REFERENCES

Bains, S., Norris, R.D., Corfield, R.M., and Faul, K.L., 2000. Termination of global warmth at the Palaeocene–Eocene boundary through productivity feedback. Nature (London, U. K.), 407(6801):171–174. doi:10.1038/35025035

Barker, P.F., 2001. Scotia Sea regional tectonic evolution: implications for mantle flow and palaeocirculation. Earth Sci. Rev., 55(1–2):1–39. doi:10.1016/S0012-8252(01)00055-1

Bloomer, S.F., Mayer, L.A., and Moore, T.C., Jr., 1995. Seismic stratigraphy of the eastern equatorial Pacific Ocean: Paleoceanographic implications. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 537–553.

Bohaty, S.M., and Zachos, J.C., 2003. Significant Southern Ocean warming event in the late middle Eocene. Geology, 31(11):1017–1020. doi:10.1130/G19800.1

Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., and West, G.B., 2004. Toward a metabolic theory of ecology. Ecology, 85(7):1771–1789.

Browning, J.V., Miller, K.G., and Pak, D.K., 1996. Global implications of lower to middle Eocene sequence boundaries on the New Jersey Coastal Plain—the Icehouse cometh. Geology, 24(7):639–642. doi:10.1130/0091-7613(1996)024<0639:GIOLTM>2.3.CO;2

Cande, S.C., and Kent, D.V., 1992. A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 97(10):13917–13951.

Cande, S.C., and Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 100(B4):6093–6095. doi:10.1029/94JB03098

Chase, C.G., Gregory-Wodzicki, K.M., Parrish, J.T., and Decelles, P.G., 1998. Topographic history of the western cordillera of North America and controls on climate. In Crowley, T.J., and Burke, K.C., (Eds.), Tectonic Boundary Conditions for Climate Reconstruction: New York (Oxford Univ. Press), 73–100.

Chavez, F.P., and Barber, R.T., 1987. An estimate of new production in the equatorial Pacific. Deep-Sea Res., Part A, 34(7):1229–1243. doi:10.1016/0198-0149(87)90073-2

Chavez, F.P., Buck, K.R., Service, S.K., Newton, J., and Barber, R.T., 1996. Phytoplankton variability in the central and eastern tropical Pacific. Deep Sea Res., Part II, 43(4–6):835–870. doi:10.1016/0967-0645(96)00028-8

Chavez, F.P., Strutton, P.G., Friederich, G.E., Feely, R.A., Feldman, G.C., Foley, D.G., and McPhaden, M.J., 1999. Biological and chemical response of the Equatorial Pacific Ocean to the 1997–1998 El Niño. Science, 286(5447):2126–2131. doi:10.1126/science.286.5447.2126

Coates, A.G., and Obando, J.A., 1996. The geologic evolution of the Central American Isthmus. In Jackson, J.B.C., Budd, A.F., and Coates, A.G. (Eds.), Evolution and Environment in Tropical America: Chicago (Univ. of Chicago Press), 21–55.

Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H., and Backman, J., 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature (London, U. K.), 433(7021):53–57. doi:10.1038/nature03135

DeConto, R.M., and Pollard, D., 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature (London, U. K.), 421(6920):245–249. doi:10.1038/nature01290

Delaney, M.L., and Boyle, E.A., 1988. Tertiary paleoceanic chemical variability: unintended consequences of simple geochemical models. Paleoceanography, 3:137–156.

Demicco, R.V., Lowenstein, T.K., and Hardie, L.A., 2003. Atmospheric pCO2 since 60 Ma from records of seawater pH, calcium, and primary carbonate mineralogy. Geology, 31(9):793–796. doi:10.1130/G19727.1

Dickens, G.R., O'Neil, J.R., Rea, D.K., and Owen, R.M., 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10(6):965–972. doi:10.1029/95PA02087

Diester-Haass, L., and Zahn, R., 2001. Paleoproductivity increase at the Eocene–Oligocene climatic transition: ODP/DSDP Sites 763 and 592. Palaeogeogr., Palaeoclimatol., Palaeoecol., 172(1–2):153–170. doi:10.1016/S0031-0182(01)00280-2

Dymond, J., 1981. Geochemistry of Nazca plate surface sediments: an evaluation of hydrothermal, biogenic, detrital, and hydrogenous sources. In Kulm, L.D., Dymond, J., Dasch, E.J., Hussong, D.M., and Roderick, R. (Eds.), Nazca Plate: Crustal Formation and Andean Convergence. Mem.—Geol. Soc. Am., 154:133–173.

Dymond, J., Suess, E., and Lyle, M., 1992. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography, 7:163–181.

Farrell, J.W., and Prell, W.L., 1989. Climatic change and CaCO3 preservation: an 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography, 4(4):447–466.

Finney, B.P., Lyle, M.W., and Heath, G.R., 1988. Sedimentation at MANOP Site H (eastern equatorial Pacific) over the past 400,000 years: climatically induced redox variations and their effects on transition metal cycling. Paleoceanography, 3:169–189.

Funakawa, S., Nishi, H., Moore, T.C., and Nigrini, C.A., 2006. Radiolarian faunal turnover and paleoceanographic change around Eocene/Oligocene boundary in the central equatorial Pacific, ODP Leg 199, Holes 1218A, 1219A, and 1220A. Palaeogeogr., Palaeoclimatol., Palaeoecol., 230(3–4):183–203. doi:10.1016/j.palaeo.2005.07.014

Gillooly, J.F., Brown, J.H. West, G.B., Savage, V.M., and Charnov, E.L., 2001. Effects of size and temperature on metabolic rate. Science, 293(5538):2248–2251. doi:10.1126/science.1061967

Grimes, S.T., Hooker, J.J., Collinson, M.E., and Mattey, D.P., 2005. Summer temperatures of late Eocene to early Oligocene freshwaters. Geology, 33(3):189–192. doi:10.1130/G21019.1

Harrison, T.M., Yin, A., and Ryrson, F., 1998. Orographic evolution of the Himalaya and Tibetan Plateau. In Crowley, T.J., and Burke, K.C. (Eds.), Tectonic Boundary Conditions for Climate Reconstructions. Oxford Monogr. Geol. Geophys., 39:39–72.

Heath, G.R., Moore, T.C., Jr., and van Andel, T.H., 1977. Carbonate accumulation and dissolution in the equatorial Pacific during the past 45 million years. In Andersen, N.R., and Malahoff, A. (Eds.), The Fate of Fossil Fuel CO2 in the Oceans: New York (Plenum), 627–639.

Honjo, S., Dymond, J., Collier, R., and Manganini, S.J., 1995. Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment. Deep-Sea Res., Part II, 42(2–3):831–870. doi:10.1016/0967-0645(95)00034-N

Huber, M., 2002. Straw man 1: a preliminary view of the tropical Pacific from a global coupled climate model simulation of the early Paleogene. In Lyle, M., Wilson, P.A., Janecek, T.R., et al., Proc. ODP, Init. Repts., 199, 1–30 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML]

Huber, M., Brinkhuis, H., Stickley, C.E., Döös, K., Sluijs, A., Warnaar, J., Schellenberg, S.A., and Williams, G.L., 2004. Eocene circulation of the Southern Ocean: was Antarctica kept warm by subtropical waters? Paleoceanography, 19(4):PA4026. doi:10.1029/2004PA001014

Huber, M., and Caballero, R., 2003. Eocene El Niño: evidence for robust tropical dynamics in the "hothouse." Science, 299(5608):877–881. doi:10.1126/science.1078766

Huber, M., and Nof, D., 2006. The ocean circulation in the southern hemisphere and its climatic impacts in the Eocene. Palaeogeogr., Palaeoclimatol., Palaeoecol., 231(1–2):9–28. doi:10.1016/j.palaeo.2005.07.037

Huber, M., and Sloan, L.C., 1999. Warm climate transitions: a general circulation modeling study of the Late Paleocene Thermal Maximum (~56 Ma). J. Geophys. Res., 104(D14):16633–16656. doi:10.1029/1999JD900272

Huber, M., and Sloan, L.C., 2001. Heat transport, deep waters, and thermal gradients: coupled simulation of an Eocene greenhouse climate. Geophys. Res. Lett., 28(18):3481–3484. doi:10.1029/2001GL012943

Huber, M., Sloan, L.C., and Shellito, C., 2003. Early Paleogene oceans and climate: a fully coupled modeling approach using the NCAR CCSM. In Wing, S.L., Gingerich, P.D., Schmitz, B., and Thomas, E. (Eds.), Causes and Consequences of Globally Warm Climates in the Early Paleogene. Spec. Pap.—Geol. Soc. Am., 369:25–47.

Kastner, M., Keene, J.B., and Gieskes, J.M., 1977. Diagenesis of siliceous oozes, I. Chemical controls on the rate of opal-A to opal-CT transformation—an experimental study. Geochim. Cosmochim. Acta, 41(8):1041–1051. doi:10.1016/0016-7037(77)90099-0

Kennett, J.P., Keller, G., and Srinivasan, M.S., 1985. Miocene planktonic foraminiferal biogeography and paleoceanographic development of the Indo-Pacific region. In Kennett, J.P. (Ed.), The Miocene Ocean: Paleoceanography and Biogeography. Mem.—Geol. Soc. Am., 163:197–236.

Kennett, J.P., and Stott, L.D., 1991. Abrupt deep-sea warming, paleoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature (London, U. K.), 353(6341):225–229. doi:10.1038/353225a0

Kohn, M.J., Josef, J.A., Madden, R., Kay, R., Vucetich, G., and Carlini, A.A., 2004. Climate stability across the Eocene–Oligocene transition, southern Argentina. Geology, 32(7):621–624. doi:10.1130/G20442.1

Lanci, L., Parés, J.M., Channell, J.E.T., and Kent, D.V., 2004. Miocene magnetostratigraphy from equatorial Pacific sediments (ODP Site 1218, Leg 199). Earth Planet. Sci. Lett., 226(1–2):207–224. doi:10.1016/j.epsl.2004.07.025

Lanci, L., Parés, J.M., Channell, J.E.T., and Kent, D.V., 2005. Oligocene magnetostratigraphy from equatorial Pacific sediments (ODP Sites 1218 and 1219, Leg 199). Earth Planet. Sci. Lett., 237(3–4):617–634. doi:10.1016/j.epsl.2005.07.004

Laskar, J., Joutel, F., and Boudin, F., 1993. Orbital, precessional, and insolation quantities for the Earth from –20 Myr to +10 Myr. Astron. Astrophys., 270:522–533.

Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., and Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys., 428(1):261–285. doi:10.1051/0004-6361:20041335

Latimer, J.C., and Filippelli, G.M., 2002. Eocene to Miocene terrigenous inputs and export production: geochemical evidence from ODP Leg 177, Site 1090. Palaeogeogr., Palaeoclimatol., Palaeoecol., 182(3–4):151–164. doi:10.1016/S0031-0182(01)00493-X

Lawver, L.A., and Gahagan, L.M., 1998. Opening of Drake Passage and its impact on Cenozoic ocean circulation. In Crowley, T.J., and Burke, K.C. (Eds.), Tectonic Boundary Conditions for Climate Reconstructions. Oxford Monogr. Geol. Geophys., 39:212–223.

Lawver, L.A., and Gahagan, L.M., 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr., Palaeoclimatol., Palaeoecol., 198(1–2):11–37. doi:10.1016/S0031-0182(03)00392-4

Lear, C.H., Elderfield, H., and Wilson, P.A., 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287:269–272.

Lear, C.H., Rosenthal, Y., Coxall, H.K., and Wilson, P.A., 2004. Late Eocene to early Miocene ice-sheet dynamics and the global carbon cycle. Paleoceanography, 19(4):PA4015. doi:10.1029/2004PA001039

Livermore, R., Nankivell, A., Eagles, G., and Morris, P., 2005. Paleogene opening of Drake Passage. Earth Planet. Sci. Lett., 236(1–2):459–470. doi:10.1016/j.epsl.2005.03.027

Lyle, M., 2003. Neogene carbonate burial in the Pacific Ocean. Paleoceanography, 18(3):1059. doi:10.1029/2002PA000777

Lyle, M., Leinen, M., Owen, R.M., and Rea, D.K., 1987. Late Tertiary history of hydrothermal deposition at the East Pacific Rise: correlation to volcano-tectonic events. Geophys. Res. Lett., 14:595–598.

Lyle, M., Liberty, L., Moore, Jr., T.C., and Rea, D.K., 2002. Development of a seismic stratigraphy for the Paleogene sedimentary section, central tropical Pacific Ocean. In Lyle, M., Wilson, P.A., Janecek, T.R., et al., Proc. ODP, Init. Repts., 199, 1–22 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/199_IR/VOLUME/CHAPTERS/IR199_04.PDF>.

Lyle, M., Wilson, P.A., Janecek, T.R., et al., 2002. Proc. ODP, Init. Repts., 199 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/199_IR/199ir.htm>.

Mayer, L.A., 1991. Extraction of high-resolution carbonate data for palaeoclimate reconstruction. Nature (London, U. K.), 352(6331):148–150. doi:10.1038/352148a0

Mayer, L.A., Shipley, T.H., Theyer, F., Wilkens, R.H., and Winterer, E.L., 1985. Seismic modeling and paleoceanography at Deep Sea Drilling Project Site 574. In Mayer, L., Theyer, F., Thomas, E., et al., Init. Repts. DSDP, 85: Washington (U.S. Govt. Printing Office), 947–970.

Mayer, L.A., Shipley, T.H., and Winterer, E.L., 1986. Equatorial Pacific seismic reflectors as indicators of global oceanographic events. Science, 233:761–764.

Miller, K., Fairbanks, R., and Mountain, G., 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 2:1–19.

Miller, K.G., Feigenson, M.D., Kent, D.V., and Olsson, R.K., 1988. Upper Eocene to Oligocene isotope (87Sr/86Sr, 18O, 13C) standard section, Deep Sea Drilling Project Site 522. Paleoceanography, 3:223–233.

Miller, K.G., Kent, D.V., Brower, A.N., Bybell, L.M., Feigenson, M.D., Olsson, R.K., and Poore, R.Z., 1990. Eocene–Oligocene sea-level changes on the New Jersey coastal plain linked to the deep-sea record. Geol. Soc. Am. Bull., 102:331–339.

Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie-Blick, N., and Pekar, S.F., 2005. The Phanerozoic record of global sea-level change. Science, 310(5752):1293–1298. doi:10.1126/science.1116412

Miller, K.G., Liu, C., and Feigenson, M.D., 1996. Oligocene to middle Miocene Sr-isotopic stratigraphy of the New Jersey continental slope. In Mountain, G.S., Miller, K.G., Blum, P., Poag, C.W., and Twichell, D.C. (Eds.), Proc. ODP, Sci. Results, 150: College Station, TX (Ocean Drilling Program), 97–114.

Miller, K.G., Mountain, G.S., Browning, J.V., Kominz, M., Sugarman, P.J., Christie-Blick, N., Katz, M.E., and Wright, J.D., 1998. Cenozoic global sea level, sequences, and the New Jersey transect: results from coastal plain and continental slope drilling. Rev. Geophys., 36:569–601.

Miller, K.G., Thompson, P.R., and Kent, D.V., 1993. Integrated late Eocene–Oligocene stratigraphy of the Alabama coastal plain: correlation of hiatuses and stratal surfaces to glacioeustatic lowerings. Paleoceanography, 8:313–331.

Miller, K.G., Wright, J.D., and Fairbanks, R.G., 1991. Unlocking the Ice House: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res., 96:6829–6848.

Mitchell, N.C., and Lyle, M.W., 2005. Patchy deposits of Cenozoic pelagic sediments in the central Pacific. Geology, 33(1):49–52. doi:10.1130/G21134.1

Moore, T.C., 2005. Opal accumulation in the equatorial Pacific. Eos, Trans. Am. Geophys. Union, 86(52)(Suppl.):PP24A-05. (Abstract)

Moore, T.C., Jr., Backman, J., Raffi, I., Nigrini, C., Sanfilippo, A., Pälike, H., and Lyle, M., 2004. Paleogene tropical Pacific: clues to circulation, productivity, and plate motion. Paleoceanography, 19(3):PA3013. doi:10.1029/2003PA000998

Murray, R.W., Leinen, M., and Isern, A.R., 1993. Biogenic flux of Al to sediment in the central equatorial Pacific Ocean: evidence for increased productivity during glacial periods. Paleoceanography, 8:651–670.

Nomura, R., Nishi, H., and Leg 199 Shipboard Party, L.S., 2002. Lithological changes across the Paleocene/Eocene boundary. Chishitsugaku Zasshi, 108(10):17–18.

Norris, R.D., and Röhl, U., 1999. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature (London, U. K.), 401(6755):775–778. doi:10.1038/44545

Nuñes, F., and Norris, R.D., 2006. Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period. Nature (London, U. K.), 439(7072):60–63. doi:10.1038/nature04386

Olivarez Lyle, A., and Lyle, M.W., 2006. Missing organic carbon in Eocene marine sediments: is metabolism the biological feedback that maintains end-member climates? Paleoceanography, 21(2):PA2007. doi:10.1029/2005PA001230

Pagani, M., Arthur, M.A., and Freeman, K.H., 1999. Miocene evolution of atmospheric carbon dioxide. Paleoceanography, 14(3):273–292. doi:10.1029/1999PA900006

Pagani, M., Zachos, J.C., Freeman, K.H., Tipple, B., and Bohaty, S., 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309(5734):600–603. doi:10.1126/science.1110063

Pälike, H., Laskar, J., and Shackleton, N.J., 2004. Geological constraints of the chaotic diffusion of the Solar System. Geology, 32(11)929–932. doi:10.1130/G20750.1

Parés, J.M., and Lanci, L., 2004. A complete middle Eocene–early Miocene magnetic polarity stratigraphy in equatorial Pacific sediments (ODP Site 1220). In Channell, J.E.T., Kent, D.V., Lowrie, W., and Meert, J. (Eds.), Timescales of the Paleomagnetic Field. Geophys. Monogr., 145:131–140.

Parés, J.M., and Moore, T.C., 2005. New evidence for Hawaiian hotspot plume motion since the Eocene. Earth Planet. Sci. Lett., 237(3–4):951–959. doi:10.1016/j.epsl.2005.06.012

Pearson, P.N., and Palmer, M.R., 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature (London, U. K.), 406(6979):695–699. doi:10.1038/35021000

Pekar, S.F., Christie-Blick, N., Kominz, M.A., and Miller, K.G., 2002. Calibration between eustatic estimates from backstripping and oxygen isotopic records for the Oligocene. Geology, 30(10):903–906. doi:10.1130/0091-7613(2002)030<0903:CBEEFB>2.0.CO;2

Pfuhl, H.A., and McCave, I.N., 2005. Evidence for late Oligocene establishment of the Antarctic circumpolar current. Earth Planet. Sci. Lett., 235(3–4):715–728. doi:10.1016/j.epsl.2005.04.025

Raffi, I., Backman, J., and Pälike, H., 2005. Changes in calcareous nannofossil assemblages across the Paleocene/Eocene transition from the paleo-equatorial Pacific Ocean. Palaeogeogr., Palaeoclimatol., Palaeoecol., 226(1–2):93–126. doi:10.1016/j.palaeo.2005.05.006

Rea, D.K., and Lyle, M.W., 2005. Paleogene calcite compensation depth in the eastern subtropical Pacific: answers and questions. Paleoceanography, 20(1):PA1012. doi:10.1029/2004PA001064

Royer, D., 2002. Estimating latest Cretaceous and Tertiary atmospheric CO2 concentration from stomatal indices [Ph.D. thesis]. Yale Univ., New Haven, CT.

Royer, D.L., Berner, R.A., Montanez, I.P, Tabor, N.J., and Beerling, D.J., 2004. CO2 as a primary driver of Phanerozoic climate. GSA Today, 14(3):4–10.

Ruhlin, D.E., and Owen, R.M., 1986. The rare earth element geochemistry of hydrothermal sediments from the East Pacific Rise: examination of a seawater scavenging mechanism. Geochim. Cosmochim. Acta, 50(3):393–400. doi:10.1016/0016-7037(86)90192-4

Sanfilippo, A., and Nigrini, C., 1998. Code numbers for Cenozoic low latitude radiolarian biostratigraphic zones and GPTS conversion tables. Mar. Micropaleontol., 33(1-2):109–117. doi:10.1016/S0377-8398(97)00030-3

Scher, H.D., and Martin, E.E., 2006. Timing and climatic consequences of the opening of Drake Passage. Science, 312(5772):428–430. doi:10.1126/science.1120044

Shackleton, N.J., 1986. Paleogene stable isotope events. Palaeogeogr., Palaeoclimatol., Palaeoecol., 57(1):91–102. doi:10.1016/0031-0182(86)90008-8

Shackleton, N.J., and Kennett, J.P., 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. In Kennett, J.P., Houtz, R.E., et al., Init. Repts. DSDP, 29: Washington (U.S. Govt. Printing Office), 743–755.

Shipboard Scientific Party, 2002. Leg 199 summary. In Lyle, M., Wilson, P.A., Janecek, T.R., et al., Proc. ODP, Init. Repts., 199: College Station TX (Ocean Drilling Program), 1–87. [HTML]

Sigman, D.M., and Boyle, E.A., 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature (London, U. K.), 407(6806):859–869. doi:10.1038/35038000

Stickley, C.E., Brinkhuis, H., Schellenberg, S.A., Sluijs, A., Röhl, U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., and Williams, G.L., 2004. Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography, 19(4):PA4027. doi:10.1029/2004PA001022

Tarduno, J.A., Duncan, R.A., Scholl, D.W., Cottrell, R.D., Steinberger, B., Thordarson, T., Kerr, B.C., Neal, C.R., Frey, F.A., Torii, M., and Carvallo, C., 2003. The Emperor Seamounts: southward motion of the Hawaiian hotspot plume in Earth's mantle. Science, 301(5636):1064–1069. doi:10.1126/science.1086442

Thomas, D.J., Bralower, T.J., and Jones, C.E., 2003. Neodymium isotopic reconstruction of late Paleocene–early Eocene thermohaline circulation. Earth Planet. Sci. Lett., 209(3–4):309–322. doi:10.1016/S0012-821X(03)00096-7

Thomas, E., 2003. Extinction and food on the seafloor: a high-resolution benthic foraminiferal record across the initial Eocene thermal maximum, Southern Ocean Site 690. In Wing, S.L., Gingerich, P.D., Schmitz, B., and Thomas, E. (Eds.), Causes and Consequences of Globally Warm Climates in the Early Paleogene, Spec. Pap.—Geol. Soc. Am., 369:319–332.

Tripati, A., Backman, J., Elderfield, H., and Ferretti, P., 2005a. Eocene bipolar glaciation associated with global carbon cycle changes. Nature (London, U. K.), 436:341–346. doi:10.1038/nature03874

Tripati, A., Backman, J., Elderfield, H., and Ferretti, P., 2005b. Corrigendum: Eocene bipolar glaciation associated with global carbon cycle changes. Nature (London, U. K.), 438(7064):122. doi:10.1038/nature04289

van Andel, T.H., Heath, G.R., and Moore, T.C., Jr., 1975. Cenozoic History and Paleoceanography of the Central Equatorial Pacific Ocean: A Regional Synthesis of Deep Sea Drilling Project Data. Mem.—Geol. Soc. Am., 143.

Vanden Berg, M.D., and Jarrard, R.D, 2002. Determination of equatorial Pacific mineralogy using light absorption spectroscopy. In Lyle, M.W., Wilson, P.A., Janecek, T.R., et al., Proc. ODP, Init. Repts., 199, 1–20 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML]

Vanden Berg, M.D., and Jarrard, R.D., 2004. Cenozoic mass accumulation rates in the equatorial Pacific based on high-resolution mineralogy of Ocean Drilling Program Leg 199. Paleoceanography, 19(2):PA2021. doi:10.1029/2003PA000928

Wade, B.S., and Pälike, H., 2004. Oligocene climate dynamics. Paleoceanography, 19(4):PA4019. doi:10.1029/2004PA001042

Wyrtki, K., 1981. An estimate of equatorial upwelling in the Pacific. J. Phys. Oceanogr., 11(9):1205–1214. doi:10.1175/1520-0485(1981)011<1205:AEOEUI>2.0.CO;2

Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517):686–693. doi:10.1126/science.1059412

Zachos, J.C., Rea, D.K., Seto, K., Niitsuma, N., and Nomura, R., 1992. Paleogene and early Neogene deep water history of the Indian Ocean: inferences from stable isotopic records. In Duncan, R.A., Rea, D.K., Kidd, R.B., von Rad, U., and Weissel, J.K. (Eds.), Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophys. Monogr., 70:351–386.

Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L.J., McCarren, H., and Kroon, D., 2005. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science, 308(5728):1611–1615. doi:10.1126/science.1109004

Zachos, J.C., Wara, M.W., Bohaty, S., Delaney, M.L., Petrizzo, M.R., Brill, A., Bralower, T.J., and Premoli-Silva, I., 2003. A transient rise in tropical sea surface temperature during the Paleocene–Eocene Thermal Maximum. Science, 302(5650):1551–1554. doi:10.1126/science.1090110

Zeebe, R.E., and Westbroek, P., 2003. A simple model for the CaCO3 saturation state of the ocean: the "Strangelove," the "Neritan," and the "Cretan" Ocean. Geochem., Geophys., Geosyst., 4(12):1104. doi:10.1029/2003GC000538

NEXT