12. DATA REPORT: INTERLABORATORY ANALYSES OF FRESH AND ALTERED DACITES FROM OCEAN DRILLING PROGRAM LEG 193¹

D.J. Miller,² R.A. Binns,³ and H. Paulick⁴

INTRODUCTION

Two interlaboratory reference samples were prepared from material collected during Ocean Drilling Program (ODP) Leg 193. These samples are composites of dacite representing fresh lava from Site 1191 (Sample 1191A) and altered lava from Site 1188 (Sample 1188B). The sample from Site 1188 was prepared from two fist-sized pieces of altered dacite recovered in the advanced diamond core barrel while attempting to deepen the hole. These pieces were not curated since we could not know where in the 72 m of penetration the pieces originated. The sample from Site 1191 was prepared as a composite by picking small fragments of fresh dacite from the working halves of the three cores recovered from Hole 1191A. No curated depth is assigned to either sample. These samples were collected and prepared only for comparison of analytical results from various laboratories.

Site 1188 is at the Snowcap hydrothermal site (Fig. F1), an area with low-temperature diffuse venting. The interlaboratory reference sample prepared from this site is pervasively altered, bleached from white to light gray, and sparsely vesicular. Rare vesicles are lined by anhydrite, with minor pyrite. Site 1191 is situated in the Satanic Mills hydrothermal site between the Snowcap (Site 1188) and Roman Ruins (Site 1189) hydrothermal sites (Fig. F1). The material in Sample 1191 is virtually aphyric. Rare plagioclase, clinopyroxene, and magnetite microphenocrysts are present but are <0.5% of the volume of the rock. The most F1. Hydrothermal deposits, p. 6.

¹Miller, D.J., Binns, R.A., and Paulick, H., 2006. Data report: Interlaboratory analyses of fresh and altered dacites from Ocean Drilling Program Leg 193. *In* Barriga, F.J.A.S., Binns, R.A., Miller, D.J., and Herzig, P.M. (Eds.), *Proc. ODP, Sci. Results*, 193, 1–9 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/ publications/193_SR/VOLUME/ CHAPTERS/207.PDF>. [Cited YYYY-MM-DD]

²Integrated Ocean Drilling Program, Texas A&M University, 1000 Discovery Drive, College Station TX 77845-9547, USA.

miller@iodp.tamu.edu

 ³Division of Exploration and Mining, Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO Box 136, North Ryde NSW 1670, Australia.
⁴Mineralogisches und Petrologisches Institut, Universität Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany.

Initial receipt: 8 October 2003 Acceptance: 4 January 2006 Web publication: 9 June 2006 Ms 193SR-207

abundant microphenocryst phase is plagioclase, and the largest laths are <1 mm long.

After Leg 193, the samples were trimmed with a rock saw to remove weathered surfaces, cleaned in deionized water, dried overnight at 100°C, crushed, and then milled in an alumina-ceramic shatterbox vessel at the ODP shore-based laboratory. Aliquots of the powders were distributed to requesting shipboard scientists for analysis. Analyses reported in this paper were performed at the Commonwealth Scientific and Industrial Research Organisation (CSIRO; Sydney, Australia), Technische Universität Berkakademie Freiberg, Universität Bonn (Germany; listed in Table **T1** as "TU Freiberg" analyses), and Acme Analytical Laboratories, Vancouver, BC (Canada; listed in Table **T1** as "TAMU analyses").

ANALYTICAL METHODS

Commonwealth Scientific and Industrial Research Organisation

Inductively Coupled Plasma-Atomic Emission Spectrometer

The CSIRO analyses were performed on an inductively coupled plasma–atomic emission spectrometer (ICP-AES) calibrated using aqueous elemental standard solutions with a calibration range to suit samples compositions. Samples were decomposed in multiacid solutions and analyzed along with at least two blanks and international reference materials. For silicon, a separate digestion was prepared in a sealed teflon container. Major element oxides reported in weight percent are SiO₂, TiO₂, Al₂O₃, Fe₂O₃(t), MnO, MgO, CaO, Na₂O, K₂O, and P₂O₅. Trace elements reported in parts per million are Li, Be, S, Sc, V, Cr, Co, Ni, Cu, Zn, As, Sr, Y, Zr, Mo, Ag, Cd, Sb, Ba, La, Yb, and Pb.

Inductively Coupled Plasma–Mass Spectrometer

CSIRO uses a quadruple design inductively coupled plasma-mass spectrometer (ICP-MS) as the detection device, and the entire mass range from 1 to 269 atomic mass units may be scanned in milliseconds. Samples were prepared as for ICP-AES. Trace elements reported in parts per million are Sc, V, Cr, Co, Ni, Zn, As, Rb, Y, Mo, Cd, In, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, and Pb. Trace elements reported in parts per billion are Sb, Te, Cs, Tl, Bi, Th, and U.

X-Ray Fluorescence

X-ray fluorescence (XRF) was used to measure major and trace elements on fused beads. Beads were prepared with LiBO₂ flux on an automated fusion machine casting into 40 mm beads. Oxidizing conditions were used to prevent loss of sulfur and reduction of metals from the sample melt. Chlorine is lost from the glass and is only indicative of the concentration in the sample. The calibrations were derived from processing a large set of international and in-house reference and pure chemical samples; analyses are routinely checked with in-batch reference samples and minimum 10% repeat samples. Loss on ignition analysis was done on a separate portion of the sample at 1050°C. Major element oxides reported in weight percent are SiO₂, TiO₂, Al₂O₃, T1. Results comparison, p. 7.

 $Fe_2O_3(t)$, MnO, MgO, CaO, Na₂O, K₂O, and P₂O₅. Trace elements reported in parts per million are S, Cl, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, and Pb.

Neutron Activation Analyses

Neutron activation analyses (NAA) were performed at Becquerel Laboratories, Lucas Heights, NSW Australia. Fe₂O₃, Na₂O, and K₂O are reported as weight percent. Trace elements reported in parts per million are Sc, Cr, Co, Zn, Ga, Ge, As, Se, Br, Rb, Zr, Mo, Ag, Cd, Te, Cs, Ba, La, Ce, Sm, Eu, Yb, Lu, Hf, Ta, and Hg. Trace elements reported in parts per billion are Sb, Ir, Au, Th, and U.

Technische Universität Berkakademie Freiberg

X-Ray Fluorescence

Major element oxide and trace elements were measured by XRF on fused beads. The major elements SiO_2 , TiO_2 , Al_2O_3 , $Fe_2O_3(t)$, MnO, MgO, CaO, Na₂O, K₂O, and P₂O₅ are reported as weight percent oxides and Ba, Rb, Sr, Y and Zr are reported in parts per million.

Inductively Coupled Plasma–Mass Spectrometer

TiO₂, Al₂O₃, Fe₂O₃, MnO (reported in weight percent) and trace elements (Sc, V, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sb, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Tl, Pb, Bi, Th, and U, reported in parts per million) were analyzed by ICP-MS. Solutions were prepared using hydrofluoric and nitric acids under atmospheric conditions.

Acme Analytical Laboratories

Inductively Coupled Plasma–Atomic Emission Spectrometer

Samples were prepared by fusing with LiBO₂ flux and dissolving the molten sample in acid. Standard reference materials (U.S. Geological Survey [USGS] BIR-1, BHVO-1, and W-2) and blanks were prepared using similar techniques. The major element oxides SiO₂, TiO₂, Al₂O₃, Fe₂O₃(t), MnO, MgO, CaO, Na₂O, K₂O, and P₂O₅ are reported in weight percent. Sc and Ba are reported in parts per million.

Inductively Coupled Plasma–Mass Spectrometer

Samples for trace element analysis were prepared in the same manner as those for ICP-AES analyses. V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Cs, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, and Pb are reported in parts per million. Au is reported in parts per billion.

RESULTS

Major element oxide data from the three laboratories compare favorably. Totals for the altered sample (Sample 1188B) are low, probably because of the presence of anhydrite and pyrite. Only a few trace elements show some discrepancy, and possible reasons are indicated in Table T1.

Rare earth elements show disparity for Gd, Ho, Er, and Yb. USGS standard reference materials analyzed as unknowns with the Acme Analytical Laboratories samples are shown in Table **T2**. This compilation suggests that the samples analyzed were homogeneous and that published bulk rock analyses from these three laboratories on samples collected during Leg 209 are congruous.

ACKNOWLEDGMENTS

This research used samples provided by the Ocean Drilling Program (ODP). ODP is sponsored by the U.S. National Science Foundation (NSF) and participating countries under management of Joint Oceanographic Institutions (JOI), Inc. Funding for this research was provided by grants to DJM (United States Science Support Panel), RB, and HP. T2. Standard reference values, p. 9.

REFERENCE

Binns, R.A., Barriga, F.J.A.S., Miller, D.J., et al., 2002. *Proc. ODP, Init. Repts.*, 193 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML]

Figure F1. Distribution of hydrothermal deposits within the PACMANUS field along the crest of Pual Ridge. Names are assigned to active sites containing massive sulfide chimneys. Figure is based on bottom-tow photography and submersible dive observations during the PACMANUS (*Franklin;* 1991, 1993, 1996, 1997), EDISON-I (*Sonne;* 1994), ManusFlux (*Yokosuka;* 1995), BIOACCESS (*Natsushima;* 1996, 1998), and KO-DOS'99 (*Onnuri;* 1999) cruises (Binns, Barriga, Miller, et al., 2002).

Fable T1. Comparison of analytical results for interlaboratory samples prepared from Leg 193 core material. (See table notes. Continued on new	٢t
page.)	

		Major element oxide (wt%)														Trace element (ppm)									
Sample	Laboratory	Method	SiO ₂	TiO ₂	Al_2O_3	Fe_2O_3	MgO	CaO	MnO	Na ₂ O	K ₂ O	P_2O_5	LOI	Total	S total*	Li	Ве	Cl*	Ge	Se	Br	In			
1188B	CSIRO	ICP-AES XRF ICP-MS	64.86 64.85	0.55 0.55	13.14 13.32	4.15 4.4	3.93 3.92	1.25 1.28	0.06 0.06	2.22 2.35	0.39 0.37	0.15 0.14	4.76 4.76	95.46 96	24,960 20,190	<5	<2	520	1.9			130			
		NAA				4.7				2.4	<0.24									<5	2.7				
	TU Freiberg TAMU	XRF ICP-MS ICP-AES	67.11 65.7	0.6 0.63 0.59	13.66 13.3	4.99 5.7 4.6	3.99 3.91	1.31 1.33	0.06 0.05 0.06	2.17 2.29	0.4 0.38	0.14 0.16	3.7 3.9	98.13 96.22	25,400										
		ICP-MS																							
1191A	CSIRO	ICP-AES XRF ICP-MS NAA	66.76 67.57	0.59 0.6	13.81 13.93	4.29 4.57	0.83 0.87	2.89 2.92	0.12 0.13	4.83 5.09	1.73 1.71 1.3	0.14 0.13	1.46 1.46	97.45 98.98	274 120	13	<2	5,870	2.5	<5	13.5	70			
	TU Freiberg	XRF ICP-MS	68.22	0.63 0.7	14.1	4.72 5.9	0.83	2.96	0.13 0.11	4.83	1.74	0.13	1.44	99.73	400						. 515				
	TAMU	ICP-AES ICP-MS	68.08	0.63	13.91	4.73	0.89	3.02	0.12	4.88	1.76	0.13	1.5	99.65											

												Trace ele (ppr	ement n)								
Sample	Laboratory	Method	Te	Hg	Cs	Ва	Cu	Pb	Zn	Ag	As	Ві	Cd	Cr	Co	Ga	Hf	Mo	Nb	Ni	Rb
1188B	CSIRO	ICP-AES				139	111	<50	143	<5	<25		<5	15	6			<5		<10	
		XRF				107	115	37	136					<10	<10	17			<4	<10	<5
		ICP-MS	0.33		0.31			21.2			14.1	0.026	0.28	15	4.9	16.1		2.1		6.2	3.8
		NAA	<1	<5		135			139	<5	16.2		<20	17.1	5.3		3.5	<5			<20
	TU Freiberg	XRF				134			150												7
		ICP-MS			0.3	231	108	26	393	<0.5	17.7	<5	<0.5	29.3	4.4	16.4	2.3	0.89	1.4	9	4
	TAMU	ICP-AES				140															
		ICP-MS					121	21	132						4.5	14.7	3.5		1.5	6.2	3.3
1191A	CSIRO	ICP-AES				348	18	<50	81	<5	<25		<5	13	5			<5		<10	
		XRF				285	18	15	74					<10	<10	17			<4	<10	20
		ICP-MS	<0.17		0.69			5.1			13.9	0.043	0.28	13.8	4.9	16.9		2.1		3.2	27.2
		NAA	<1	<5	0.7	352			<100	<5	3.2		<20	12.4	4.9		3.6	<5			29
	TU Freiberg	XRF				376			83												28
		ICP-MS				411	33	6	300	<0.5	4.5	<5	<0.5	13.5	5.1	18.8	3.7	1.27	1.62	6	31
	TAMU	ICP-AES				353															
		ICP-MS					14	5.6	79						5.2	16.7	3.7		1.7	2.7	28.5

Table T1 (continued).

												Trace e (pr	element om)									
Sample	Laboratory	Method	Sb	Sc	Sr	Та	Th	TI	U	V	Y	Zr	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho
1188B	CSIRO	ICP-AES	<50	6	142					28	13	57	11									
		XRF			160					23	31	111	<10	25								
		ICP-MS	0.77	6.3			0.65	0.14	0.43	31.4	12.9		9.6	22.7	3.3	13.8	3.3	0.93	2.9	0.47	2.4	0.51
		NAA	0.61	12		<1	1.19					<500	9.9	22.4			3.9	1.16				
	TU Freiberg	XRF			153						33	102										
	-	ICP-MS	0.6	9.4	160		1.22	0.09	0.55	26	21	67										
	TAMU	ICP-AES		11.5																		
		ICP-MS			161	0.1				27.5	30.8	102	10.3	22.7	3.2	13.9	4.4	1.13	4.4	0.66	2.89	1.04
1191A	CSIRO	ICP-AES		10	246					22	31	130	13									
		XRF			264					29	33	114	<10	31								
		ICP-MS	0.15	10.9			1.18	0.21	0.66	25.4	32.3		11.1	24.8	3.6	16.5	4.3	1.27	2.9	0.47	2.4	0.51
		NAA	<0.2	11.6		<1	1.14					<500	10.8	25.3			4.3	1.25				
	TU Freiberg	XRF			255						35	110										
	•	ICP-MS	<0.5	16.1	308		1.74	0.21	0.62	21	38	124	11.1	22.9	3.4	14.8	4.1	1.13	4.55	0.73	4.96	1.08
	TAMU	ICP-AES		11.5																		
		ICP-MS			304	0.1				24	37.4	119	11.3	24.8	3.5	17.4	4.4	1.32	4.67	0.89	5.36	1.24

		Trace e (p	element pb)					
Sample	Laboratory	Method	Er	Tm	Yb	Lu	lr	Au
1188B	CSIRO	ICP-AES XRF			<2			
		ICP-MS	1.3	0.19	1.2	0.19		
		NAA			3.3	0.47	<20	5.6
	TU Freiberg	XRF ICP-MS						
	TAMU	ICP-AES						
		ICP-MS	2.14	0.28	2.44	0.38		5.8
1191A	CSIRO	ICP-AES						
		XRF			4			
		ICP-MS	3.5	0.53	3.6	0.58		
		NAA			3.6	0.52	<20	<5
	TU Freiberg	XRF						
	TAN 411	ICP-MS	3.3	0.5	3.5	0.54		
	IAMU	ICP-AES	3.66	0.53	3.7	0.64		

Notes: Sample 1188B is pervasively hydrothermally altered dacite. Sample 1191A is fresh, aphyric rhyodacite. CSIRO = Commonwealth Scientific and Industrial Research Organisation, TU Freiberg = Technische Universität Berkakademie Freiberg, TAMU = Acme Analytical Laboratories. ICP-AES = inductively coupled plasma–atomic emission spectrometer, XRF = X-ray fluores-cence, ICP-MS = inductively coupled plasma–magnetic spectrometer, NAA = neutron activation analysis. * = possible loss in fusion. † = uncertain value.

Table T2. U.S. Geologic Survey standard reference material reported and analyzed va	lues.
---	-------

						Major e	lement o	ide (wt%)							Trace	element	(ppm)			
Sample	Method	SiO ₂	TiO ₂	AI_2O_3	Fe_2O_3	MgO	CaO	MnO	Na ₂ O	K ₂ O	P_2O_5	LOI	S total	Li	Ве	Cl	Se	Cs	Ва	Cu	Pb
BIR-1	Reported value	47.96	0.96	15.5	11.3	9.7	13.3	0.175	1.82	0.03	0.021			3.6	0.58*	0.26*			7*	125	3*
	ICP-AES ICP-MS	47.62	0.97	15.5	11.2	9.55	13.37	0.16	1.78	0.02	0.03	0.1									
BHVO-1	Reported value	49.94	2.71	13.8	12.23	7.23	11.4	0.17	2.26	0.52	0.273		102*	4.6		92*	0.07*	0.13	139	136*	2.6
	ICP-AES	50.1	2.82	13.6	11.96	6.95	11.5	0.16	2.29	0.52	0.28										
	ICP-MS																	0.1			
Sample	Method	Zn	As	Bi	Cr	Со	Ga	Hf N	b N	Tra i Rb	ace elemer Sb	nt (ppm) Sc	Sr	Та	Th	U	V	Y	Zr	La	Ce
BIR-1	Reported value	70	0.44*		370	52	(.6 0	6* 17	0	0.58*	* 44	110				310	16	18	0.63	1.9
	ICP-MS					52	16.3 (.6 0	5				110				320	16	16	0.68	
	Reported value	105	0.4*	0.02*		45	21 4	.4 19	r	11		31.8	403	1.2	* 1.1		317	28	179	16	39
BHAO-1	ICP-AES																				

		Trace element (ppm)													
Sample	Method	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
BIR-1	Reported value ICP-AES		2.5	1.1*	0.55	1.8		4				1.7	0.26*		
	ICP-MS	0.38	2.4	1	0.54	1.7	0.37	3.4	0.52	1.8	0.25	1.72	0.25		
BHVO-1	Reported value ICP-AES		25	6.2	2.06	6.4*	0.96*	5.2	0.99*	2.42*	0.33*	2	0.29*		
	ICP-MS	5.6	25	6	2.1	6.6	0.97	5.4	1	2.54	0.4	2.1	0.3		

Notes: All analyses were performed at the Acme Analytical Laboratories. ICP-AES = inductively coupled plasma-atomic emission spectrometer, ICP-MS = inductively coupled plasma-magnetic spectrometer. * = informational values.