fat horizontal lay ontal alignme e. In section requences. Co Y 4/1) to light ents are 20% rards are suba nt, and range the top of Se mm, and are n dominant lithio vesicular. Th i, and other in hary lapilli are	and LITHIC VITRIC LAPILLI-TUFF is gray (N4), occurs from the top of Section and is composed of medium sand-sized ash ed is massive except for isolated laminae of 1, 90-129 cm and Section 2, 55-60 cm. LITHIC 5, dark greenish gray (10Y 4/1) to light gray Section 2, 97 cm to Section 7, 135 cm. This of very coarse sand-sized ash with pric ranges from massive to weakly bedded, ering poorly defined by layers of lapilli, nt of elongate grains, and gradual changes in 7, these changes suggest three reversely olor changes sharply from dark greenish gray (N6) in Section 5 at 25 cm. glass shards, 30% lithics, and ~50% matrix. angular to subrounded and subelongate to in size from <1 to 4 mm. Unaltered glass is ction 1 and in Sections 5 through 7. Lithics nainly angular to subangular and subequant. es are aphanitic, gray, and nonvesicular to e matrix is composed of fine glass shards, tergranular material with white cement. es sparse (<1%) to absent.
		a ka ka ka ka ka ka Manangan ka	1					SMP	- sample f	or alteration :	stuares

Site 118						1184	Hole	Α	Core	942R	(Core	d 4	490.7	-500.	3 m	bsf		
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE				D	DESCRIP	TION				
	-			-															
-1 -2 -3 -4 -5 -6 -7 -8 -9						0.0.0.0.			THS	AGE: m Major L LITHIC massive sand-siz subrour the core Section subhori: grains. I 86-88 ci white ve	VITRI iiddle itholo VITRI a, poc zed a: nded. 3, 11 zonta Reddi m. Ra Breddi m. Ra	C TUFF Eocene gy: C TUFF rly sorte sh with < Grain si no appa 0-145 cr I fabric c sh zone tre accre present	= = is li ed, a <5% ize v aren m ar defir es ar vetior ∶ in S	ight green and comp b lapilli. C varies gra nt trends t nd Section ned by gr re presen nary lapill Section 4,	hish gray posed of oarse gr n dually o o coarse n 6, 55-7 ain-size t in Sect i are pre 55-59 c	r (5G 6 fine to ains ar n a 50 er or fir 70 cm a chang ion 3, sent in m.	/1) to gr mediun re angula -cm sca and 90 c es and a 72-75 cr s Section	ay (N4), ar to le throug rial. In cm there aligned n and n 7. A	gh is a
1(*****	<u> </u>	//															

	Site 1184 Hole A Core 43R Cored 500.3-509.9 mbsf													
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE ACCESSORIES	SAMPLE	DESCRIPTION						
- 1 · - 2 · - 3 · - 4 · - 5 · - 6 · - 7 ·		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			<i>₹₽;\$\$.</i> i <i>\$</i> \$;\$\$\$.		LITHIC VITRIC TUFF AGE: middle Eocene Major Lithology: LITHIC VITRIC TUFF, gray (N4) to dark greenish gray (10Y 3/1) is fine- to medium-grained, massive, and moderately to poorly sorted, with 5-10% granule-sized lithic lapili and accretionary lapilli. Reddish brown (2.5YR 5/4) intervals are present in Section 4, 42—51 cm and Section 7, 83—90 cm. The top of the lower reddish interval coincides with a sharp upward decrease in grain size. Average grain size oscillates throughout the core, and the interval in Section 3, 90—110 cm is normally graded. Thin white veins of variable orientation are spaced at approximately 30-cm intervals in Sections 1 through 3. Accretionary lapilli are more abundant within finer-grained LITHIC VITRIC TUFF from top of Section 1 to Section 7, 83 cm consists of 5-10% altered glass shards, 5-10% lithics, <1-5% accretionary and armored lapilli and 75-90% matrix. There is an altered glass-rich band in the sediment at Section 2, 45-54 cm. Glass shards have been mostly or completely altered to black clay or gray-green clay. Most glass shards are subangular and subequant. The altered glass shards range in size from <1 to 1.5 mm. Pinkish, moderately vesicular lithics are dominant, with subordinate amounts of plagioclase-rich lapilli, fine dolerite, scattered rip-up clasts and possible zeolites making up the remaining fraction. As a whole, lithics are subequant to subelongate, and mainly subangular. Accretionary lapilli are sparse and fragmented throughout Section 1, and increase in abundance in Section 2 to about 3% and again in Section 3 to about 5%. The accretionary lapilli are in moderate abundance around Section 4, 10 cm, then sparse until Section 7, 66 to 83 cm. Armored lapilli are present in Section 5, 53 cm and 84 cm, and in Section 6, 30 cm and 74 cm. The matrix is silt-sized and granular, dominating most of Core 43R.						
-9	con inte The	sists c riors o maxii	of 15-20 faltered mumdia)% al d glas amete	tered ss lap er of] I glass shards pilli range from the glass shai	l 20-25% lith dull blue cla ds is 2 mm,	The coarse-grained LITHIC VITRIC TUFF in Section 7, 83-114 cm ics, <1%accretionary and armored lapilli and 55—60% matrix. The ay to vitreous black glass;these are both rimmed with black alteration clay. with the smaller shardsgenerally altered whereas the larger ones are						

The maximumdiameter of the glass shards is 2 mm, with the smaller shardsgenerally altered whereas the larger ones are relatively fresh. Theshards are angular to subrounded; the smaller shards are elongateand the larger ones are subequant. A few have smooth, roundvesicles. The lithic lapilli are ≤4 mm, angular to subrounded, andhave variable sphericity. There are 3 major types recognized:pinkish brown to gray basaltic fragments that range from dense,nonvesicular, aphanitic and aphyric to sparsely-phyric andsparsely-vesicular; white and lighter-colored pumiceous orsparsely-phyric lapilli; and brown to earthy-brown, subangulartuffaceous lapilli with visible glass and microlites. A few (<1%)accretionary and armored lapilli are present; the maximum diameteris 3 mm. Most are subround and equant, and have tuffaceousinteriors with reddish armor or accreted zones. The matrix consistsmostly of fine-grained ash and altered glass.

				Sit	e	1184	Hole	Α	Core	e 44R	C	ored	509.9-519.5 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE				DESCRIPTION
						1							
-1 -2 -3 -4 -5 -7 -8 -9										LITHIC A AGE: m Major L LITHIC fine- to are 10- small ac trends a change: obvious trend sp The LIT 10-40% matrix. shards a alteratic larger o about 6 are mai are sub others a angular subelon mainly n and spa chalced shades aphanit tuffaced present ash.	VITRIC iithology VITRIC coarse- 15% gra ccretion are due s in mate s sedime banning 'HIC VIT o lithics, Section are dull on clay. Section are dull on clay. Section are dull on clay. Section are spar to subr ngate. T nonvesi arsely ve lony. Th of other ic and r bus lapil . The m	TUFF is grained anule- to ary lapil to variat trix textu entary si Section TRIC TU rare acc 4 has th blue to Smaller nerally h diameter angular; e. A few sely phy ounded, he majo cular an esicular ne next r r colors) nonvesic li, consi accretior atrix col	a dark greenish gray (10Y 3/1) to gray (N4), , massive, and very poorly sorted. There fine-pebble-sized lithic lapilli, and a few li. Subtle fining- or coarsening-upward ole abundance of lithic lapilli and minor ure, but there are no bedding breaks or tructures. There is a subtle fining-upward as 6 through 8. IFF consists of 10-30% glass shards, cretionary and armored lapilli, and 30-80% he lowest concentration of lapilli. Glass vitreous black and coated with black shards are typically altered to clay, but have fresher interiors; the largest shard is r. The shards are angular to subrounded, but large shards are subequant and small ones of the glass shards are vesicular and yric. Lithics range from <1 to 13 mm, are , but mainly subangular, and the majority are r lithic type is pinkish-gray basalt, which is d aphyric. Less abundant sparsely phyric basalt have vesicles filled with major lithic lapilli type is whitish (with various and mainly pumiceous in texture although cular types also occur. A few earthy-brown sting of glass and microlites are also hary and armored lapilli, ≤2.5 mm, are nsists mostly of fine glass shards and lithic
		****	222]]↑				present ash.	The m	atrix co	nsists mostly of fine glass shards and lithic

Γ				Sit	e 1	1184	Hole	Α	Core	45R	Cored 519.5-529.2 mbsf
METERS	SECTION	GRAPHIC	LITH.	DISTURB.	BIOTURB.	STRUCTURE	ACCESSORIES		SAMPLE		DESCRIPTION
						4					
-1 - -2 - -3 - -4 - -5 - -7 - -8 - -9 -									THS	 ► LITHIC AGE: m Major L LITHIC and ver sand. S lithic lap fining-u through a subtle oscillati size. Tr 3 and 4 Section matter, coarser may be The LIT shards, and 40- fine-gra brownis 6 (~70 c black w angular Large s sparsel subrour Lithics a chalcec their ve plagioci armored Most The matter 	VITRIC TUFF iiddle Eocene ithology: VITRIC TUFF is dark greenish gray (10Y 3/1) to gray (N4), y poorly sorted, with grain size varying from fine to coarse ections 1 through 3 contain 10-15% granule- to pebble-sized oilli, forming the coarse basal portion of the subtle pward trend through the overlying Core 44R. Section 4 Section 6, 70 cm contain 5% granule-sized lithic lapilli with e coarsening-upward trend. Within these general trends are ons in average abundance of lithic lapilli and in matrix grain nin, horizontal and vertical, white veins occur in Sections 1, . A slumped interval spanning Section 6, 70 cm through 7, 133 cm has several distorted layers of wood and organic and contorted to vertical transitions between finer and grained TUFF. The irregular upper boundary of the slump a scour contact. HIC VITRIC TUFF is composed of ≤30% altered glass 20-30% lithics, scattered accretionary and armored lapilli, 80% matrix. Glass shards and lithics are less abundant in ined, moderately sorted layers. The glass shards are th green in the organic-rich layers at the bottom of Section cm) and Section 7. They are white, dull blue and vitreous ith black rims in the rest of the core. The shards are to subrounded, but predominantly subangular, and ≤3 mm. hards have fresher interiors than smaller ones; a few are y vesicular and sparsely phyric. Lithics are angular to ded, but predominantly subangular and subelongate. are dominated by pinkish gray basalt with vesicles filled with lony. Light gray lithic lapilli have pumiceous texture and sicles are also filled with chalcedony; others are ase-rich and contain rare pyrite. Accretionary and d lapilli, ≤6 mm, are most abundant at the bottom of Section are deformed to subrounded shapes and some are broken. trix consists mostly of fine glass shards and lithic ash.

CORE DESCRIPTIONS SMEAR SLIDES, SITE 118

Site 1	Site 1184 Smear Slides																																		
Site	Hole	Core	Type	Section	Top (cm)	Depth (mbsf)	Lithology	T - Sand	T - Silt	T - Clay	M - Biotite	M - Calcite	M - Carbonate	M - Clay	M - Feldspar	M - Glauconite	M - Opaques	M - Plagioclase	M - Pyrite	M - Pyroxene	M - Quartz	M - Unspecified Minerals	M - Volcanic Glass	M - Zeolite	B - Diatoms	B - Ebridians	B - Foraminifers	B - Nannofossils	B - Radiolarians	B - Siliceous Sponge Spicules	B - Silicoflagellates	B - Sponge Spicules	B - organic debris	R - Lithic Fragments	Comments
1184	Δ	2	D	1	75	125 15	D	40	40	20	1														1	I	45	15	5	2	2				T
1184	A	2	R	3	50	137.9	D	50	40	10															1		50	37	5	5	3				
1184	A	2	R	3	36	137.76	D	50	40	10																	50	37	5	6	2				
1184	Δ	2	R	3	48	137.88	D	40	40	20																	45	50	2	3					
1184	A	3	R	2	101	146.51	D	30	5	65															1		30	53	1	15					
1184	A	4	R	6	63	161.83	D	10	40	50															-		15	80	-	10					
1184	A	4	R	2	16	155.36	M	30	20	50																	40	50	5	4	1				maybe 2 glass pieces
1184	A	4	R	6	63	161.83	D	10	40	50																	10	00	3	2	-				Ind be 2 glass preces
1184	A	5	R	1	4	163.34	M	15	40	45																	15			+					
1184	A	5	R	3	95	167.25	M	10	40	50													1				10	85	2	2					
1184	A	5	R	3	72	167.02	D	15	45	40													-						-	2					
1184	А	5	R	1	4	163.34	М	15	40	45													5					75							
1184	А	5	R	3	72	167.02	D	15	45	40																	20	75	3						
1184	А	5	R	1	4	163.34	М	15	40	45																			4	1					
1184	А	6	R	3	50	176.4	D	10	10	80		5											10				13	68	2	2					clay sized fragments possibly micas
1184	А	6	R	3	57	176.47	D	10	5	85		5										3					10	80	2						
1184	А	7	R	2	150	185.5	М	15	50	35													10				15	65	6	4					
1184	А	7	R	6	65	190.65	D	15	12	73																	24	73	1	2					
1184	Α	8	R	3	50	195.3	D	25	20	55																	44	55		1					
1184	А	9	R	1	120	202.3	D	50	35	15		35										25	15	24				1							
1184	Α	27	R	5	29	351.87	М	30	70								10						70	20											
1184	Α	31	R	1	15	384.55	М	20	70	10							30						60	10			0	0							
1184	А	31	R	1	89	385.29	D	30	60	10							30						65	5				0							
1184	А	46	R	1	27	529.47	М	0	30	70							49	1					20	30											

Site	Site 1184 Volcaniclastic Thin Section Descriptions													
For 1	Proportions: ","	" repre	sents same as,	otherwise "<	" and ">" are u	ised	Dist			(let				
TS#	Thin section	Unit	Described by	Rock name	Lithic clasts	Vitric clasts	crystals	Accretionary or armored lapilli	Figure number or Photomicrograph ID#	Clast proportions	Comments			
87	192-1184A- 11R-3, 123-125	IIA	CRN, PRC, LMC, WJC, MG, JH	Coarse vitric lithic tuff	Basalt (vesicular, nonvesicular; aphyric > phyric)	Subround shards (nonvesicular >> vesicular)	Clinopyroxene > plagioclase, titanomagnetite > sulfide	None	See Chapter 4, Figure F49, Figure F59 See photomicrographs 1184A-040, 1184A-051, 1184A-066	Lithic 55%, vitric 30%, discrete crystals 1%, matrix 14%	Some basalt clasts contain plagioclase replaced by zeolite. Glass is altered to smectite and replaced by zeolite in places. Many apparent fragments could be tachylite. The matrix is fine ash altered to zeolite, smectite and minor calcite. Discrete crystals are unaltered and fragmental. Titanomagnetite is partially altered to maghemite.			
88	192-1184A- 12R-4, 8-11	ШΑ	CRN, LMC, PRC, RVW, JH	Highly altered lithic vitric tuff (boundary between green-brown color change)	Basalt (nonvesicular, aphanitic)	Subround shards (nonvesicular >> vesicular)	Clinopyroxene > titanomagnetite	None		Lithic 5%, vitric 70%, discrete crystals 1%, matrix 24%	Glass is completely altered to smectite; several glass clasts appear to be devirtified and occasionally replaced by zeolite. The matrix is fine ash altered to smectite and zeolite with <1% calcite. Rare tachylite clasts are present. Clinopyroxene is unaltered and fragmental. Titanomagnetite is partially altered to maghemite. Finely disseminated sulfide blebs (<0.005 mm) are present in the matrix.			
89	192-1184A- 16R-CC, 7-10	IIB	CRN, PRC, RVW, LMC, JH	Highly altered lithic vitric tuff	Basalt (vesicular >> nonvesicular; aphyric > phyric)	Blocky glass (vesicular > nonvesicular)	Clinopyroxene, plagioclase > titanomagnetite > sulfide	None	See Chapter 4, Figure F35, Figure F61, Figure F62, Figure F63 See photomicrographs 1184A-042, 1184A-044, 1184A-045, 1184A-046, 1184A-047, 1184A-048, 1184A-047, 1184A-050, 1184A-052, 1184A-053, 1184A-054, 1184A-063, 1184A-064	Lithic 35%, vitric 50%, discrete crystals 19%, matrix 15%	Scoriaceous basalt fragments and rare phenocrysts of clinopyroxene and plagioclase are present. Highly vesicular clasts contain smaller clasts of nonvesicular, aphyric basalt. Lithic clasts have altered rims. Glass is completely altered to smectite and replaced by zeolite or celadonite in places. One tachylite clast is observed. Titanomagnetite is partially replaced by maghemite. Pyrite seen in the matrix and occasionally rims vesicles in clasts. The matrix is primarily composed of fine ash altered to zeolites and smectite. Vesicles in the scoriaceous basalt fragments are generally filled by zeolite.			
90	192-1184A- 17R-3, 64-67	IIB	PRC, CRN, LMC, SPI	Vitric lithic lapilli-tuff	Reworked vitric lithic lapilli- tuff (highly altered, consisting mainly of poorly preserved lithics and glass); scoriaceous basalt;	Angular shards have less altered cores; subround shards are completely altered	Titanomagnetite/ maghemite > plagioclase > clinopyroxene	A few armored lapilli with glass nucleii.		Lithic 50%, vitric 20%, discrete crystals 5%, matrix 20%, cement 5%	This section is made up chiefly of reworked clasts of highly altered vitric lithic lapilli-tuff enclosed in a slightly less altered (judging from the appearance of the glass shards) vitric lithic lapilli-tuff. The reworked clast consists of scoriaceous basalt, large grains of titanomagnetite, highly altered glass, lithic fragments, and rare, small plagioclase and clinopyroxene crystals. The clast is mantled by a thin layer of ash. The host material has a higher abundance of less altered glass and clinopyroxene, but a lower abundance of titanomagnetite composes ~3% of the rock; it is concentrated mainly in the reworked clast. Matrix is fine ash altered to smectite. Zeolite, particularly analcime, forms the cement.			

Site	Site 1184 Volcaniclastic Thin Section Descriptions For Proportions: "." represents same as, otherwise "<" and ">" are used													
For I	Proportions: ","	' repre	sents same as, o	otherwise "<	" and ">" are u	ised	Discusto	A	Diaman and how on	Clast				
TS#	Thin section	Unit	Described by	Rock name	Lithic clasts	Vitric clasts	crystals	armored lapilli	Photomicrograph ID#	proportions	Comments			
91	192-1184A- 17R-3, 71-74	IIB	CRN, PRC, LMC, JH, TS	Highly altered vitric lithic tuff	Basaltic (vesicular > nonvesicular; aphyric >> phyric)	Angular shards have fresher cores (nonvesicular) >> vesicular); subround shards are completely altered	Plagioclase > clinopyroxene >> titanomagnetite >> sulfide	None		Lithic 50%, vitric 35%, discrete crystals 1%, matrix 15%	Vesicular lithic fragments are commonly scoriaceous and contain smaller clasts of nonvesicular, aphyric basalt. Lithic clasts have a quenched rim. Glass is completely altered to smectite and locally replaced by zeolite. Most discrete plagioclase crystals are replaced by zeolite, although rare, fresh plagioclase also occur. Some discrete plagioclase crystals are zoned. Vesicles are usually filled with zeolite. Titanomagnetite is partially altered to maghemite. Sulfide is present as micron-sized blebs in matrix. One clast contains a relatively high proportion (>2%) of titanomagnetite only slightly altered to maghemite. Fine ash altered to smectite forms the matrix.			
92	192-1184A- 18R-6, 43-45	IIB	MG, CRN, LMC	Lithic vitric tuff	Basalt (fine- grained; gray) > reworked clasts of lithic vitric tuff	Subround nonvesicular shards (altered)	Plagioclase > clinopyroxene > titanomagnetite	None		Lithic 25%, vitric 45%, discrete crystals ~1%, matrix 19%, cement 10%	This fine-grained lithic vitric tuff is composed mainly of glass altered to smectite. Some reworked clasts of lithic vitric tuff are present. They range in size from 0.5 to 1.2 mm, and appear to be broken-up pieces of the host rock. Some lithic clasts within the reworked clasts have oxidation rims. Smectite has replaced the fine ash in the matrix. Zeolite fills a vein and forms the cement.			
93	192-1184A- 20R-3, 34-37	IIB	CRN, RVW, PRC, JH, TS	Coarse lithic vitric tuff	Basalt (vesicular > nonvesicular; aphyric > phyric; aphanitic > fine grained)	Subround shards (vesicular, nonvesicular)	Clinopyroxene >> plagioclase, titanomagnetite	None	See Chapter 4, Figure F40, Figure F41 See photomicrographs 1184A-067, 1184A-068	Lithic 30%, vitric 50%, discrete crystals 1%, matrix 19%	Clinopyroxene and rare plagioclase phenocrysts are present in the aphanitic basalt clasts; plagioclase is replaced by zeolite. One diabase clast is present and contains unaltered clinopyroxene plagioclase replaced by zeolite. One fine-grained intersertal basalt clast is present. Vesicles are filled with zeolite. Rare discrete plagioclase crystals are zoned. Titanomagnetite is altered to maghemite. Glass is altered to smectite and is partially replaced by zeolite. One possible tachylite clast is present. The matrix is fine ash predominantly replaced by zeolite, calcite, and smectite. Pyrite is present in the matrix and in filled vesicles.			
94	192-1184A- 20R-5, 41-44	IIB	CRN, MG, LMC, JH, WJC, RVW, TS	Altered coarse vitric lithic tuff	Basalt (vesicular > nonvesicular; phyric > aphyric; fine grained > aphanitic)	Subangular shards (nonvesicular > vesicular)	Clinopyroxene > plagioclase, titanomagnetite >> sulfide	None	See Chapter 4, Figure F36, Figure F37 See photomicrographs 1184A-055, 1184A-056, 1184A-057	Lithic 45%, vitric 25%, discrete crystals 2%, matrix 18%, cement 10%	Contains a large diabase clast with subophitic texture. Discrete crystals of unaltered plagioclase and twinned clinopyroxene are present. Titanomagnetite is partially to totally altered to maghemite. Glass is altered to smectite and partially replaced by zeolite. The matrix is fine ash predominantly replaced by zeolite and smectite, with rare sulfide. The cement is composed of calcite.			
95	192-1184A- 21R-2, 92-94	IIB	PRC, CRN, LMC	Lithic vitric lapilli-tuff	Basalt (scoriaceous > nonvesicular > sparsely phyric); light colored with abundant opaque minerals.	Blocky glass (aphyric, nonvesicular > vesicular > sparsely phyric). Some show concentric alteration with lighter-colored centers.	Clinopyroxene > plagioclase > Fe- oxyhydroxide > titanomagnetite >> sulfide	None	See Chapter 4, Figure F64, Figure F65, Figure F66	Lithics 35%, vitrics 50%, discrete crystals ~2%, matrix 13%	This section was taken near a calcite vein; a greenish halo parallels the vein. In the halo, almost all primary material is altered to green smectite. Outside the halo, primary phases are altered to brown smectite which also replaces the fine ash of the matrix. Minor maghemite is present in altered glass. Rare tachylite clasts are present.			

Site 1184 Volcaniclastic Thin Section Descriptions											
For I	Toportions: ","	repre	sents same as,	otnerwise "<	" and ">" are u		Discrete	Accretionary or	Figure number or	Clast	
15#	Thin section	Unit	Described by	Rock name	Lithic clasts	Vitric clasts	crystals	armored lapilli	Photomicrograph ID#	proportions	Comments
96	192-1184A- 22R-CC, 9-13	IIC	WJC, CRN, TS, LMC, PRC, SPI	Tachylite- rich lapillistone	Basalt (scoriaceous > nonvesicular > sparsely phyric).	Tachylite (non- vesicular > vesicular; sparsely phyric > aphyric); trachytic texture	Clinopyroxene	None	See Chapter 4, Figure F52, Figure F53, Figure F54 See photomicrograph 1184A-075	Vitric 95%, cement 5%	This tachylite-rich lapillistone shows a trachytic texture. This flow texture crosscuts some relict grain boundaries and excludes other quenched clasts. The altered lithics contain larger crystals than the tachylite. Very small crystals (<0.0005 mm) of titanomagnetite and/or maghemite are disseminated throughout the now devitrified and altered glass, accounting for the overall opacity of the slide. Zeolite present throughout the thin section replaces some plagioclase microlites and forms cement between grains. Smectite replaces the glass and clinopyroxene.
97	192-1184A- 31R-1, 141-142	IID	MG, WJC, LMC, CRN, TS	Lithic vitric tuff	Basalt (dark fine grained > fine-grained Fe- Ti basalt)	Angular, nonvesicular, altered and devitrified shards >> subround altered vesicular glass shards	Clinopyroxene > plagioclase > titanomagnetite	Ash-sized accretionary and armored lapilli present		Lithic 10%, vitric 40%, discrete crystals ~1%, cement 15%, matrix 34%	This highly altered fine-grained tuff contains several small (<2 mm) accretionary and armored lapilli. Zeolite forms the cement and the fine ash of the matrix has been replaced by smectite.
98	192-1184A- 31R-6, 80-84	IID	RVW, LMC, TS, CRN	Lithic vitric tuff	Nonvesicular basalt > fine- grained tuff > diabase	Tachylite (vesicular > nonvesicular) > angular shards (nonvesicular >> vesicular)	Clinopyroxene > plagioclase > titanomagnetite	None		Lithic 35%, vitric 45%, discrete crystals 2%, matrix 13%, cement 5%	Layering in this thin section is caused by grain-size variations. Zeolite forms the cement and the fine ash matrix has been altered to smectite. Glass is replaced by brown smectite (and, rarely, red-brown Fe- oxyhydroxide). Maghemite has replaced titanomagnetite. Elongate clasts are aligned.
99	192-1184A- 31R-7, 40-43	IID	PRC, LMC, TS, CRN, SPI	Highly altered fine to medium vitric lithic tuff	Basalt (nonvesicular > vesicular; sparsely phyric > aphyric; some show glomerophyric texture); reworked clasts; Fe-Ti basalt	Angular to subangular, nonvesicular shards > blocky vesicular shards; aphyric >> sparsely phyric; some show trachytic texture	Plagioclase > clinopyroxene >> titanomagnetite, sulfide	None	See Chapter 4, Figure F29, Figure F32, Figure F39, Figure F51	Lithic 45%, vitric 35%, discrete crystals 1%, matrix 19%	This sample was taken from a fine-grained layer we analyzed by ICP-AES. Most lithics appear to be ordinary basalt but a few plagioclase-titanomagnetite-rich fragments may be more fractionated Fe-Ti basalt; several vesicular lithics contain plagioclase and clinopyroxene phenocrysts. Some reworked clasts are also present. Plagioclase is up to 0.85 mm and clinopyroxene is up to 0.5 mm. Some plagioclase is altered to smectite. The fine ash matrix has been altered to analcime and smectite.
100	192-1184A- 36R-7, 74-76	IIE	MG, PRC, CRN, SPI	Highly altered fine vitric lithic tuff	Basalt (nonvesicular; dark gray)	Angular, nonvesicular shards (altered)	Plagioclase > clinopyroxene >> pyrite > titanomagnetite	Several accretionary lapilli (>2 mm) are observed as faint outlines.		Lithic 35%, vitric 25%, discrete crystals 1%, matrix 39%	The thin section is traversed by several veins filled with zeolite. The matrix is fine ash altered to smectite. Clasts are fairly well- sorted (maximum clast size is 1.7 mm). The largest fragment is an accretionary lapillus (2.8 mm). Finely disseminated pyrite is present in the matrix. This sample was also analyzed by ICP-AES.
101	192-1184A- 38R-1, 80-82	IIE	MG, PRC, CRN	Altered fine to medium vitric lithic tuff	Altered basalt (nonvesicular >> vesicular) > diabase	Angular, nonvesicular shards (altered)	Plagioclase > clinopyroxene >> titanomagnetite	None		Lithic 45%, vitric 30%, discrete crystals <<1%, matrix 25%	This sample contains slightly to highly altered glass shards and unaltered discrete crystals of plagioclase and clinopyroxene. The slightly altered glass is fractured. One large clinopyroxene (0.65 mm) contains partially devitrified glass inclusions. The fine ash of the original matrix has been replaced by smectite and zeolite.

Site 1184 Volcaniclastic Thin Section Descriptions											
For Proportions: "," represents same as, otherwise "<" and ">" are used											
TS#	Thin section	Unit	Described by	Rock name	Lithic clasts	Vitric clasts	Discrete crystals	Accretionary or armored lapilli	Figure number or Photomicrograph ID#	Clast proportions	Comments
102	192-1184A-	IIE	WJC, PRC, TS,	Highly	Altered basalt	Blocky altered	Plagioclase >	Rare armored lapilli	See Chapter 4, Figure F31,	Lithic 50%, vitric	The lithic fragments are mainly basaltic and
	40R-3, 37-41		CRN, LMC	altered fine to medium vitric lithic tuff	(nonvesicular > vesicular) > unaltered basalt (nonvesicular) > diabase	shards (nonvesicular, vesicular); a few shards are sparsely phyric	clinopyroxene >> titanomagnetite >> sulfide	and ash-sized accretionary lapilli	Figure F47 See photomicrograph 1184A-089	30%, matrix 20% (accretionary and armored lapilli < 1% ; discrete crystals << 1%)	most are highly altered, but a few are relatively unaltered. Plagioclase and clinopyroxene are present in the matrix and in the basalt clasts. A few titanomagnetite grains are altered to maghemite. Smectite, analcime and other zeolites have replaced the original fine ash of the matrix. This sample was also analyzed by ICP-AES.
103	192-1184A- 41R-3, 29-33	IIE	PRC, TS, CRN, LMC	Altered fine- to medium vitric lithic tuff	Basalt (vesicular > non-vesicular; aphyric > phyric; some are glomerocrystic)	Most shards have been plucked out of the thin section; few present shards (nonvesicular > vesicular; aphyric >> phyric)	Plagioclase > clinopyroxene > titanomagnetite > Fe- oxyhydroxide > sulfide	None	See Chapter 4, Figure F38	Lithic 45%, vitric 35%, discrete crystals <<1%, matrix 15%, cement 5%	Most lithics are scoriaceous vesicular basalt. The largest clast is a Fe-Ti basalt with glomerocrystic elongated/skeletal plagioclase laths and anhedral clinopyroxene. Plagioclase and clinopyroxene crystals are present both in the matrix and basalt; plagioclase is up to 0.8 mm and clinopyroxene is up to 0.35 mm. Vesicles in altered glass are filled with zeolite. Smectite has replaced the fine ash in the matrix. The cement is composed of zeolite. A few discrete titanomagnetite crystals exhibit alteration to maghemite.
104	192-1184A- 42R-1, 147-150	IIE	RVW, JGF, PRC, TS, CRN, LMC	Lithic vitric tuff	Altered basalt (aphanitic > holocrystalline; some are plagioclase- phyric; nonvesicular, vesicular). One rip-up clast with Fe-oxide coating.	Subangular shards; altered rims and unaltered interiors; nonvesicular >> vesicular	Clinopyroxene > plagioclase (~An80); one composite of pyroxene and plagioclase.	None	See Chapter 4, Figure F33, Figure F48, Figure F50, Figure F60, Figure F67 See photomicrographs 1184A-084, 1184A-085, 1184A-088	Lithic 25%, vitric 35%, discrete crystals <1%, matrix 40%	One glass clast contains microcrystalline plagioclase and clinopyroxene. Opaque minerals define a flow texture in another glass clast. Discrete plagioclase and clinopyroxene crystals (<0.4 mm), altered glass, rare pyrite and titanomagnetite are present in the matrix. Smectite has replaced the fine ash of the matrix. A few titanomagnetite crystals are altered to maghemite. This sample was also analyzed by ICP-AES.
105	192-1184A- 45R-6, 82-85	IIE	PRC, LMC, CRN	Lithic vitric lapilli-tuff	Basalt (scoriaceous > dark fine grained > fine- grained Fe-Ti)	Unaltered, subround, nonvesicular shards > subangular, altered, vesicular shards > subround, altered, nonvesicular shards	Plagioclase > clinopyroxene > sulfide > titanomagnetite	Armored lapilli > accretionary lapilli and ash-sized accretionary lapilli	See Chapter 4, Figure F64, Figure F68, Figure F69 See photomicrographs 1184A-153, 1184A_156, 1184A-157	Lithic 10%, vitric 30%, discrete crystals -1%, matrix 45%, accretionary lapilli 14%	This slide contains many unaltered, nonvesicular glass fragments. Few vesicular altered glass fragments are also visible. Most lithic clasts are scoriaceous basalts, but minor fine-grained basalts are also present. Smaller glass clasts are completely palagonitized. The matrix contains smectite and minor zeolite replacing the fine ash. Armored lapilli have nuclei of vesicular glass, scoriaceous basalt, fine-grained basalt and tuff fragments. Part of one large accretionary lapillus (~5 mm diameter) is present at the edge of the section.