REFERENCES

Anderson, D.L., 2000. The thermal state of the upper mantle: no role for mantle plumes. Geophys. Res. Lett., 27(22):3623–3626. doi:10.1029/2000GL011533

Anderson, D.L., 2004. Simple scaling relations in geodynamics: the role of pressure in mantle convection and plume formation. Chin. Sci. Bull., 49:2017–2021.

Anson, G.L., and Kodama, K.P., 1987. Compaction-induced shallowing of the post-depositional remanent magnetization in a synthetic sediment. Geophys. J. R. Astron. Soc., 88:673–692.

Antretter, M., Steinberger, B., Heider, F., and Soffel, H., 2002. Paleolatitudes of the Kerguelen hotspot: new paleomagnetic results and dynamic modeling. Earth Planet. Sci. Lett., 203:635–650. doi:10.1016/S0012-821X(02)00841-5

Arason, P., and Levi, S., 1990. Compaction and inclination shallowing in deep-sea sediments from the Pacific Ocean. J. Geophys. Res., 95:4501–4510.

Banerjee, S.K., 2001. Geophysics: when the compass stopped reversing its poles. Science, 291(5509):1714–1715. doi:10.1126/science.291.5509.1714

Berggren, W.A., Kent, D.V., Swisher, C.C., III, and Aubry, M.-P., 1995. A revised Cenozoic geochronology and chronostratigraphy. In Berggren, W.A., Kent, D.V., Aubry, M.-P., and Hardenbol, J. (Eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. Spec. Publ.—SEPM (Soc. Sediment. Geol.), 54:129–212.

Besse, J., and Courtillot, V., 2002. Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J. Geophys. Res. [Solid Earth Planets], 107:11. doi:10.1029/2000JB000050

Blichert-Toft, J., Frey, F.A., and Albarede, F., 1999. Hf isotope evidence for pelagic sediments in the source for Hawaiian basalts. Science, 285(5429):879–882. doi:10.1126/science.285.5429.879

Brock, A., 1971. An experimental study of palaeosecular variation. Geophys. J. R. Astron. Soc., 24:303–317.

Bouska, V., 1993. Natural Glasses: New York (Ellis Horwood).

Camps, P., Prevot, M., Daignieres, M., and Machetel, P., 2002. Comment on "stability of the Earth with respect to the spin axis for the last 130 million years" by J.A. Tarduno and A.V. Smirnov [Earth Planet. Sci. Lett, 184 (2001) 549–553]. Earth Planet. Sci. Lett., 198(3–4):529–532. doi:10.1016/S0012-821X(02)00495-8

Cande, S.C., and Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 100(B4):6093–6095. doi:10.1029/94JB03098

Cande, S.C., Raymond, C.A., Stock, J., and Haxby, W.F., 1995. Geophysics of the Pitman Fracture Zone and Pacific-Antarctic plate motions during the Cenozoic. Science, 270:947–953.

Carvallo, C., Özdemir, Ö., and Dunlop, D.J., 2004a. Paleointensity determinations, paleodirections and magnetic properties of basalts from the Emperor Seamounts. Geophys. J. Int., 156(1):29–38. doi:10.1111/j.1365-246X.2004.02110.x

Carvallo, C., Özdemir, Ö., and Dunlop, D.J., 2004b. Palaeointensity determinations, palaeodirections and magnetic properties of basalts from the Emperor Seamounts (vol. 156, pg. 29, 2004). Geophys. J. Int., 158(3):898–898. doi:10.1111/j.1365-246X.2004.02380.x

Chen, C.-Y., and Frey, F.A., 1985. Trace element and isotopic geochemistry of lavas from Haleakala Volcano, East Maui, Hawaii: implications for the origin of Hawaiian basalts. J. Geophys. Res., 90:8743–8768.

Christensen, U.R., and Olson, P., 2003. Secular variation in numerical geodynamo models with lateral variations of boundary heat flow. Phys. Earth Planet. Inter., 138(1):39–54. doi:10.1016/S0031-9201(03)00064-5

Clague, D.A., and Dalrymple, G.B., 1987. The Hawaiian-Emperor volcanic chain, Part I. Geologic evolution. In Decker, R.W., Wright, T.L., and Stauffer, P.H. (Eds.), Volcanism in Hawaii. U.S. Geol. Surv. Prof. Pap., 5–73.

Coe, R.S., 1967. The determination of paleointensities of the Earth's magnetic field with emphasis on mechanisms which could cause non-ideal behaviour in Thelliers method. J. Geomagn. Geoelectr., 19:157–179.

Cottrell, R.D., and Tarduno, J.A., 1999. Geomagnetic paleointensity derived from single plagioclase crystals. Earth Planet. Sci. Lett., 169(1–2):1–5. doi:10.1016/S0012-821X(99)00068-0

Cottrell, R.D., and Tarduno, J.A., 2000a. In search of high fidelity geomagnetic paleointensities: a comparison of single plagioclase crystal and whole rock Thellier-Thellier analyses. J. Geophys. Res., 105(B10):23579–23594. doi:10.1029/2000JB900219

Cottrell, R.D., and Tarduno, J.A., 2000b. Late Cretaceous true polar wander: not so fast. Science, 2889(5475):2283a. doi:10.1126/science.288.5475.2283a

Cottrell, R.D., and Tarduno, J.A., 2003. A Late Cretaceous pole for the Pacific plate: implications for apparent and true polar wander and the drift of hotspots. Tectonophysics, 362(1–4):321–333. doi:10.1016/S0040-1951(02)00643-1

Courtillot, V., and Besse, J., 2004. A long-term octupolar component in the geomagnetic field? (0–200 million years b.p.) In Channell, J.E.T., Kent, D.V., Lowrie, W., and Meert, J.G., Timescales of the Paleomagnetic Field. Geophys. Monogr.,145:59–74.

Courtillot, V., Davaille, A., Besse, J., and Stock, J., 2003. Three distinct types of hotspots in Earth's mantle. Earth Planet. Sci. Lett., 205(3–4):295–308. doi:10.1016/S0012-821X(02)01048-8

Cox, A., 1968. Lengths of geomagnetic polarity intervals. J. Geophys. Res., 73:3247–3260.

Cox, A., 1970. Latitude dependence of the angular dispersion of the geomagnetic field. Geophys. J. R. Astron. Soc., 20:253–269.

Dana, J.D., 1849. The United States Exploring Expedition During the Years 1838–1839, 1840, 1841, 1842 (Vol. 10): Geology: Philadelphia (Sherman).

Darwin, C., 1842. The Structure and Distribution of Coral Reefs (Part 1 of the Geology of the Voyage of the Beagle): London (Smith, Elder).

DePaolo, D.J., Bryce, J.G., Dodson, A., Schuster, D.L., and Kennedy, B.M., 2001. Isotopic evolution of Mauna Loa and the chemical structure of the Hawaiian plume. Geochem., Geophys., Geosyst., 2(7). doi:10.1029/2000GC000139

DiVenere, V., and Kent, D.V., 1999. Are the Pacific and Indo-Atlantic hotspots fixed? Testing the plate circuit through Antarctica. Earth Planet. Sci. Lett., 170(1–2):105–117. doi:10.1016/S0012-821X(99)00096-5

Donth, E.-J., 2001. The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials: New York (Springer).

Doubrovine, P.V., and Tarduno, J.A., 2004a. Self-reversed magnetization carried by titanomaghemite in oceanic basalts. Earth Planet. Sci. Lett., 222(3–4):959–969. doi:10.1016/j.epsl.2004.04.009

Doubrovine, P.V., and Tarduno, J.A., 2004b. The Late Cretaceous paleolatitude of the Hawaiian hot spot: new paleomagnetic data from Detroit Seamount. Geochem., Geophys., Geosyst., 5:Q11L04. doi:10.1029/2004GC000745

Doubrovine, P.V., and Tarduno, J.A., 2005. On the compositional field of self-reversing titanomaghemite: constraints from Deep Sea Drilling Project Site 307. J. Geophys. Res., 110:B11104. doi:10.1029/2005JB003865

Duncan, R.A., and Clague, D.A., 1985. Pacific plate motion recorded by linear volcanic chains. In Nairn, A.E.M., Stehli, F.G., and Uyeda, S. (Eds.), The Ocean Basins and Margins (Vol. 7A): The Pacific Ocean: New York (Plenum), 89–121.

Duncan, R.A., and Keller, R.A., 2004. Radiometric ages for basement rocks from the Emperor Seamounts, ODP Leg 197. Geochem., Geophys., Geosyst., 5(8):Q08L03. doi:10.1029/2004GC000704

Dunlop, D.J., and Özdemir, Ö., 1997. Rock Magnetism: Fundamentals and Frontiers: Cambridge (Cambridge Univ. Press).

Dunlop, D.J., Zhang, B., and Ozdemir, O., 2005. Linear and nonlinear Thellier paleointensity behavior of natural minerals. J. Geophys. Res., 110:B01103. doi:10.1029/2004JB003095

Fisher, R.A., 1953. Dispersion on a sphere. Proc. R. Soc. London, Ser. A, 217:295–305.

Foulger, G.R., and Natland, J.H., 2003. Geology: is "hotspot" volcanism a consequence of plate tectonics? Science, 300(5621):921–922. doi:10.1126/science.1083376

Frey, F.A., Huang, S., Blichert-Toft, J., Regelous, M., and Boyet, M., 2005. Origin of depleted components in basalt related to the Hawaiian hot spot: evidence from isotopic and incompatible element ratios. Geochem., Geophys., Geosyst., 6(2):Q02L07. doi:10.1029/2004GC000757

Gaffney, A.M., Nelson, B.K., and Blichert-Toft, J., 2005. Melting in the Hawaiian plume at 1–2 Ma as recorded at Maui Nui: the role of eclogite, peridotite and source mixing. Geochem., Geophys., Geosyst., 6(10):Q10L11. doi:10.1029/2005GC000927

Gallet, Y., and Hulot, G., 1997. Stationary and nonstationary behaviour within the geomagnetic polarity time scale. Geophys. Res. Lett., 24(15):1875–1878. doi:10.1029/97GL01819

Glatzmaier, G.A., Coe, R.S., Hongre, L., and Roberts, P.H., 1999. The role of the Earth's mantle in controlling the frequency of geomagnetic reversals. Nature (London, U. K.), 401(6756):885–890. doi:10.1038/44776

Goguitchaichvili, A., Alva-Vaeldivia, L.M., Rosas-Elguera, J., Urrutia-Fucugachi, J., and Sole, J., 2004. Absolute geomagnetic paleointensity after the Cretaceous Normal Superchron and just prior to the Cretaceous–Tertiary transition. J. Geophys. Res., 109:B01105. doi:10.1029/2003JB002477

Goldreich, P., and Toomre, A., 1969. Some remarks on polar wandering. J. Geophys. Res., 74:2555–2567.

Gradstein, F.M., Ogg, J.G., and Smith, A. (Eds.), 2004. A Geologic Time Scale 2004: Cambridge (Cambridge Univ. Press).

Gromme, S., Mankinen, E.A., Marshall, M., and Coe, R.S., 1979. Geomagnetic paleointensities by the Thelliers' method from submarine pillow basalts: effects of seafloor weathering. J. Geophys. Res., 84:3553–3575.

Harada, Y., and Hamano, Y., 2000. Recent progress on the plate motion relative to hotspots. In Richards, M.A., Gordon, R.G., and Van der Hilst, R.D. (Eds.), The History and Dynamics of Global Plate Motions. Geophys. Monogr., 121:327–338.

Hauri, E.H., 1996. Major-element variability in the Hawaiian mantle plume. Nature (London, U. K.), 382(6590):415–419. doi:10.1038/382415a0

Heller, R., Merrill, R.T., and McFadden, P.L., 2002. The variation of intensity of Earth's magnetic field with time. Phys. Earth Planet. Inter., 131(3–4):237–249. doi:10.1016/S0031-9201(02)00038-9

Huang, S., Regelous, M., Thordarson, T., and Frey, F.A., 2005. Petrogenesis of lavas from Detroit Seamount: geochemical differences between Emperor chain and Hawaiian volcanoes. Geochem., Geophys., Geosyst., 6:Q01L06. doi:10.1029/2004GC000756

Hulot, G., and Gallet, Y., 2003. Do superchrons occur without paleomagnetic warning? Earth Planet. Sci. Lett., 210(1–2):191–201. doi:10.1016/S0012-821X(03)00130-4

Kerr, B.C., Scholl, D.W., and Klemperer, S.L., 2005. Seismic stratigraphy of Detroit Seamount, Hawaiian-Emperor Seamount chain: post-hotspot shield-building volcanism and deposition of the Meiji drift. Geochem., Geophys., Geosyst., 6:Q07L10. doi:10.1029/2004GC000705

Keller, R.A., Fisk, M.R., and White, W.M., 2000. Isotopic evidence for Late Cretaceous plume-ridge interaction at the Hawaiian hotspot. Nature (London, U. K.), 405(6787):673–676. doi:10.1038/35015057

Keller, R.A., Graham, D.W., Farley, K.A., Duncan, R.A., and Lupton, J.E., 2004. Cretaceous-to-recent record of elevated 3He/4He along the Hawaiian-Emperor volcanic chain. Geochem., Geophys., Geosyst., 5:Q12L05. doi:10.1029/2004GC000739

Kono, M., 1980. Paleomagnetism of DSDP Leg 55 basalts and implications for the tectonics of the Pacific plate. In Jackson, E.D., Koizumi, I., et al., Init. Repts. DSDP, 55: Washington (U.S. Govt. Printing Office), 737–752.

Koppers, A.A.P., Duncan, R.A., and Steinberger, B., 2004. Implications of a nonlinear 40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots. Geochem., Geophys., Geosyst., 5:Q06L02. doi:10.1029/2003GC000671

Koppers, A.A.P., and Staudigel, H., 2005. Asynchronous bends in Pacific seamount trails: a case for extensional volcanism? Science, 307(5711):904–907. doi:10.1126/science.1107260

Koppers, A.A.P., Staudigel, H., and Wijbrans, J.R., 2000. Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the 40Ar/39Ar incremental heating technique. Chem. Geol., 166(1–2):139–158. doi:10.1016/S0009-2541(99)00188-6

Kroenke, L.W., Wessel, P., and Sterling, A.I., 2004. Motion of the Ontong Java Plateau in the hotspot frame of reference: 122 Ma–present. In Fitton, J.G., Mahoney, J.J., Wallace, P.J., and Saunders, A.D. (Eds.), Origin and Evolution of the Ontong Java Plateau. Geol. Soc. Spec. Publ., 229:9–20.

Larson, R.L., and Olson, P., 1991. Mantle plumes control magnetic reversal frequency. Earth Planet. Sci. Lett., 107(3–4):437–447. doi:10.1016/0012-821X(91)90091-U

Lassiter, J.C., and Hauri, E.H., 1998. Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet. Sci. Lett., 164(3–4):483–496. doi:10.1016/S0012-821X(98)00240-4

Lowrie, W., and Kent, D.V., 2004. Geomagnetic polarity timescales and reversal frequency regimes In Channell, J.E.T., Kent. D.V., Lowrie, W., and Meert, J.G., Timescales of the Paleomagnetic Field. Geophys. Monogr., 145:117–129.

McDougall, I., 1964. Potassium-argon ages from lavas of the Hawaiian Islands. Geol. Soc. Am. Bull., 75:107–128.

McElhinny, M.W., and Larson, R.L., 2003. Jurassic dipole low defined from land and sea data. Eos, Trans. Am. Geophys. Union, 84:362–366.

McFadden, P.L., Merrill, R.T., McElhinny, M.W., and Lee, S., 1991. Reversals of the Earth's magnetic field and temporal variations of the dynamo families. J. Geophys. Res., 96:3923–3933.

McFadden, P.L., and Reid, A.B., 1982. Analysis of paleomagnetic inclination data. Geophys. J. R. Astron. Soc., 69:307–319.

Molnar, P., and Atwater, T., 1973. Relative motion of hot spots in the mantle. Nature (London, U. K.), 246(5431):288–291. doi:10.1038/246288a0

Molnar, P., and Stock, J., 1987. Relative motions of hotspots in the Pacific, Atlantic, and Indian Oceans since Late Cretaceous time. Nature (London, U. K.), 327(6123):587–591. doi:10.1038/327587a0

Montelli, R., Nolet, G., Dahlen, F.A., Masters, G., Engdahl, E.R., and Hung, S.H., 2004. Finite-frequency tomography reveals a variety of plumes in the mantle. Science, 303(5656):338–343. doi:10.1126/science.1092485

Moore, T.C., Jr., Backman, J., Raffi, I., Nigrini, C., Sanfilippo, A., Pälike, H., and Lyle, M., 2004. Paleogene tropical Pacific: clues to circulation, productivity, and plate motion. Paleoceanography, 19(3):PA3013. doi:10.1029/2003PA000998

Morgan, W.J., 1971. Convection plumes in the lower mantle. Nature (London, U. K.), 230(5288):42–43. doi:10.1038/230042a0

Mueller, R.D., Roest, W.R., Royer, J.-Y., Gahagan, L.M., and Sclater, J.G., 1997. Digital isochrons of the world's ocean floor. J. Geophys. Res., 102(b2):3211–3214. doi:10.1029/96JB01781

Norton, I.O., 1995. Plate motions in the North Pacific: the 43 Ma nonevent. Tectonics, 14(5):1080–1094. doi:10.1029/95TC01256

Olson, P., and Christensen, U.R., 2002. The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow. Geophys. J. Int., 151(3):809–823. doi:10.1046/j.1365-246X.2002.01818.x

Opdyke, N.D., and Channell, J.E.T., 1996. Magnetic Stratigraphy: International Geophys. Ser., vol. 64. New York (Academic Press).

O'Reilly, W., and Banerjee, S.K., 1966. Oxidation of titanomagnetites and self-reversal. Nature (London, U. K.), 211:26–28.

Pares, J.M., and Moore, T.C., 2005. New evidence for Hawaiian hotspot plume motion since the Eocene. Earth Planet. Sci. Lett., 237(3–4):951–959. doi:10.1016/j.epsl.2005.06.012

Pick, T., and Tauxe, L., 1993. Geomagnetic paleointensities during the Cretaceous normal superchron measured using submarine basaltic glass. Nature (London, U. K.), 366(6452):238–242. doi:10.1038/366238a0

Pike, C.R., Roberts, A.P., and Verosub, K.L., 1999. Characterizing interactions in fine magnetic particles systems using first order reversal curves. J. Appl. Phys., 85(9):6660–6667. doi:10.1063/1.370176

Prevot, M., Mattern, E., Camps, P., and Daignieres, M., 2000. Evidence for a 20° tilting of the Earth's rotation axis 110 million years ago. Earth Planet. Sci. Lett., 179(3–4):517–528. doi:10.1016/S0012-821X(00)00129-1

Raymond, C.A., Stock, J.M., and Cande, S.C., 2000. Fast Paleogene motion of the Pacific hotspots from revised global plate circuit constraints. In Richards, M.A., Gordon, R.G., and van der Hilst, R.D. (Eds.), The History and Dynamics of Global Plate Motions. Geophys. Monogr., 121:359–375.

Ren, Z.-Y., Ingle, S., Takahashi, E., Hirano, N., and Hirata, T., 2005. The chemical structure of the Hawaiian mantle plume. Nature (London, U. K.), 436(7052):837–840. doi:10.1038/nature03907

Riisager, P., Hall, S., Antretter, M., and Zhao, X., 2003. Paleomagnetic paleolatitude of Early Cretaceous Ontong Java Plateau basalts: implications for Pacific Apparent and True Polar Wander. Earth Planet. Sci. Lett., 208(3–4):235–252. doi:10.1016/S0012-821X(03)00046-3

Riisager P., Riisager, J, Zhao, X., and Coe, R.S., 2003. Cretaceous geomagnetic paleointensities: Thellier experiments on pillow lavas and submarine basaltic glass from the Ontong Java Plateau. Geochem., Geophys., Geosyst., 4(12):8803. doi:10.1029/2003GC000611

Roberts, A.P., Pike, C.R., and Verosub, K.L., 2000. FORC diagrams: a new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res., 105(B12):28461–28475. doi:10.1029/2000JB900326

Roberts, P.H., and Glatzmaier, G.A., 2000. Geodynamo theory and simulations. Rev. Mod. Phys., 72(4):1081–1123. doi:10.1103/RevModPhys.72.1081

Sager, W.W., 2002. Basalt core paleomagnetic data from Ocean Drilling Program Site 883 on Detroit Seamount, northern Emperor Seamount chain, and implications for the paleolatitude of the Hawaiian hotspot. Earth Planet. Sci. Lett., 199(3–4):347–358. doi:10.1016/S0012-821X(02)00590-3

Selkin, P.A., and Tauxe, L., 2000. Long-term variations in palaeointensity. Philos. Trans. R. Soc. London, Ser. A, 358:1065–1088. doi:10.1098/rsta.2000.0574

Shafer, J.T., Neal, C.R., and Regelous, M., 2005. Petrogenesis of Hawaiian postshield lavas: evidence from Nintoku Seamount, Emperor Seamount chain. Geochem., Geophys., Geosyst., 6:Q05L09. doi:10.1029/2004GC000875

Sharp, W.D., and Clague, D.A., 2002. An older slower Hawaii–Emperor bend. Eos, Trans. Am. Geophys. Union, 83:F1282.

Sleep, N.H., 2003. Mantle plumes. Astron. Geophys., 44(1):1.11–1.13. doi:10.1046/j.1468-4004.2003.44111.x

Smirnov, A.V., and Tarduno, J.A., 2003. Magnetic hysteresis monitoring of Cretaceous submarine basaltic glass during Thellier paleointensity experiments: evidence for alteration and attendant low field bias. Earth Planet. Sci. Lett., 206(3–4):571–585. doi:10.1016/S0012-821X(02)01123-8

Smirnov, A.V., and Tarduno, J.A., 2005. Thermochemical remanent magnetization in Precambrian rocks: are we sure the geomagnetic field was weak? J. Geophys. Res., 110:B06103. doi:10.1029/2004JB003445

Smirnov, A.V., Tarduno, J.A., and Pisakin, B.N., 2003. Paleointensity of the early geodynamo (2.45 Ga) as recorded in Karelia: a single-crystal approach. Geology, 31(5):415–418. doi:10.1130/0091-7613(2003)031<0415:POTEGG>2.0.CO;2

Steinberger, B., 2000. Plumes in a convecting mantle: models and observations for individual hotspots. J. Geophys. Res., 105(B5):11127–11152. doi:10.1029/1999JB900398

Steinberger, B., and O'Connell, R.J., 1998. Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity and plume distribution. Geophys. J. Int., 132(2):412–434. doi:10.1046/j.1365-246x.1998.00447.x

Steinberger, B., Sutherland, R., and O'Connell, R.J., 2004. Prediction of Emperor–Hawaii Seamount locations from a revised model of global plate motion and mantle flow. Nature (London, U. K.), 430(6996):167–173. doi:10.1038/nature02660

Tarduno, J.A., 1990. Absolute inclination values from deep sea sediments: a reexamination of the Cretaceous Pacific record. Geophys. Res. Lett., 17:101–104.

Tarduno, J.A., and Cottrell, R.D., 1997. Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor Seamounts. Earth Planet. Sci. Lett., 153(3–4):171–180. doi:10.1016/S0012-821X(97)00169-6

Tarduno, J.A., and Cottrell, R.D., 2005. Dipole strength and variation of the time-averaged reversing and nonreversing geodynamo based on Thellier analyses of single plagioclase crystals. J. Geophys. Res., 110:B11101. doi:10.1029/2005JB003970

Tarduno, J.A., Cottrell, R.D., and Smirnov, A.V., 2001. High geomagnetic field intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals. Science, 291(5509):1179–1183. doi:10.1126/science.1057519

Tarduno, J.A., Cottrell, R.D., and Smirnov, A.V., 2002. The Cretaceous superchron geodynamo: observations near the tangent cylinder. Proc. Nat. Acad. Sci. U. S. A., 99(22):14020–14025. doi:10.1073/pnas.222373499

Tarduno, J.A., Duncan, R.A., Scholl, D.W., Cottrell, R.D., Steinberger, B., Thordarson, T., Kerr, B.C., Neal, C.R., Frey, F.A., Torii, M., and Carvallo, C., 2003. The Emperor Seamounts: southward motion of the Hawaiian hotspot plume in Earth's mantle. Science, 301:1064–1069. doi:10.1126/science.1086442

Tarduno, J.A., Duncan, R.A., Scholl, D.W., et al., 2002. Proc. ODP, Init. Repts., 197 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML]

Tarduno, J.A., and Gee, J., 1995. Large scale motion between Pacific and Atlantic hotspots. Nature (London, U. K.), 378(6556):477–480. doi:10.1038/378477a0

Tarduno, J.A., and Smirnov, A.V., 2001. Stability of the Earth with respect to the spin axis for the last 130 million years. Earth Planet. Sci. Lett., 184:549–553. doi:10.1016/S0012-821X(00)00348-4

Tarduno, J.A., and Smirnov, A.V., 2002. Response to comment on "stability of the Earth with respect to the spin axis for the last 130 million years" by P. Camps, M. Prevot, M. Daignieres, and P. Machetel. Earth Planet. Sci. Lett., 198(3–4):533–539. doi:10.1016/S0012-821X(02)00496-X

Tarduno, J.A., and Smirnov, A.V., 2004. The paradox of low field values and the long-term history of the geodynamo. In Channell, J.E.T., Kent, D.V., Lowrie, W., and Meert, J.G., Timescale of the Internal Geomagnetic Field. Geophys. Monogr., 145:75–84.

Tauxe, L., and Staudigel, H., 2004. Strength of the geomagnetic field in the Cretaceous Normal Superchron: new data from submarine basaltic glass of the Troodos ophiolite. Geochem., Geophys., Geosyst., 5:Q02H06. doi:10.1029/2003GC000635

Thellier, E., and Thellier, O., 1959. Sur l'intensité du champ magnétique terreste dans le passé historique et geologique. Ann. Geophys., 15:285–375.

Torsvik, T.H., Van der Voo, R., and Redfield, T.F., 2002. Relative hotspot motions versus true polar wander. Earth Planet Sci. Lett., 202(2):185–200. doi:10.1016/S0012-821X(02)00807-5

Van der Voo, R., and Torsvik, T.H., 2001. Evidence for late Paleozoic and Mesozoic non-dipole fields provides an explanation for the Pangea reconstruction problems. Earth Planet. Sci. Lett., 187(1–2):71–81. doi:10.1016/S0012-821X(01)00285-0

Verhoogen, J., 1956. Ionic ordering and self-reversal in impure magnetites J. Geophys. Res., 61:201–209.

Verhoogen, J., 1962. Oxidation of iron-titanium oxides in igneous rocks. J. Geol., 70:168–181.

Van Ark, E., and Lin, J., 2004. Time variation in igneous volume flux of the Hawaii–Emperor hotspot seamount chain. J. Geophys. Res., 109:B11401. doi:10.1029/2003JB002949

Watts, A.B., Weissel, J.K., Duncan, R.A., and Larson, R.L., 1988. Origin of the Louisville Ridge and its relationship to the Eltanin Fracture Zone. J. Geophys. Res., 93:3051–3077.

Wessel, P., and Kroenke, L.W., 1997. A geometric technique for relocating hotspots and refining absolute plate motions. Nature (London, U. K.), 387(6631):365–369. doi:10.1038/387365a0

Wessel, P., and Kroenke, L.W., 1998. The geometric relationship between hotspots and seamounts: implications for Pacific hotspots. Earth Planet. Sci. Lett., 158(1–2):1–18. doi:10.1016/S0012-821X(98)00043-0

Wessel, P., and Lyons, S., 1997. Distribution of large Pacific seamounts from Geosat/ERS-1: implications for the history of intraplate volcanism. J. Geophys. Res., 102(B10):22459–22476. doi:10.1029/97JB01588

Wilson, J.T., 1963. A possible origin of the Hawaiian Islands. Can. J. Phys., 41:863–870.