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ABSTRACT

During Ocean Drilling Program Leg 199 in the equatorial Pacific, vis-
ible and near-infrared spectroscopy (VNIS) was used to measure the re-
flectance spectra (350–2500 nm) of 1343 sediment samples. Reflectance
spectra were also measured for a suite of 60 samples of known mineral-
ogy, thereby providing a local ground-truth calibration of spectral fea-
tures to percentages of calcite, opal, smectite, and illite. The associated
algorithm was used to calculate mineral percentages from the 1343
spectra. Using multiple regression and VNIS mineralogy, multisensor
track physical properties and light spectroscopy data were then con-
verted into continuous high-resolution mineralogy logs.

INTRODUCTION

A latitudinal transect of Cenozoic sediments, particularly Paleogene
sequences, was collected during Leg 199 of the Ocean Drilling Program
(ODP) in order to study the paleoceanography and paleoclimate of the
last 55 m.y. (Lyle, Wilson, Janecek, et al., 2002). The Pacific plate has
steadily drifted northward throughout Cenozoic time, transporting
Paleogene biogenic sediments, which were deposited under the high-
productivity equatorial belt, into the red clay zone of extremely slow
sediment accumulation (van Andel, 1974). Consequently, the central
tropical North Pacific Ocean is an ideal region in which to sample shal-
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lowly buried Paleogene sequences of equatorially deposited biogenic
sediments. The thin Neogene cover of red clay allowed the Paleogene
sediments to be reached by advanced piston coring and extended core
barrel drilling, which achieve much higher core recovery than rotary
drilling. Eight sites were drilled during Leg 199, seven of which were lo-
cated on a north–south transect along 56- to 57-Ma crust. The eighth
site (Site 1218) was drilled on 40-Ma crust to collect a well-preserved
Eocene/Oligocene boundary sequence. This site was located in shal-
lower water because of its eastern location, resulting in higher rates of
carbonate accumulation.

This study is the first to use visible and near-infrared spectroscopy
(VNIS) to determine high-resolution mineralogy. VNIS-based mineral-
ogy for each Leg 199 site provides a ground-truth for the conversion of
multisensor track (MST) and light spectroscopy logs to continuous min-
eralogy logs. These concentration logs of calcium carbonate (derived al-
most entirely from nannofossils), biogenic opal (derived mainly from
radiolarians), and terrigenous materials (almost exclusively wind-depos-
ited clays) provide a foundation for the calculation of high-resolution
mass accumulation rates for each component (Vanden Berg and Jarrard,
2004).

SPECTROSCOPY-BASED MINERALOGY

Previous Work

The ultimate goal of all sediment spectroscopy techniques is to pro-
vide accurate qualitative or quantitative estimates of sediment composi-
tion. Many studies have shown that different marine sediment types
have distinctive spectral features within the visible and very near infra-
red region of the electromagnetic spectrum. Mix et al. (1992, 1995) de-
veloped and used a prototype split-core analysis track (SCAT) for
automated core scanning of reflectance (wavelength = 455–945 nm)
during ODP Leg 138. Their goal was to estimate biogenic calcite, bio-
genic opal, and nonbiogenic contents from recovered cores. Their esti-
mates were best for biogenic calcite, but opal and nonbiogenic material
were not always distinguished reliably. A revised SCAT instrument with
an improved signal-to-noise ratio and wider frequency band (250–950
nm vs. earlier 455–945 nm) was used during ODP Legs 154, 162, and
167 (Harris et al., 1997; Shipboard Scientific Party, 1997; Ortiz et al.,
1999b).

Starting with Leg 154, shipboard core scanning with the Minolta
spectrophotometer (400–700 nm) became a routine measurement. ODP
scientists used these data as a proxy for many different minerals,
mainly calcite (e.g., Shipboard Scientific Party, 1995). Balsam et al.
(1999) evaluated the use of visible light (400–700 nm) spectroscopy, or
optical lightness, as a proxy for the carbonate content of marine sedi-
ments in five Atlantic piston cores and ODP Hole 997A. Their carbonate
estimates were good, but they warned that optical lightness is strongly
affected by the composition of the noncarbonate fraction, such as clay.
Balsam and Deaton (1996) used 250- to 850-nm spectra to estimate con-
centrations of carbonate, opal, and organic carbon in various Atlantic
piston cores and at ODP Site 847 (East Pacific Rise). They found that the
character of downcore changes in mineralogy was well determined but
systematic offsets were sometimes evident for individual mineral con-
centrations. Additional visible-range spectral research, summarized by
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Balsam and Damuth (2000), includes use of the slope of the reflectance
curve to estimate chlorite and organic carbon (Balsam and Deaton,
1991) or hematite and goethite (Deaton and Balsam, 1991) and factor
analysis to extract indicators of up to five components (Balsam and Da-
muth, 2000).

VNIS Technique

In contrast to the various studies mentioned above, we measured
broader-band, 350- to 2500-nm spectra for the visible and expanded
near-infrared region of the electromagnetic spectrum (Vanden Berg and
Jarrard, 2002). The additional spectral information found in the ex-
panded near-infrared region greatly improves identification of paleocli-
matically significant minerals (Fig. F1), yet this frequency band had
previously been used mainly for remote sensing and economic geology
studies (Goetz et al., 1983; Clark and Roush, 1984; Clark et al., 1990,
2003). By using local ground-truth to calibrate specific spectral re-
sponses, we developed algorithms that could be used to rapidly calcu-
late concentrations of calcite and opal, as well as the two main
terrigenous minerals, smectite and illite.

The eight Leg 199 sites were sampled at a spacing of ~0.75 m, and
then all 1343 samples were dried and crushed to powder. Each sample
was illuminated with a quartz halogen light at a near-vertical angle, and
the reflected visible and near-infrared spectrum (350–2500 nm) was re-
corded at 1-nm spacing and 3- to 10-nm resolution with an ASD Field-
Spec Pro FR portable spectroradiometer (Vanden Berg and Jarrard,
2002).

To calibrate the VNIS response to local mineralogy, we use geochemi-
cal analyses of samples from the same region. An alternative approach
is to use mixes of pure mineral standards. However, VNIS response is
sensitive to both grain size and—especially for clays—subtle composi-
tional variations (Clark et al., 1990). An additional advantage of using
local ground-truth samples is that spectral features sensitive to other
minor components (e.g., organic matter) can be identified and avoided.

Sixty local ground-truth samples were chosen from several sites in
the Leg 199 area: Deep Sea Drilling Project (DSDP) Site 162 (Leg 16),
four Leg 199 site survey cores (EW9709), and samples from three Leg
199 sites (Table T1). The first set of ground-truth data consisted of 14
samples from DSDP Site 162 (14°N, 140°W), ranging in depth from 0.9
to 150.0 meters below seafloor (mbsf). These samples were analyzed by
Olivarez-Lyle and Lyle (2002) for calcite and opal concentrations. X-ray
diffraction (XRD) analyses indicate that smectite is the dominant clay
mineral throughout Site 162 (Zemmels, 1973). The second set consists
of 35 samples taken from four EW9709 cores, the site survey cores for
ODP Leg 199: EW9709-3PC (21°N, 139°W), EW9709-7PC (8°N, 135°W),
EW9709-12PC (5°N, 140°W), and EW9709-21GC (26°N, 147°W). Oli-
varez-Lyle and Lyle (2002) determined calcite and opal concentrations
for these samples. The dominant clay mineral (illite or smectite) was
identified subjectively by VNIS interpretation. In order to increase the
range of ground-truth compositions, 11 samples from Leg 199 Sites
1215, 1218, and 1219 were added to the ground-truth sample suite.
These included three samples containing 100% illite, three samples
with moderate calcite and smectite concentrations, and seven samples
with high calcite concentrations. Calcite percentages were measured
during the cruise by coulometer (Lyle, Wilson, Janecek, et al., 2002).
The clay mineralogy was derived from location in the core and spectral
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characteristics. Clay percentages were calculated by assuming that opal
+ calcite + clay = 100%. The terrigenous component of all ground-truth
samples commonly includes minor amounts of quartz and other clay
species, but we only refer to the dominant clay mineral.

The next step in the VNIS technique was to evaluate which spectral
features are sensitive to mineral concentrations. We began by calculat-
ing 11 spectral features that may be indicative of concentration of any
of the four components. For example, depth of the 1900-nm water
trough, relative to adjacent peaks, might be sensitive to concentrations
of opal and smectite, both of which contain structural water. Our focus
centered on the 1400- and 1900-nm trough depths as well as subtle dif-
ferences in spectral character in the 2000- to 2500-nm range because of
substantial differences among the four components at these wave-
lengths (Fig. F1). Eight spectral features were selected and confirmed to
be potentially useful based on individual cross-plots of spectral feature
vs. mineral concentration. Some of these features have a nonlinear rela-
tionship to mineral concentrations; these nonlinearities were reduced
via transforms (e.g., raising to a power, taking the square root).

Onboard during Leg 199, mineralogy was calculated from VNIS spec-
tra (Lyle, Wilson, Janecek, et al., 2002) by using the algorithm of
Vanden Berg and Jarrard (2002) based on multiple regression of spectral
features on ground-truth mineralogy followed by matrix inversion.
Postcruise analyses, however, demonstrated that significantly better
agreement between predicted and ground-truth mineralogy could be
obtained by using stepwise multiple regression, with each ground-truth
mineral percentage as dependent variable and with the suite of spectral
features as independent variables.

When multiple regression is used to determine transforms relating
mineral concentration to geophysical properties, a potential pitfall is
that some predictive variables are merely chance (spurious) correla-
tions. One test for this problem is to split the ground-truth data set into
calibration and verification portions (e.g., Mix et al., 1992). Another ap-
proach is to reduce the number of independent variables via principal
component analysis (PCA) prior to the mineralogy regression (e.g.,
Handwerger and Jarrard, 2003). Our approach was to begin the statisti-
cal analyses with a relatively small number of potential independent
variables and then use stepwise multiple regression to confine the final
predictive equations to only the most significant terms.

Rather than use a simple four-mineral (calcite, opal, smectite, and il-
lite) solution for all sediments, we apply one set of equations to the up-
per clay intervals, which contain primarily smectite and illite, and a
second set of equations for intervals containing mixtures of calcite,
opal, and smectite (Table T2). This method reduces two problems en-
countered in the original shipboard calculations: overestimation of cal-
cite in light-colored clays and prediction of opal in smectite-rich zones.
Our mineral calculation equations sometimes predict slightly negative
concentrations for a mineral component. These negative concentra-
tions were converted to zero, and then concentrations of all compo-
nents were adjusted to a total of 100%. Table T1 and Figure F2 compare
known mineral concentrations to VNIS-predicted mineral concentra-
tions. The correlation coefficients range from a high of 0.99 for illite to
a low of 0.95 for the three-mineral smectite solution. We note, however,
that the determinations of relative percentages of smectite vs. illite are
much less accurate than their excellent correlation coefficients suggest
because of the paucity of intermediate mixes (Fig. F2B).

T2. Spectral features, p. 22.
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Figure F3 displays the calculated mineral concentrations plotted vs.
depth for each site drilled during Leg 199 (Site 1216 is omitted because
it contains only terrigenous materials); these data are tabulated in
Vanden Berg (2003). Lithologic columns and units are also included, as
well as first-order ages. These figures illustrate that the VNIS-mineralogy
data indicate major changes in lithology as well as more subtle mineral
variations. The dominant clay mineral is smectite. Illite is present, but it
is restricted to the upper 15 m of core (Fig. F4). The accuracy of VNIS-
based calcite concentrations can also be evaluated by comparison to in-
dependent coulometer calcite concentrations (Fig. F5). The correlation
between the two data sets is very good (VNIS-predicted calcite is ±5% of
coulometer calcite) despite the fact that the compared samples were
sometimes up to 2 cm apart. Calcite was measured by coulometer dur-
ing Leg 199 at a sample spacing of ~4.6 m, whereas VNIS-based calcite
concentrations were measured at a spacing of ~0.75 m.

CONVERSION OF CONTINUOUS-CORE PHYSICAL 
PROPERTIES INTO MINERALOGY LOGS

A variety of techniques have been employed to calculate mineralogy
from high-resolution physical property logs. For example, Mayer
(1991), Herbert and Mayer (1991), and Hagelberg et al. (1995) used
polynomial regression to estimate carbonate contents from MST bulk
density. DeMenocal et al. (1992) used multiple regression of downhole
logs to calculate concentrations of opal, carbonate, and terrigenous ma-
terials. Balsam and Deaton (1991, 1996), Schneider et al. (1995), Ortiz
et al. (1999a), and Balsam et al. (1999) used multiple or linear regression
of reflectance spectral features to calculate carbonate and various clay
minerals. PCA has also been applied to MST and downhole logs for cal-
culation of carbonate and clay percentages (Handwerger and Jarrard,
2003).

Our calculations of mineralogy from physical properties differ from
previous studies in two significant respects. First, we quantify four com-
ponents, whereas most previous analyses distinguished only two com-
ponents (but see deMenocal et al., 1992; Balsam and Damuth, 2000).
Second, our VNIS-based mineralogy provides an order of magnitude
more ground-truth data than are usually available to calibrate the con-
version from physical properties to mineralogy.

Continuous-core physical properties included in this conversion
were the mineralogy-dependent MST logs—gamma-ray attenuation
bulk density and magnetic susceptibility—plus four reflectance logs
from the ODP Digital Core Imaging System (Minolta core scanner): to-
tal reflectance measured over the entire visible range (400–700 nm)
(L*), reflectance in the red (a*) and blue (b*) regions, and a ratio of red
to blue (a*/b*) (Lyle, Wilson, Janecek, et al., 2002). The MST compres-
sional wave velocity log was not used because of its dependence on po-
rosity instead of mineralogy and because of reliability problems, and
the natural gamma ray log was excluded because of its low sample fre-
quency and low signal-to-noise ratio. For each site, the MST/Minolta
logs were edited to remove spurious values associated with severely dis-
turbed core. The optimum equations for converting the MST/Minolta
logs into mineralogy were determined via stepwise multiple regression,
with VNIS-based estimates of carbonate, opal, or terrigenous fraction as
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the dependent variable and the suite of MST/Minolta logs as indepen-
dent variables.

Deeper sites were split into two or three depth intervals, separated at
changes in coring method (advanced piston core vs. extended core bar-
rel) or major lithologic changes for separate multiple regressions. This
technique worked remarkably well, often resulting in correlation coeffi-
cients between 0.90 and 0.99 (Table T3). An alternative to multiple re-
gression is PCA or factor analysis. This technique was used by Balsam
and Damuth (2000) to estimate five mineral components from light
spectroscopy data and by Handwerger and Jarrard (in press) for calcula-
tion of carbonate and clay percentages from MST and downhole logs.
We found that PCA was also successful for estimating mineralogy of Leg
199 sites, but multiple regression was superior.

Figure F3 compares the VNIS ground-truth mineralogy (discrete sam-
ples) with the MST/Minolta-based mineralogy logs for all Leg 199 sites
except Site 1216, which contained only terrigenous materials.
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Figure F1. Reflectance spectra from the four climatically sensitive minerals involved in this study. Reflec-
tance of 1.0 corresponds to that of a white reference calibration plate. Previous marine sediment studies
only measured the visible bandwidth in the highlighted area. Additional spectral information present in
the expanded near-infrared region greatly improves identification of minerals affected by paleoclimatic
changes.
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Figure F2. Cross-plots comparing visible and near-infrared spectroscopy (VNIS)-predicted mineralogy with
ground-truth mineralogy for the postcruise calibration method. Both the (A) three mineral and (B) two
(clay) mineral solutions are shown along with regression line equations and correlation coefficients (R).
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Figure F3. Comparison of VNIS-based mineralogy (discrete samples) and MST/Minolta-based multiple re-
gression (MR) mineralogy, both plotted vs. depth for all Leg 199 sites (Site 1216 not included because it
contains only terrigenous materials). Lithologic columns (from Lyle, Wilson, Janecek, et al., 2002) and
units are also included, as well as first-order age data. (Continued on next six pages.) 
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Figure F3 (continued). 
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Figure F3 (continued). 
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Figure F3 (continued). 
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Figure F3 (continued). 

U
ni

t I
U

ni
t I

I
U

ni
t I

II
U

ni
t V

0

D
ep

th
 (

m
bs

f)

20

40

60

80

120

140

100

160

180

200

ea
lr

y 
M

io
ce

ne
l. 

O
lig

.
e.

 O
lig

.
l. 

E
oc

.
m

id
dl

e 
E

oc
en

e
ea

rly
 E

oc
en

e

U
ni

t I
V

B
U

ni
t I

V
A

Paleocene

Site 1220

MR-derived log
Discrete sample

0 20 40 60 80 100

Terrigenous (%)

Lithology
Lith.
unit Age 0 20 40 60 80 1000 20 40 60 80 100

CaCO3  (%) Opal (%)



VANDEN BERG AND JARRARD
DATA REPORT: HIGH-RESOLUTION MINERALOGY 16
Figure F3 (continued). 
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Figure F3 (continued). 
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Figure F5. Visible and near-infrared spectroscopy (VNIS)-based calcite concentrations compared with cal-
cite concentrations measured by coulometer for Leg 199 sites that contain calcite.
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Table T1. Mineralogical ground-truth data used to calibrate VNIS spectral fea-
tures for postcruise analysis. (See table notes. Continued on next page.)

Core, section, 
interval (cm)

Calcite (%) Opal (%) Smectite (%) Illite (%)

Ground-
truth VNIS

Ground-
truth VNIS

Ground-
truth VNIS

Ground-
truth VNIS

199-1215A-
1H-1, 49–51 0.00 0.00 0.00 0.00 0.00 6.82 100.00 93.18
2H-1, 23–25 0.00 0.00 0.00 0.00 0.00 6.95 100.00 93.05
2H-1, 75–77 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00
4H-5, 75–77 54.50 48.23 0.00 0.00 45.50 51.77 0.00 0.00
5H-5, 75–77 80.15 89.00 0.00 0.00 19.85 11.00 0.00 0.00
9H-2, 84–86 68.93 75.05 0.00 1.76 31.07 23.19 0.00 0.00

199-1218A-
16H-6, 81–83 93.18 93.20 0.00 0.00 6.82 6.80 0.00 0.00
17H-6, 75–77 92.47 97.49 0.00 0.00 7.53 2.51 0.00 0.00
19H-2, 75–77 92.65 90.32 0.00 0.00 7.35 9.68 0.00 0.00

199-1219A-
12H-4, 69–71 92.36 94.68 0.00 0.00 7.64 5.32 0.00 0.00
13H-4, 75–77 91.62 89.64 0.00 2.39 8.38 7.96 0.00 0.00

EW97909 site survey cores
3PC (PAT-13), 33–35 0.22 0.00 12.00 0.00 0.00 12.53 87.78 87.47
3PC (PAT-13), 314–316 0.04 7.74 15.50 23.73 84.46 68.53 0.00 0.00
3PC (PAT-13), 433–435 0.14 2.33 20.70 27.56 79.16 70.11 0.00 0.00
3PC (PAT-13), 773–775 0.12 0.00 52.60 53.44 47.28 46.56 0.00 0.00
3PC (PAT-13), 830–832 0.33 0.00 60.90 59.04 38.77 40.96 0.00 0.00
3PC (PAT-13), 933–935 0.09 0.00 57.90 56.54 42.01 43.46 0.00 0.00
3PC (PAT-13), 1192–1194 0.09 0.00 55.90 55.67 44.01 44.33 0.00 0.00
3PC (PAT-13), 1337–1339 0.08 0.00 57.00 58.32 42.92 41.68 0.00 0.00
7PC (PAT-8), 122–124 0.16 1.87 17.70 21.96 82.14 76.17 0.00 0.00
7PC (PAT-8), 335–337 0.30 0.00 24.70 25.08 75.00 74.92 0.00 0.00
7PC (PAT-8), 387–389 0.31 0.00 22.20 20.72 77.49 79.28 0.00 0.00
7PC (PAT-8), 518–520 0.33 0.00 20.60 18.75 79.07 81.25 0.00 0.00
7PC (PAT-8), 696–698 0.34 10.08 32.10 25.41 67.56 64.51 0.00 0.00
7PC (PAT-8), 804–806 52.46 43.39 14.40 15.87 33.14 40.74 0.00 0.00
7PC (PAT-8), 829–831 67.50 56.96 8.90 9.22 23.60 33.82 0.00 0.00
7PC (PAT-8), 982–984 0.36 10.70 34.60 26.02 65.04 63.28 0.00 0.00
7PC (PAT-8), 1163–1165 0.31 9.86 31.90 33.15 67.79 56.99 0.00 0.00
7PC (PAT-8), 1252–1254 0.26 7.40 29.70 27.21 70.04 65.38 0.00 0.00
7PC (PAT-8), 1317–1319 16.45 19.09 24.90 23.27 58.65 57.64 0.00 0.00
7PC (PAT-8), 1367–1369 17.24 20.69 31.70 23.13 51.06 56.18 0.00 0.00
7PC (PAT-8), 1436–1438 30.35 26.90 24.00 23.35 45.65 49.75 0.00 0.00
7PC (PAT-8), 1466–1468 27.04 30.41 22.20 20.94 50.76 48.65 0.00 0.00
7PC (PAT-8), 1518–1520 78.91 74.85 7.00 3.11 14.09 22.04 0.00 0.00
12PC (PAT-17), 258–260 0.18 6.76 36.30 31.97 63.52 61.27 0.00 0.00
12PC (PAT-17), 473–475 43.67 32.94 22.90 30.05 33.43 37.01 0.00 0.00
12PC (PAT-17), 593–595 36.53 41.68 26.10 23.89 37.37 34.43 0.00 0.00
12PC (PAT-17), 740–742 0.29 7.36 42.50 41.32 57.21 51.32 0.00 0.00
12PC (PAT-17), 833–835 0.22 7.44 50.80 45.38 48.98 47.18 0.00 0.00
12PC (PAT-17), 979–981 0.14 6.83 37.30 39.75 62.56 53.42 0.00 0.00
12PC (PAT-17), 1074–1076 0.03 6.75 45.80 43.89 54.17 49.36 0.00 0.00
12PC (PAT-17), 1261–1263 63.63 58.34 15.10 17.68 21.27 23.99 0.00 0.00
21GC (PAT-15), 20–22 0.37 0.00 10.60 0.00 0.00 0.00 89.03 100.00
21GC (PAT-15), 115–117 0.11 0.00 9.30 0.00 0.00 0.00 90.59 100.00
21GC (PAT-15), 175–177 0.07 0.00 10.60 0.00 0.00 0.10 89.33 99.90
21GC (PAT-15), 235–237 0.04 0.00 12.20 0.00 0.00 20.70 87.76 79.30

16-162-
1R-1, 91–92 51.68 34.88 15.08 24.03 33.24 41.09 0.00 0.00
1R-2, 61–62 46.94 36.34 18.39 23.45 34.67 40.21 0.00 0.00
1R-3, 80–81 60.02 33.92 7.79 21.75 32.19 44.32 0.00 0.00
3R-2, 80–81 72.33 65.44 10.90 10.86 16.77 23.70 0.00 0.00
3R-3, 80–81 67.64 58.35 10.32 14.67 22.04 26.97 0.00 0.00
3R-4, 80–81 77.60 68.64 7.32 10.21 15.08 21.15 0.00 0.00
3R-5, 70–71 57.34 79.72 6.50 5.39 36.16 14.88 0.00 0.00
4R-3, 79–80 3.97 4.81 43.43 37.85 52.60 57.33 0.00 0.00
4R-4, 80–81 3.56 13.91 45.26 38.51 51.18 47.57 0.00 0.00
4R-5, 77–78 3.14 10.05 48.89 52.40 47.97 37.55 0.00 0.00
4R-6, 60–61 5.96 8.46 54.27 52.15 39.77 39.39 0.00 0.00
14R-2, 80–81 16.03 25.21 52.02 39.58 31.95 35.21 0.00 0.00
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Notes: VNIS-predicted mineral percentages for each ground-truth sample are also shown. Calcite per-
centages for Sites 1215, 1218, and 1219 are from Lyle, Wilson, Janecek, et al. (2002). Clay was
found by subtracting percent calcite from 100%. Opal was assumed to be negligible. The domi-
nant clay mineral (smectite or illite) was identified from VNIS spectra. Data from site survey cores
and Leg 162 are from Olivarez-Lyle and Lyle (2002).

14R-3, 81–82 28.66 17.89 42.15 41.67 29.19 40.43 0.00 0.00
14R-4, 80–81 35.26 28.91 37.14 39.07 27.60 32.02 0.00 0.00

Core, section, 
interval (cm)

Calcite (%) Opal (%) Smectite (%) Illite (%)

Ground-
truth VNIS

Ground-
truth VNIS

Ground-
truth VNIS

Ground-
truth VNIS

Table T1 (continued). 
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Table T2. Spectral features used in the postcruise mineralogy calcu-
lation.

Note: TR = average reflectance over the entire measured bandwidth (350–2500 nm).

Mineral Significant spectral features
Regression 
coefficient

Correlation 
coefficient Constant

Clay solution:
Illite (2208 nm – 2500 nm)/TR1 –18.09 0.992 37.22

SQR(TR) –14.48
[(2200 nm trough – 1900 nm trough)/TR]0.6 –22.44

Smectite [(2200 nm trough – 1900 nm trough)/TR]0.6 36.20 0.977 43.69

Three-mineral solution:
Calcite [(1400 nm trough depth)/TR]0.65 –6.09 0.964 31.42

[(2260 nm peak – 2330 nm trough)/TR]0.6 4.52
(2383 nm – 2336 nm)/TR 25.36

Opal (1900 nm trough depth)/TR 17.23 0.969 25.83
[(2260 nm peak – 2330 nm trough)/TR]0.6 –12.37
(2267 nm + 2323 nm – 2248 nm – 2296 nm)/TR –9.08

Smectite SQR(TR) –4.85 0.953 42.75
[(2260 nm peak – 2330 nm trough)/TR]0.6 5.41
(2383 nm – 2336 nm)/TR –30.61
[(2200 nm trough – 1900 nm trough)/TR]0.6 –15.03
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Table T3. Multiple regression analyses to convert the continuous MST/Minolta logs into
mineralogy logs.

Notes: Den = GRA bulk density, MS = magnetic susceptibility, Ref = average reflectance over entire visible range (*L),
a* = reflectance in the red region, b* = reflectance in the blue region; a*/b* = ratio of red to blue wavelengths.
Regression coefficients correspond to logs. Site 1216 contains only terrigenous minerals.

Site
Mineral 

component
Depth interval 

(mcd) R2 Logs used Regression coefficient Constant

1215 CaCO3 26.44–67.48 0.92 Den, MS, Ref, a* 47.546, –0.360, 1.174, 2.452 –50.412
Terrigenous 26.44–67.48 0.92 Den, MS, Ref, a* –51.177, 0.310, –1.115, –1.746 149.214

1216
1217 CaCO3 26.76–128.88 0.89 Den, MS, Ref, a*, b* 51.832, –0.396, 1.349, –7.836, 4.648 –73.501

Opal 26.76–128.88 0.96 MS, Ref, b*, a*/b* –0.735, –1.528, 1.473, 88.579 39.914
Terrigenous 26.76–128.88 0.98 Den, MS, b* –31.761, 1.167, –0.609 52.020

1218 CaCO3 34.94–187.46 0.98 Den, MS, Ref, a*, a*/b* 64.052, –0.820, –0.260, 3.012, –85.817 21.178
CaCO3 196.14–242.04 0.95 Den, MS 81.376, –0.429 –50.185
CaCO3 242.5–273.76 0.98 Den 156.649 –180.819
Opal 34.94–187.46 0.91 Den, a*, b*, a*/b* –24.420, 6.366, –2.548, –34.255 60.877
Opal 196.14–242.04 0.8 Den –42.311 75.617
Opal 242.5–273.76 0.96 Den, a*/b* –140.799, –27.216 239.107
Terrigenous 34.94–273.76 0.94 Den, MS, Ref, b* –55.460, 0.739, 0.270, –0.551 82.570

1219 CaCO3 0.75–99.76 0.98 Den, MS, b* 123.063, –0.445, 1.389 –124.041
CaCO3 100.66–244.39 0.98 Den, Ref, a* 122.891, 0.313, –1.826 –146.357
Opal 0.75–99.76 0.93 Den, Ref, a*/b* –67.245, 0.212, 44.037 81.839
Opal 100.66–206.75 0.98 Den, MS, Ref, a* –95.284, –0.784, –0.483, 1.280 203.647
Opal 207.24–244.39 0.99 Den, MS, b* –94.301, 0.097, 0.748 169.153
Terrigenous 0.75–20.24 0.91 Den, Ref, a*, b*, a*/b* 271.108, –1.716, –26.128, 14.601, 139.030 –264.864
Terrigenous 20.76–152.6 0.89 Den, MS, b*, a*/b* –13.383, 0.490, –0.602, 25.503 36.495
Terrigenous 154.1–244.39 0.95 Den, MS, a*/b* –50.275, 0.371, –5.382 88.899

1220 CaCO3 19.8–68.76 0.98 Den, Ref, b* 141.444, 0.330, 4.419 –172.938
CaCO3 70.26–192.95 0.91 Den, MS, Ref 65.502, 0.279, 1.166 –112.882
Opal 19.8–68.76 0.93 Den, MS –118.118, –0.847 186.957
Opal 70.26–192.95 0.88 Den, MS, Ref, b* –67.338, –0.761, –0.827, 0.908 174.463
Terrigenous 19.8–68.76 0.95 Den, MS, Ref, a*/b* –29.327, 0.447, –0.687, 1.485 80.568
Terrigenous 70.26–192.95 0.78 Den, MS, Ref, a*/b* –13.814, 0.475, –0.294, 0.365 46.539

1221 CaCO3 4.74–55.24 0.81 MS, a*, a*/b* –0.259, –3.566, –71.118 84.932
CaCO3 55.76–104.42 0.49 Den, MS –2.520, 0.059 2.109
Opal 4.74–13.26 0.62 Den –160.672 222.434
Opal 14.24–82.02 0.82 MS –0.761 75.324
Opal 86.28–104.42 0.49 Den 38.847 24.556
Terrigenous 4.74–104.42 0.89 Den, MS –18.040, 0.465 46.382

1222 CaCO3 41.64–66.16 0.76 Ref, b* 0.955, 3.384 –44.853
Opal 41.64–66.16 0.54 Ref, a* –0.451, –2.378 53.642
Terrigenous 41.64–66.16 0.87 Ref, a*/b* –0.512, 69.291 37.160
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