Arkai, P., 2002. Phyllosilicates in very low-grade metamorphism: transformation to micas. In Mottana, A., Sassi, F.P., Thompson, J.B., Jr., and Guggenheim, S. (Eds.), Micas: Crystal Chemistry and Metamorphic Petrology. Rev. Mineral. Geochem., 46:463–478.
Asada, R., Tazaki, K., Kimura, H., Masta, A., and Barriga, F.J.A.S., 2003. Transmission electron microscopic observation and drilling microbiological core samples from a deep seafloor at hydrothermal vent field. In Tazaki, K. (Ed.), Water and Soil Environments: Biological and Geological Perspectives: Biological and Geological Perspectives. Proc. Int. Symp. Kanazawa Univ. 21st Century COE Program, 294–299.
Bach, W., Roberts, S., Vanko, D.A., Binns, R.A., Yeats, C.J., Craddock, P.R., and Humphris, S.E., 2003. Controls of fluid chemistry and complexation on rare earth element contents of anhydrite from the PACMANUS subseafloor hydrothermal system, Manus Basin, Papua New Guinea. Miner. Deposita, 38(8):916–935.
Barash, M.S., and Kuptsov, V.M., 1997. Late Quaternary palaeoceanography of the western Woodlark Basin (Solomon Sea) and Manus Basin (Bismarck Sea), Papua New Guinea, from planktic foraminifera and radiocarbon dating. Mar. Geol., 142(1–4):171–187. doi:10.1016/S0025-3227(97)00049-2
Bartetzko, A., Klitzch, N., Iturrino, G., Kaufhold, S., and Arnold, J., 2006. Electrical properties of hydrothermally altered dacite from the PACMANUS hydrothermal field (ODP Leg 193). J. Volcanol. Geotherm. Res., 152(1–2):109–120. doi:10.1016/j.jvolgeores.2005.10.002
Bartetzko, A., Paulick, H., Iturrino, G., and Arnold, J., 2003. Facies reconstruction of a hydrothermally altered dacite extrusive sequence: evidence from geophysical downhole logging data (ODP Leg 193). Geochem., Geophys., Geosyst., 4(10):1087. doi:10.1029/2003GC000575
Barriga, F.J., Binns, R.A., and Miller, D.J., 2001. Hydrothermal corrosion: a major pre-ore forming process documented by ODP Leg 193 (PACMANUS, Manus Basin, Papua New Guinea). Eos., Trans. Am. Geophys. Union, 82(47)(Suppl.):OS11A-0339. (Abstract)
Barriga, F.J.A.S., Binns, R.A., and Miller, D.J., 2004. Leg 193: the third dimension of a felsic-hosted, massive sulphide hydrothermal system in a back-arc basin (Pacmanus, Papua New Guinea). Proc. Int. Geol. Congr., 32(2):1425. (Abstract)
Binns, R.A., 2004. Eastern Manus Basin, Papua New Guinea: guides for volcanogenic massive sulphide exploration from a modern seafloor analogue. In McConachy, T.F., and McInnes, B.I.A. (Eds.), Copper-Zinc Massive Sulphide Deposits in Western Australia. CSIRO Explores, 2:59–80.
Binns, R.A., 2005. Strontium and sulfur isotopes in anhydrite and barite from CONDRILL cores at PACMANUS, eastern Manus Basin, Papua New Guinea. In Herzig, P.M., and Petersen, S. (Eds.), Detailuntersuchung der Magmatisch-Hydrothermalen Goldvererzung des Conical Seamount (Papua-Neuguinea) mit Flachbohrungen. BMBF Proj. 03G0166 Final Rep., TU Freiberg: 30–44.
Binns, R.A., Barriga, F.J.A.S., Miller, D.J., et al., 2002. Proc. ODP, Init. Repts., 193: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.193.2002
Binns, R.A., Brodie, P., Fulton, R., Mapham, B., Park, S.H., Parr, J.M., Pinto, A., Rees, C., Subandrio, A., Thomas, S., Wama, J., and Whiting, R., 2002a. Submarine hydrothermal and volcanic activity in the western Bismarck island arc, Papua New Guinea. CSIRO Explor. Min. Rep., 939C.
Binns, R., Dekker, D., and Franzmann, P., 2000. Cruise summary, R/V Franklin FR03/00, Binatang-2000 cruise. CSIRO Explor. Min. Rep., P2005/227.
Binns, R.A., McConachy, T.F., Parr, J.M., and Yeats, C.J., 2002b. The PACMANUS Memoir (P2+). CSIRO Explor. Min. Rep., 1032C [CD-ROM]. Available from: CSIRO Exploration and Mining, PO Box 883, Kenmore QLD 4069, Australia.
Binns, R.A., Parr, J.M., Scott, S.D., Gemmell, J.B., and Herzig, P.M., 1995. PACMANUS: an active seafloor hydrothermal field on siliceous volcanic rocks in the eastern Manus Basin, Papua New Guinea. In Mauk, J.L., and St. George, J.D. (Eds.), Proc. 1995 Pac. Rim Congress. AusIMM Bull., 49–54.
Binns, R.A., and Scott, S.D., 1993. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. Econ. Geol., 88:2226–2236.
Binns, R.A., Waters, J.C., Carr, G.R., and Whitford, D.J., 1996. A submarine andesite-rhyodacite lineage of arc affinity, Pual Ridge, eastern Manus back-arc basin, Papua New Guinea. Eos, Trans. Am. Geophys. Union, 77:119–120.
Bischoff, J.L., and Pitzer, K.S., 1989. Liquid-vapor relations for the system NaCl-H2O: summary of the P–T–x surface from 300° to 500°C. Am. J. Sci., 289:217–248.
Browne, P.R.L., 1978. Hydrothermal alteration in active geothermal fields. Annu. Rev. Earth Planet. Sci., 6:229–248. doi:10.1146/annurev.ea.06.050178.001305
Chatterjee, N.D., Johannes, W., and Leistner, H., 1984. The system CaO-Al2O3-SiO2-H2O: new phase equilibria data, some calculated phase relations, and their petrological applications. Contrib. Mineral. Petrol., 88(1–2):1–13. doi:10.1007/BF00371407
Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K., and van Andel, T.H., 1979. Submarine thermal springs on the Galápagos rift. Science, 203(4385):1073–1083. doi:10.1126/science.203.4385.1073
Cousens, D.R., Ralston, J.A., Hainsworth, D., Matejowsky, E., and Flynn, D., 2003. Magnetic and resistivity measurements on hydrothermal vents. In Yeats, C.J. (Ed.), Seabed Hydrothermal Systems of the Western Pacific: Current Research and New Directions. CSIRO Explor. Min. Rep., 1112F:75–76.
Craddock, P.R., and Bach, W., 2004. Microbeam analyses of rare-earth element (REE) and Sr isotopes of anhydrite veins from the PACMANUS hydrothermal system. Eos., Trans. Am. Geophys. Union, 85(47)(Suppl.):V54A-05. (Abstract)
Douville, E. 1999. Les fluides hydrothermaux oceaniques comportement geochimique des elements traces et des terres rares: processus associes et modelisation thermodynamique [Ph.D. thesis]. Univ. Brest, France.
Douville, E., Bienvenu, P., Charlou, J.L., Donval, J.P., Fouquet, Y., Appriou, P., and Gamo, T., 1999. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim. Cosmochim. Acta, 63(5):627–643. doi:10.1016/S0016-7037(99)00024-1
Francheteau, J., Needham, H.D., Choukroune, P., Juteau, T., Séguret, M., Ballard, R.D., Fox, P.J., Normark, W., Carranza, A., Cordoba, D., Guerrero, J., Rangin, C., Bougault, H., Cambon, P., and Hekinian, R., 1979. Massive deep-sea sulfide ore deposits discovered on the East Pacific Rise. Nature (London, U. K.), 277(5697):523–528. doi:10.1038/277523a0
Gamo, T., Okamura, K., Kodama, Y., Charlou, J.-L., Urabe, T., Auzende, J.-M., Shipboard Scientific Party of the ManusFlux Cruise, and Ishibashi, J., 1996. Chemical characteristics of hydrothermal fluids from the Manus back-arc basin, Papua New Guinea, I. Major chemical components. Eos, Trans. Am. Geophys. Union, 77(22):W116. (Abstract)
Gemmell, J.B., Binns, R.A., and Parr, J.M., 1996. Comparison of sulfur isotope values between modern back-arc and mid-ocean ridge seafloor hydrothermal systems. Eos, Trans. Am. Geophys. Union, 77(22):W117. (Abstract)
Gennerich, H.-H., 2001. Der Tabar-Feni-Inselbogen und sein Plattentektonisches Regime [Ph.D. dissert.]. Universität Bremen.
Giorgetti, G., Monecke, T., Kleeburg, R., and Hannington, M.D., 2006. Low-temperature hydrothermal alteration of silicic glass at the PACMANUS hydrothermal vent field, Manus Basin: an XRD, SEM and AEM-TEM study. Clays Clay Miner., 54(2):240–251. doi:10.1346/CCMN.2006.0540209
Heaney, P.J., 1994. Structure and chemistry of the low-pressure silica polymorphs. In Heaney, P.J., Prewitt, C.T., and Gibbs, G.V. (Eds.), Silica: Physical Behavior, Geochemistry and Materials Applications. Rev. Mineral., 29:1–40.
Heath, S., Yeats, C.J., and Binns, R.A., 2000. Fe-Mn-Si oxides of the PACMANUS seafloor massive sulfide field, eastern Manus Basin, Papua New Guinea. Geol. Soc. Aust. Abstr., 59:217.
Herzig, P.M., Hannington, M.D., and Arribas, A., Jr., 1998. Sulfur isotopic composition of hydrothermal precipitates from the Lau back arc: implications for magmatic contributions to sea-floor hydrothermal systems. Miner. Deposita, 33(3):226–237. doi:10.1007/s001260050143
Herzig, P.M., Humphris, S.E., Miller, D.J., and Zierenberg, R.A. (Eds.), 1998. Proc. ODP, Sci. Results, 158: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.sr.158.1998
Herzig, P.M., Petersen, S., Kuhn, T., Hannington, M.D., Gemmell, J.B., and Skinner, A.C., 2003. Shallow drilling of seafloor hydrothermal systems: the missing link. In Eliopoulos, D.G., et al. (Eds.), Mineral Exploration and Sustainable Development: Rotterdam (Millpress), 103–105.
Hong, J.K., Lee, S.-M., and McConachy, T., 2003. Reflection studies on the plate boundaries in the Bismarck microplate and deep tow magnetics on PACMANUS. In Yeats, C.J. (Ed.), Seabed Hydrothermal Systems of the Western Pacific: Current Research and New Directions. CSIRO Explor. Min. Rep., 1112F:77.
Hopkinson, L., Roberts, S., Herrington, R., and Wilkinson, J., 1999. The nature of crystalline silica from the TAG submarine hydrothermal mound, 26°N Mid-Atlantic Ridge. Contrib. Mineral. Petrol., 137(4):342–350. doi:10.1007/s004100050554
Ishibashi, J., Wakita, H., Okamura, K., Gamo, T., Shitashima, K., Charlou, J.L., Jean-Baptiste, P., and Shipboard Party, 1996. Chemical characteristics of hydrothermal fluids from the Manus back-arc basin, Papua New Guinea, II. Gas components. Eos, Trans. Am. Geophys. Union, 77:W116. (Abstract)
Iturrino, G.J., and Bartetzko, A., 2002. Subsurface fracture patterns in the PACMANUS hydrothermal system identified from downhole measurements and their potential implications for fluid circulation. Eos, Trans. Am. Geophys. Union, 83(47)(Suppl.):T11B-1253. (Abstract)
Jones, J.B., and Segnit, E.R., 1972. Genesis of cristobalite and tridymite at low temperatures. J. Geol. Soc. Aust., 18:419–422.
Kamenetsky, V.S., Binns, R.A., Gemmell, J.B., Crawford, A.J., Mernagh, T.P., Maas, R., and Steele, D., 2001. Parental basaltic melts and fluids in eastern Manus backarc basin: implications for hydrothermal mineralization. Earth Planet. Sci. Lett., 184(3–4):685–702. doi:10.1016/S0012-821X(00)00352-6
Kano, K., Takeuchi, K., Yamamoto, T., and Hoshizumi, H., 1991. Subaqueous rhyolite block lavas in the Miocene Ushikiri formation, Shimane Peninsula, SW Japan. J. Volcanol. Geotherm. Res., 46(3–4):241–253. doi:10.1016/0377-0273(91)90086-F
Ketcham, R.A., and Iturrino, G.J., 2005. Nondestructive high-resolution visualization and measurement of anisotropic effective porosity in complex lithologies using high-resolution X-ray computed tomography. J. Hydrol. (Amsterdam, Neth.), 302(1–4):92–106. doi:10.1016/j.jhydrol.2004.06.037
Kim, J., Lee, I., and Lee, K.-Y., 2004. S, Sr, and Pb isotopic sytematics of hydrothermal chimney precipitates from the eastern Manus Basin, western Pacific: evaluation of magmatic contribution to hydrothermal system. J. Geophys. Res., 109(B12):B12210. doi:10.1029/2003JB002912
Kimura, H., Asada, R., Masta, A., and Naganuma, T., 2003. Distribution of microorganisms in the subsurface of the Manus Basin hydrothermal vent field in Papua New Guinea. Appl. Environ. Microbiol., 69(1):644–648. doi:10.1128/AEM.69.1.644-648.2003
Kisch, H.J., 1991. Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J. Metamorph. Geol., 9:665–670.
Knauth, L.P., and Epstein, S., 1976. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochim. Cosmochim. Acta, 40(9):1095–1108. doi:10.1016/0016-7037(76)90051-X
Kübler, B., 1964. Les argiles, indicateurs de métamorphisme. Rev. Inst. Fr. Pet., 19:1093–1112.
Lackschewitz, K.S., Devey, C.W., Stoffers, P., Botz, R., Eisenhauer, A., Kummetz, M., Schmidt, M., and Singer, A., 2004. Mineralogical, geochemical and isotopic characteristics of hydrothermal alteration processes in the active, submarine, felsic-hosted PACMANUS field, Manus Basin, Papua New Guinea. Geochim. Cosmochim. Acta, 68(21):4405–4427. doi:10.1016/j.gca.2004.04.016
Lee, S.-M. (Ed.), 2003. Multidisciplinary investigation of the western Pacific I (2000–2001). Ocean Polar Res., 24(3).
Macpherson, C.G., Hilton, D.R., Mattey, D.P., and Sinton, J.M., 2000. Evidence for an 18O-depleted mantle plume from contrasting 18O/16O ratios of back-arc lavas from the Manus Basin and Mariana Trough. Earth Planet. Sci. Lett., 176(2):171–183. doi:10.1016/S0012-821X(00)00002-9
Macpherson, C.G., Hilton, D.R., Sinton, J.M., Poreda, R.J., and Craig, H., 1998. High 3He/4He ratios in the Manus backarc basin: implications for mantle mixing and the origin of plumes in the western Pacific Ocean. Geology, 26(11):1007–1010. doi:10.1130/0091-7613(1998)026<1007:HHHRIT>2.3.CO;2
Malahoff, A., Embley, R., Cronan, D.S., and Skirrow, R., 1983. The geological setting and chemistry of hydrothermal sulfides and associated deposits from the Galapagos rift at 86°W. Mar. Min., 4:123–137.
Martinez, F., and Taylor, B., 1996. Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin. Mar. Geophys. Res., 18(2–4):203–224. doi:10.1007/BF00286078
McConachy, T.F., 2002. Preliminary cruise report DaeYang02, RV Onnuri, Lihir-Bismarck Sea, Papua New Guinea. CSIRO Explor. Min. Rep., 1009C.
McPhie, J., Doyle, M., and Allen, R., 1993. Volcanic Textures: A Guide to the Interpretation of Textures in Volcanic Rocks: Hobart (Tasmanian Govt. Printing Office).
Meunier, A., and Velde, B., 2004. Illite—Origins, Evolution and Metamorphism: Heidelberg (Springer-Verlag).
Moss, R., and Scott, S.D., 2001. Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the eastern Manus Basin, Papua New Guinea. Can. Mineral., 39:957–978.
Mottl, M.J., Davis, E.E., Fisher, A.T., and Slack, J.F. (Eds.), 1994. Proc. ODP, Sci. Results, 139: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.sr.139.1994
Parr, J., Yeats, C., and Binns, R., 2003. Petrology, trace element geochemistry and isotope geochemistry of sulfides and oxides from the PACMANUS hydrothermal field, eastern Manus Basin, Papua New Guinea. In Yeats, C. (Ed.), Seabed Hydrothermal Systems of the Western Pacific: Current Research and New Directions. CSIRO Explor. Min. Rep., 1112F:58–64.
Parr, J.M., Murao, S., and Binns, R.A., 1995. A comparison of massive sulfide deposits forming at the PACMANUS (Manus Basin, PNG) and JADE (Okinawa Trough, South China Sea) seafloor hydrothermal fields. AusIMM Proc., 9/95:453–458.
Paulick, H., and Bach, W., 2006. Phyllosilicate alteration mineral assemblages in the active subsea-floor Pacmanus hydrothermal system, Papua New Guinea, ODP Leg 193. Econ. Geol., 101(3):633–650. doi:10.2113/gsecongeo.101.3.633
Paulick, H., and Herzig, P., 2003. Volcanic facies controls on mass transfer at the active, dacite-hosted PACMANUS hydrothermal system, Manus Basin, Papua New Guinea (Ocean Drilling Program Leg 193). In Eliopoulos, D.G., et al. (Eds.), Mineral Exploration and Sustainable Development: Rotterdam (Millpress), 167–170.
Paulick, H., Vanko, D.A., and Yeats, C.J., 2004. Drill core-based facies reconstruction of a deep-marine felsic volcano hosting an active hydrothermal system (Pual Ridge, Papua New Guinea, ODP Leg 193). J. Volcanol. Geotherm. Res., 130(1–2):31–50. doi:10.1016/S0377-0273(03)00275-0
Petersen, S., Herzig, P.M., Hannington, M.D., and Gemmell, J.B., 2003. Gold-rich massive sulfides from the interior of the felsic-hosted PACMANUS massive sulfide deposit, eastern Manus Basin (PNG). In Eliopoulos, D.G. et al. (Eds.), Mineral Exploration and Sustainable Development: Rotterdam (Millpress), 171–174.
Petersen, S., Herzig, P.M., Kuhn, T., Franz, L., Hannington, M.D., Monecke, T., and Gemmell, J.B., 2005. Shallow drilling of seafloor hydrothermal systems using the BGS rockdrill: Conical Seamount (New Ireland fore-arc) and PACMANUS (eastern Manus Basin), Papua New Guinea. Mar. Georesour. Geotechnol., 23(3):175–193. doi:10.1080/10641190500192185
Pinto, A.M.M., Barriga, F.J.A.S., Scott, S.D., and Roberts, S., 2003. PACMANUS: the subsurface sulfide/oxide/gold mineralization. In Eliopoulos, D.G. et al. (Eds.), Mineral Exploration and Sustainable Development: Rotterdam (Millpress), 175–178.
Pinto A.M.M., Relvas, J.M.R.S., Barriga, F.J.A.S., Munhá, J., Pacheco, N., and Scott, S.D., 2005. Gold mineralization in recent and ancient volcanic-hosted massive sulphides: the PACMANUS field and the Neves Corvo deposit. In Mao, J., and Bierlein, F. (Eds.), Mineral Deposits Research: Meeting the Global Challenge, Vol. 1: Beijing (Springer Verlag), 683–686.
Rees, C.E., Jenkins, W.J., and Monster, J., 1978. The sulphur isotopic composition of ocean water sulphate. Geochim. Cosmochim. Acta, 42(4):377–381. doi:10.1016/0016-7037(78)90268-5
Renders, P.J.N., Gammons, C.H., and Barnes, H.L., 1995. Precipitation and dissolution rate constants for cristobalite from 150 to 300°C. Geochim. Cosmochim. Acta, 59(1):77–85. doi:10.1016/0016-7037(94)00232-B
Roberts, S., Bach, W., Binns, R.A., Vanko, D.A., Yeats, C.J., Teagle, D.A.H., Blacklock, K., Blusztajn, J.S., Boyce, A.J., Cooper, M.J., Holland, N., and McDonald, B., 2003. Contrasting evolution of hydrothermal fluids in the PACMANUS system, Manus Basin; the Sr and S isotope evidence. Geology, 31(9):805–808. doi:10.1130/G19716.1
Roberts, S., Teagle, D.A., Bach, W., Binns, R.A., Boyce, A., Holland, N., and Vanko, D.A., 2001. Sr and stable isotope (S,O) chemistry of anhydrite and sulphide phases from the PACMANUS hydrothermal system, Site 1188, ODP Leg 193. Eos, Trans. Am. Geophys. Union, 82(47)(Suppl.):OS11A-0348. (Abstract).
Roman, C.N., and Ferrini, V.L., 2006. High-resolution mapping in Manus Basin. Eos, Trans. Am. Geophys. Union, 87(52)(Suppl.):OS33A-1680. (Abstract)
Scott, S.D., and Binns, R.A., 1995. Hydrothermal processes and contrasting styles of mineralization in the western Woodlark and eastern Manus Basins of the western Pacific. In Parson, L.M., Walker, C.L., and Dixon, D. (Eds.), Hydrothermal Vents and Processes. Geol. Soc. Spec. Publ., 87:191–205.
Seewald, J., Reeves, E., Saccocia, P., Rouxel, O., Walsh, E., Price, R., Tivey, M., Bach, W., and Tivey, M., 2006. Water-rock reaction, substrate composition, magmatic degassing, and mixing as major factors controlling vent fluid compositions in Manus Basin hydrothermal systems. Eos, Trans Am. Geophys. Union, 87(52)(Suppl.):B34A-02. (Abstract)
Shipboard Scientific Party, 2002a. Leg 193 summary. In Binns, R.A., Barriga, F.J.A.S., Miller, D.J., et al., Proc. ODP, Init. Repts., 193: College Station, TX (Ocean Drilling Program), 1–84. doi:10.2973/odp.proc.ir.193.101.2002
Shipboard Scientific Party, 2002b. Site 1188. In Binns, R.A., Barriga, F.J.A.S., Miller, D.J., et al., Proc. ODP, Init. Repts., 193: College Station, TX (Ocean Drilling Program), 1–305. doi:10.2973/odp.proc.ir.193.103.2002
Shipboard Scientific Party, 2002c. Site 1189. In Binns, R.A., Barriga, F.J.A.S., Miller, D.J., et al., Proc. ODP, Init. Repts., 193: College Station, TX (Ocean Drilling Program), 1–259. doi:10.2973/odp.proc.ir.193.104.2002
Shipboard Scientific Party, 2002d. Site 1191. In Binns, R.A., Barriga, F.J.A.S., Miller, D.J., et al., Proc. ODP, Init. Repts., 193: College Station, TX (Ocean Drilling Program), 1–46. doi:10.2973/odp.proc.ir.193.106.2002
Spiess, F.N., MacDonald, K.C., Atwater, T., Ballard, R., Carranza. A., Cordoba, D., Cox, C., Diaz Garcia, V.M., Francheteau, J., Guerro, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., Macdougall, J.D., Miller, S., Normak, W., Orcutt, J., and Rangin, C., 1980. East Pacific Rise: hot springs and geophysical experiments. Science, 207(4438):1421–1433. doi:10.1126/science.207.4438.1421
Srodon, J., and Eberl, D.D., 1984. Illite. In Bailey, S.W. (Ed.), Micas. Rev. Mineral., 13:495–544.
Sun, W., Arculus, R.J., Kamenestky, V.S., and Binns, R.A., 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature (London, U. K.), 431(7011):975–978. doi:10.1038/nature02972
Teagle, D.A.H., Alt, J.C., Chiba, H., Humphris, S.E., and Halliday, A.N., 1998. Strontium and oxygen isotopic constraints on fluid mixing, alteration and mineralization in the TAG hydrothermal deposit. Chem. Geol., 149(1–2):1–24. doi:10.1016/S0009-2541(98)00030-8
Tenthorey, E., and Cox, S.F., 2003. Reaction-enhanced permeability during serpentinite dehydration. Geology, 31(10):921–924. doi:10.1130/G19724.1
Tivey, M., Bach, W., Tivey, M., Sewald, J., Craddock, P., Rouxel, O., Yoerger, D., Yeats, C., McConachy, T., Quigley, M., and Vanko, D., 2006. Investigating the influence of magmatic volatile input and seawater entrainment on vent deposit morphology and composition in Manus Basin (back-arc) hydrothermal systems. Eos, Trans. Am. Geophys. Union, 87(52)(Suppl.):B34A-01. (Abstract)
Tivey, M.K., Humphris, S.E., Thompson, G., Hannington, M.D., and Rona, P.A., 1995. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data. J. Geophys. Res., 100(B7):12527–12556. doi:10.1029/95JB00610
Vanko, D.A., and Bach, W., 2005. Heating and freezing experiments on aqueous fluid inclusions in anhydrite: recognition and effects of stretching and the low-temperature formation of gypsum. Chem. Geol., 223(1–3):35–45. doi:10.1016/j.chemgeo.2004.11.021
Vanko, D.A., Bach, W., Roberts, S., Yeats, C.J., and Scott, S.D., 2004. Fluid inclusion evidence for subsurface phase separation and variable fluid mixing regimes beneath the deep-sea PACMANUS hydrothermal field, Manus Basin back-arc rift, Papua New Guinea. J. Geophys. Res., 109(B3):B03201. doi:10.1029/2003JB002579
Vanko, D.A., Wicker, S.G., and Binns, R.A., 2006. Conditions of formation of secondary quartz in hydrothermally altered, subsurface dacite beneath the deep-sea PACMANUS hydrothermal field, Manus Basin, Papua New Guinea. Eos, Trans. Am. Geophys. Union, 87(36)(Suppl.):U41A-02. (Abstract)
Waters, J.C., and Binns, R.A., 1998. Contrasting styles of felsic submarine volcanism, eastern Manus Basin, Papua New Guinea. Geol. Soc. Aust. Abstr., 49:459. (Abstract)
Waters, J.C., Binns, R.A., and Naka, J., 1996. Morphology of submarine felsic volcanic rocks on Pual Ridge, eastern Manus Basin, Papua New Guinea. Eos, Trans. Am. Geophys. Union, 77:W120. (Abstract)
Woodhead, J.D., and Johnson, R.W., 1993. Isotopic and trace-element profiles across the New Britain island arc, Papua New Guinea. Contrib. Mineral. Petrol., 113(4):479–491. doi:10.1007/BF00698317
Yang, K., and Scott, S.D., 1996. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature (London, U. K.), 383(6599):420–423. doi:10.1038/383420a0
Yang, K., and Scott., S.D., 2002. Magmatic degassing of volatiles and ore minerals into a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific. Econ. Geol., 97(5):1079–1100. doi:10.2113/97.5.1079
Yang, K., and Scott, S.D., 2005. Vigorous exsolution of volatiles in the magma chamber beneath a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific: evidence from melt inclusions. Econ. Geol., 100(6):1085–1096. doi:10.2113/100.6.1085
Yeats, C.J., 2003. Mineralogy and geochemistry of alteration at the PACMANUS hydrothermal field, eastern Manus Basin, Papua New Guinea: vertical and lateral variation at low- and high-temperature vent sites. In Yeats, C.J. (Ed.), Seabed Hydrothermal Systems of the Western Pacific: Current Research and New Directions. CSIRO Explor. Min. Rep., 1112F:53–57.
Yeats, C.J., 2004. Mineralogy and geochemistry of alteration at the PACMANUS hydrothermal field, eastern Manus Basin, Papua New Guinea. In Muhling, J., Goldfarb, R.J., Vielreicher, N., Bierlein, F.P., Stumpfl, E.F., Groves, D.I., Kenworthy, S., and Knox-Robinson, C.M. (Eds.), SEG 2004: Predictive Mineral Discovery Under Cover—SEG Conference and Exhibition: Extended Abstracts. Publ.—Cent. Global Metallog., Univ. West. Aust., 33:224–227.
Yeats, C.J., Bach, W., Vanko, D.A., Roberts, S., Lackschewitz, K., and Paulick, H., 2001. Fluid-dacite interaction in the PACMANUS subseafloor hydrothermal system—preliminary results from secondary mineral chemistry and geochemical modeling. Eos, Trans. Am. Geophys. Union, 82(47)(Suppl.):OS11A-0346. (Abstract)
Yeats, C.J., Binns, R.A., and Parr, J.M., 2000. Advanced argillic alteration associated with actively forming, submarine polymetallic sulfide mineralization in the eastern Manus Basin, Papua New Guinea. Geol. Soc. Aust. Abstr., 59:555. (Abstract)
Zierenberg, R.A., Fouquet, Y., Miller, D.J., and Normark, W.R. (Eds.), 2000. Proc. ODP, Sci. Results, 169: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.sr.169.2000