REFERENCES

Allègre, C., Manhès, G., and Lewin, É., 2001. Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet. Sci. Lett., 185:49–69.

Allègre, C.J., Manhès, G., and Gopel, C., 1995. The age of the Earth. Geochim. Cosmochim. Acta, 59:1445–1456.

Aloisi, G., Drews, M., Wallmann, K., and Bohrmann, G., 2004. Fluid expulsion from the Dvurechenskii mud volcano (Black Sea), Part I. Fluid sources and relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles. Earth Planet. Sci. Lett., 225:347–363.

Barnes, I., and O'Neil, J.R., 1969. The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, western United States. Bull. Geol. Soc. Am., 80:1947–1960.

Barnes, I., Rapp, J.B., O'Neil, J.R., Sheppard, R.A., and Gude, A.J., III, 1972. Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentinization. Contrib. Mineral. Petrol., 35(3):263–276.

Bebout, G., 1995. The impact of subduction-zone metamorphism on mantle-ocean chemical cycling. Chem. Geol., 126:191–218.

Becker, V., Bennett, J.H., and Manuel, O.K., 1968. Iodine and uranium in ultrabasic rocks and carbonatites. Earth Planet. Sci. Lett., 4:357–362.

Benton, L.D., 1997. Origin and evolution of serpentine seamount fluids, Mariana and Izu–Bonin forearcs: implications for the recycling of subducted material [Ph.D. dissert.]. Univ. Tulsa.

Benton, L.D., Ryan, J.G., and Tera, F., 2001. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth Planet. Sci. Lett., 187:273–282.

Broecker, W.S., and Peng, T.-H., 1982. Tracers in the Sea: Palisades, NY (Eldigio Press).

Burgess, R., Layzelle, E., Turner, G., and Harris, J.W., 2002. Constraints on the age and halogen composition of mantle fluids in Siberian coated diamonds. Earth Planet. Sci. Lett., 197:193–203.

Caffee, M.W., Hudson, G.B., Velsko, C., Huss, G.R., Alexander, E.C., Jr., and Chivas, A.R., 1999. Primordial noble gases from Earth's mantle: identification of a primitive volatile component. Science, 285:2115–2118.

Déruelle, B., Dreibus, G., and Jambon, A., 1992. Iodine abundances in oceanic basalts: implications for Earth dynamics. Earth Planet. Sci. Lett., 108:217–227.

Deyhle, A., and Kopf, A., 2002. Strong B enrichment and anomalous 11B in pore fluids from the Japan Trench forearc. Mar. Geol., 183:1–15.

Deyhle, A., Kopf, A., and Eisenhauer, A., 2001. Boron systematics of authigenic carbonates: a new approach to identify fluid processes in accretionary prisms. Earth Planet. Sci. Lett., 187:191–205.

Egeberg, P.K., and Dickens, G.R., 1999. Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge). Chem. Geol., 153:53–79.

Elderfield, H., and Truesdale, V.W., 1980. On the biophilic nature of iodine in seawater. Earth Planet. Sci. Lett., 50:105–114.

Fehn, U., and Snyder, G.T., 2003. Origin of iodine and 129I in volcanic and geothermal fluids from the North Island of New Zealand: implications for subduction zone processes. In Simmons, S., and Graham, I. (Eds.), Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth. Spec. Publ. Soc. Explor. Geophys., 10:159–170.

Fehn, U., Snyder, G.T., Matsumoto, R., Muramatsu, Y., and Tomaru, H., 2003. Iodine dating of pore waters associated with gas hydrates in the Nankai area, Japan. Geology, 31:521–524.

Fehn, U., Snyder, G.T., and Varekamp, J., 2002. Detection of recycled marine sediment components in crater lake fluids using 129I. J. Volcanol. Geotherm. Res., 115:451–460.

Fischer, T.P., Hilton, D.R., Zimmer, M.M., Shaw, A., Sharp, Z.D., and Walker, J.A., 2002. Subduction and recycling of nitrogen along the Central American margin. Science, 297:1154–1157.

Fryer, P., Pearce, J.A., Stokking, L.B., et al., 1990. Proc. ODP, Init. Repts., 125: College Station, TX (Ocean Drilling Program).

Goff, F., and McMurtry, G.M., 2000. Tritium and stable isotopes of magmatic waters. J. Volcanol. Geotherm. Res., 97:347–396.

Hart, D.J., and Hammon, W.S., III, 2002. Measurement of hydraulic conductivity and specific storage using the shipboard Manheim squeezer. In Salisbury, M.H., Shinohara, M., Richter, C., et al., Proc. ODP, Init. Repts., 195, 1–15 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML version]

Hurwitz, S., Mariner, R.H., Fehn, U., and Snyder, G.T., 2004. Cycling of halogens through the Cascadia subduction zone and the Cascade volcanic arc: insights from thermal springs in central Oregon, U.S.A. [AGU Fall Meeting, San Francisco, December, 2004]. (Abstract)

Ishikawa, T., and Nakamura, E., 1993. Boron isotope systematics of marine sediments. Earth Planet. Sci. Lett., 117:567–580.

Kastner, M., Elderfield, H., Jenkins, W.J., Gieskes, J.M., and Gamo, T., 1993. Geochemical and isotopic evidence for fluid flow in the western Nankai subduction zone, Japan. In Hill, I.A., Taira, A., Firth, J.V., et al., Proc. ODP, Sci. Results, 131: College Station, TX (Ocean Drilling Program), 397–413.

Kendrick, M.A., Burgess, R., Patrick, R.A., and Turner, G., 2001. Fluid inclusion noble gas and halogen evidence on the origin of Cu-porphyry mineralizing fluids. Geochim. Cosmochim. Acta, 65:2651–2668.

Kennedy, H.A., and Elderfield, J., 1987. Iodine diagenesis in pelagic deep sea sediments. Geochim. Cosmochim. Acta, 51:2489–2504.

Kopf, A., Deyhle, A., and Zuleger, E., 2000. Evidence for deep fluid circulation and gas hydrate dissociation using boron isotopes of pore fluids in forearc sediments from Costa Rica (ODP Leg 170). Mar. Geol., 167:1–28.

Leeman, W.P., 1996. Boron and other fluid-mobile elements in volcanic arc lavas: implications for subduction processes. In Bebout, G.E., Scholl, D.W., Kirby, S.H., and Platt, J.P. (Eds.), Subduction Top to Bottom. Geophys. Monogr., 96:269–276.

Leeman, W.P., and Carr, M.J., 1995. Geochemical constraints on subduction processes in the Central American volcanic arc: implications of boron geochemistry. In Mann, P. (Ed.), Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America. Spec. Pap.— Geol. Soc. Am., 295:57–73.

Mahn, C.L., and Gieskes, J.M., 2001. Halide systematics in comparison with nutrient distributions in Sites 1033B and 1034B, Saanich Inlet: ODP 169S. In Bornhold, B.D., and Kemp, A.E.S. (Eds.), Late Quaternary Sedimentation in Saanich Inlet, British Columbia, Canada—Ocean Drilling Program Leg 169S. Mar. Geol., 174:323–339.

Martin, J.B., Gieskes, J.M., Torres, M., and Kastner, M., 1993. Bromide and iodine in Peru margin sediments and pore fluids: implication for fluid origins. Geochim. Cosmochim. Acta, 57:4377–4389.

McDonough, W.F., and Sun, S.-S., 1995. The composition of the Earth. Chem. Geol., 120:223–253.

Mottl, M.J., 1992. Pore waters from serpentinite seamounts in the Mariana and Izu-Bonin forearcs, Leg 125: evidence for volatiles from the subducting slab. In Fryer, P., Pearce, J.A., Stokking, L.B., et al., Proc. ODP, Sci. Results, 125: College Station, TX (Ocean Drilling Program), 373–385.

Mottl, M.J., Komor, S.C., Fryer, P., and Moyer, C.L., 2003. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195. Geochem., Geophys., Geosyst., 4:10.1029/2003GC000588.

Muramatsu, Y., Fehn, U., and Yoshida, S., 2001. Recycling of iodine in fore-arc areas: evidence from the iodine brines of Chiba, Japan. Earth Planet. Sci. Lett., 192:583–593.

Muramatsu, Y., and Wedepohl, K.H., 1998. The distribution of iodine in the Earth's crust. Chem. Geol., 147:201–216.

Noll, P.D., Newsom, H.E., Leeman, W.P., and Ryan, J.G., 1996. The role of hydrothermal fluids in the production of subduction zone magmas: evidence from siderophile and chalcophile trace elements and boron. Geochim. Cosmochim. Acta, 60:587–611.

Ryan, J.G., and Langmuir, C.H., 1993. The systematics of boron abundances in young volcanic rocks. Geochim. Cosmochim. Acta, 57:1489–1498.

Ryan, J.G., Morris, J., Bebout, G.E., and Leeman, W.P., 1996. Describing chemical fluxes in subduction zones: insights from 'depth-profiling' studies of arc and forearc rocks. In Bebout, G.E., Scholl, D.W., Kirby, S.H., and Platt, J.P. (Eds.), Subduction Top to Bottom. Geophys. Monogr., 96:119–133.

Sano, Y., and Marty, B., 1995. Origin of carbon in fumarolic gases from island arcs. Chem. Geol., 119:265–274.

Sano, Y., Takahata, N., Nishiio, Y., and Marty, B., 1998. Nitrogen recycling in subduction zones. Geophys. Res. Lett., 23:2749–2752.

Salisbury, M.H., Shinohara, M., Richter, C., et al., 2002. Proc. ODP, Init. Repts., 195 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML version]

Savov, I.P., 2004. Petrology and geochemistry of subduction-related rocks from the Mariana arc-basin system [Ph.D. dissert.], Univ. South Florida, Tampa, Florida.

Savov, I.P., Ryan, J.G., Chan, L.H., D'Antonio, M., Mottl, M., and Fryer, P., 2002. Geochemistry of serpentinites from the S. Chamorro Seamount, ODP Leg 195, Site 1200, Mariana forearc—implications for recycling at subduction zones. Geochim. Cosmochim. Acta, 66:A670.

Savov, I.P., Ryan, J.G., Mattie, P., and Schijf, J., 2000. Fluid-mobile element systematics of ultramafic xenoliths from the Izu-Bonin-Mariana forearc: implications for the chemical cycling in subduction zones. Eos, Trans. Am. Geophys. Union, 81 (Suppl.):V-21C-02. (Abstract)

Savov, I.P., Tonarini, S., Ryan, J., and Mottl, M., 2004. Boron isotope geochemistry of serpentinites and porefluids from Leg 195, Site 1200, S. Chamorro Seamount, Mariana forearc region [32nd Session of the International Geological Congress, Florence, Italy, 20–28 August, 2004]. (Abstract)

Schnetger, B., and Muramatsu, Y., 1996. Determination of the halogens, with special reference to iodine, in geological and biological samples using pyrohydrolysis for preparation of inductively coupled plasma mass spectrometry and ion chromatography for measurement. Analyst, 121:1627–1631.

Seyfried, W.E., Jr., Janecky, D.R., and Mottl, M.J., 1984. Alteration of the oceanic crust: implications for geochemical cycles of lithium and boron. Geochim. Cosmochim. Acta, 48:557–569.

Snyder, G., Poreda, R., Fehn, U., and Hunt, A., 2003. Sources of nitrogen and methane in Central American geothermal settings: noble gas and 129I evidence for crustal and magmatic volatile components. Geochem., Geophys., Geosyst., 4:10.1029/2002GC000363.

Snyder, G.T., and Fehn, U., 2002. Origin of iodine in volcanic fluids: 129I results from the Central American volcanic arc. Geochim. Cosmochim. Acta, 54:265–273.

Snyder, G.T., Fehn. U., and Goff, F., 2002. Iodine isotope ratios and halide concentrations in fluids of the Satsuma-Iwojima Volcano, Japan. Earth, Planets Space, 54:265–273.

Spivack, A.J., and Edmond, J.M., 1987. Boron isotope exchange between seawater and oceanic crust. Geochim. Cosmochim. Acta, 51:1033–1043.

Staudacher, T., and Allégre, C.J., 1988. Recycling of oceanic crust and sediments: the noble gas subduction barrier. Earth Planet. Sci. Lett., 89:173–183.

Straub, S.M., and Layne, G.D., 2002. The systematics of boron isotopes in Izu arc front volcanic rocks. Earth Planet. Sci. Lett., 198:25–39.

Tedesco, D., and Toutain, J.P., 1991. Chemistry and emission rate of volatiles from White Island Volcano (New Zealand). Geophys. Res. Lett., 18:113–116.

Yoshida, Y., Takahashi, K., Yonehara, N., Ozawa, T., and Iwasaki, I., 1971. The fluorine, chlorine, bromine, and iodine contents of volcanic rocks in Japan. Bull. Chem. Soc. Japan, 44:1844–1850.

You, C.-F., Chan, L.H., Spivack, A.J., and Gieskes, J.M., 1995. Lithium, boron, and their isotopes in sediments and pore waters of Ocean Drilling Program Site 808, Nankai Trough: implications for fluid expulsion in accretionary prisms. Geology, 23:37–40.

You, C.-F., Gieskes, J.M., Chen, R.F., Spivack, A., and Gamo, T., 1993. Iodide, bromide, manganese, boron, and dissolved organic carbon in interstitial waters of the organic carbon-rich marine sediments: observations in the Nankai accretionary prism. In Hill, I.A., Taira, A., Firth, J.V., et al., Proc. ODP, Sci. Results, 131: College Station, TX (Ocean Drilling Program), 165–174.

Zhang, Y., 1998. The young age of Earth. Geochim. Cosmochim. Acta, 62:3185–3189.

Zhang, Y., 2002. The age and accretion of the Earth. Earth Sci. Rev., 59:235–263.