REFERENCES

Archer, D., Lyle, M., Rodgers, K., and Froelich, P., 1993. What controls opal preservation in tropical deep-sea sediments? Paleoceanography, 8:7–21.

Berger, W.H., Adelseck, C.G., and Mayer, L., 1976. Distribution of carbonate in surface sediments of the Pacific Ocean. J. Geophys. Res., 81:2617–2627.

Berger, W.H., Vincent, E., and Thierstein, H.R., 1981. The deep-sea record: major steps in Cenozoic ocean evolution. In Warme, J.E., Douglas, R.G., and Winterer, E.L. (Eds.), The Deep Sea Drilling Project: A Decade of Progress. Spec. Publ.—Soc. Econ. Paleontol. Mineral., 32:489–504.

Bohaty, S., and Zachos, J., 2003. Significant Southern Ocean warming event in the late middle Eocene. Geology, 31(11):1017–1020.

Broecker, W.S., 1971. A kinetic model for the chemical composition of sea water. Quat. Res., 1(2):188–207.

Broecker, W.S., 1982. Ocean chemistry during glacial time. Geochim. Cosmochim. Acta, 46:1689–1705.

Caldeira, K., and Wickett, M.E., 2003. Anthropogenic carbon and ocean pH. Nature (London, U. K.), 425:365.

Cande, S.C., and Kent, D.V., 1992. A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 97:13917–13951.

Cande, S.C., and Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 100:6093–6095.

Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H., and Backman, J., 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature (London, U. K.), 433(53–57):10.1038/nature03135.

Delaney, M.L., and Boyle, E.A., 1988. Tertiary paleoceanic chemical variability: unintended consequences of simple geochemical models. Paleoceanography, 3:137–156.

Demicco, R.V., Lowenstein, T.K., and Hardie, L.A., 2003. Atmospheric pCO2 since 60 Ma from records of seawater pH, calcium, and primary carbonate mineralogy. Geology, 31(9):791–796.

Dickens, G.R., O'Neil, J.R., Rea, D.K., and Owen, R.M., 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10:965–971.

Dickens, G.R., Castillo, M.M., and Walker, J.G.C., 1997. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25:259–262.

Hardie, L.A., 1996. Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites of the past 600 m.y. Geology, 24(3):279–283.

Hartnett, H.E., and Devol, A.H., 2003. Role of a strong oxygen-deficient zone in the preservation and degradation matter: a carbon budget for the continental margins of northwest Mexico and Washington state. Geochim. Cosmochim. Acta, 67(2):247–264.

Honjo, S., Dymond, J., Collier, R., and Manganini, S.J., 1995. Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment. Deep-Sea Res., 42:831–870.

Horita, J., Zimmermann, H., and Holland, H.D., 2002. Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochem. Cosmochim. Acta, 66(21):3733–3756.

Huber, M., and Caballero, R., 2003. Eocene El Nino: evidence for robust tropical dynamics in the "hothouse." Science, 299:877–881.

Karlin, G.M., Lyle, M., and Heath, G.R., 1987. Authigenic magnetite formation in suboxic marine sediments. Nature (London, U. K.), 326:490–493.

Lyle, M., Wilson, P.A., Janecek, T.R., et al., 2002. Proc. ODP, Init. Repts., 199 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/199_IR/199ir.htm>. [HTML version]

Lyle, M., 2003. Neogene carbonate burial in the Pacific Ocean. Paleoceanography, 18(3):10.1029/2002PA000777.

Miller, K.G., Wright, J.D., and Fairbanks, R.G., 1991. Unlocking the Ice House: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res., 96:6829–6848.

Moore, T.C., Jr., Backman, J., Raffi, I., Nigrini, C., Sanfilippo, A., Pälike, H., and Lyle, M., 2004. Paleogene tropical Pacific: clues to circulation, productivity, and plate motion. Paleoceanography, 19:10.1029/2003PA000998.

Mortlock, R.A., and Froelich, P.N., 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res., Part A, 36:1415–1426.

Murray, R.W., Leinen, M., and Isern, A.R., 1993. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean: evidence for increased productivity during glacial periods. Paleoceanography, 8(5):651–670.

Musgrave, R.J., Delaney, M.L., Stax, R., and Tarduno, J.A., 1993. Magnetic diagenesis, organic input, interstitial water chemistry, and paleomagnetic record of the carbonate sequence on the Ontong Java Plateau. In Berger, W.H., Kroenke, L.W., Mayer, L.A., et al., Proc. ODP, Sci. Results, 130: College Station, TX (Ocean Drilling Program), 527–546.

Nelson, C.S., and Cooke, P.J., 2001. History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic—a synthesis. N. Z. J. Geol. Geophys., 44:535–553.

Olivarez Lyle, A., and Lyle, M.W., 2002. Determination of biogenic opal in pelagic marine sediments: a simple method revisited. In Lyle, M., Wilson, P.A., Janecek, T.R., et al., Proc. ODP, Init. Repts., 199 [Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/199_IR/chap_06/chap_06.htm. [HTML version]

Pearson, P.N., and Palmer, M.R., 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature (London, U.K.), 406:695–699.

Peterson, L.C., Murray, D.W., Ehrmann, W.U., and Hempel, P., 1992. Cenozoic carbonate accumulation and compensation depth changes in the Indian Ocean. In Duncan, R.A., Rea, D.K., Kidd, R.B., von Rad, U., and Weissel, J.K. (Eds.), Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophys. Monogr., 70:311–333.

Pisias, N.G., Mayer, L.A., and Mix, A.C., 1995. Paleoceanography of the eastern equatorial Pacific during the Neogene: synthesis of Leg 138 drilling results. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 5–21.

Rea, D.K., and Lyle, M.W., 2005. Paleogene calcite compensation depth in the eastern subtropical Pacific: answers and questions. Paleoceanography, 20(1):10.1029/2004PA001064.

Royer, D.L., Berner, R.A., Montaez, I.P., Tabor, N.J., and Beerling, D.J., 2004. CO2 as a primary driver of Phanerozoic climate. GSA Today, 14(3):4–10.

Shellito, C.J., Sloan, L.C., and Huber, M., 2003. Climate model sensitivity to atmospheric CO2 levels in the early–middle Paleogene. Palaeogeogr., Palaecoclimatol., Palaeoecol., 193:113–123.

Tarduno, J.A, Duncan, R.A., Scholl, D.W., Cottrell, R.D., Steinberger, B., Thordarson, T., Kerr, B.C., Neal, C.R., Frey, F.A., Torii, M., and Carvallo, C., 2003. The Emperor Seamounts: southward motion of the Hawaiian hotspot plume in Earth's mantle. Science, 301(22):1064–1069.

Thomas, D.J., Zachos, J.C., Bralower, T.J., Thomas, E., and Bohaty, S., 2002. Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Paleocene–Eocene Thermal Maximum. Geology, 30(12):1067–1070.

Tripati, A., Backman, J., Elderfield, H., and Ferreti, P., 2005, Eocene bipolar glaciation associated with global carbon cycle changes. Nature, 436:341-345.

van Andel, T.H., Heath, G.R., et al., 1973. Init. Repts. DSDP, 16: Washington (U.S. Govt. Printing Office).

van Andel, T.H., 1975. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments. Earth Planet. Sci. Lett., 26:187–194.

Veizer, J., Godderis, Y., and Francois, L.M., 2000. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature (London, U. K.), 408:698–701.

Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292:686–693.

NEXT