# **16. DATA REPORT: HIGH-RESOLUTION INORGANIC GEOCHEMISTRY ACROSS THE PALEOCENE/EOCENE BOUNDARY, HOLE 1221C**<sup>1</sup>

Peter A. Knoop<sup>2</sup>

## ABSTRACT

A record of inorganic geochemical variability was produced from a contiguous sequence of 35 samples, with 1 cm spacing, recovered from Hole 1221C. This record covers from 153.91 to 154.27 meters below seafloor and spans the Carbon Isotope Excursion (CIE) associated with the Paleocene/Eocene boundary interval. Elemental concentrations were determined for Al, As, Ba, Ca, Fe, K, Mg, Mn, P, Si, Sr, Ti, Cd, Co, Cr, Cu, Hf, Mo, Nb, Ni, Pb, Pt, Re, Sc, V, Y, Zn, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Most concentration profiles exhibit a marked peak coincident with or just prior to the CIE. In addition, the rare earth element pattern exhibits a significant flattening of the typical, prominent negative Ce anomaly across the same interval.

## INTRODUCTION

The Paleocene/Eocene (P/E) boundary is a period of substantial warming ( $\sim$ 5°–7°C) in surface and deep ocean waters, extinction of 35%–50% of deep-sea benthic foraminifers, rapid perturbation to the global geochemical carbon cycle, and significant changes in Northern Hemisphere terrestrial fauna (e.g., Kennett and Stott, 1991; Zachos et al., 1993; Koch et al., 1992; Gingerich, 2000). These events are believed to have occurred over a very short time period; in particular, high-resolution stable isotope records suggest that the carbon cycle was per-

<sup>1</sup>Knoop, P.A., 2005. Data report: Highresolution inorganic geochemistry across the Paleocene/Eocene boundary, Hole 1221C. *In* Wilson, P.A., Lyle, M., and Firth, J.V. (Eds.), *Proc. ODP, Sci. Results*, 199, 1–12 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/ publications/199\_SR/VOLUME/ CHAPTERS/220.PDF>. [Cited YYYY-MM-DD] <sup>2</sup>University of Michigan, School of Information, 1075 Beal Avenue, Ann Arbor MI 48109-2112, USA. **knoop@umich.edu** 

Initial receipt: 2 May 2004 Acceptance: 22 March 2005 Web publication: 21 December 2005 Ms 199SR-220

#### P.A. KNOOP DATA REPORT: GEOCHEMISTRY OF PALEOCENE/EOCENE BOUNDARY

turbed extremely rapidly, on a scale of less than a single ~26-k.y. precession cycle (e.g., Bains et al., 1999; Norris and Röhl, 1999). It has been suggested that a possible cause for these events is the massive release and oxidation of methane from marine gas hydrate reservoirs (e.g., Dickens et al., 1997; Katz et al., 1999). Such an event would be expected to influence the bulk geochemistry of sediments through changes in dissolved oxygen and chemical inputs to the ocean.

Another possible driver for changes in bulk geochemistry across this interval is increased hydrothermal sedimentation. An increase in hydrothermal sediment fluxes associated with plate boundary reorganization at the P/E boundary has been previously documented (Rea et al., 1990). The age of the lowermost chalks (56.5–57 Ma) suggests that Site 1221 was in relatively close proximity to the paleo-ridge-crest at the time of P/E deposition and could preserve a record of such variability.

The sediments recovered during Leg 199 can help us to further evaluate such hypotheses by filling important gaps in our knowledge of this critical time interval, as few P/E sections have been recovered in the Pacific. The P/E interval was recovered from Holes 1220B, 1221C, and 1221D, all of which exhibit a dramatic yet similar visual appearance across this interval (see figure F30 in Shipboard Scientific Party, 2002). The data generated in this study represent one of the very first highresolution records of bulk geochemistry across the marine P/E boundary.

#### **METHODS**

Samples were fully digested for analysis using a sodium peroxide technique, modified from Sulcek and Povondra (1989), Kleinhanns et al. (2002), and Meisel et al. (2002). Approximately 0.05 g of sample was well-mixed with ~0.95 g of sodium peroxide in a zirconium crucible and heated in a 500°C oven for 30 min. The sodium peroxide was ground to a fine powder using mortar and pestle prior to use in order to maximize surface area and minimize interaction with atmospheric moisture.

After removal from the oven and cooling to room temperature, 5 mL of concentrated quartz-distilled  $HNO_3$  was slowly added dropwise to the solid residue in the crucible. The resulting solution and remaining solid residue were washed with triple-distilled water into a 30 mL polyethylene (LDPE) bottle. Three drops of concentrated quartz-distilled HCl and 80 µL of ultra-pure hydrogen peroxide were added to dissolve the remaining residue, which was suspected to be iron and manganese compounds.

Finally, each solution was brought up to a uniform volume of ~30 mL using triple-distilled water. The exact initial sample mass and sample solution mass were recorded and used to correct the analytical results in determining actual elemental concentrations. Further corrections were applied to account for dilutions necessary to bring elemental concentrations into appropriate ranges for analyses.

Elemental analyses were carried out by inductively coupled plasmaoptical emission spectrometer (ICP-OES) on a Perkin-Elmer Optima 3300DV, except for the rare earth elements (REEs), which were analyzed by ICP-mass spectroscopy (MS) on a Finnegan Element mass spectrometer. La, Ce, and Ba were analyzed using both techniques as a crosscheck, though at different dilution levels.

#### **RESULTS AND SUMMARY**

The inorganic geochemical record produced in this study covers 153.91 to 154.27 meters below seafloor (mbsf) in Hole 1221C. This depth interval includes the  $\delta^{13}$ C excursion associated with the P/E boundary (Fig. F1).

Elemental concentrations were determined for Al, Ba, Ca, Fe, K, Mg, Mn, P, Si, Sr, Ti, Cd, Co, Cr, Cu, Hf, Mo, Nb, Ni, Pb, Sc, Sb, Se, Sn, V, Y, Zn, As, Pd, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Re, Os, Ir, and Pt on 35 samples (Tables **T1**, **T2**). When plotted against depth, most concentration profiles reveal significant changes across the boundary interval (Fig. **F2**). A correlation analysis of the concentration data (Table **T3**) highlights elements exhibiting similar depth-dependent variability.

Post-Archean Australian Shale (PAAS)-normalized REE patterns were calculated for each sample (Fig. F3). The majority of the samples exhibit a similar pattern, with a prominent negative Ce anomaly. Samples in the vicinity of other rapidly changing elemental concentrations, however, have a much flatter Ce anomaly in the interval 154.11–154.17 mbsf.

### ACKNOWLEDGMENTS

The samples analyzed in this report were collected shipboard during Leg 199 by the author with the assistance of Dick Norris and Paula Weiss. Sample preparation and elemental analyses were carried out in the Radiogenic Isotope Geochemistry Laboratory, Department of Geological Sciences, University of Michigan, USA, except for REE analyses, which were conducted in the Keck Elemental Geochemistry Laboratory, Department of Geological Sciences, University of Michigan, USA. Analytical assistance was provided by Ted Huston and Andrea Klaue. This research used samples and/or data provided by the Ocean Drilling Program (ODP). ODP is sponsored by the U.S. National Science Foundation (NSF) and participating countries under management of Joint Oceanographic Institutions (JOI), Inc. Funding for this effort was provided by the JOI/United States Science Support Program (USSSP).





T1. ICP-OES elemental concentrations, p. 9.

**T2.** ICP-MS elemental concentrations, p. 11.

**F2.** Elemental concentration profiles, p. 6



**T3.** Elemental data correlation, p. 12.

F3. REE patterns, p. 8.



### REFERENCES

- Bains, S., Corfield, R.M., and Norris, R.D., 1999. Mechanisms of climate warming at the end of the Paleocene. *Science*, 285:724–727.
- Dickens, G.R., Castillo, M.M., and Walker, J.G.C., 1997. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. *Geology*, 25(3):259–262.
- Gingerich, P.D., 2000. Paleocene/Eocene boundary and continental vertebrate faunas of Europe and North America. *GFF*, 122(1):57–59.
- Katz, M.E., Pak, D.K., Dickens, G.R., and Miller, K.G., 1999. The source and fate of massive carbon input during the latest Paleocene thermal maximum. *Science*, 286:1531–1533.
- Kennett, J.P., and Stott, L.D., 1991. Abrupt deep-sea warming, paleoceanographic changes and benthic extinctions at the end of the Palaeocene. *Nature*, 353:225–229.
- Kleinhanns, I.C., Kreissig, K., Kamber, B.S., Meisel, T., Nagler, T.F., and Kramers, J.D., 2002. Combined chemical separation of Lu, Hf, Sm, Nd and REEs from a single rock digest: precise and accurate isotope determination of Lu-Hf and Sm-Nd using multicollector-ICPMS. *Anal. Chem.*, 74:67–73.
- Koch, P.L., Zachos, J.C., and Gingerich, P.D., 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. *Nature*, 358:319–322.
- Meisel, T., Schoener, N., Paliulionyte, V., and Kahr, E., 2002. Determination of rare earth elements, Y, Th, Zr, Hf, Nb and Ta in geological reference materials G-2, G-3, SCo-1 and WGB-1 by sodium peroxide sintering and inductively coupled plasma-mass spectrometry. *Geostand. Newsl.*, 26(1):53–61.
- Norris, R.D., and Röhl, U., 1999. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. *Nature*, 401:775–778.
- Rea, D.K., Zachos, J.C., Owen, R.M., and Gingerich, P.D., 1990. Global change at the Paleocene-Eocene boundary: climatic and evolutionary consequences of tectonic events. *Palaeogeogr., Palaeoclimatol., Palaeoecol.,* 79:117–128.
- Shipboard Scientific Party, 2002. Leg 199 summary. *In* Lyle, M., Wilson, P.A., Janecek, T.R., et al., *Proc. ODP, Init. Repts.*, 199: College Station TX (Ocean Drilling Program), 1–87.
- Sulcek, Z., and Povondra, P., 1989. *Methods of Decomposition in Inorganic Analysis:* Boca Raton, FL (CRC Press).
- Zachos, J.C., Lohmann, K.C., Walker, J.C.G., and Wise, S.W., Jr., 1993. Abrupt climate changes and transient climates during the Paleogene: a marine perspective. *J. Geol.*, 101:191–213.



**Figure F1.**  $\delta^{13}$ C values from R. Norris (pers. comm., 2003).

**Figure F2. A.** Downcore profiles of elemental concentrations. Gray symbols are inductively coupled plasma–mass spectroscopy analyses for elements analyzed using both techniques. La plotted as representative of all rare earth elements' concentration profiles, except Ce. (Continued on next page.)





Figure F2 (continued). B. Downcore profiles of elemental concentrations.

#### P.A. KNOOP DATA REPORT: GEOCHEMISTRY OF PALEOCENE/EOCENE BOUNDARY

**Figure F3.** Post-Archean Australian Shale-normalized rare earth element patterns. Sample identifications in legend are meters below seafloor.



| Core section  | Denth   | Elemental concentration (ppm) |        |         |        |        |        |         |       |         |       |       |      |  |  |
|---------------|---------|-------------------------------|--------|---------|--------|--------|--------|---------|-------|---------|-------|-------|------|--|--|
| interval (cm) | (mbsf)  | Al                            | Ва     | Ca      | Fe     | К      | Mg     | Mn      | Р     | Si      | Sr    | Ti    | Cd   |  |  |
| 199-1221C-    |         |                               |        |         |        |        |        |         |       |         |       |       |      |  |  |
| 11X-3, 51–52  | 153.915 | 19,841                        | 14,938 | 302,246 | 12,934 | 11,220 | 8,586  | 2,508   | 2,898 | 42,905  | 1,080 | 799   | BDL  |  |  |
| 11X-3, 52–53  | 153.925 | 23,772                        | 16,638 | 260,223 | 15,201 | 12,988 | 10,024 | 3,283   | 3,200 | 53,561  | 1,068 | 1,024 | BDL  |  |  |
| 11X-3, 53–54  | 153.935 | 28,680                        | 18,525 | 233,793 | 18,508 | 15,658 | 11,996 | 4,249   | 3,643 | 66,349  | 1,025 | 1,296 | BDL  |  |  |
| 11X-3, 54–55  | 153.945 | 31,085                        | 18,009 | 221,205 | 19,396 | 17,006 | 12,365 | 5,036   | 3,917 | 74,838  | 1,011 | 1,326 | BDL  |  |  |
| 11X-3, 55–56  | 153.955 | 32,685                        | 17,641 | 205,733 | 20,678 | 19,000 | 13,229 | 15,415  | 4,050 | 74,138  | 838   | 1,368 | BDL  |  |  |
| 11X-3, 56–57  | 153.965 | 28,423                        | 16,219 | 229,984 | 17,771 | 16,132 | 11,371 | 5,776   | 3,841 | 66,418  | 896   | 1,150 | BDL  |  |  |
| 11X-3, 57–58  | 153.975 | 27,547                        | 16,825 | 241,685 | 17,717 | 13,938 | 13,665 | 4,248   | 3,831 | 60,671  | 940   | 1,191 | BDL  |  |  |
| 11X-3, 58–59  | 153.985 | 31,331                        | 18,735 | 218,177 | 19,743 | 15,551 | 15,148 | 3,635   | 3,653 | 67,336  | 944   | 1,374 | BDL  |  |  |
| 11X-3, 59–60  | 153.995 | 46,200                        | 23,357 | 126,385 | 26,057 | 25,070 | 16,925 | 3,207   | 4,060 | 79,385  | 789   | 1,975 | BDL  |  |  |
| 11X-3, 60–61  | 154.005 | 55,162                        | 26,888 | 66,946  | 28,909 | 30,098 | 19,182 | 4,835   | 4,237 | 102,755 | 845   | 2,318 | BDL  |  |  |
| 11X-3, 61–62  | 154.015 | 59,856                        | 26,801 | 47,024  | 28,012 | 32,711 | 21,125 | 6,926   | 4,258 | 109,204 | 793   | 2,361 | BDL  |  |  |
| 11X-3, 62–63  | 154.025 | 62,331                        | 36,031 | 35,733  | 29,630 | 30,931 | 25,167 | 2,949   | 3,867 | 109,491 | 876   | 2,554 | BDL  |  |  |
| 11X-3, 63–64  | 154.035 | 61,376                        | 44,201 | 29,590  | 29,969 | 28,181 | 25,909 | 5,235   | 4,436 | 122,592 | 1,082 | 2,714 | 8.66 |  |  |
| 11X-3, 64–65  | 154.045 | 55,647                        | 38,372 | 61,754  | 26,620 | 25,273 | 22,309 | 4,462   | 4,208 | 117,541 | 1,076 | 2,445 | 6.13 |  |  |
| 11X-3, 65–66  | 154.055 | 58,155                        | 41,900 | 46,172  | 28,230 | 25,773 | 24,607 | 5,476   | 5,616 | 104,301 | 1,140 | 2,634 | 3.96 |  |  |
| 11X-3, 66–67  | 154.065 | 66,011                        | 42,466 | 27,400  | 29,525 | 32,268 | 25,126 | 2,465   | 4,022 | 128,436 | 1,014 | 2,720 | 2.83 |  |  |
| 11X-3, 67–68  | 154.075 | 60,730                        | 36,109 | 26,392  | 25,792 | 28,676 | 21,568 | 2,614   | 4,295 | 111,544 | 952   | 2,678 | BDL  |  |  |
| 11X-3, 68–69  | 154.085 | 54,285                        | 31,327 | 48,974  | 23,391 | 27,975 | 19,213 | 10,610  | 3,877 | 124,291 | 942   | 2,185 | BDL  |  |  |
| 11X-3, 69–70  | 154.095 | 56,322                        | 23,572 | 29,340  | 26,950 | 33,326 | 19,167 | 52,527  | 3,295 | 99,613  | 786   | 2,167 | BDL  |  |  |
| 11X-3, 70–71  | 154.105 | 57,494                        | 27,189 | 20,246  | 34,019 | 28,884 | 21,044 | 27,620  | 2,587 | 104,103 | 815   | 2,886 | BDL  |  |  |
| 11X-3, 71–72  | 154.115 | 44,949                        | 13,802 | 12,097  | 29,422 | 25,674 | 22,836 | 138,035 | 937   | 116,234 | 573   | 2,393 | 4.13 |  |  |
| 11X-3, 72–73  | 154.125 | 40,578                        | 13,040 | 14,216  | 39,189 | 25,215 | 21,150 | 146,403 | 1,569 | 110,072 | 588   | 2,267 | BDL  |  |  |
| 11X-3, 73–74  | 154.135 | 46,534                        | 8,371  | 15,793  | 45,719 | 28,854 | 20,131 | 80,536  | 2,097 | 99,866  | 409   | 2,467 | BDL  |  |  |
| 11X-3, 74–75  | 154.145 | 44,629                        | 4,145  | 7,554   | 39,739 | 27,307 | 25,651 | 123,497 | 723   | 115,563 | 274   | 2,818 | BDL  |  |  |
| 11X-3, 75–76  | 154.155 | 53,713                        | 2,172  | 9,498   | 28,738 | 30,364 | 21,477 | 68,053  | 1,778 | 97,579  | 231   | 3,445 | BDL  |  |  |
| 11X-3, 76–77  | 154.165 | 62,672                        | 2,588  | 10,553  | 23,860 | 35,305 | 15,323 | 6,331   | 1,784 | 117,819 | 234   | 4,119 | BDL  |  |  |
| 11X-3, 77–78  | 154.175 | 57,174                        | 15,562 | 30,937  | 30,307 | 33,893 | 15,993 | 2,635   | 3,607 | 88,724  | 541   | 2,296 | BDL  |  |  |
| 11X-3, 78–79  | 154.185 | 54,382                        | 25,244 | 36,869  | 40,073 | 30,534 | 19,168 | 1,289   | 5,424 | 107,311 | 719   | 2,238 | BDL  |  |  |
| 11X-3, 79–80  | 154.195 | 52,678                        | 28,303 | 35,948  | 44,761 | 27,794 | 19,118 | 1,685   | 4,764 | 89,586  | 795   | 2,303 | BDL  |  |  |
| 11X-3, 80–81  | 154.205 | 54,370                        | 27,347 | 36,818  | 46,258 | 28,261 | 18,514 | 1,037   | 5,106 | 92,769  | 791   | 2,337 | BDL  |  |  |
| 11X-3, 81–82  | 154.215 | 56,650                        | 24,435 | 37,943  | 49,835 | 28,675 | 18,484 | 769     | 5,236 | 88,164  | 731   | 2,331 | BDL  |  |  |
| 11X-3, 83–84  | 154.235 | 59,693                        | 24,148 | 40,870  | 52,406 | 31,405 | 19,589 | 2,898   | 5,208 | 97,960  | 704   | 2,457 | BDL  |  |  |
| 11X-3, 84–85  | 154.245 | 56,183                        | 23,246 | 40,845  | 50,558 | 28,612 | 18,541 | 2,205   | 4,975 | 86,692  | 710   | 2,379 | BDL  |  |  |
| 11X-3, 85–86  | 154.245 | 55,949                        | 22,782 | 36,245  | 50,654 | 27,985 | 18,241 | 967     | 4,575 | 84,045  | 696   | 2,347 | BDL  |  |  |
| 11X-3, 86–87  | 154.245 | 54,364                        | 22,098 | 35,868  | 50,312 | 27,312 | 17,883 | 717     | 5,200 | 85,819  | 686   | 2,337 | BDL  |  |  |

 Table T1. Elemental concentrations determined by inductively coupled plasma-optical emission spectrometer. (Continued on next page.)

Note: BDL = below detection limit.

#### Table T1 (continued).

| Core, section, | Depth   | Elemental concentration (ppm) |         |         |       |       |      |        |     |      |       |       |       |  |  |
|----------------|---------|-------------------------------|---------|---------|-------|-------|------|--------|-----|------|-------|-------|-------|--|--|
| interval (cm)  | (mbsf)  | Co                            | Cr      | Cu      | La    | Мо    | Nb   | Ni     | Pb  | Sc   | V     | Y     | Zn    |  |  |
| 199-1221C-     |         |                               |         |         |       |       |      |        |     |      |       |       |       |  |  |
| 11X-3, 51–52   | 153.915 | BDL                           | 50.6    | 275.7   | 12.3  | 28.3  | 17.2 | 1,293  | 31  | BDL  | 29.3  | 90.5  | 92.9  |  |  |
| 11X-3, 52–53   | 153.925 | BDL                           | 54.9    | 313.4   | 14.6  | 25.0  | 27.7 | 1,510  | 40  | BDL  | 28.9  | 104.9 | 99.7  |  |  |
| 11X-3, 53–54   | 153.935 | BDL                           | 49.9    | 361.6   | 34.8  | 25.2  | 23.3 | 1,923  | 35  | 6.1  | 35.3  | 117.4 | 109.7 |  |  |
| 11X-3, 54–55   | 153.945 | BDL                           | 60.1    | 396.2   | 35.0  | 19.3  | 28.4 | 2,153  | BDL | 5.2  | 37.0  | 131.4 | 113.3 |  |  |
| 11X-3, 55–56   | 153.955 | 23.8                          | 55.4    | 592.0   | 70.3  | 24.8  | 23.0 | 2,331  | 46  | 11.5 | 53.3  | 177.7 | 139.5 |  |  |
| 11X-3, 56–57   | 153.965 | BDL                           | 47.3    | 388.6   | 38.7  | 20.2  | 16.5 | 1,803  | BDL | 7.5  | 35.2  | 127.9 | 118.5 |  |  |
| 11X-3, 57–58   | 153.975 | BDL                           | 50.4    | 446.8   | 38.9  | 28.0  | 15.3 | 1,875  | 35  | 9.8  | 32.9  | 125.0 | 125.6 |  |  |
| 11X-3, 58–59   | 153.985 | BDL                           | 56.1    | 482.5   | 37.0  | 21.5  | 14.7 | 2,003  | BDL | 9.7  | 35.1  | 127.0 | 136.5 |  |  |
| 11X-3, 59–60   | 153.995 | BDL                           | 65.6    | 478.7   | 62.3  | BDL   | 11.2 | 2,323  | BDL | 14.4 | 44.4  | 171.5 | 137.1 |  |  |
| 11X-3, 60–61   | 154.005 | BDL                           | 70.6    | 540.9   | 80.0  | BDL   | 11.0 | 3,135  | BDL | 17.1 | 51.2  | 202.1 | 134.7 |  |  |
| 11X-3, 61–62   | 154.015 | BDL                           | 69.1    | 642.1   | 82.2  | BDL   | 11.8 | 3,094  | BDL | 20.2 | 57.6  | 198.8 | 160.2 |  |  |
| 11X-3, 62–63   | 154.025 | BDL                           | 83.2    | 667.9   | 76.6  | BDL   | 6.7  | 2,869  | BDL | 24.9 | 55.7  | 173.2 | 160.7 |  |  |
| 11X-3, 63–64   | 154.035 | BDL                           | 91.9    | 795.1   | 89.2  | 34.6  | 23.8 | 3,990  | BDL | 28.5 | 31.3  | 237.9 | 278.0 |  |  |
| 11X-3, 64–65   | 154.045 | BDL                           | 81.9    | 677.8   | 65.5  | 25.1  | 25.6 | 3,696  | BDL | 20.6 | 32.4  | 202.8 | 240.8 |  |  |
| 11X-3, 65–66   | 154.055 | BDL                           | 78.8    | 675.5   | 90.3  | 20.7  | 16.1 | 3,491  | BDL | 24.4 | 48.2  | 218.6 | 223.6 |  |  |
| 11X-3, 66–67   | 154.065 | BDL                           | 89.2    | 538.2   | 75.6  | BDL   | 21.8 | 3,516  | BDL | 20.7 | 46.0  | 197.2 | 182.1 |  |  |
| 11X-3, 67–68   | 154.075 | BDL                           | 81.9    | 465.9   | 79.0  | BDL   | 18.7 | 3,509  | BDL | 20.2 | 45.4  | 195.8 | 169.5 |  |  |
| 11X-3, 68–69   | 154.085 | BDL                           | 73.4    | 666.3   | 76.6  | BDL   | 24.5 | 3,786  | BDL | 15.2 | 45.0  | 192.4 | 187.5 |  |  |
| 11X-3, 69–70   | 154.095 | 86.9                          | 77.0    | 1,572.8 | 75.3  | 34.3  | 39.2 | 2,784  | 44  | 12.4 | 90.0  | 182.0 | 244.9 |  |  |
| 11X-3, 70–71   | 154.105 | 50.5                          | 94.0    | 947.3   | 75.0  | 30.1  | 28.8 | 3,400  | BDL | 16.5 | 83.6  | 173.9 | 226.7 |  |  |
| 11X-3, 71–72   | 154.115 | 133.5                         | 879.1   | 4,394.0 | 38.3  | 86.5  | 48.0 | 8,524  | 109 | 12.9 | 194.8 | 88.4  | 492.2 |  |  |
| 11X-3, 72–73   | 154.125 | 466.1                         | 2,118.9 | 3,246.5 | 50.1  | 125.9 | 32.6 | 10,257 | 179 | 15.0 | 289.3 | 90.7  | 414.8 |  |  |
| 11X-3, 73–74   | 154.135 | 367.7                         | 134.3   | 1,927.7 | 39.3  | 59.0  | 36.2 | 4,863  | 104 | 14.0 | 164.4 | 90.0  | 385.6 |  |  |
| 11X-3, 74–75   | 154.145 | 764.3                         | 174.3   | 2,418.2 | 11.8  | 113.2 | 53.5 | 5,494  | 90  | 12.6 | 239.6 | 48.6  | 577.1 |  |  |
| 11X-3, 75–76   | 154.155 | 543.4                         | 304.8   | 1,478.6 | 24.8  | 53.7  | 41.7 | 4,051  | 45  | 15.8 | 203.4 | 66.7  | 398.6 |  |  |
| 11X-3, 76–77   | 154.165 | 65.5                          | 203.4   | 233.8   | 16.3  | BDL   | 25.9 | 3,289  | BDL | 21.2 | 135.8 | 60.1  | 151.7 |  |  |
| 11X-3, 77–78   | 154.175 | BDL                           | 102.3   | 245.2   | 134.2 | BDL   | BDL  | 2,475  | BDL | 33.6 | 91.9  | 232.7 | 152.4 |  |  |
| 11X-3, 78–79   | 154.185 | BDL                           | 3,359.2 | 310.5   | 219.0 | BDL   | BDL  | 7,091  | BDL | 46.5 | 92.1  | 370.0 | 200.4 |  |  |
| 11X-3, 79–80   | 154.195 | BDL                           | 143.9   | 329.4   | 240.3 | BDL   | BDL  | 2,490  | 34  | 48.4 | 120.7 | 411.3 | 185.4 |  |  |
| 11X-3, 80–81   | 154.205 | BDL                           | 108.2   | 318.7   | 242.7 | BDL   | BDL  | 2,459  | BDL | 47.4 | 99.6  | 416.3 | 188.5 |  |  |
| 11X-3, 81–82   | 154.215 | BDL                           | 104.8   | 339.3   | 260.9 | BDL   | BDL  | 2,675  | BDL | 50.0 | 66.3  | 438.0 | 186.8 |  |  |
| 11X-3, 83–84   | 154.235 | BDL                           | 102.3   | 379.4   | 239.3 | BDL   | BDL  | 2,740  | BDL | 50.2 | 65.2  | 397.9 | 187.9 |  |  |
| 11X-3, 84–85   | 154.245 | BDL                           | 101.7   | 377.3   | 246.6 | BDL   | BDL  | 2,396  | BDL | 49.1 | 62.9  | 414.3 | 189.7 |  |  |
| 11X-3, 85–86   | 154.245 | BDL                           | 103.3   | 374.6   | 254.5 | BDL   | BDL  | 2,566  | BDL | 50.5 | 61.4  | 426.4 | 191.6 |  |  |
| 11X-3, 86–87   | 154.245 | BDL                           | 98.7    | 365.3   | 249.4 | BDL   | BDL  | 2,497  | BDL | 49.5 | 57.9  | 424.3 | 185.8 |  |  |

| Core, section. | Depth   | Elemental concentrations (ppm) |        |        |       |       |        |       |       |       |       |       |       |       |      |       |      |      |      |
|----------------|---------|--------------------------------|--------|--------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|------|-------|------|------|------|
| interval (cm)  | (mbsf)  | As                             | Ва     | La     | Ce    | Pr    | Nd     | Sm    | Eu    | Gd    | Tb    | Dy    | Ho    | Er    | Tm   | Yb    | Lu   | Re   | Pt   |
| 199-12216-     |         |                                |        |        |       |       |        |       |       |       |       |       |       |       |      |       |      |      |      |
| 11X-3, 51-52   | 153.915 | 1.61                           | 9.604  | 57.48  | 25.17 | 13.89 | 61.64  | 14.04 | 2.70  | 15.56 | 2.46  | 16.17 | 3.29  | 9.93  | 1.33 | 8.85  | 1.37 | 0.02 | 0.04 |
| 11X-3, 51–52   | 153.915 | 2.37                           | 11.059 | 66.26  | 28.63 | 15.90 | 71.06  | 16.22 | 3.55  | 18.27 | 2.84  | 18.74 | 3.84  | 11.53 | 1.55 | 10.31 | 1.62 | 0.02 | 0.05 |
| 11X-3, 52-53   | 153,925 | 1.92                           | 11,235 | 67.18  | 29.27 | 16.08 | 71.29  | 16.31 | 3.01  | 17.76 | 2.85  | 18.76 | 3.85  | 11.55 | 1.54 | 10.26 | 1.59 | 0.01 | 0.04 |
| 11X-3, 53-54   | 153,935 | 1.97                           | 12,423 | 78.13  | 33.79 | 18.75 | 83.19  | 19.09 | 3,73  | 20.92 | 3.30  | 21.81 | 4.47  | 13.45 | 1.80 | 11.94 | 1.86 | 0.02 | 0.04 |
| 11X-3, 54-55   | 153,945 | 1.73                           | 11.650 | 81.46  | 35.03 | 19.58 | 87.08  | 20.19 | 4.04  | 22.35 | 3.52  | 23.09 | 4.77  | 14.33 | 1.94 | 12.78 | 1.98 | 0.01 | 0.04 |
| 11X-3, 55-56   | 153,955 | 2.25                           | 10,992 | 107.99 | 43.50 | 25.43 | 112.84 | 26.22 | 5.57  | 29.03 | 4.60  | 30.49 | 6.32  | 18.95 | 2.57 | 16.99 | 2.64 | 0.02 | 0.04 |
| 11X-3, 55–56   | 153.955 | 2.36                           | 10.981 | 106.47 | 43.00 | 25.55 | 114.66 | 26.57 | 6.21  | 30.24 | 4.71  | 30.90 | 6.39  | 19.45 | 2.63 | 17.49 | 2.72 | 0.02 | 0.04 |
| 11X-3, 56–57   | 153.965 | 1.72                           | 10.661 | 77.43  | 32.20 | 18.58 | 82.76  | 19.09 | 3.87  | 21.32 | 3.37  | 22.31 | 4.63  | 13.92 | 1.88 | 12.49 | 1.95 | 0.01 | 0.03 |
| 11X-3, 57–58   | 153.975 | 3.39                           | 10.740 | 74.72  | 31.76 | 18.03 | 79.87  | 18.63 | 3.74  | 20.69 | 3.30  | 21.89 | 4.53  | 13.68 | 1.84 | 12.25 | 1.91 | 0.02 | 0.10 |
| 11X-3, 58–59   | 153.985 | 2.34                           | 12.331 | 76.40  | 33.91 | 18.05 | 80.42  | 18.61 | 3.58  | 20.78 | 3.33  | 22.21 | 4.59  | 13.99 | 1.91 | 12.78 | 1.97 | 0.02 | 0.05 |
| 11X-3, 59-60   | 153.995 | 2.17                           | 15.505 | 104.24 | 45.51 | 23.82 | 106.48 | 25.13 | 5.10  | 28.50 | 4.54  | 30.72 | 6.44  | 19.49 | 2.63 | 17.53 | 2.75 | 0.02 | 0.04 |
| 11X-3, 60-61   | 154.005 | 2.25                           | 17.637 | 121.51 | 57.13 | 27.25 | 121.49 | 28.84 | 5.85  | 32.93 | 5.26  | 35.19 | 7.32  | 22.56 | 3.04 | 20.25 | 3.14 | 0.02 | 0.05 |
| 11X-3, 61–62   | 154.015 | 2.35                           | 17.548 | 120.04 | 56.19 | 26.65 | 119.78 | 28.20 | 5.57  | 31.61 | 5.14  | 34.27 | 7.11  | 21.73 | 2.95 | 19.75 | 3.08 | 0.02 | 0.05 |
| 11X-3, 62-63   | 154.025 | 2.13                           | 23,169 | 104.94 | 50.48 | 23.46 | 104.80 | 24.74 | 4.41  | 28.10 | 4.52  | 30.08 | 6.29  | 19.23 | 2.62 | 17.53 | 2.74 | 0.02 | BDL  |
| 11X-3, 63-64   | 154.035 | 2.39                           | 29,731 | 115.66 | 55.17 | 25.17 | 111.80 | 26.25 | 4.33  | 30.10 | 4.89  | 32.75 | 6.91  | 21.38 | 2.89 | 19.49 | 3.10 | 0.12 | 0.05 |
| 11X-3, 64–65   | 154.045 | 2.19                           | 26,236 | 102.94 | 48.77 | 22.55 | 100.29 | 23.40 | 4.15  | 27.19 | 4.36  | 29.45 | 6.26  | 19.38 | 2.65 | 17.82 | 2.80 | 0.02 | 0.04 |
| 11X-3, 65–66   | 154.055 | 2.01                           | 30,338 | 126.38 | 59.93 | 26.50 | 117.16 | 27.17 | 4.54  | 31.83 | 5.19  | 35.12 | 7.45  | 23.09 | 3.17 | 21.59 | 3.39 | 0.04 | 0.04 |
| 11X-3, 66–67   | 154.065 | 2.10                           | 30,224 | 122.37 | 57.01 | 25.06 | 111.08 | 25.52 | 4.30  | 30.03 | 4.92  | 33.66 | 7.20  | 22.23 | 3.04 | 20.60 | 3.27 | 0.03 | 0.05 |
| 11X-3, 67–68   | 154.075 | 2.92                           | 27,798 | 126.91 | 52.01 | 26.66 | 117.23 | 26.88 | 4.86  | 31.55 | 5.11  | 34.87 | 7.44  | 23.10 | 3.15 | 21.01 | 3.32 | 0.03 | 0.04 |
| 11X-3, 68–69   | 154.085 | 2.51                           | 21,840 | 120.32 | 39.89 | 25.53 | 112.85 | 25.89 | 5.02  | 29.68 | 4.79  | 32.59 | 6.91  | 21.21 | 2.86 | 19.08 | 2.95 | 0.02 | 0.05 |
| 11X-3, 69–70   | 154.095 | 4.63                           | 15,146 | 117.05 | 51.84 | 25.05 | 110.56 | 25.10 | 5.09  | 28.40 | 4.56  | 30.65 | 6.35  | 19.23 | 2.58 | 16.97 | 2.64 | 0.02 | 0.07 |
| 11X-3, 69–70   | 154.095 | 5.28                           | 15,000 | 114.98 | 51.15 | 25.22 | 111.65 | 25.40 | 5.78  | 29.53 | 4.64  | 31.13 | 6.49  | 19.73 | 2.66 | 17.53 | 2.72 | 0.02 | 0.07 |
| 11X-3, 70–71   | 154.105 | 4.34                           | 22,620 | 140.04 | 51.12 | 30.11 | 132.26 | 30.11 | 6.26  | 34.27 | 5.55  | 36.51 | 7.64  | 23.13 | 3.06 | 19.91 | 3.08 | 0.02 | 0.08 |
| 11X-3, 71–72   | 154.115 | 10.76                          | 10,136 | 71.20  | 49.80 | 15.96 | 69.43  | 15.34 | 3.13  | 16.77 | 2.65  | 17.49 | 3.55  | 10.56 | 1.39 | 9.31  | 1.46 | 0.01 | 0.11 |
| 11X-3, 72–73   | 154.125 | 18.27                          | 9,063  | 75.41  | 71.48 | 17.54 | 75.82  | 16.96 | 3.63  | 18.27 | 2.83  | 18.11 | 3.63  | 10.67 | 1.42 | 9.42  | 1.45 | 0.14 | 0.10 |
| 11X-3, 73–74   | 154.135 | 9.32                           | 6,881  | 85.04  | 78.67 | 21.32 | 91.91  | 20.62 | 4.58  | 21.62 | 3.37  | 21.36 | 4.22  | 12.28 | 1.62 | 10.53 | 1.62 | 0.02 | 0.08 |
| 11X-3, 73–74   | 154.135 | 8.82                           | 5,718  | 69.95  | 65.22 | 17.70 | 76.98  | 17.28 | 3.88  | 18.39 | 2.79  | 17.79 | 3.53  | 10.31 | 1.36 | 8.90  | 1.36 | 0.01 | 0.07 |
| 11X-3, 74–75   | 154.145 | 5.65                           | 2,993  | 42.74  | 76.48 | 11.84 | 50.56  | 11.30 | 2.56  | 11.53 | 1.82  | 11.52 | 2.27  | 6.61  | 0.89 | 5.96  | 0.90 | 0.32 | 0.06 |
| 11X-3, 75–76   | 154.155 | 3.37                           | 1,481  | 56.25  | 82.44 | 14.93 | 64.24  | 14.48 | 3.30  | 14.62 | 2.28  | 14.31 | 2.80  | 8.22  | 1.07 | 7.04  | 1.06 | 0.01 | 0.05 |
| 11X-3, 76–77   | 154.165 | 2.05                           | 1,723  | 41.11  | 31.59 | 11.43 | 49.90  | 11.28 | 2.64  | 11.85 | 1.88  | 12.23 | 2.46  | 7.31  | 0.97 | 6.53  | 1.01 | 0.02 | 0.03 |
| 11X-3, 77–78   | 154.175 | 1.97                           | 10,364 | 164.40 | 57.95 | 44.78 | 186.03 | 43.80 | 10.08 | 46.62 | 7.25  | 45.89 | 9.15  | 26.80 | 3.48 | 22.55 | 3.39 | 0.02 | BDL  |
| 11X-3, 78–79   | 154.185 | 2.14                           | 17,083 | 260.86 | 77.84 | 68.41 | 301.52 | 66.31 | 15.14 | 70.79 | 10.91 | 69.32 | 13.81 | 40.24 | 5.25 | 33.52 | 5.07 | 0.03 | BDL  |
| 11X-3, 9–80    | 154.195 | 2.09                           | 20,012 | 295.33 | 87.58 | 75.84 | 328.89 | 72.89 | 16.31 | 77.78 | 11.97 | 76.22 | 15.30 | 44.37 | 5.78 | 37.02 | 5.54 | 0.04 | BDL  |
| 11X-3, 80–81   | 154.205 | 2.14                           | 19,327 | 301.71 | 87.97 | 76.88 | 334.48 | 73.79 | 16.79 | 79.07 | 12.26 | 77.84 | 15.52 | 45.43 | 5.86 | 37.36 | 5.58 | 0.04 | BDL  |
| 11X-3, 81–82   | 154.215 | 2.28                           | 18,274 | 337.45 | 95.59 | 87.11 | 380.67 | 82.69 | 19.06 | 88.96 | 13.79 | 87.67 | 17.32 | 50.64 | 6.50 | 41.24 | 6.19 | 0.04 | 0.04 |
| 11X-3, 83–84   | 154.235 | 2.70                           | 15,747 | 288.32 | 99.97 | 73.79 | 325.05 | 71.36 | 16.51 | 77.37 | 11.89 | 75.78 | 15.06 | 43.33 | 5.60 | 35.63 | 5.32 | 0.04 | BDL  |
| 11X-3, 83–84   | 154.235 | 2.92                           | 15,601 | 283.42 | 99.35 | 73.81 | 320.62 | 70.58 | 16.18 | 75.78 | 11.69 | 74.52 | 14.77 | 42.94 | 5.54 | 35.00 | 5.22 | 0.04 | BDL  |
| 11X-3-84-85    | 154.245 | 2.61                           | 15,911 | 303.68 | 98.10 | 77.10 | 333.47 | 73.68 | 17.13 | 79.57 | 12.22 | 77.72 | 15.53 | 45.03 | 5.78 | 36.76 | 5.46 | 0.04 | BDL  |
| 11X-3, 85–86   | 154.255 | 2.57                           | 16,305 | 311.16 | 93.23 | 80.16 | 346.92 | 76.10 | 17.72 | 82.25 | 12.66 | 80.03 | 16.01 | 46.64 | 5.96 | 37.66 | 5.66 | 0.04 | BDL  |
| 11X-3, 86–87   | 154.265 | 2.94                           | 16,186 | 314.53 | 95.67 | 80.00 | 353.45 | 76.58 | 17.92 | 83.49 | 12.85 | 81.31 | 16.20 | 47.10 | 6.08 | 38.52 | 5.74 | 0.04 | BDL  |
| 11X-3, 86–87   | 154.265 | 2.83                           | 15,944 | 307.57 | 94.37 | 79.32 | 344.74 | 75.34 | 17.19 | 81.35 | 12.50 | 79.69 | 15.86 | 46.07 | 5.95 | 37.51 | 5.62 | 0.04 | BDL  |

 Table T2. Elemental concentrations determined by inductively coupled plasma-mass spectroscopy.

Note: BDL = below detection limit.

| Table T3. Correlation analysis of elemental data. |
|---------------------------------------------------|
|---------------------------------------------------|

|     | Al    | As    | Ba*   | Ba†   | Ca    | Ce    | Co    | Cr    | Cu    | Fe    | К     | La1   | La2   | Mg    | Mn    | Мо    | Nb    | Ni    | Р     | Pb    | Pt    | Re    | Sc    | Si    | Sr    | Ti   | V     | Y     | Zn   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|------|
| Al  | 1.00  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| As  | -0.09 | 1.00  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| Ba* | 0.48  | -0.33 | 1.00  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| Ba† | 0.50  | -0.30 | 0.99  | 1.00  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| Ca  | -0.89 | -0.30 | -0.19 | -0.23 | 1.00  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| Ce  | 0.53  | 0.13  | 0.05  | 0.08  | -0.64 | 1.00  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| Co  | -0.21 | 0.30  | -0.62 | -0.58 | -0.41 | 0.89  | 1.00  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| Cr  | 0.02  | 0.45  | -0.11 | -0.11 | -0.21 | 0.19  | 0.25  | 1.00  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| Cu  | -0.04 | 0.86  | -0.33 | -0.30 | -0.34 | 0.06  | 0.36  | 0.32  | 1.00  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| Fe  | 0.55  | 0.21  | 0.06  | 0.1   | -0.67 | 0.95  | 0.62  | 0.19  | 0.10  | 1.00  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| К   | 0.94  | 0.07  | 0.21  | 0.22  | -0.93 | 0.55  | -0.03 | 0.13  | 0.11  | 0.57  | 1.00  |       |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| La1 | 0.45  | -0.21 | 0.30  | 0.31  | -0.39 | 0.81  | -0.63 | 0.13  | -0.33 | 0.81  | 0.39  | 1.00  |       |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| La2 | 0.42  | -0.23 | 0.30  | 0.32  | -0.35 | 0.79  | -0.60 | 0.10  | -0.35 | 0.80  | 0.34  | 0.99  | 1.00  |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| Mg  | 0.76  | 0.27  | 0.45  | 0.47  | -0.83 | 0.44  | 0.70  | 0.13  | 0.41  | 0.44  | 0.69  | 0.14  | 0.10  | 1.00  |       |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| Mn  | -0.10 | 0.88  | -0.49 | -0.46 | -0.32 | 0.11  | 0.63  | 0.34  | 0.96  | 0.13  | 0.10  | -0.35 | -0.37 | 0.34  | 1.00  |       |       |       |       |       |       |       |       |       |       |      |       |       |      |
| Mo  | 0.18  | 0.85  | -0.47 | -0.44 | -0.58 | 0.67  | 0.71  | 0.77  | 0.87  | 0.70  | 0.42  | -0.25 | -0.44 | 0.51  | 0.95  | 1.00  |       |       |       |       |       |       |       |       |       |      |       |       |      |
| Nb  | -0.01 | 0.52  | -0.51 | -0.46 | -0.37 | 0.46  | 0.65  | 0.35  | 0.73  | 0.44  | 0.18  | -0.43 | -0.42 | 0.24  | 0.79  | 0.72  | 1.00  |       |       |       |       |       |       |       |       |      |       |       |      |
| Ni  | 0.19  | 0.82  | -0.14 | -0.11 | -0.52 | 0.22  | 0.40  | 0.74  | 0.81  | 0.25  | 0.31  | -0.10 | -0.15 | 0.52  | 0.79  | 0.88  | 0.56  | 1.00  |       |       |       |       |       |       |       |      |       |       |      |
| Р   | 0.26  | -0.60 | 0.67  | 0.64  | 0.05  | 0.31  | -0.64 | -0.07 | -0.72 | 0.27  | 0.06  | 0.69  | 0.69  | -0.04 | -0.79 | -0.82 | -0.78 | -0.46 | 1.00  |       |       |       |       |       |       |      |       |       |      |
| Pb  | 0.25  | 0.97  | -0.37 | -0.33 | -0.58 | 0.40  | 0.30  | 0.88  | 0.83  | 0.57  | 0.37  | -0.17 | -0.25 | 0.59  | 0.88  | 0.89  | 0.46  | 0.95  | -0.25 | 1.00  |       |       |       |       |       |      |       |       |      |
| Pt  | -0.05 | 0.78  | -0.22 | -0.19 | -0.27 | 0.16  | 0.08  | 0.61  | 0.79  | 0.29  | 0.07  | -0.19 | -0.16 | 0.28  | 0.73  | 0.63  | 0.48  | 0.68  | -0.54 | 0.64  | 1.00  |       |       |       |       |      |       |       |      |
| Re  | 0.05  | 0.35  | -0.14 | -0.13 | -0.29 | 0.29  | 0.76  | 0.16  | 0.38  | 0.29  | 0.12  | -0.04 | -0.06 | 0.42  | 0.51  | 0.70  | 0.46  | 0.41  | -0.33 | 0.45  | 0.20  | 1.00  |       |       |       |      |       |       |      |
| Sc  | 0.54  | -0.23 | 0.25  | 0.26  | -0.47 | 0.83  | -0.15 | 0.15  | -0.35 | 0.83  | 0.46  | 0.96  | 0.94  | 0.16  | -0.35 | 0.05  | -0.24 | -0.10 | 0.60  | -0.15 | -0.22 | 0.02  | 1.00  |       |       |      |       |       |      |
| Si  | 0.80  | 0.26  | 0.36  | 0.38  | -0.85 | 0.27  | 0.29  | 0.22  | 0.37  | 0.31  | 0.79  | 0.05  | 0.00  | 0.87  | 0.31  | 0.53  | 0.27  | 0.58  | -0.13 | 0.68  | 0.19  | 0.30  | 0.06  | 1.00  |       |      |       |       |      |
| Sr  | -0.25 | -0.38 | 0.71  | 0.68  | 0.53  | -0.43 | -0.63 | -0.21 | -0.42 | -0.43 | -0.50 | -0.05 | -0.02 | -0.20 | -0.55 | -0.74 | -0.61 | -0.40 | 0.54  | -0.51 | -0.28 | -0.32 | -0.11 | -0.28 | 1.00  |      |       |       |      |
| Ti  | 0.84  | 0.12  | 0.06  | 0.1   | -0.88 | 0.43  | 0.17  | 0.08  | 0.20  | 0.45  | 0.85  | 0.16  | 0.12  | 0.71  | 0.22  | 0.45  | 0.30  | 0.37  | -0.18 | 0.41  | 0.05  | 0.22  | 0.27  | 0.80  | -0.59 | 1.00 |       |       |      |
| V   | 0.10  | 0.78  | -0.56 | -0.52 | -0.51 | 0.35  | 0.80  | 0.43  | 0.78  | 0.34  | 0.32  | -0.12 | -0.15 | 0.36  | 0.88  | 0.94  | 0.74  | 0.76  | -0.69 | 0.82  | 0.57  | 0.53  | -0.08 | 0.37  | -0.78 | 0.46 | 1.00  |       |      |
| Y   | 0.45  | -0.31 | 0.43  | 0.43  | -0.32 | 0.74  | -0.68 | 0.07  | -0.42 | 0.74  | 0.34  | 0.98  | 0.98  | 0.13  | -0.46 | -0.56 | -0.55 | -0.19 | 0.79  | -0.35 | -0.30 | -0.09 | 0.93  | 0.03  | 0.10  | 0.10 | -0.26 | 1.00  |      |
| Zn  | 0.18  | 0.69  | -0.31 | -0.27 | -0.56 | 0.35  | 0.80  | 0.28  | 0.86  | 0.34  | 0.31  | -0.16 | -0.19 | 0.61  | 0.89  | 0.87  | 0.82  | 0.76  | -0.63 | 0.71  | 0.58  | 0.63  | -0.13 | 0.52  | -0.60 | 0.46 | 0.84  | -0.25 | 1.00 |

Notes: Correlation of values between Tables T1, p. 9, and T2, p. 11. Values greater than 0.90 or less than -0.90 are in bold type. \* = analyzed by inductively coupled plasma-optical emission spectrometer. † = analyzed by inductively coupled plasma-mass spectroscopy.