REFERENCES

Abbott, D.H., and Isley, A.E., 2002. Extraterrestrial influences on mantle plume activity. Earth Planet. Sci. Lett., 205:53–62. doi:10.1016/S0012-821X(02)01013-0

Arthur, M.A., Dean, W.E., and Schlanger, S.O., 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. In Sundquist, E.T., and Broecker, W.S. (Eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Geophys. Monogr., 32:504–529.

Arthur, M.A., Jenkyns, H.C., Brumsack, H.J., and Schlanger, S.O., 1988. Stratigraphy, geochemistry, and paleo-oceanography of organic carbon-rich Cretaceous sequences. In Ginsburg, R.N., and Beaudoin, B. (Eds.), Cretaceous Resources, Events and Rhythms: Background and Plans for Research. NATO ASI Ser., Ser. C, 304:75–119.

Aubry, M.-P., 1998. Early Palaeogene calcareous nannoplankton evolution: a tale of climatic amelioration. In Aubry, M.P., Lucas, S., and Berggren, W.A. (Eds.), Late Paleocene–Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records: New York (Columbia Univ. Press), 158–203.

Aubry, M.-P., and Ouda, K., 2003. Introduction. In Ouda, K., and Aubry, M.-P. (Eds.), The Upper Paleocene–Lower Eocene of the Upper Nile Valley, Part 1. Stratigraphy: New York (Micropaleontology Press), ii–iv.

Bains, S., Corfield, R.M., and Norris, R.D., 1999. Mechanisms of climate warming at the end of the Paleocene. Science, 285:724–727.

Barron, E.J., and Washington, W.M., 1985. Warm Cretaceous climates: high atmospheric CO2 as a plausible mechanism. In Sundquist, E.T., and Broecker, W.S. (Eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Geophys. Monogr., 32:546–553.

Baudin, F., Deconinck, J.-F., Sachsenhofer, R.F., Strasser, A., and Arnaud, H., 1995. Organic geochemistry and clay mineralogy of Lower Cretaceous sediments from Allison and Resolution guyots (Sites 865 and 866), Mid-Pacific Mountains. In Winterer, E.L., Sager, W.W., Firth, J.V., and Sinton, J.M. (Eds.), Proc. ODP, Sci. Results, 143: College Station, TX (Ocean Drilling Program), 173–196.

Berggren, W.A., Kent, D.V., Swisher, C.C., III, and Aubry, M.-P., 1995. A revised Cenozoic geochronology and chronostratigraphy. In Berggren, W.A., Kent, D.V., Aubry, M.-P., and Hardenbol, J. (Eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. Spec. Publ.—SEPM (Soc. Sediment. Geol.), 54:129–212.

Berner, R.A., 1994. GEOCARB II: a revised model of atms. CO2 over Phanerozoic time. Am. J. Sci., 294:56–91.

Bice, K.L., and Marotzke, J., 2001. Numerical evidence against reversed thermohaline circulation in the warm Paleocene/Eocene ocean. J. Geophys. Res., 106(C6):11529–11542. doi:10.1029/2000JC000561

Bown, P.R., 2005. Selective calcareous nannoplankton survivorship at the Cretaceous–Tertiary Boundary. Geology, 33:653–656. doi:10.1130/G21566.1

Bralower, T.J., 2002. Evidence for surface water oligotrophy during the late Paleocene–Eocene Thermal Maximum: nannofossil assemblages data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea. Paleoceanography, 17(2):1–12. doi:10.1029/2001PA000662

Bralower, T.J., Ludwig, K.R., Obradovich, J.D., and Jones, D.L., 1990. Berriasian (Early Cretaceous) radiometric ages from the Grindstone Creek section, Sacramento Valley, California. Earth Planet. Sci. Lett., 98:62–73.

Bralower, T.J., and Mutterlose, J., 1995. Calcareous nannofossil biostratigraphy of Site 865, Allison Guyot, Central Pacific Ocean: a tropical Paleogene reference section. In Winterer, E.L., Sager, W.W., Firth, J.V., and Sinton, J.M. (Eds.), Proc. ODP, Sci. Results, 143: College Station, TX (Ocean Drilling Program), 31–74.

Bralower, T.J., Premoli Silva, I., and Malone, M.J., 2002. New evidence for abrupt climate change in the Cretaceous and Paleogene: an Ocean Drilling Program expedition to Shatsky Rise, Northwest Pacific. Geol. Soc. Am. Today, 12(11):4–10.

Bralower, T.J., Premoli Silva, I., Malone, M.J., et al., 2002. Proc. ODP, Init. Repts., 198 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/198_IR/198ir.htm>

Bralower, T.J., Sliter, W.V., Arthur, M.A., Leckie, R.M., Allard, D.J., and Schlanger, S.O., 1993. Dysoxic/anoxic episodes in the Aptian–Albian (Early Cretaceous). In Pringle, M.S., Sager, W.W., Sliter, W.V., and Stein, S. (Eds.), The Mesozoic Pacific: Geology, Tectonics, and Volcanism. Geophys. Monogr., 77:5–37.

Bralower, T.J., Zachos, J.C., Thomas, E., Parrow, M., Paull, C.K., Kelly, D.C., Premoli Silva, I., Sliter, W.V., and Lohmann, K.C., 1995. Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. Paleoceanography, 10(40):841–865.

Brass, G.W., Southam, J.R., and Peterson, W.H., 1982. Warm saline bottom water in the ancient ocean. Nature (London, U. K.), 296:620–623.

Brassell, S.C., Dumitrescu, M., and the ODP Leg 198 Shipboard Scientific Party, 2004. Recognition of alkenones in a lower Aptian porcellanite from the west-central Pacific. Org. Geochem., 35:181–188.

Coffin, M.F., and Eldholm, O., 1994. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys., 32:1–36.

Corfield, R.M., and Cartlidge, J.E., 1991. Isotopic evidence for the depth stratification of fossil and recent Globigerinina: a review. Hist. Biol., 5:37–63.

Crouch, E.M., Heilmann-Clausen, C., Brinkhuis, H., Morgans, H.E.G., Rogers, K.M., Egger, H., and Schmitz, B., 2001. Global dinoflagellate event associated with the Late Paleocene Thermal Maximum. Geology, 29:315–318.

Dickens, G.R., 2000. Methane oxidation during the late Palaeocene Thermal Maximum. Bull. Soc. Geol. Fr., 171:37–49.

Dickens, G.R., Castillo, M.M., and Walker, J.G.C., 1997. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25(3):259–262. doi:10.1130/0091-7613(1997)025<0259: ABOGIT>2.3.CO;2

Dickens, G.R., O'Neil, J.R., Rea, D.K., and Owen, R.M., 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10:965–972. doi:10.1029/95PA02087

Dumitrescu, M., and Brassell, S.C., 2005. Biogeochemical assessment of sources of organic matter and paleoproductivity during the early Aptian oceanic anoxic event at Shatsky Rise, ODP Leg 198. Org. Geochem., 36:1002–1022. doi:10.1016/j.orggeochem.2005.03.001

Dutton, A., Lohmann, K.C., and Leckie, R.M., 2005. Insights from the Paleogene tropical Pacific: foraminiferal stable isotope and elemental results from Site 1209, Shatsky Rise. Paleoceanography, 20. doi:10.1029/2004PA001098

Erbacher, J., and Thurow, J., 1997. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Mar. Micropalaeontol., 30:139–158. doi:10.1016/S0377-8398(96)00023-0

Erez, J., and Luz, B., 1983. Experimental paleotemperature equation for planktonic foraminifera. Geochim. Cosmochim. Acta, 47:1025–1031. doi:10.1016/0016-7037(83)90232-6

Farrell, J.W., and Prell, W.L., 1989. Climatic change and CaCO3 preservation: an 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography, 4(4):447–466.

Farrell, J.W., and Prell, W.L., 1991. Pacific CaCO3 preservation and 18O since 4 Ma: paleoceanic and paleoclimatic implications. Paleoceanography, 6:485–498.

Fischer, A.G., Heezen, B.C., et al., 1971. Init. Repts. DSDP, 6: Washington (U.S. Govt. Printing Office).

Fitton, J.G., and Godard, M., 2004. Origin and evolution of magmas on the Ontong Java Plateau. In Fitton, J.G., Mahoney, J.J., Wallace, P.J., and Saunders, A.D. (Eds.), Origin and Evolution of the Ontong Java Plateau. Geol. Soc. Spec. Publ., 229:151–178.

Frank, T.D., Thomas, D.J., Leckie, R.M., Arthur, M.A., Bown, P.R., Jones, K., and Lees, J.A., 2005. The Maastrichtian record from Shatsky Rise (northwest Pacific): a tropical perspective on global ecological and oceanographic changes. Paleoceanography, 20. doi:10.1029/2004PA001052

Gibbs, S.J., Bralower, T.J., Bown, P.R., Zachos, J.C., and Bybell, L., 2006. Shelf-open ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: implications for global productivity gradients. Geology, 34:233–236.

Gibson, T.G., Bybell, L.M., and Owens, J.P., 1993. Latest Paleocene lithologic and biotic events in neritic deposits of southwestern New Jersey. Paleoceanography, 8:495–514.

Gradstein, F.M., Ogg, J.G., and Smith, A. (Eds.), 2004. A Geologic Time Scale 2004: Cambridge (Cambridge Univ. Press).

Haug, G.H., Maslin, M.A., Sarnthein, M., Stax, R., and Tiedemann, R., 1995. Evolution of northwest Pacific sedimentation patterns since 6 Ma (Site 882). In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 293–314.

Heath, G.R., Burckle, L.H., et al., 1985. Init. Repts. DSDP, 86: Washington (U.S. Govt. Printing Office).

Hooker, J.J., 1996. Mammalian biostratigraphy across the Paleocene–Eocene boundary in the Paris, London and Belgian basins. In Knox, R.O., Corfield, R.M., and Dunay, R.E. (Eds.), Correlation of the Early Paleogene in Northwest Europe. Geol. Soc. Spec. Publ., 101:205–218.

Huber, M., and Sloan, L.C., 1999. Warm climate transitions: a general circulation modeling study of the Late Paleocene Thermal Maximum (~56 Ma). J. Geophys. Res., 104:16633–16656. doi:10.1029/1999JD900272

Ingle, S., and Coffin, M., 2004. Impact origin of the greater Ontong Java Plateau? Earth Planet. Sci. Lett., 218:123–134. doi:10.1016/S0012-821X(03)00629-0

Jenkyns, H.C., 1980. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. (London, U. K.), 137:171–188.

Jenkyns, H.C., 1995. Carbon-isotope stratigraphy and paleoceanographic significance of the Lower Cretaceous shallow-water carbonates of Resolution Guyot, Mid-Pacific Mountains. In Winterer, E.L., Sager, W.W., Firth, J.V., and Sinton, J.M. (Eds.), Proc. ODP, Sci. Results, 143: College Station, TX (Ocean Drilling Program), 99–104.

Katz, M.E., Pak, D.K., Dickens, G.R., and Miller, K.G., 1999. The source and fate of massive carbon input during the Latest Paleocene Thermal Maximum. Science, 286:1531–1533. doi:10.1126/science.286.5444.1531

Keller, G., 1988. Extinction, survivorship and evolution of planktic foraminifers across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Mar. Micropaleontol., 13:239–263. doi:10.1016/0377-8398(88)90005-9

Kelly, D.C., Bralower, T.J., and Zachos, J.C., 1998. Evolutionary consequences of the Latest Paleocene Thermal Maximum for tropical planktonic foraminifera. Palaeogeogr., Palaeoclimatol., Palaeoecol., 141:139–161. doi:10.1016/S0031-0182(98) 00017-0

Kelly, D.C., Bralower, T.J., Zachos, J.C., Premoli Silva, I., and Thomas, E., 1996. Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the Late Paleocene Thermal Maximum. Geology, 24:423–426.

Kennett, J.P., Keller, G., and Srinivasan, M.S., 1985. Miocene planktonic foraminiferal biogeography and paleoceanographic development of the Indo-Pacific region. In Kennett, J.P. (Ed.), The Miocene Ocean: Paleoceanography and Biogeography. Mem.—Geol. Soc. Am., 163:197–236.

Kennett, J.P., and Stott, L.D., 1991. Abrupt deep-sea warming, paleoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature (London, U. K.), 353:225–229. doi:10.1038/353225a0

Kent, D.V., Cramer, B.S., Lanci, L., Wang, D., Wright, J.D., and Van der Voo, R., 2003. A case for a comet impact trigger for the Paleocene/Eocene Thermal Maximum and carbon isotope excursion. Earth Planet. Sci. Lett., 211:13–26. doi:10.1016/S0012-821X(03)00188-2

Koeberl, C., Armstrong, R.A., and Reimold, W.U., 1997. Morokweng, South Africa: a large impact structure of Jurassic–Cretaceous boundary age. Geology, 25:731–734. doi:10.1130/0091-7613(1997)025<0731:MSAALI>2.3.CO;2

Koizumi, I., 1985. Late Neogene paleoceanography in the western north Pacific. In Heath, G.R., Burckle, L.H., et al., Init. Repts. DSDP, 86: Washington (U.S. Govt. Printing Office), 86:429–438.

Larson, R.L., 1991. Geological consequences of superplumes. Geology, 19:963–966.

Larson, R.L., and Erba, E., 1999. Onset of the Mid-Cretaceous greenhouse in the Barremian–Aptian: igneous events and the biological, sedimentary and geochemical responses. Paleoceanography, 14:663–678. doi:10.1029/1999PA900040

Larson, R.L., Moberly, R., et al., 1975. Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office).

Laskar, J., 1990. The chaotic motion of the solar system: a numerical estimate of the size of the chaotic zones. Icarus, 88:266–291. doi:10.1016/0019-1035(90)90084-M

Leckie, R.M., Bralower, T.J., and Cashman, R., 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17(3). doi:10.1029/2001PA000623

Lourens, L.J., Sluijs, A., Kroon, D., Zachos, J.C., Thomas, E., Röhl, U., Bowles, J., and Raffi, I., 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature (London, U. K.), 435:1083–1087. doi:10.1038/nature03814

MacLeod, K.G., and Huber, B.T., 1996. Reorganization of deep ocean circulation accompanying a Late Cretaceous extinction event. Nature (London, U. K.), 380:422–425. doi:10.1038/380422a0

MacLeod, K.G., Huber, B.T., and Ward, P.D., 1996. The biostratigraphy and paleobiogeography of Maastrichtian inoceramids. In Ryder, G., Fastowsky, D., and Gartner, S. (Eds.), The Cretaceous–Tertiary Event and Other Catastrophes in Earth History. Spec. Publ.–Geol. Soc. Am., 307:361–373.

Mahoney, J.J., Duncan, R.A., Tejada, M.L.G., Sager, W.W., and Bralower, T.J., 2005. Jurassic–Cretaceous boundary age and mid-ocean-ridge-type mantle source for Shatsky Rise. Geology, 33:185–188. doi:10.1130/G21378.1

Mahoney, J.J., and Spencer, K.J., 1991. Isotopic evidence for the origin of the Manihiki and Ontong Java oceanic plateaus. Earth Planet. Sci. Lett., 104:196–210.

Maslin, M.A., Haug, G.H., Sarnthein, M., Tiedemann, R., Erlenkeuser, H., and Stax, R., 1995. Northwest Pacific Site 882: the initiation of Northern Hemisphere glaciation. In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 315–329.

Menegatti, A.P., Weissert, H., Brown, R.S., Tyson, R.V., Farrimond, P., Strasser, A., and Caron, M., 1998. High resolution 13C stratigraphy through the early Aptian "Livello Selli" of the Alpine Tethys. Paleoceanography, 13:530–545. doi:10.1029/98PA01793

Nakanishi, M., Sager, W.W., and Klaus, A., 1999. Magnetic lineations within Shatsky Rise, northwest Pacific Ocean: implications for hot spot–triple junction interaction and oceanic plateau formation. J. Geophys. Res., 104:7539–7556. doi:10.1029/1999JB900002

Natland, J.H., 1993. Volcanic ash and pumice at Shatsky Rise: sources, mechanisms of transport, and bearing on atmospheric circulation. In Natland, J.H., Storms, M.A., et al., Proc. ODP, Sci. Results, 132: College Station, TX (Ocean Drilling Program), 57–66.

Natland, J.H., Storms, M.A., et al., 1993. Proc. ODP, Sci. Results, 132: College Station, TX (Ocean Drilling Program).

Norris, R.D., and Röhl, U., 1999. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature (London, U. K.), 401:775–778. doi:10.1038/44545

Olsson, R.K., Hemleben, C., Berggren, W.A., and Huber, B.T. (Eds.), 1999. Atlas of Paleocene Planktonic Foraminifera. Smithson. Contrib. Paleobiol., Vol. 85.

Pak, D.K., and Miller, K.G., 1992. Paleocene to Eocene benthic foraminiferal isotopes and assemblages: implications for deepwater circulation. Paleoceanography, 7:405–422.

Pálfy, J., Smith, P.L., and Mortensen, J.K., 2000. A U-Pb and 40Ar-39Ar time scale for the Jurassic. Can. J. Earth Sci., 37:923–944. doi:10.1139/cjes-37-6-923

Pospichal, J.J., 1996. Calcareous nannoplankton mass extinction at the Cretaceous/Tertiary boundary: an update. In Ryder, G., et al. (Eds.), The Cretaceous–Tertiary Event and Other Catastrophes in Earth History. Spec. Pap.—Geol. Soc. Am., 307:335–360.

Ravizza, G., Norris, R.N., Blusztajn, J., and Aubry, M.-P., 2001. An osmium isotope excursion associated with the Late Paleocene Thermal Maximum: evidence of intensified chemical weathering. Paleoceanography, 16:155–163. doi:10.1029/2000PA000541

Ray, J.S., Mahoney, J.J., Johnson, K.T.M., Pyle, D.G., Naar, D., and Wessel, P., 2003. Geochemistry of volcanism along the Nazca Ridge and Easter Seamount Chain [EGS-AGU-EUG Joint Assembly, Nice, 06–11 April 2003].

Rea, D.K., Basov, I.A., Krissek, L.A., and the Leg 145 Scientific Party, 1995. Scientific results of drilling the North Pacific Transect. In Rea, D.K., Basov, I.A., Scholl, D.W., and Allan, J.F. (Eds.), Proc. ODP, Sci. Results, 145: College Station, TX (Ocean Drilling Program), 577–596.

Rea, D.K., and Leinen, M., 1985. Neogene history of the calcite compensation depth and lysocline in the South Pacific Ocean. Nature (London, U. K.), 316:805–807. doi:10.1038/316805a0

Robinson, S.A., Williams, T., and Bown, P.R., 2004. Fluctuations in biosiliceous production and the generation of Early Cretaceous oceanic anoxic events in the Pacific Ocean (Shatsky Rise, ODP Leg 198). Paleoceanography, 19(PA4024). doi:10.1029/2004PA001010

Rogers, G.C., 1982. Oceanic plateaus as meteorite impact signatures. Nature (London, U. K.), 299:341–342. doi:10.1038/299341a0

Romine, K., and Lombari, G., 1985. Evolution of Pacific circulation in the Miocene: radiolarian evidence from DSDP Site 289. In Kennett, J.P. (Ed.), The Miocene Ocean: Paleoceanography and Biogeography. Mem.—Geol. Soc. Am., 163:273–290.

Sager, W.W., in press. What built Shatsky Rise, a mantle plume or ridge processes? In Foulger, G.R., Anderson, D.L., Natland, J.H., and Presnall, D.C. (Eds.), Plumes, Plates, and Paradigms. Spec. Pap.—Geol. Soc. Am.

Sager, W.W., and Han, H.-C., 1993. Rapid formation of the Shatsky Rise oceanic plateau inferred from its magnetic anomaly. Nature (London, U. K.), 364:610–613. doi:10.1038/364610a0

Sager, W.W., Kim, J., Klaus, A., Nakanishi, M., and Khankishieva, L.M., 1999. Bathymetry of Shatsky Rise, northwest Pacific Ocean: implications for ocean plateau development at a triple junction. J. Geophys. Res., [Solid Earth Planets], 104(4):7557–7576.

Scher, H.D., and Martin, E.E., 2004. Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes. Earth Planet. Sci. Lett., 228:391–405. doi:10.1016/j.epsl.2004.10.016

Schlanger, S.O., Arthur, M.A., Jenkyns, H.C., and Scholle, P.A., 1987. The Cenomanian–Turonian oceanic anoxic event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine 13C excursion. In Brooks, J., and Fleet, A.J. (Eds.), Marine Petroleum Source Rocks. Spec. Publ.—Geol. Soc. London, 26:371–399.

Schlanger, S.O., and Douglas, R.G., 1974. The pelagic ooze-chalk-limestone transition and its implication for marine stratigraphy. In Hsü, K.J., and Jenkyns, H.C. (Eds.), Pelagic Sediments: On Land and Under the Sea. Spec. Publ.—Int. Assoc. Sedimentol., 1:117–148.

Schlanger, S.O., and Jenkyns, H.C., 1976. Cretaceous oceanic anoxic events: causes and consequences. Geol. Mijnbouw, 55:179–184.

Sinton, C.W., and Duncan, R.A., 1997. Potential links between ocean plateau volcanism and global ocean anoxia at the Cen/Tur boundary. Econ. Geol., 92:836–842.

Sliter, W.V., 1989. Aptian anoxia in the Pacific Basin. Geology, 17:909–912. doi:10.1130/0091-7613(1989)017<0909:AAITPB>2.3.CO;2

Snow, L.J., Duncan, R.A., and Bralower, T.J., 2005. Trace element abundances in the Rock Canyon anticline, Pueblo, Colorado marine sedimentary section and their relationship to Caribbean Plateau construction and oxygen anoxic event 2. Paleoceanography, 20. doi:10.1029/2004PA001093

Speijer, R.P., and Schmitz, B., 1998. A benthic foraminiferal record of Paleocene sea-level changes and trophic conditions at Gebel Aweina, Egypt. Palaeogeogr., Palaeoclimatol., Palaeoecol., 137:79–101. doi:10.1016/S0031-0182(97)00107-7

Sun, S.-S., and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Saunders, A.D., and Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geol. Soc. Spec. Publ., 42:313–345.

Svenson, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T.R., and Rey, S.S., 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature (London, U. K.), 429:542–545. doi:10.1038/nature02566

Taylor, B., Fujioka, K., et al., 1990. Proc. ODP, Init. Repts., 126: College Station, TX (Ocean Drilling Program).

Tejada, M.L.G., Mahoney, J.J., Castillo, P.R., Ingle, S.P., Sheth, H.C., and Weis, D., 2004. Pin-pricking the elephant: evidence on the origin of the Ontong Java Plateau from Pb-Sr-Hf-Nd isotopic characteristics of ODP Leg 192 basalts. In Fitton, J.G., Mahoney, J.J., Wallace, P.J., and Saunders, A.D. (Eds.), Origin and Evolution of the Ontong Java Plateau. Geol. Soc. Spec. Publ., 229:133–150.

Thierstein, H.R., and Okada, H., 1979. The Cretaceous/Tertiary boundary event in the North Atlantic. In Tucholke, B.E., Vogt, P.R., et al., Init. Repts. DSDP, 43: Washington (U.S. Govt. Printing Office), 601–616.

Thomas, D.J., 2004. Evidence for deep-water production in the North Pacific Oceans during the early Cenozoic warm interval. Nature (London, U. K.), 430:65–68. doi:10.1038/nature02639

Thomas, D.J., 2005. Reconstruction of ancient deep-sea circulation patterns using the Nd isotopic composition of fossil fish debris. Geol. Soc. Spec. Publ., 395:1–12.

Thomas, E., 1990. Late Cretaceous–early Eocene mass extinctions in the deep sea. In Sharpton, V.L., and Ward, P.D. (Eds.), Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality. Spec. Pap.—Geol. Soc. Am., 247:481–495.

Thomas, E., 1998. Biogeography of the late Paleocene benthic foraminiferal extinction. In Aubry, M.-P., Lucas, S.G., and Berggren, W.A., (Eds.), Late Paleocene–Early Eocene Biotic and Climatic Events in the Marine and Terrestrial Records: New York (Columbia Univ. Press), 214–243.

Thomas, E., 2003. Extinction and food on the seafloor: a high-resolution benthic foraminiferal record across the initial Eocene thermal maximum, Southern Ocean Site 690. In Wing, S.L., Gingerich, P.D., Schmitz, B., and Thomas, E. (Eds.), Causes and Consequences of Globally Warm Climates in the Early Paleogene, Spec. Pap.—Geol. Soc. Am., 369:319–332.

Thomas, E., and Shackleton, N.J., 1996. The latest Paleocene benthic foraminiferal extinction and stable isotope anomalies. In Knox, R.O., Corfield, R.M., and Dunay, R.E., (Eds.), Correlation of the early Paleogene in Northwest Europe. Geol. Soc. Spec. Publ. London, 101:401–441.

Thomas, E., Zachos, J.C., and Bralower, T.J., 2000. Ice-free to glacial world transition as recorded by benthic foraminifera. In Huber, B.T., MacLeod, K.G., and Wing, S.L. (Eds.), Warm Climates in Earth History: Cambridge (Cambridge Univ. Press), 132–160.

Tjalsma, R.C., and Lohmann, G.P., 1983. Paleocene–Eocene Bathyal and Abyssal Benthic Foraminifera from the Atlantic Ocean. Micropaleontology, Spec. Publ., 4:1–90.

Tripati, A.K., Delaney, M.L., Zachos, J.C., Anderson, L.D., Kelly, D.C., and Elderfield, H., 2003. Tropical sea-surface temperature reconstruction for the early Paleogene using Mg/Ca ratios of planktonic foraminifera. Paleoceanography, 18. doi:10.1029/2003PA000937

Vogt, P.R., 1989. Volcanogenic upwelling of anoxic, nutrient-rich water: a possible factor in carbonate-bank/reef demise and benthic faunal extinctions? Geol. Soc. Am. Bull., 101:1225–1245.

Walker, J.C.G., and Kasting, J.F., 1992. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Global Planet. Change, 5:151–189.

Wilson, P.A., and Norris, R.D., 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature (London, U. K.), 412:425–429. doi:10.1038/35086553

Zachos, J.C., Kroon, D., Blum, P., et al., 2004. Proc. ODP, Init. Repts., 208 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML]

Zachos, J.C., Lohmann, K.C., Walker, J.C.G., and Wise, S.W., Jr., 1993. Abrupt climate changes and transient climates during the Paleogene: a marine perspective. J. Geol., 101:191–213.

Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292:686–693. doi:10.1126/science.1059412

Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L.J., McCarren, H., and Kroon, D., 2005. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science, 308:1611–1615. doi:10.1126/science.1109004

Zachos, J.C., Wara, M.W., Bohaty, S., Delaney, M.L., Petrizzo, M.R., Brill, A., Bralower, T.J., and Premoli-Silva, I., 2003. A transient rise in tropical sea surface temperature during the Paleocene–Eocene Thermal Maximum. Science, 302:1551–1554. doi:10.1126/science.1090110

Zahn, R., Rushdi, A., Pisias, N.G., Bornhold, B.D., Blaise, B., and Karlin, R., 1991. Carbonate deposition and benthic 13C in the subarctic Pacific: implications for changes of the oceanic carbonate system during the past 750,000 years. Earth Planet. Sci. Lett., 103:116–132.

NEXT