
1224A-1X No Recovery

1224A-2X Core Not Described; BIO, XRD Samples Taken (See Core Photo)

1224A-3X Core Not Described; SS Samples Taken (No Core Photo Available)

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224A-4X-CC (Section top: 26.22 mbsf)

Aphyric basalt

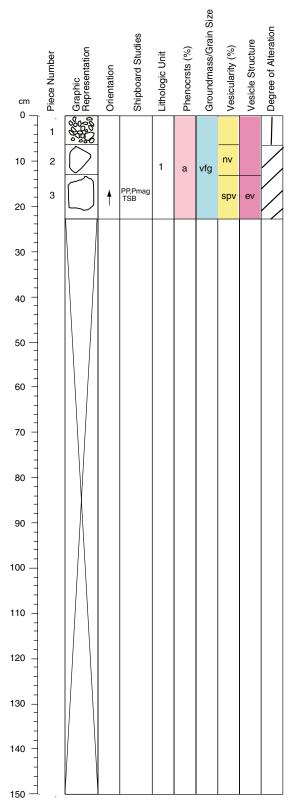
Pieces: 1

Thin Section(s) #: 24 and 52

CONTACTS: None

PHENOCRYSTS: Plagioclase (1-2%)

GROUNDMASS: Very fine grained (avg. size 0.2 mm)


VESICLES: Rare (~2%)
COLOR: Brownish gray

STRUCTURE: Massive with no veins nor fractures

ALTERATION: Low grade altered, dark colored

ADDITIONAL COMMENTS An approximately 2 mm thick, i cm wide rind of black

glass with brown alteration coating

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224A-5X-1 (Section top: 30.70 mbsf)

Aphyric basalt

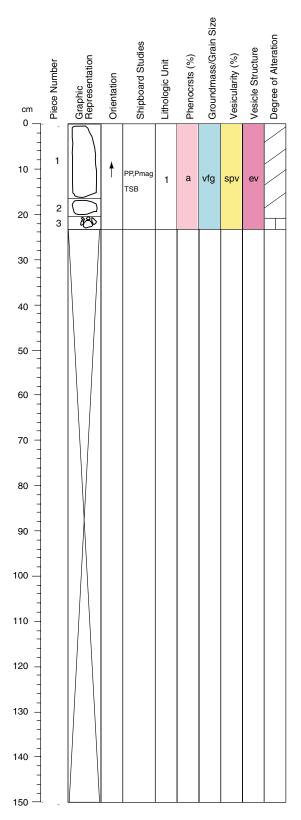
Pieces: 1 - 3

Thin Section(s) #: 25

CONTACTS: None

PHENOCRYSTS: Plagioclase (<1%)

GROUNDMASS: Very fine grained (avg. size 0.2 mm)


VESICLES: Low vesiculation. 0.1 - 1.5 mm in size. No grading of vesicle size

COLOR: gray

STRUCTURE: Massive. Some veining present

ALTERATION: Green coloration on uncut surface in places: 0.2 mm wide by 3 mm

long, 2 mm wide by 12 mm long

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224A-6N-1 (Section top: 32.00 mbsf)

Aphyric basalt

Pieces: 1 - 3

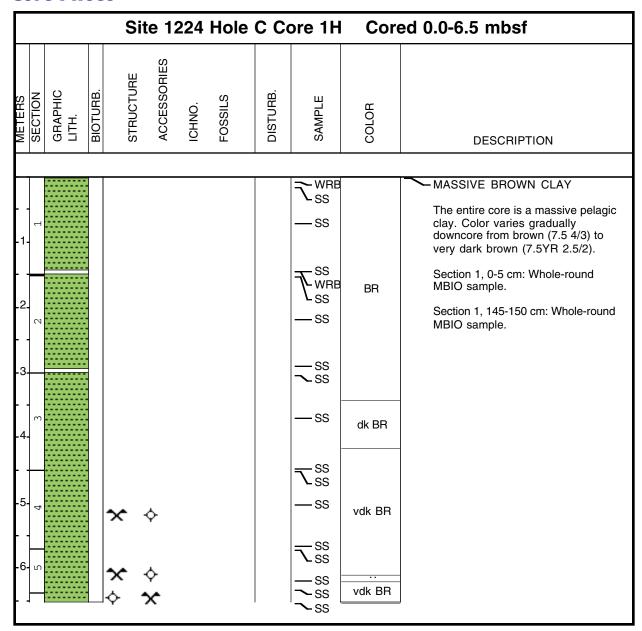
Thin Section(s) #: 26

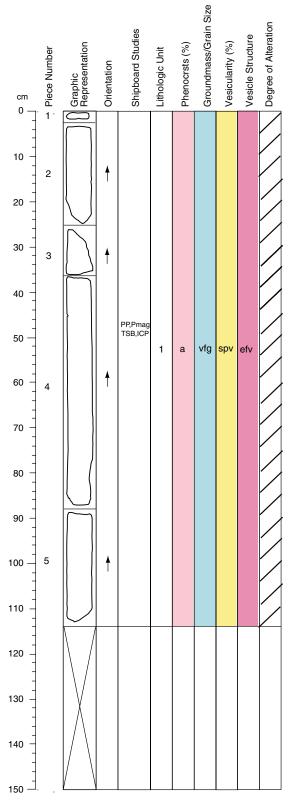
CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained (avg. size 0.2 mm).

VESICLES: 0.1 - 1.5 mm in size. No grading of vesicles size.


COLOR: gray


STRUCTURE: Massive. Pyrite deposited vein 2 - 5 mm wide by 5 - 20 mm long. A

small greenish/green-white deposited vein.

ALTERATION: Slightly altered.

	Site 1224 Hole B Core 1H								Cored 0.0-0.2 mbsf		
METERS	SECTION	GRAPHIC LITH.	BIOTURB.	STRUCTURE	ACCESSORIES	ICHNO.	FOSSILS	DISTURB.	SAMPLE	COLOR	DESCRIPTION
									~ss	BR	BROWN CLAY
											0-20 cm: Homogeneous brown (7.5YF 4/3) clay

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224D-1R-1 (Section top: 25.5 mbsf)

Aphyric basalt

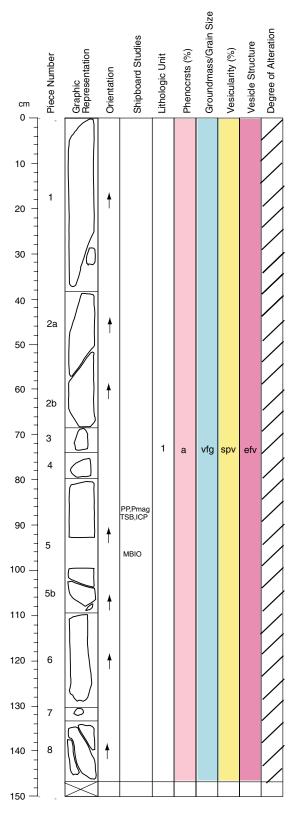
Pieces: 1-5

Thin Section(s)#: 34

CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Very fine grained (avg. size 0.3 mm). Appears to be a textural change at 74 - 79 cm.


VESICLES: $\sim 3\%$ vesicles, rounded, size range is 0.5 - 1.5 mm, usually with green clays or carbonate, irregularly distributed.

COLOR: N5, gray

STRUCTURE: Some pieces bounded by fracture surfaces. Piece 3 has 3 small hairline cracks on the working half. Veins and fractures are hairline and aligned with clays and carbonate. No alteration halos present.

ALTERATION: Slight alteration, vesicle are both empty and filled. Those that are filled contain clays and carbonate. Green clay and sulfides from 77 to 87 cm along concave side. Pyrite is also along cracks elsewhere in section.

ADDITIONAL COMMENTS: This is the top of cooling unit that ends in Section 3R-3.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224D-1R-2 (Section top: 26.64 mbsf)

Aphyric basalt

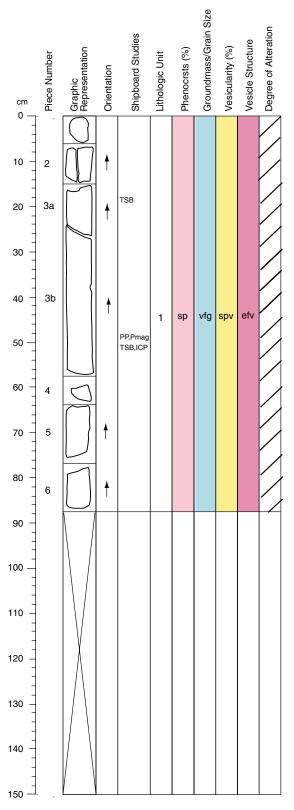
Pieces: 1-8

Thin Section(s)#: 35 **CONTACTS:** None

PHENOCRYSTS: Plagioclase (~1%)

GROUNDMASS: Very fine grained (avg. size 0.3 mm).

VESICLES: < 5 % vesicles, rounded, irregularly displaced filled and empty vesicles. Filled with carbonate and clays. Vesicles become larger at 77 cm, up to 2 mm.


COLOR: N5, gray

STRUCTURE: No veins going through section, however, there is a carbonate vein

along the side of peice 6.

ALTERATION: Carbonate and clay filling vesicles. Carbonate along side of peice 6 and middle part of peice 8. Pyrite along broken pieces. In addition, green clays along cracked surfaces and outside of core.

ADDITIONAL COMMENTS: Continuation of cooling unit that ends in Section 3R-3

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224D-1R-3 (Section top: 28.1 mbsf)

Aphyric to sparsely phyric basalt

Pieces: 1-6

Thin Section(s)#: 36 and 37

CONTACTS: None

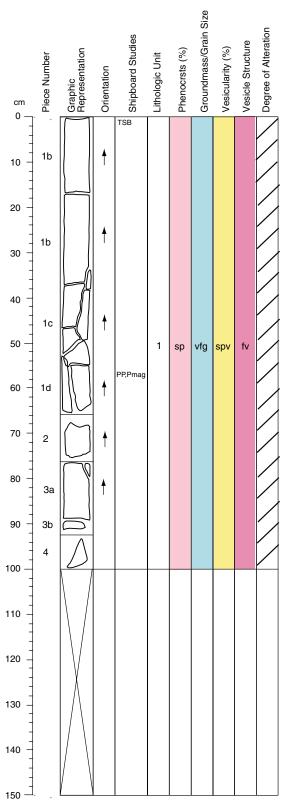
PHENOCRYSTS: Clinopyroxene (~1%) and Plagioclase (~1%).

GROUNDMASS: Very fine grained (avg size ~0.3 mm).

VESICLES: < 5 % vesicles, rounded, irregularly displaced filled and empty vesicles.

Filled with carbonate and clays. Size range < 1 mm.

COLOR: N5, gray


STRUCTURE: Veins and fractures in pieces 2 and 3, filled with carbonate, clays and

suflide minerals (pyrite?).

ALTERATION: Veins in pieces 2 and 3 are of carbonate and clays. Vesicles are filled with clays and carbonate. Green clays and pyrite aplong cracked pieces. No

alteration halos apparent.

ADDITIONAL COMMENTS: Continuation of cooling unit that ends in Section 3R-3

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224D-1R-4 (Section top: 28.99 mbsf)

Sparsely phyric basalt

Pieces: 1-4

Thin Section(s)#: 38

CONTACTS: None

PHENOCRYSTS: Plagioclase (<2%)

GROUNDMASS: Very fine grained (avg. size 0.3 mm). Maybe slightly grading to

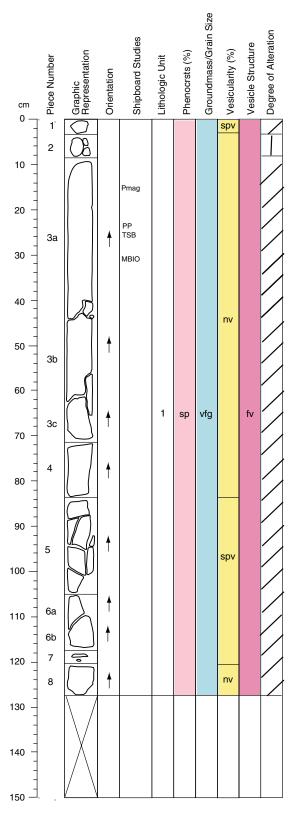
coarser downward.

VESICLES: < 5 % vesicles, rounded, irregularly displaced filled and empty vesicles.

Filled with carbonate and clays. Size range up to 2.8 mm.

COLOR: N5, gray

STRUCTURE: Fractures in piece 1 and filling of fractures with clays and carbonate I


pieces 2 and 4. Veins are <1 mm wide.

ALTERATION: Vesicles and veins contain carbonate and clays. Green clays and

pyrite present along fractures.

ADDITIONAL COMMENTS: Needle-like mineral (aragonite?) in fractures.

Continuation of cooling unit that ends in Section 3R-3

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224D-2R-1 (Section top: 35.1 mbsf)

Sparsely phyric basalt

Pieces: 1-8

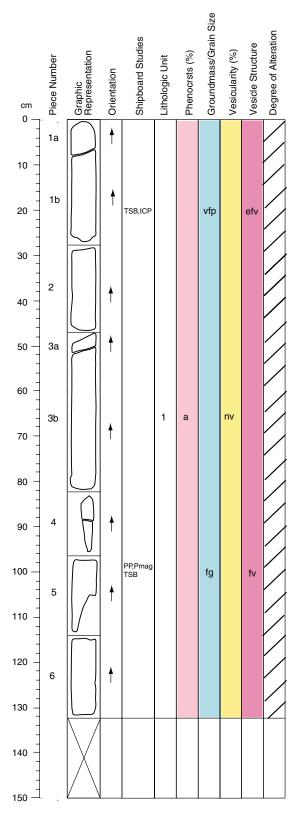
Thin Section(s)#: 39

CONTACTS: None

PHENOCRYSTS: Plagioclase (<2%) and clinopyroxene (<1%)

GROUNDMASS: Very fine grained (avg. size 0.4 mm), with no apparent changes in grain size, but section is coarser grained than near top of cooling unit. Glass in piece two (see additional comments).

VESICLES: < 1 % vesicles, rounded.


COLOR: N5, gray.

STRUCTURE: Fractures throughout. Filled with carbonate and clays.

ALTERATION: Fractures are filled with carbonate and clays, alteration of piece two is moderate with Fe-oxides and carbonates. Vesicles are filled with clays and carbonate. Pyrite and green clay along fractures.

ADDITIONAL COMMENTS: Pieces 1 and 2 may have fallen down the hole.

Continuation of cooling unit that ends in Section 3R-3

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224D-2R-2 (Section top: 36.39 mbsf)

Aphyric basalt

Pieces: 1-6

Thin Section(s)#: 40 and 41

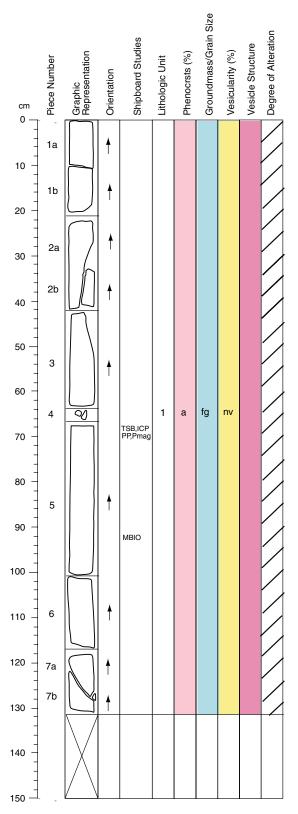
CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: From very fine grained (avg. size 0.3 mm) to fine grained (avg. size

0.5 mm). Coarsest grained portion of cooling unit.

VESICLES: < 1 % vesicles.


COLOR: 5B 5/1. Bluish gray.

STRUCTURE: Some fractures in pieces 3A and 5.

ALTERATION: Some of the vesicles are filled with clays and carbonates. Veins are of carbonate and clays with alteration halo (0.5 mm) around vein at 102 cm. Some

fractures contain pyrite.

ADDITIONAL COMMENTS: Continuation of cooling unit that ends in Section 3R-3

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224D-2R-3 (Section top: 37.71 mbsf)

Aphyric basalt

Pieces 1-7

Thin Section(s)#: 42

CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Fine grained (avg. size 0.5 mm), but coarser than in 200-1224D-2R-

2. Nearly coarsest grained portion of cooling unit.

VESICLES: None


COLOR: SB 5/1; Bluish gray

STRUCTURE: Some pieces (#2and #7) have fractures filled with clay and oxides.

ALTERATION: Alteration -1cm, in 2A; greenish and brownish in color. Some pyrite

along fractures.

ADDITIONAL COMMENTS: Continuation of cooling unit that ends in Section 3R-3.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224D-2R-4 (Section top: 39.03 mbsf)

Aphyric fine grained basalt

Pieces 1-3

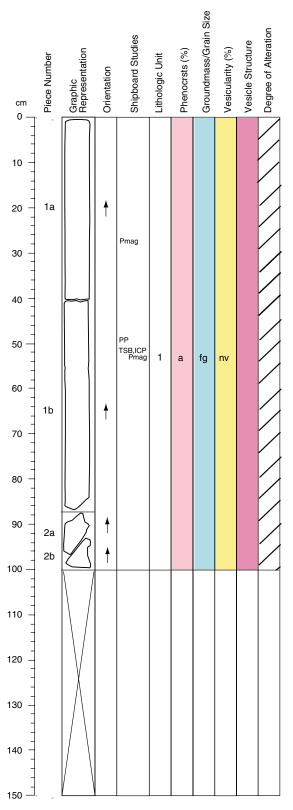
Thin Section(s)#: 43

CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: fine grained (avg. size 0.6 mm) with no apparent change in grain

size.


VESICLES: <1 %, rounded

COLOR: N5; gray

STRUCTURE: fractures throughout...

ALTERATION: Slightly altered with minor clays filling fractures, alteration halos –1-1.5cm (brown-green) in color, slight clay + pyrite in fractures, plus oxide.

ADDITIONAL COMMENTS: A continuation of cooling unit that ends in Section 3R-3

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224D-3R-1 (Section top: 44.7 mbsf)

Aphyric basalt

Pieces 1-2

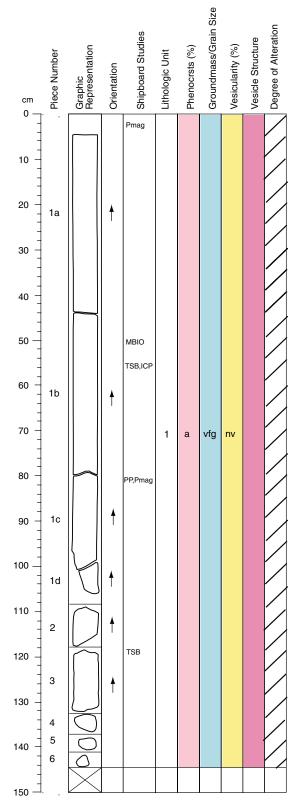
Thin Section(s)#: 44

CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Fine grained (avg. size 0.6 mm).

VESICLES: None


COLOR: N5: gray

STRUCTURE: Massive, fractures are rare in the core. On the vein surfece, greenish

clay and trace pyrite are deposited.

ALTERATION: Low grade, slightly more altered along the vein, ~3mm width.

ADDITIONAL COMMENTS: A continuation of cooling unit that ends in Section 3R-3.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224D-3R-2 (Section top: 45.7 mbsf)

Aphyric basalt

Pieces: 1-6

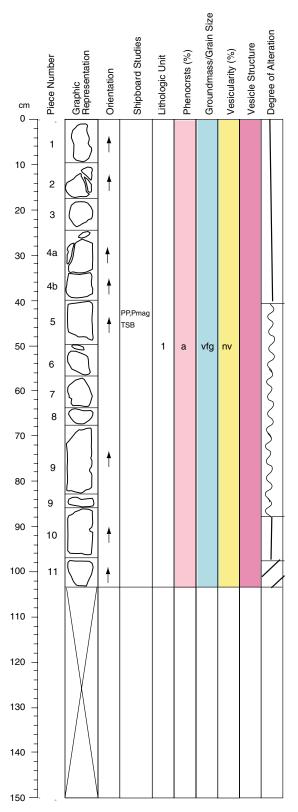
Thin Section(s)#: 45 and 48

CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Very fine grained (avg. size <0.4 mm), appears to become slightly finer grained towards the bottom.

VESICLES: None


COLOR: N5, gray

STRUCTURE: Fractures in piece 1, hairline fractures in piece 3 (orthogonal horizonta

and verical fractures)

ALTERATION: Slight alteration. Clays and pyrite along fractures. Bottom of piece 1 there is a 0.5 cm alteration halo of Fe-oxides (brown). Piece 3 has a 1 cm Fe-oxide (brown) alteration halo around orthogonal fractures, beyond this 1 cm halo is a 1-2 cm dark gray green alteration halo.

ADDITIONAL COMMENTS: Continuation of cooling unit that ends in Section 3R-3.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224D-3R-3 (Section top: 47.14 mbsf)

Aphyric basalt

Pieces: 1-12

Thin Section(s)#: 49

CONTACTS: None

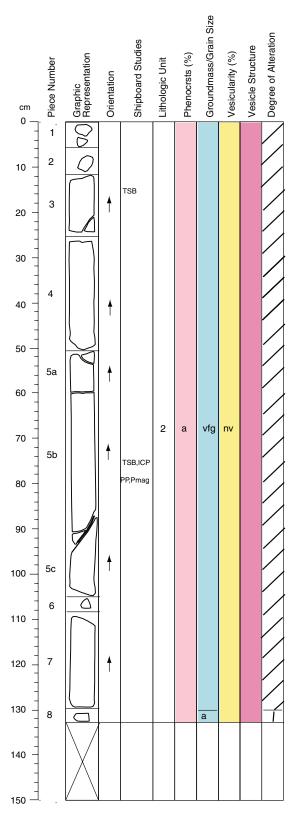
PHENOCRYSTS: Plagioclase (~1 %)

GROUNDMASS: Very fine grained (avg. size 0.2 mm), however, it does become

coaser grained at lower 20 cm.

VESICLES: < 1% vesicles, rounded, size is < 1 mm, filled with green clays and

carbonate.


COLOR: Mixture of browns and grays 0 - 65 cm, with brown being the dominant color. 65-103, mixture of gray, brown, and green, with gray being the dominant color.

STRUCTURE: Fractures are abundant, some are filled with vein material. No

orientation of fractures.

ALTERATION: Altered to brownish gray 0 - 65 cm, alteration continues, but not as intense. Alteration halos 1 - 2 cm throughout. Calcite and Fe - oxides in veins.

 $\textbf{ADDITIONAL COMMENTS:} \ \mathsf{Top} \ \mathsf{of} \ \mathsf{unit} \ \mathsf{two}. \ \ \mathsf{Spherulitic} \ \mathsf{textures} \ \mathsf{from} \ \mathsf{0-65} \ \mathsf{cm}.$

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224D-4R-1 (Section top: 49.3 mbsf)

Aphyric basalt

Pieces 1-8

Thin Section(s)#: 46 and 50

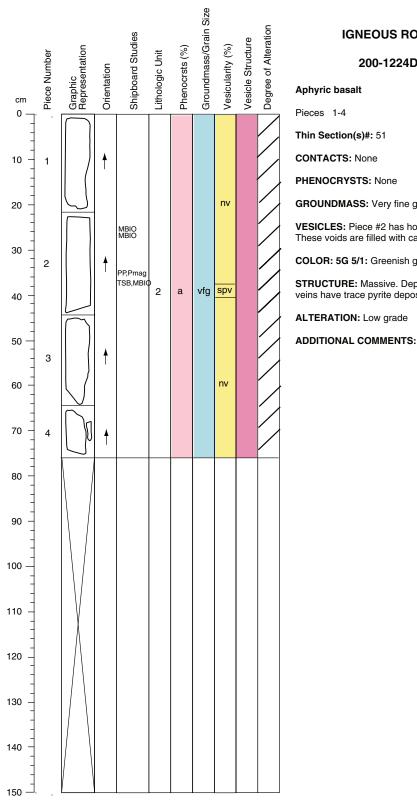
CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Very fine grained (avg. size 0.3 mm).

VESICLES: Some small vesicles are observed in piece 5B to 5c, <1 %, round, >0.5

mm diameter, filled with calcite.


COLOR: 5BG 5/1: greenish gray (#1, 2, 3). 5G 5/1: greenish gray (#4, 5, 6, 7). 5/2:

olive gray (#8).

STRUCTURE: Massive. Pieces #4 and #5 have some fractures. One vein (under part of #5) is 2 mm width and filled with calcite and clay. Some veins have pyrite deposit.

ALTERATION: Low grade, piece #8 is brownish color, under hydrothermal effect.

ADDITIONAL COMMENTS: Presence of carbonate-filled gas pipes in piece 5B.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224D-4R-2 (Section top: 50.62 mbsf)

Aphyric basalt

Pieces 1-4

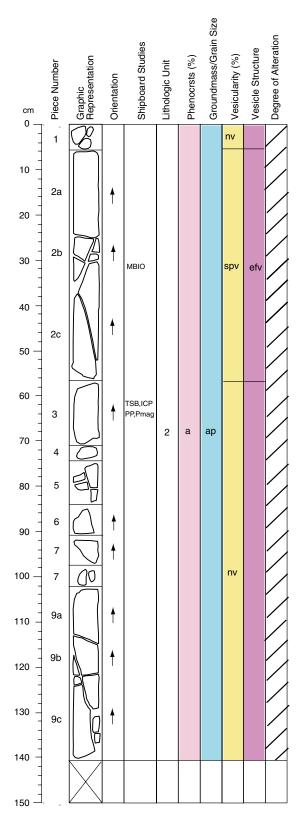
Thin Section(s)#: 51

CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Very fine grained (avg. size 0.4 mm)

VESICLES: Piece #2 has horizontal distributed voids (< 2 mm), dip at 20 degrees.


These voids are filled with calcite.

COLOR: 5G 5/1: Greenish gray.

STRUCTURE: Massive. Deposited material in veins is mainly oxide mineral. Some

veins have trace pyrite deposits.

ALTERATION: Low grade

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224D-5R-1 (Section top: 51.3 mbsf)

Aphyric basalt

Pieces: 1 - 9

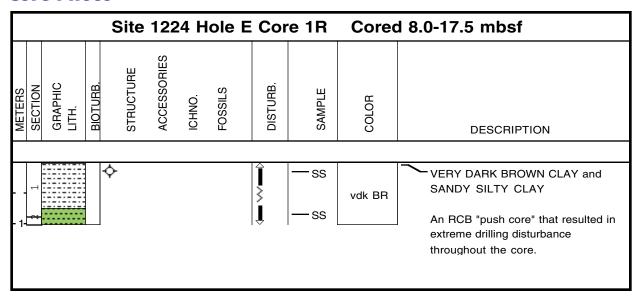
Thin Section(s)#: 47

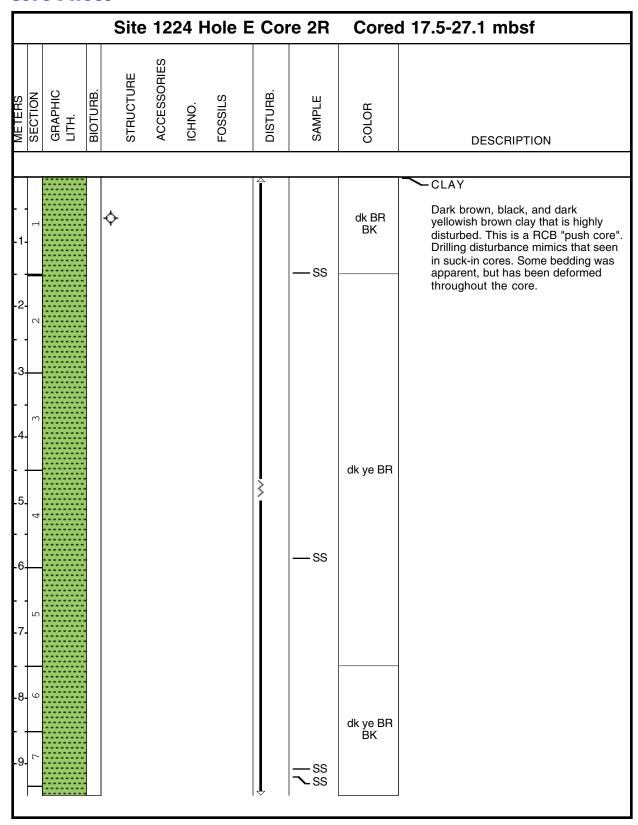
CONTACTS: None

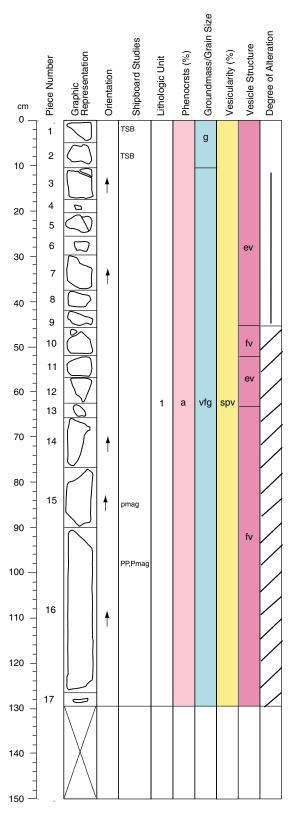
PHENOCRYSTS: None

GROUNDMASS: Very fine grained (avg. size 0.4 mm).

VESICLES: Pieces 2A and 2C are slightly more vesicular than the pieces in the rest


of the section.


COLOR: 5BG 5/1 Greenish gray


STRUCTURE: Fractures in pieces 2B and 2C and 9B and 9C. Veins in pieces 9B and 9C are vertical and are filled with carbonate, green clay, and minor amounts of pyrite.

ALTERATION: Mostly carbonate filling the vesicles and a few are filled with clays.

Minor amounts of pyrite on edges of many of the pieces.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224E-3R-1 (Section top: 27.10 mbsf)

Aphyric basalt

Pieces: 3 - 17

Thin Section(s) #: 53 and 54

CONTACTS:None

PHENOCRYSTS: None

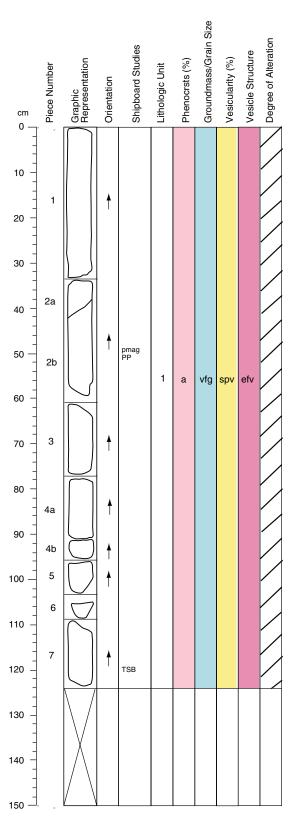
GROUNDMASS: Very fine grained

VESICLES: Sparsely vesicular, round. Some are filled with greenish clay and

carbonate. Vesicularity increases with depth. Size ~ 0.5 mm

COLOR: Pieces 1 - 9 5GY 5/1, greenish gray. Pieces 10 - 17 N5, gray

 $\textbf{STRUCTURE:} \ \text{Fracture in pieces 3-9 with no orientation and filled with Fe}$


oxyhydroxides and green clay. Pieces 10 - 17 are massive

ALTERATION: Moderate alteration in #3 - 9 with Fe oxyhydroxides, green clays, and

alteration halos, 1 - 3 cm in width

ADDITIONAL COMMENTS: Pieces 1 and 2 are hyaloclastitic breccia with carbonate

cement

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224E-3R-2 (Section top: 28.39 mbsf)

UNIT 1: Aphyric basalt

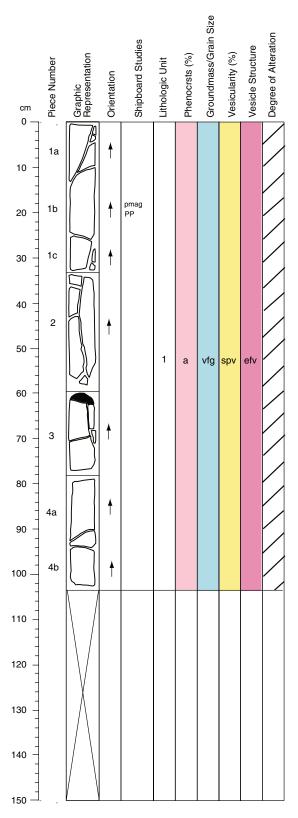
Pieces: 1 - 17

Thin Section(s) #: 55

CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Very fine grained (avg. size 0.3 mm).


VESICLES: Sparsely vesicular, ranging in size from 1 mm, round, some are filled with clays, carbonate, and sulfides. The size of the vesicles becomes larger in piece 2 - 5.

COLOR: N5, gray.

STRUCTURE: Mainly massive, some fractures filled with carbonates, clays, and

sulfides

ALTERATION: Slightly altered in fractures and veins.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224E-3R-3 (Section top: 29.63 mbsf)

Aphyric basalt

Pieces: 1 - 4

Thin Section(s) #: None

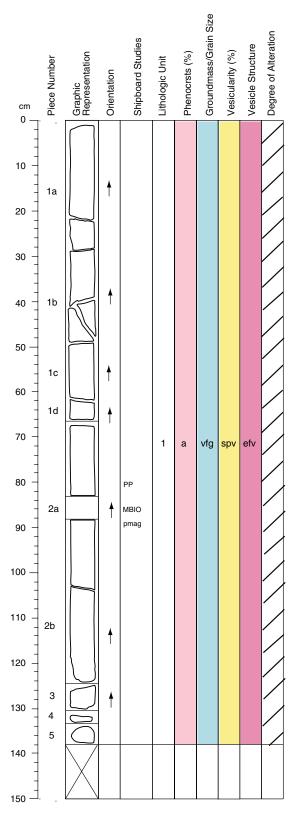
CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Very fine grained.

VESICLES: Sparsely vesicular to non-vesicular. Some vesicles are filled with

carbonate and clay, rounded, and the size is 1 - 3 mm.


COLOR: N5, gray.

STRUCTURE: Fractured throughout. Fractures contain mainly green clays and some

ulfides.

ALTERATION: Slightly altered along fractures with Fe-oxyhydroxides, green clay,

carbonates, alteration halos 1 - 2 mm.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224E-3R-4 (Section top: 30.66 mbsf)

Aphyric basalt

Pieces: 1 - 5

Thin Section(s) #: None

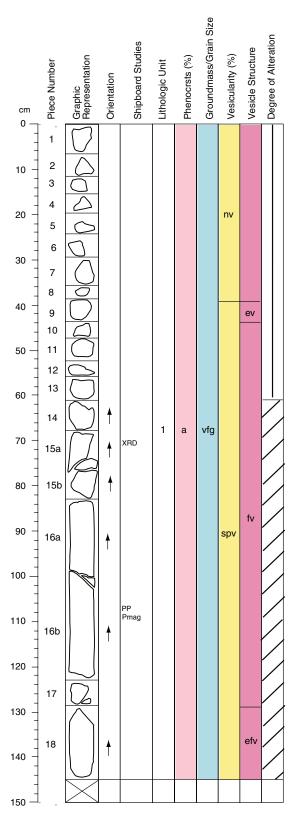
CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Very fine grained.

VESICLES: Sparsely vesicular, round, size 1 - 2 mm.

COLOR: N5, gray, but Piece # 5 is 10YR 5/1, gray.


STRUCTURE: Piece #1 is fractured and Pieces #2 - #5 are massive. Piece #1 has

fractures filled with carbonate, greenish clay, and some sulfides.

ALTERATION: Slightly altered along fractures: green clays, Fe-oxyhydroxides,

calcite, alteration halos ~ 1 cm.

ADDITIONAL COMMENTS: Piece 5 is similar to the pieces 3 - 9 in Core 1224E-3R.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-1R-1 (Section top: 27.7 mbsf)

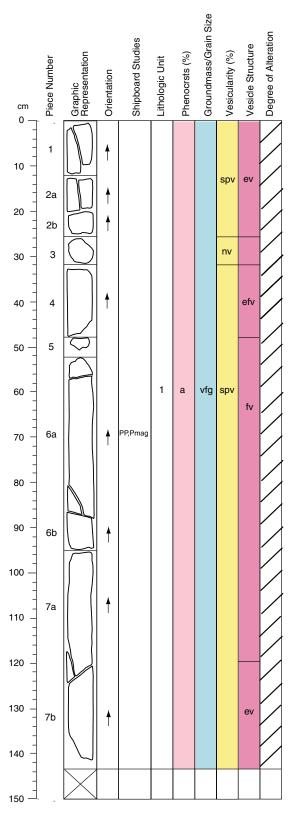
Aphyric basalt

Pieces: 1 - 18

Thin Section(s) #: none

CONTACTS: None

PHENOCRYSTS: None


GROUNDMASS: Very fine grained.

VESICLES: Sparcely vesicular. Round. Many pieces lower than piece 11 are filled with greenish clay and some are filled with carbonate. Size is ~ 0.5 mm.

COLOR: 5GY 6/1: greenish gray for pieces 1 - 13. 5BG 5/1: greenish gray for pieces 14 - 18

STRUCTURE: Pieces 1 - 13 are fragmented. Pieces 14 - 18 are massive with some fractures with thin greenish clay deposit.

ALTERATION: Low-grade altered (Pieces 1 - 13) and some pieces have dark-color altered rind (~1 cm thick). Slightly altered (Pieces 14 - 18).

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-1R-2 (Section top: 29.14 mbsf)

Aphyric basalt

Pieces: 1 -7

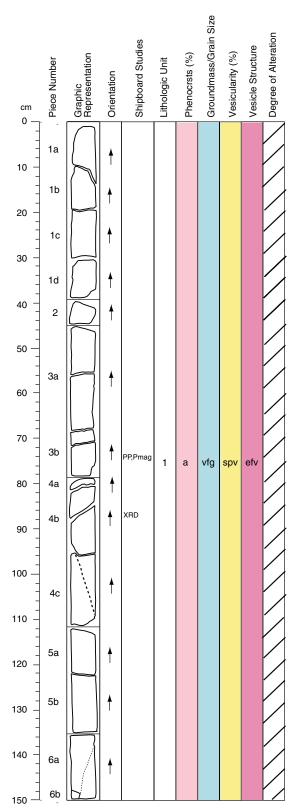
Thin Section(s)#: none

CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Very fine grained.

VESICLES: Sparsely vesicular, round, size is ~ 2 mm. Vesicles in pieces # 1 - 3 are empty, those in pieces # 4 - 7 are filled with greenish clay, but some vesicles in pieces


4 and 5 are filled with carbonate.

COLOR: 5B 5/1: bluish gray.

STRUCTURE: Massive with some fractures filled with thin greenish clay deposited.

Piece 5 has a 2 mm thick calcite vein.

ALTERATION: Slightly altered.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-1R-3 (Section top: 30.58 mbsf)

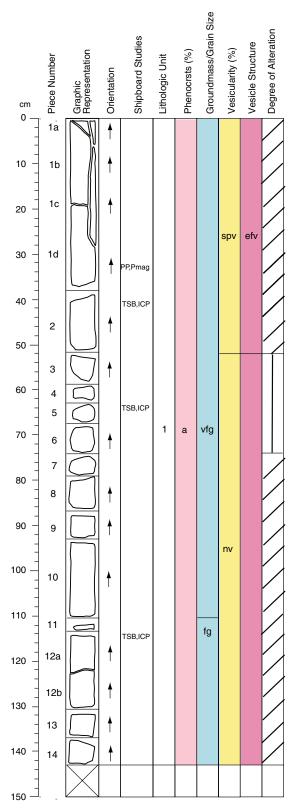
Aphyric basalt

Pieces: 1 - 6

Thin Section(s)#: none

CONTACTS: None

PHENOCRYSTS: None


GROUNDMASS: Very fine grained.

 $\textbf{VESICLES:} \ Sparsely \ vesicular, \ rounded, \ {\scriptstyle \sim} \ 1 \ mm, \ some \ are \ filled \ with \ clays.$

COLOR: N5: gray.

STRUCTURE: Fractures throughout. Veins of carbonate, Fe-oxyhydroxides and clays. Fractures contain clays and pyrite. No preferred orientation of fractures.

ALTERATION: Slightly altered. Vesicles and fractures have green clays. Veins have carbonate clays, pyrite and some Fe-oxyhydroxides. Alteration haloes $\sim 0.5~\text{cm}$

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-1R-4 (Section top: 32.09 mbsf)

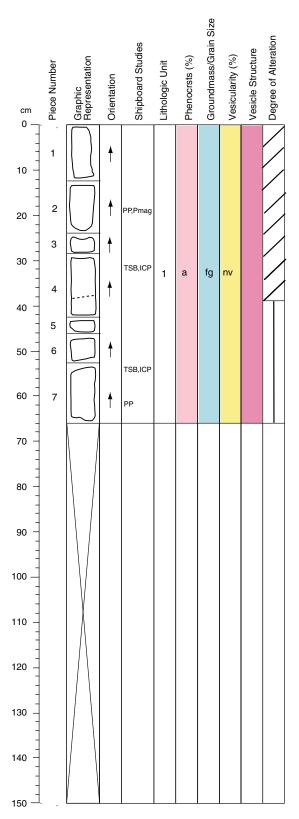
Aphyric basalt

Pieces: 1 - 14

Thin Section(s)#: 56, 57, and 58

CONTACTS: None

PHENOCRYSTS: None


 $\mbox{\bf GROUNDMASS:}$ From very fine grained (avg. size 0.4 mm) to fine grained (avg. size 0.5 mm) downcore.

VESICLES: Sparsely vesicular in pieces 1 and 2, rounded and some are filled with clays. Pieces 3 - 14 are non-vesicular.

COLOR: In slightly altered pieces N5: gray, in moderately altered pieces color varies from brown gray to yellowish brown.

STRUCTURE: Fractured. Alteration halos in Pieces 7 and 8 are ~0.5 cm. Pieces 3 - 6 have a high amount of alteration haloes. Veins are filled with carbonate; fractures have clays and pyrite.

ALTERATION: Slightly to moderate alteration with green clays and Fe-oxyhydroxides throughout. Pieces 3 - 6 are bleached with carbonate and Fe-oxyhydroxides.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-1R-5 (Section top: 33.52 mbsf)

UNIT 1: Aphyric basalt

Pieces: 1 - 7

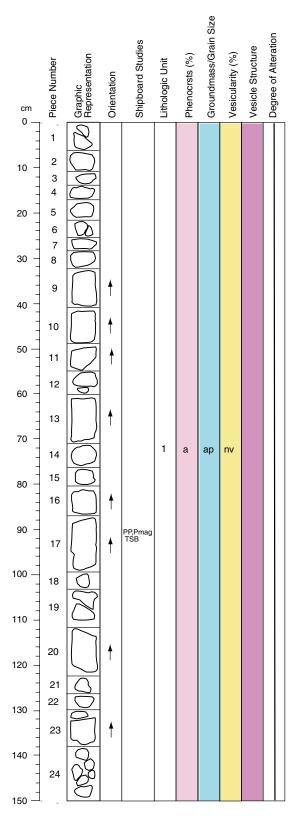
Thin Section(s)#: 59 and 60

CONTACTS: None

PHENOCRYSTS: Plagioclase and clinopyroxene (~1%).

GROUNDMASS: Fine grained (avg. size 0.5 mm).

VESICLES: None.


COLOR: N5: gray in slightly altered pieces, moderatly altered pieces range in color

from yellow brown to red brown.

STRUCTURE: One vein in # 4 filled with Fe oxyhydroxides.

ALTERATION: Slightly altered in pieces 1 to top of piece 4. Pieces 4 - 7 are moderately altered and bleached to yellow brown. Fe-oxyhydroxdes with clays and

carbonate. Alteration halo measuring ~ 3 cm.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-2R-1 (Section top: 39.70 mbsf)

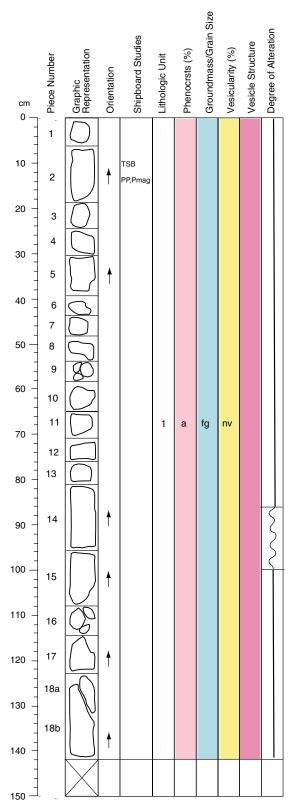
Aphyric basalt

Pieces: 1 - 24

Thin Section(s)#: 61

CONTACTS: None

PHENOCRYSTS: None


GROUNDMASS: Fine grained.

VESICLES: None

COLOR: Gray to yellowish brown.

STRUCTURE:

ALTERATION: Moderately altered and bleached to yellow brown.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-2R-2 (Section top: 41.2 mbsf)

Aphyric basalt

Pieces: 1 - 18

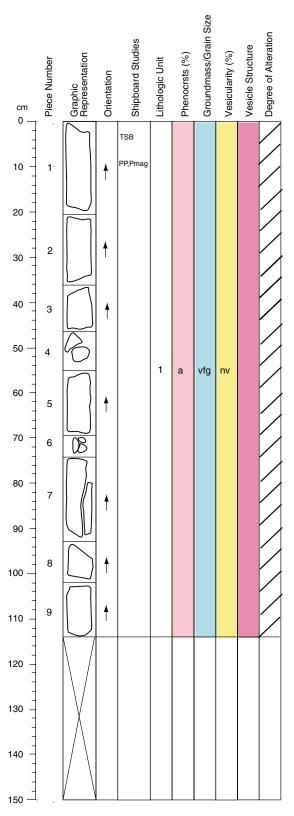
Thin Section(s)#: 62

CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Fine grained.

VESICLES: Non-vesicular.


COLOR: Varies from gray to brown due to alteration.

STRUCTURE: Fractured, no orientation. Fractures are thin and filled with Fe-

oxyhydroxides and green clays.

ALTERATION: Moderately altered from piece 1 to piece 13. Fe-oxyhydroxides and clays, bleaching, alteration haloes throughout, some pieces have large haloes that are filled with orange red material. Maybe some carbonate in piece 15.

ADDITIONAL COMMENTS: Average size of groundmass crystals in thin section #62 changes from $0.8 \ \text{mm}$ (top) to $0.3 \ \text{mm}$ (bottom).

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-2R-3 (Section top: 42.62 mbsf)

Aphyric basalt

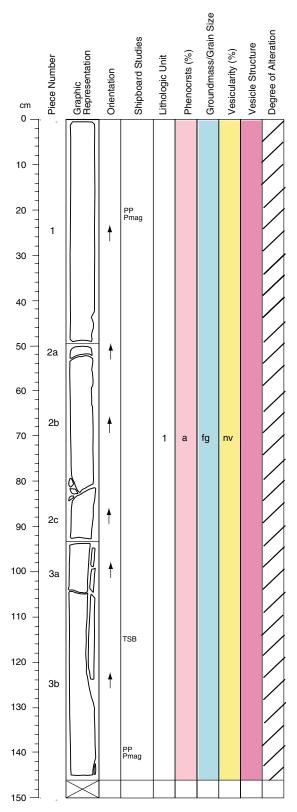
Pieces: 1 - 9

Thin Section(s)#: 63

CONTACTS: None

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained.


VESICLES: None.

COLOR: N5: gray.

STRUCTURE: massive with one fracture in # 7.

ALTERATION: Slightly alteration with pyrite, clays, and blackish blue material in fracture. No alteration haloes. Pieces 1 - 5 have holes (<1 mm - 3 mm) that appears

to have formed during alteration.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-2R-4 (Section top: 43.76 mbsf)

UNIT 1: Aphyric basalt

Pieces: 1 - 3

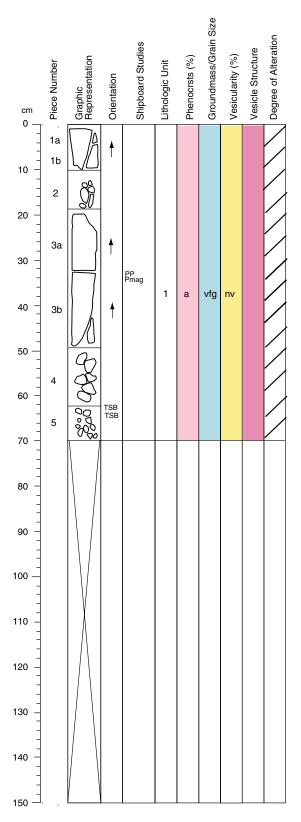
Thin Section(s)#: 64

CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Fine grained (avg. size 0.5 mm).

VESICLES: None.


COLOR: N5: gray.

STRUCTURE: Fractured. Multiple hairlike fractures in piece 2. Veins of oxyhydroxides

and fractures have green clays in them.

ALTERATION: Slightly altered with an increase in alteration along piece # 2. Alteration halos measuring about 1 cm in thickness. Fe-oxyhydroxides and green clay

material along fractures.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-2R-5 (Section top: 45.21 mbsf)

Aphyric basalt

Pieces: None

Thin Section(s)#: 65 and 66

CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Very fine grained.

VESICLES: None.

COLOR: N5: gray.

STRUCTURE: Fractured, hairlike fractures in pieces 1 and 2. Fractured have green

clay material and Fe-oxyhydroxides.

ALTERATION: Slightly altered, pieces 1 and 2 have alteration halos ~ 1 cm. Fe-

oxyhydroxides with green clay.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-3R-1 (Section top: 47.3 mbsf)

Aphyric to sparsely phyric basalt

Pieces: 1 - 19

Thin Section(s)#: 67 and 68

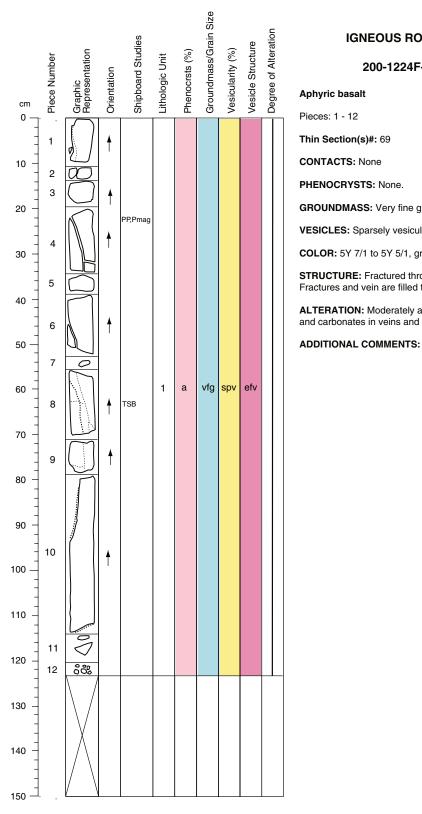
CONTACTS: None

PHENOCRYSTS: Plagioclase (<2%) and Clinopyroxene (<2%) in piece #8

GROUNDMASS: Very fine grained (avg. size <0.4 mm)

VESICLES: < 1 % vesicles to non-vesicular. In pieces 5 - 19, those vesicles that do exist are filled with clays

exist are filled with clays


COLOR: 5Y 5/1: gray (# 1), N5: gray (# 2 - 8), 5G 5/1: greenish gray (# 9 - 12) and 5Y

5/1: gray (# 13 - 19)

STRUCTURE: Fractured throughout with hairlike fractures in #8 - 19

ALTERATION: Slightly alteration, however piece 1, and 13 - 19 are more altered then the rest of the section. Alteration halos exist throughout pieces 1, 13 - 19, with Feoxyhydroxides and carbonate. Green clays in vesicles. Pieces 1, 13 - 19 are slightly bleached to a lighter color

zioadiida to a ligitidi dele.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-3R-2 (Section top: 48.8 mbsf)

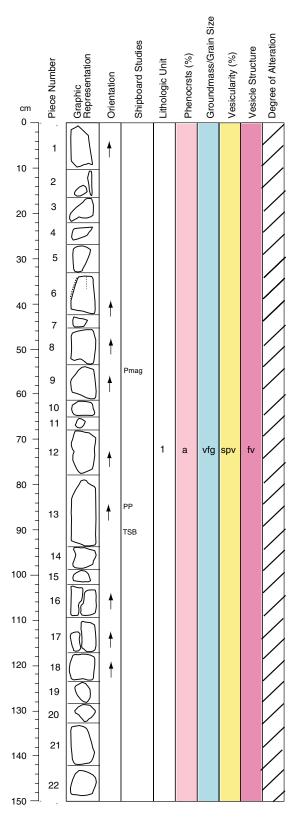
Aphyric basalt

Pieces: 1 - 12

Thin Section(s)#: 69

CONTACTS: None

PHENOCRYSTS: None.


GROUNDMASS: Very fine grained (avg. size 0.3 mm).

VESICLES: Sparsely vesicular, round, ≤1 mm, some are filled and some are empty.

COLOR: 5Y 7/1 to 5Y 5/1, grays, varies throughout due to alteration.

STRUCTURE: Fractured throughout. They are subvertical to horizontal in direction. Fractures and vein are filled throughout with calcite and Fe oxyhydroxides.

ALTERATION: Moderately altered with alteration haloes throghout. Fe oxyhydroxides and carbonates in veins and vesicles.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-3R-3 (Section top: 50.03 mbsf)

Aphyric basalt

Pieces: 1 - 22

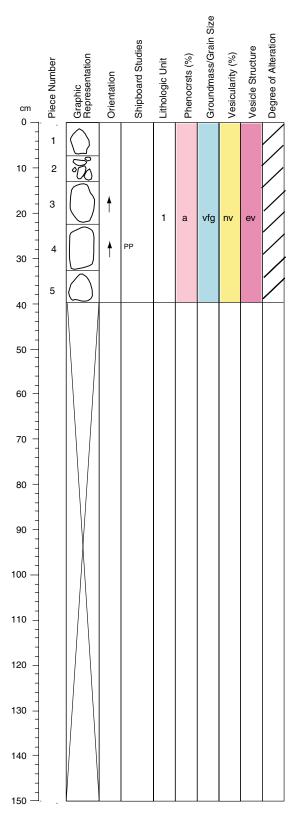
Thin Section(s)#: 70

CONTACTS: None

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained.

VESICLES: Sparsely vesicular filled vesicles, rounded, filled with color carbonates


and clays. Color of filling ranges from green to yellow to white.

COLOR: Color varies due to alteration, ranges from 5Y 7/1 to 5Y 5/1: gray.

STRUCTURE: Few hairlike fractures, no preferred orientation.

ALTERATION: Slightly altered, alteration haloes throughout. Fe oxyhydroxides and

carbonates filling veins and vesicles.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-3R-4 (Section top: 51.53 mbsf)

Aphyric basalt

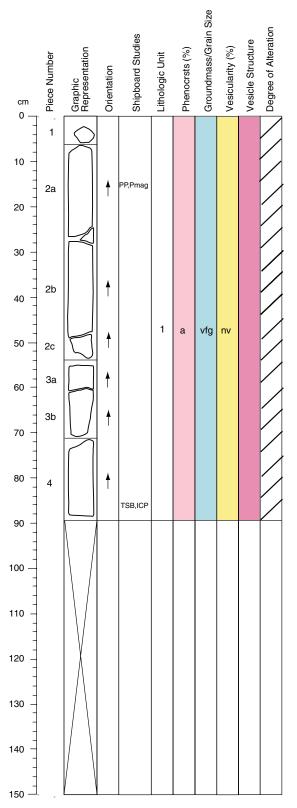
Pieces: 1 - 5

Thin Section(s)#: none

CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Very fine grained.


VESICLES: Trace

COLOR: Bluish gray

STRUCTURE: Massive with some empty vesicular veins and fractures. Trace of oxide

and sulfide in ores, deposited on surface

ALTERATION: Slightly.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-4R-1 (Section top: 56.4 mbsf)

Aphyric basalt

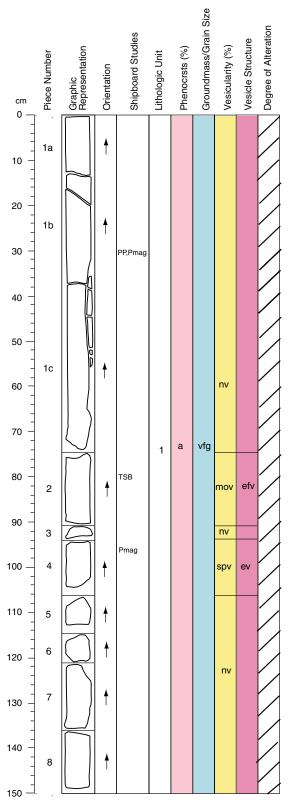
Pieces: 1 - 4

Thin Section(s)#: 71

CONTACTS: None

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained (avg. size 0.3 mm).


VESICLES: None.

COLOR: N5: gray.

STRUCTURE: Minor amount of fractures without any orientation.

ALTERATION: Slightly with green clays and carbonates, pyrite and dark blue-black

material in fractures. No alteration haloes.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-4R-2 (Section top: 57.3 mbsf)

Aphyric basalt

Pieces: 1 - 8

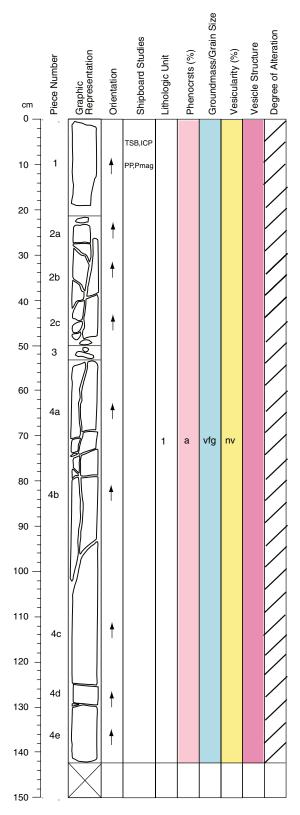
Thin Section(s)#: 72

CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Very fine grained (avg. size 0.3 mm)

VESICLES: Pieces 2 and 4 have some high vesicle zones. Other pieces are non-


vesicular

COLOR: N5: gray

STRUCTURE: Minor amount of fractures in piece # 1

ALTERATION: Slightly, with green clays, carbonate and dark blue-black material in fractures. Alteration halos ~ 0.5 cm around area with holes that appear to have been

caused by alteration

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-4R-3 (Section top: 58.8 mbsf)

UNIT 1: Aphyric basalt

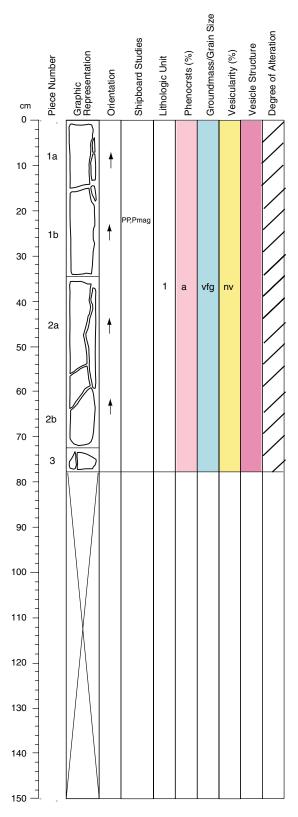
Pieces: 1 - 4

Thin Section(s)#: 73

CONTACTS: None

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained (avg. size 0.4 mm).


VESICLES: None.

COLOR: N5: gray.

STRUCTURE: Fractureal throughout, orientation is almost horizontal and vertical. Alteration material is green clays and minor Fe oxyhydroxides, minor pyrite, and carbonate in fractures.

ALTERATION: Altered with green clays and minor Fe oxyhydroxides, minor pyrite,

and carbonate, alteration haloes ~ 0.5 cm

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-4R-4 (Section top: 60.23 mbsf)

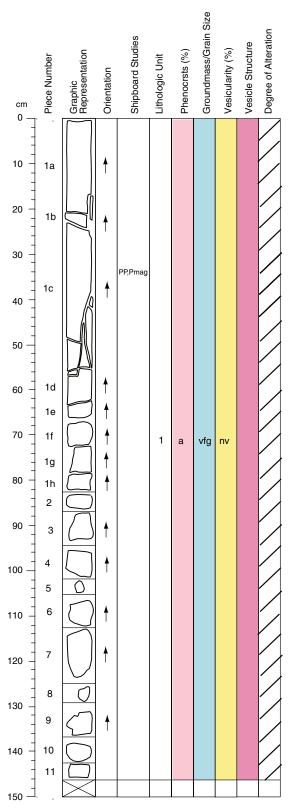
Aphyric basalt

Pieces: 1 - 3

Thin Section(s)#: none

CONTACTS: None

PHENOCRYSTS: None.


GROUNDMASS: Very fine grained.

VESICLES: None.
COLOR: N5: gray.

STRUCTURE: Fractures without any preferential orientation.

ALTERATION: Slightly altered with green clays, carbonate, and pyrite. Alteration halo

in piece # 2 is \sim 0.5 cm. Minor amounts of oxyhydroxides in alteration halo.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-4R-5 (Section top: 61.01 mbsf)

Aphyric basalt

Pieces: 1 - 11

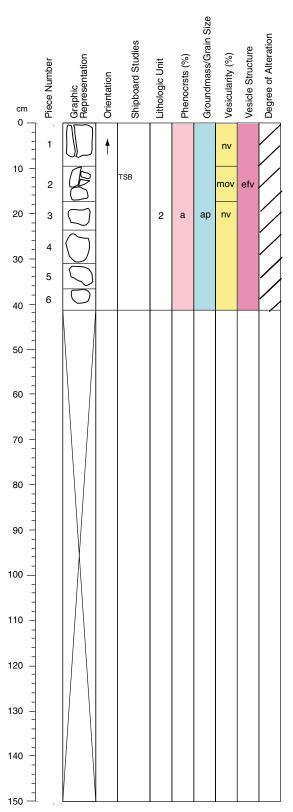
Thin Section(s)#: none

CONTACTS: None

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained.

VESICLES: None.


COLOR: N5: gray.

STRUCTURE: Fractures. Vein deposit is transparent to translucent needle like

crystals

ALTERATION: Slightly altered with green clays, carbonate, and pyrite. Alteration halc

in piece # 2 is ~ 0.5 cm. Minor amounts of oxyhydroxides in alteration halo.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-4R-6 (Section top: 62.48 mbsf)

Aphyric basalt

Pieces: 1 - 6

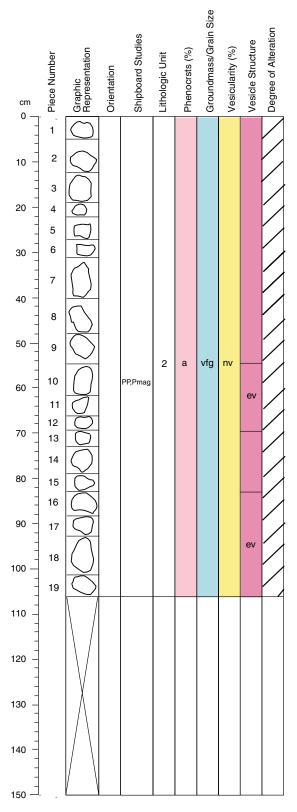
Thin Section(s)#: 74

CONTACTS: Chilled margin in # 2.

PHENOCRYSTS: Plagioclase (<1 %).

GROUNDMASS: Very fine grained (avg. size <0.1 mm).

VESICLES: \sim 7 % in piece 2, absent in the rest of the section.


COLOR: Varies throughout due to alteration. 5Y 6/1: gray.

STRUCTURE: Minor hairlike fractures without any preferential orientation.

ALTERATION: Slightly alterated, halos range in size up to 3 cm. Fe oxyhydroxides

and clay.

ADDITIONAL COMMENTS: These pieces are pillow breccia. New unit.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-5R-1 (Section top: 65.9 mbsf)

Aphyric basalt

Pieces: 1 - 19

Thin Section(s)#: none

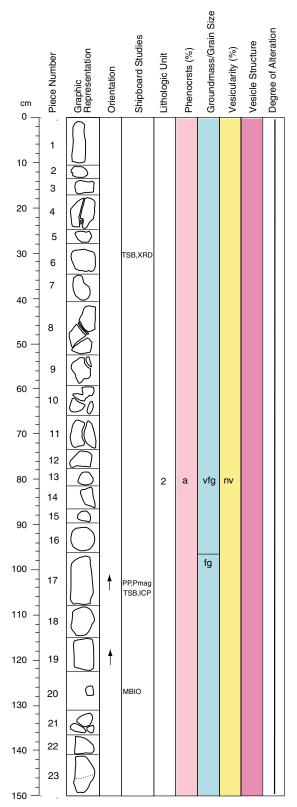
CONTACTS: None

PHENOCRYSTS: None

GROUNDMASS: Very fine grained.

VESICLES: Sparsely vesicular, rounded, < 1 mm, empty and filled with clays.

COLOR: 5Y 5/1; gray, color varies slightly due to alteration.


STRUCTURE: No fracture.

ALTERATION: Slightly altered, alteration halos surrounding each piece ~ 1 cm in

thickness, Fe-oxyhydroxides.

ADDITIONAL COMMENTS: Pieces 3 and 4 have carbonate deposits (< 1 mm) on

surface

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-6R-1 (Section top: 75.0 mbsf)

Pillow basalt and Aphyric basalt

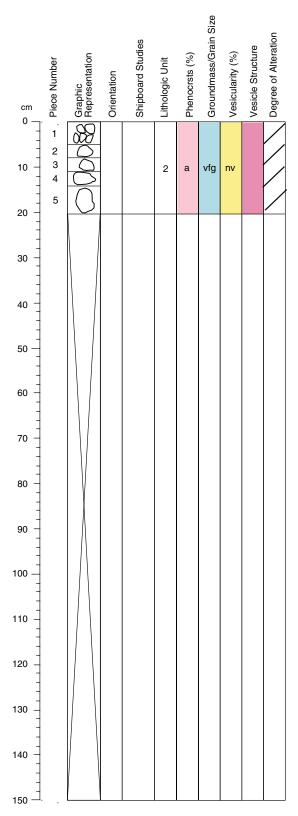
Pieces: 1 - 23

Thin Section(s)#: 75 and 80* oversized.

CONTACTS: Glass on pieces 2 and 3 (bottom of unit).

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained to fine grained with glassy rinds on # 2 and 3.


VESICLES: Non-vesicular.

COLOR: Color ranges due to alteration, 2.5Y6/1, 2.5Y 5/1, and 2.5Y 5/3, gray to light olive brown on the alteration rims.

STRUCTURE: Pillows, broken into 23 pieces. Slightly fractured with hairlike fractures in some pieces. No orientation. Veins in pieces 5, 8, 9, and 23 are of clays and carbonate.

ALTERATION: Moderately altered. Carbonates and clays filling fractures. Alteration halos, ~ 1 cm, throughout all pieces. Fe oxyhydroxides.

ADDITIONAL COMMENTS: The color on the sections outside may be from the drilling pipe, because it was sleeveless. Piece # 6 is a hyoloclastite breccia with carbonate cement.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-6R-2 (Section top: 76.5 mbsf)

Pillow basalt

Pieces: 1 - 5

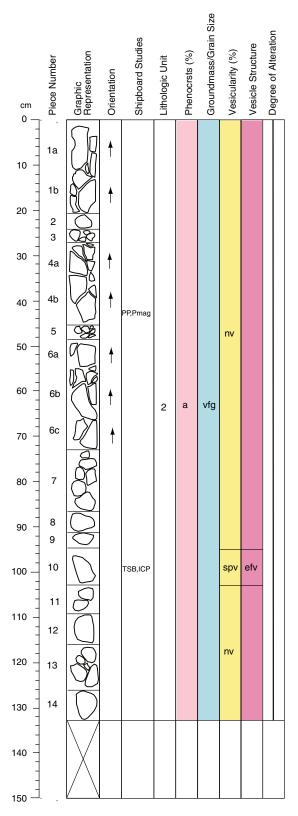
Thin Section(s)#: None

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained.

VESICLES: Non-vesicular.


COLOR: Ranges due to alteration from 2.5Y 6/1, 2.5Y 5/1 and 2.5Y 5/3, gray to light

olive gray on the alteration rims.

STRUCTURE: Pillow basalt. Hairlike fractures in pieces 2 and 4.

ALTERATION: Slight alteration, with alteration halos ~ 1 cm, with Fe oxyhydroxides.

Some sub-pieces in piece 1 have calcite in them.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-7R-1 (Section top: 84.5 mbsf)

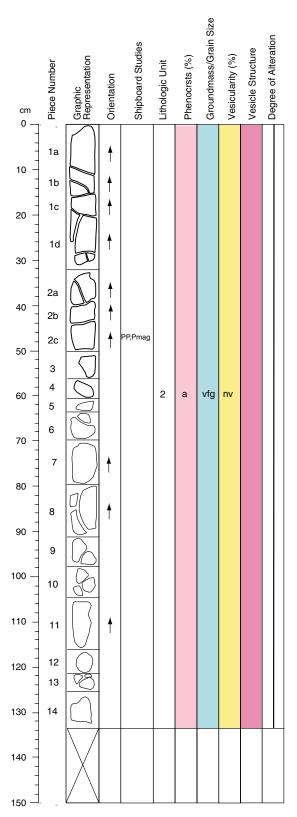
Pillow basalt

Pieces: 1 - 14

Thin Section(s)#: 76

CONTACTS: One, piece 10 has glass.

PHENOCRYSTS: None.


GROUNDMASS: Very fine grained (avg. size <0.1 mm).

VESICLES: Non-vesicular, however, piece 10 is sparsely vesicular, some filled and some empty.

COLOR: Varies due to alteration, 2.5Y 6/1 to 2.5Y 6/4, gray to light yellowish brown.

STRUCTURE: Pillow basalt, broken into many pieces, some small hairlike fractures in pieces 1 - 6. Veins contain carbonate, clays and Fe oxyhydroxides. No orientation.

ALTERATION: Moderately altered. Carbonates, clays, and Fe oxyhydroxides in fractures and on outside of section. Alteration halos up to 1.5 cm.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-8R-1 (Section top: 93.5 mbsf)

Pillow basalt

Pieces: 1 - 14

Thin Section(s)#: none

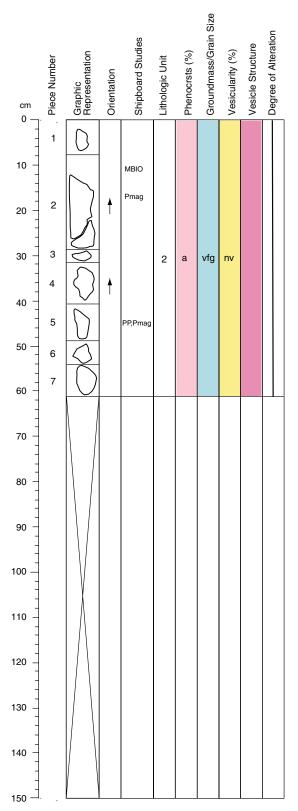
CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained with glass rind on piece 7.

VESICLES: < 1% vesicles, those that are there < 1 mm.

COLOR: Color ranges due to alteration, 2.5Y 6/1, 2.5Y 6/2, gray to light brownish


gray.

STRUCTURE: Pillow basalt, broken into pieces. Vein fractures throughout, filled with

the alteration material, carbonates, clays, and Fe oxyhydroxides.

ALTERATION: Moderate alteration, alteration halos up to 2 cm thick. Carbonates,

clays, and Fe oxyhydroxides.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-9R-1 (Section top: 102.7 mbsf)

Pillow basalt

Pieces: 1 - 7

Thin Section(s)#: none

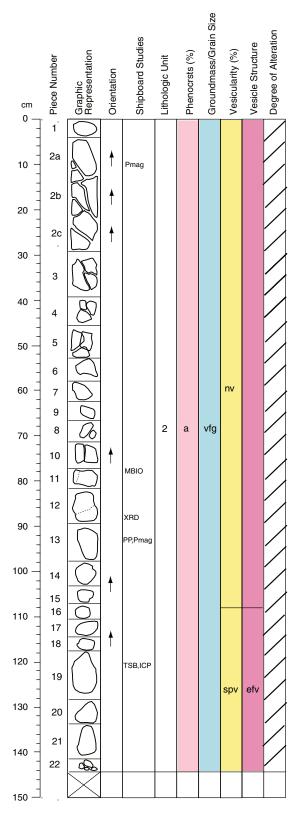
CONTACTS: Pieces 1 and 7 have chilled glass rind.

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained with glass rind on pieces 1 and 7.

VESICLES: < 1% vesicles, the vesicles that are there are round, < 1 mm and some

are filled with clays.


COLOR: Color varies due to alteration, from 2.5Y 6/1 to 2.5Y 5/1, gray.

 $\textbf{STRUCTURE:} \ \ \text{Pillow basalts, some hairlike fractures.} \ \ \text{Veins in pieces 2 and 4, filled}$

with carbonate and clays. No orientation.

ALTERATION: Moderately altered, carbonates, clays, Fe-oxyhydroxides, epidote

along piece 2, and blue material on piece 4. Alteration halos ≤ 0.7 cm.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-10R-1 (Section top: 111.8 mbsf)

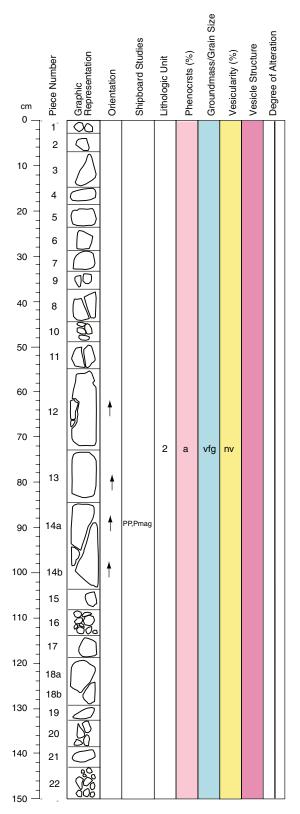
Aphyric basalt and pillow basalt

Pieces: 1 - 22

Thin Section(s)#: 77

CONTACTS: Pieces 4 and 14 have chilled glass rind.

PHENOCRYSTS: None.


GROUNDMASS: Very fine grained; pieces 4 and 14 have glass rinds.

VESICLES: Pieces 1 - 13 are non-vesicular and pieces 14 - 22 are sparsely vesicular, rounded, some are filled and some are empty.

COLOR: Color varies due to alteration, from 2.5Y 6/1 to 2.5Y 5/1, gray.

STRUCTURE: Pillow basalt broken into pieces. Veins are filled with Fe oxyhydroxides, minor carbonate, and clays; no orientation of fractures.

ALTERATION: Moderately altered with Fe oxyhydroxides, clays, and minor carbonate. Alteration halos about 1 cm. There are holes (vesicles?) About 1 mm in size or larger that appears to have been caused by alteration.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-11R-1 (Section top: 121.1 mbsf)

Pillow basalt

Pieces: 1 - 22

Thin Section(s)#: none

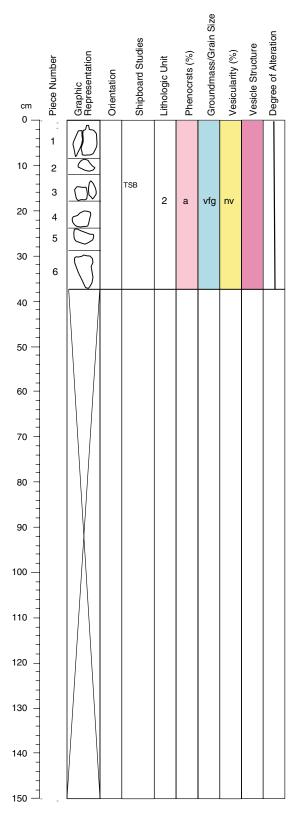
CONTACTS: Piece 4 has chilled glass rind.

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained piece 4 has glass.

VESICLES: Non-vesicular.

COLOR: Color ranges due to alteration, 2.5Y 6/1, 2.5Y 6/2, 2.5Y 6/3, gray, light


brownish gay, light yellowish brown respectively.

STRUCTURE: Pillow basalt. Fractures throughout with vein filling (Fe oxyhydroxides,

carbonate, and clays).

ALTERATION: Moderately altered with Fe oxyhydroxides, carbonate, and clays.

Alteration halos throughout, measuring about ≤ 2 cm.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-11R-2 (Section top: 122.6 mbsf)

Pillow basalt

Pieces: 1 - 6

Thin Section(s)#: 78

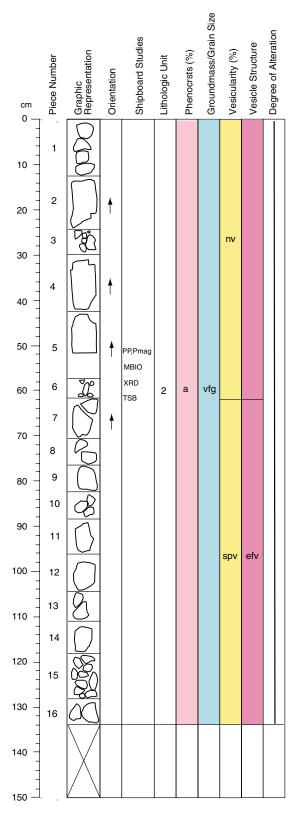
CONTACTS: Pieces 1, 4, and 6 have chilled glass rinds.

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained (avg. size <0.1 mm) with glass on pieces 3, 4 and

6.

VESICLES: Non-vesicular (< 1 %).


COLOR: Color varies due to alteration from 2.5Y 6/1 to 2.5Y 5/1, gray.

 $\textbf{STRUCTURE:} \ \textbf{Pillow} \ \textbf{basalt}, \ \textbf{minor} \ \textbf{fractures} \ \textbf{throughout}. \ \textbf{Fractures} \ \textbf{have} \ \textbf{Fe}$

oxyhydroxides and veins have clays and carbonate.

ALTERATION: Moderately altered with Fe oxyhydroxides, carbonates, and clays in

fractures and veins. Alteration halos \sim 1 cm.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-12R-1 (Section top: 128.5 mbsf)

Pillow basalt

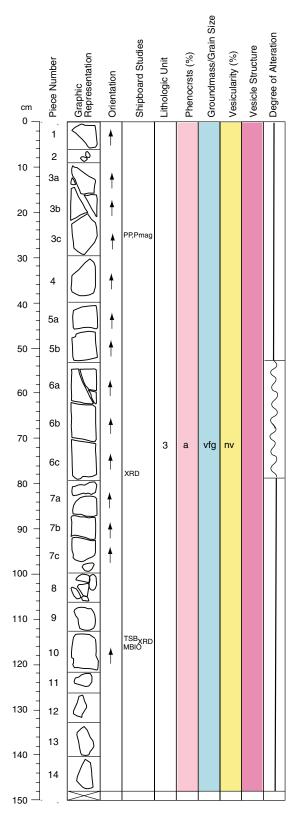
Pieces: 1 - 16

Thin Section(s)#: 79

CONTACTS: One hyaloclastite in piece 7.

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained.


VESICLES: None vesicular from piece 1 - 6, sparsely vesicular from piece 7 - 16,

rounded and ~ 1 mm; some are filled, others are empty.

COLOR: Varies due to alteration, from 2.5Y 5/1 to 2.5Y 5/2, gray to grayish brown.

STRUCTURE: Section is broken into many pieces.

ALTERATION: Moderately alteration, vesicles and veins are filled with, Fe oxyhydroxides, clays and minor carbonate alteration material. The section is yellow/green (epidote?) on the outside. Alteration halos ~ 1 cm around several pieces and veins. Hyaloclastite has carbonate matrix, pieces of glass ~ 1 - 2 mm.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-13R-1 (Section top: 133.5 mbsf)

Aphyric basalt

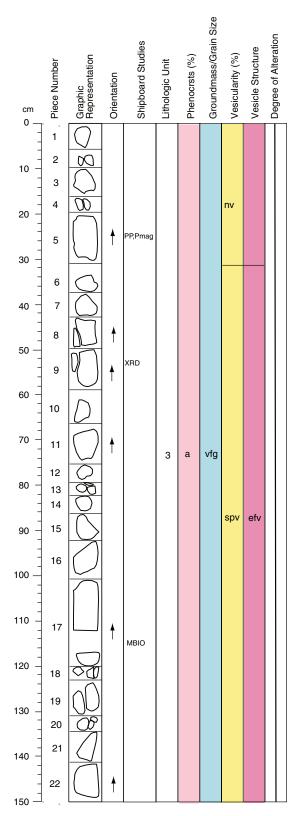
Pieces: 1 - 14

Thin Section(s)#: 81

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained (avg. size 0.3 mm).


VESICLES: Non-vesicular.

COLOR: Varies due to alteration, 2.5Y 5/1, 2.5Y 5/2, 2.5Y 5/3, gray, grayish brown,

light olive brown respectively.

STRUCTURE: Fractures and veins. Every piece is fractured. Veins throughout with the alteration material is Fe oxyhydroxides, clay, and a green material (epidote?).

ALTERATION: Moderately to high alteration. Abundant Fe oxyhydroxides throughout, clay material throughout. High amount of carbonate in pieces 9 and 10. Green material (epidote?) Is abundant in pieces 1 - 7.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-13R-2 (Section top: 134.98 mbsf)

Aphyric basalt

Pieces: 1 - 22

Thin Section(s)#: None

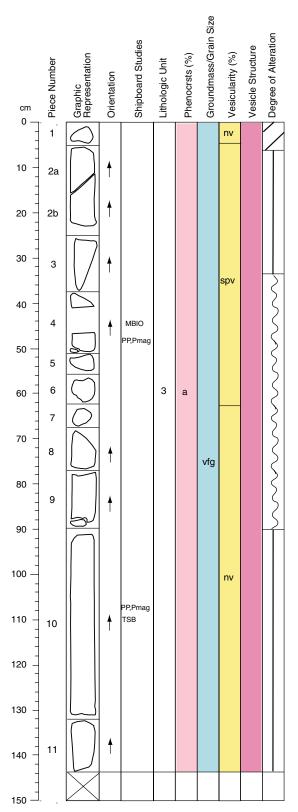
CONTACTS: None

PHENOCRYSTS: None.

GROUNDMASS: Very fine grained.

VESICLES: Non-vesicular in pieces 1 - 5, sparsely vesicular in pieces 6 - 22,

rounded, ≤ 1 mm, some are filled and some are empty.


COLOR: Varies due to alteration, 2.5Y 6/1, 2.5Y 5/1, 2.5Y 5/2, gray to grayish brown.

STRUCTURE: Veins. Section is broken into pieces, hairlike fractures in pieces 9, 11, 16, 17, and 19. No preferred orientation. Filling is Fe oxyhydroxides, carbonate and

days.

ALTERATION: Moderately altered, Fe oxyhydroxides, carbonate and clays throughout. Green material (epidote?) on the outside of pieces 8 - 11. Alteration

halos throughout \leq 2.5 cm.

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-14R-1 (Section top: 143.2 mbsf)

Aphyritic basalt

Pieces: 1 - 11

Thin Section(s)#: 82

CONTACTS: Maybe one between pieces 1 and 2, as piece 1 is different from the rest

of the section

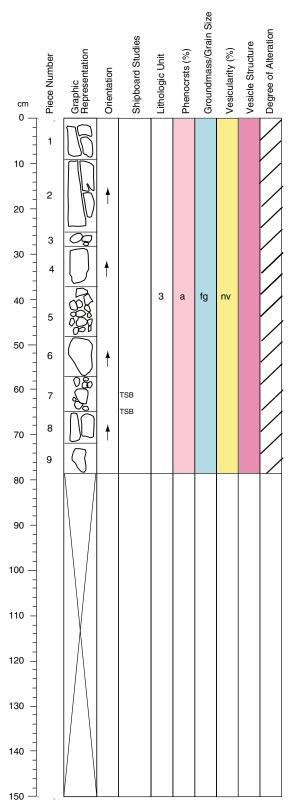
PHENOCRYSTS: None.

GROUNDMASS: Very fine grained (avg. size 0.4 mm).

VESICLES: Non-vesicular in pieces 1 and 7-11. Sparsely vesicular in pieces 2 - 6.

Rounded, some empty.

COLOR: Varies due to alteration, 2.5Y 5/1, 2.5Y 5/2, 2.5Y 5/3, 2.5Y 5/4, gray grayish


brown, light olive brown.

STRUCTURE: Appears that fractures and veins in pieces 5 - 8 have a preferred

orientation, (diagonal, subparallel).

ALTERATION: Alteration ranges from slightly in piece 1, to moderate in pieces 2, 10, and 11, to high in pieces 3 - 9. Fe oxyhydroxides, carbonates, and clays fill veins and vesicles. Alteration halos are large ranging from 0.5 cm - 6 cm.

ADDITIONAL COMMENTS: Piece 1 may be out of place (fallen downcore).

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-14R-2 (Section top: 144.62 mbsf)

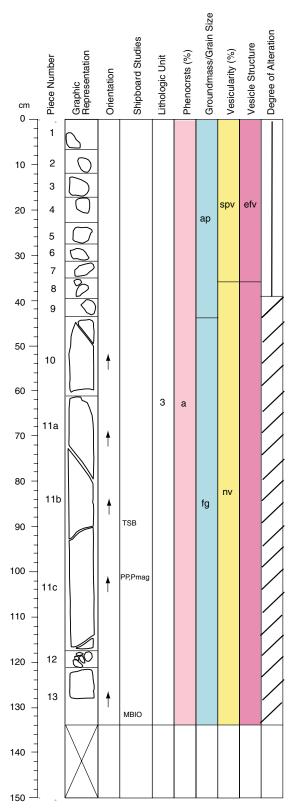
Fine grained basalt

Pieces: 1 - 9

Thin Section(s)#: 83 and 84

CONTACTS: None.

PHENOCRYSTS: None.


GROUNDMASS: Fine grained (avg. size 0.8 mm).

VESICLES: None.

COLOR: Varies around veins due to alteration. The area with no halos is 5BG 4/1, dark greenish gray. The section is more bluish than any other.

STRUCTURE: Section fractured. Veins and fractures in pieces 1 - 6. Veins are

ALTERATION: Slight alteration. Pieces 1 - 6 have alteration halos measuring about 0.5 cm - 1.0 cm. Green gray material throughout; and Fe oxyhydroxides and carbonates filling fractures. Pieces 7 - 9 are less altered (contain no green gray material, Fe oxyhydroxides or carbonate).

1224F-16R No Recovery 1224F-17R No Recovery

IGNEOUS ROCK VISUAL CORE DESCRIPTION

200-1224F-15R-1 (Section top: 152.4 mbsf)

Basalt

Pieces: 1 - 13

Thin Section(s)#: 85

CONTACTS: None.

PHENOCRYSTS: None.

GROUNDMASS: Pieces 1 - 9 are very fine grained, pieces 10 - 13 are fine grained

(avg. size 0.8 mm).

VESICLES: Non-vesicular in pieces 4 and 7 - 13, sparsely vesicular in pieces 1 - 3, £

and 6. Rounded, some are filled, some are empty.

COLOR: Pieces 1 - 9 are 2.5Y 5/1, gray. Pieces 10 - 13 are 5B 5/1, bluish gray.

STRUCTURE: Pieces 1- 9 are more fractured than pieces 10 - 13, which are basicall

massive.

ALTERATION: Pieces 1 - 9 are moderately altered, contain clays, Fe oxyhydroxides alteration halos measuring about 1 cm. Pieces 10 - 13 are slightly altered and only have minor clays and some pyrite in fracture.

Site 1224		Sample					Texture			Mineral			Biogenic		
9	е Туре	Section	Top Inteval (cm)	Depth (mbsf)	Lithology	7		*	Olivine	Plagioclase	Volcanic Glass Shard	Discoaster	Radiolarians	Siliceous Sponge Spicules	
Core	Core	Sect	Top (Cm	Dep	E	Sand	Silt	Clay	Oliv	Pla	Vol Sha	Disc	Rad	Silis	Comments
Hole A														_	
3	X	CC	0.0	15.60	D		40	60					20		2 slides
3	X	CC	0.0	15.60	D			100						20	
4	X	1	4.0	25.24	D			100						5	
4	X	1	32.0	25.52	D			100					5	20	
4	X	1	70.0	25.90	D			100						10	
4	X	1	87.0	26.07	D			100					20	5	
4	X	CC	0.0	26.22	D		40	60					5	25	
4	X	CC	1.0	26.23	D			100					15	5	
4	X	CC	7.0	26.29	D			100					20	5	
4	X	CC	8.0	26.30	D			100					25	5	
ole B				_											
1	Н	CC	6.0	0.06	D			100						1	
Iole C															
1	Н	1	16	0.16	D			100						10	
1	Н	1	70	0.7	D			100					10		
1	Н	1	143	1.43	D			100					5		
1	Н	2	2	1.52	D			100						5	
1	Н	2	139	2.89	D			100					5	15	
1	Н	3	3	3.03	D			100						20	
1	Н	3	70	3.7	D			100					30	5	
1	Н	3	147	4.47	D			100					50	5	spicules common
1	Н	4	1	4.51	D			100					55	5	spicules common
1	Н	4	50	5	D			100					40	5	spicules common
1	Н	4	114	5.64	D			100					50	5	spicules common
1	Н	5	1	5.71	D			100					45	5	spicules common
1	Н	5	47	6.17	D			100					45	1	spicules common
1	Н	5	60	6.3	D			100					40	1	spicules common
1	Н	CC	12	6.51	D			100					30	5	spicules common
ole E															
1	R	1	15	8.15	D			100					50	15	spicules common
1	R	1	83	8.83	D			100							
2	R	1	146	18.96	D			100							
2	R	4	134	23.34	D		40	60				1	1	1	
2	R	7	57	26.57	D		40	60				1	1	5	
2	R	7	75	26.75	D			100				10	5	10	

THIN SECTION:		A-4X-CC 16-1						OBSERVER: ML	
ROCK NAME:			xene spar	sely phyric l	pasalt				
GRAIN SIZE:	Very fine	0							
TEXTURE:	Interserta	ıl, intergran	ular (rar	ely subophit	ic); isotro	pic, equigranular, holocrystallin	e (glass < 5 %)		
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments	
	Present	Original	min.	max.	av.				
Phenocrysts									
Plagioclase	~ 1-2	~ 1-2	0.2	1.2	0.5	Bytownite	Euhedral, columnar	% An > 80 (max extintion angle measured = 40; $2V\alpha \sim 90^{\circ}$). Fresh, with no signs of alteration.	
Clinopyroxene	~ 1	~ 1		3	1.2	Augite	Euhedral, prismatic, pseudo- octagonal	$c^{\gamma} \sim 46^{\circ}$. Pale yellow. Partially fractured. With melt inclusions. Textural relationships indicate contemporaneous crystallization with plagioclase. Two only phenocrysts in this thin section.	
Groundmass/matrix Groundmass	~ 90		0.1	0.3	0.1	pl, cpx, op	Hypidiomorphic	Main constituents: pl (often skeletal), pale yellow anhedral cpx, equant to acicular skeletal mt. Average dimension of the minerals in the groundmass ~ < 0.1 mm. Variable amount of glass (generally > 50 %) partially devitrified. Abundant presence of pl spherulite in the glassy matrix. The bands of different color are related to the percentage of glass in the groundmass.	
SECONDARY MINERALOGY	Percent		Size	e (mm)		Replacing/filling	Morphology	Comments	
SECONDARI MINERALOGI	rereent		min.	max.	av.	Kepiacing/Illing	Morphology	Comments	
Clay minerals	~ 2-3			ших					
Iddingsite	~ 2-3		0.05	0.3	0.15	Replacing groundmass olivine ?	Anhedral	Reddish to brownish. Iddingsite is a mixing of goethite plus layer silicates (e.g., smectites).	
Vesicles/cavities									
Vesicles	~ 2		0.15	0.5	0.3		Subrounded to spherical	In some cases the vesicles are partially filled with an unidentified yellowish mineral with high birefringence and globular texture.	
COMMENTS:									
Microphotos?	Yes								
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite			

200-1224A-4X-CC 19-21 cm (52) Aphyric basalt Very fine grained Hyalopilitic; isotropic, equigranular, hypohyalyne (~ 90 % glass) THIN SECTION: ROCK NAME: OBSERVER: ML

GRAIN SIZE:

TEXTURE:

PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts/clasts								
Plagioclase	~1		0.20	0.5	0.4		Euhedral, columnar	Fresh, microphenocrysts.
Groundmass/matrix Groundmass	~ 7		<0.1	0.3	0.2	pl, cpx, op	Hypidiomorphic	Pl: euhedral to subhedral with columnar habit; cpx: pale yellow, anhedral to subhedral with equant habit; op: tiny elongated and skeletal.
Glass	~ 90							From orange yellow to black.

SECONDARY MINERALOGY	Percent		Size (mm)		Replacing/filling	Morphology	Comments
		min.	max.	av.			
Vesicles/cavities							
Cavities	< 1						~90 % filled by brownish to yellowish clay minerals.
COMMENTS:	Relatively common prese	ence (~ 4 %)	of reddish grai	nules, some	e of which have rhombic shape.	Possibly iddingsite after olivine.	
Microphotos?	Yes						
LEGEND:	ol = olivine; cpx = clinop	pyroxene; pl =	= plagioclase;	op = Fe-Ti o	oxides; mt = magnetite		

Preserved Phenocrysts Plagioclase Groundmass/matrix	resent Orig	min.	Size (mm) max.	av. 0.6	Approximate composition	Morphology	Comments
Phenocrysts Plagioclase < Groundmass/matrix	<1 <	: 1 0.3					
Plagioclase < Groundmass/matrix			1.1	0.6			_
Groundmass/matrix			1.1	0.6			
•	~ 60	0.1			Bytownite	Euhedral to subhedral. Tabular	$2V \sim 90^{\circ}$. Fresh. Mainly microphenocrysts.
Groundmass ~	~ 60	0.1					
			0.4	0.2	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$, in intergranular to subophitic relationship with subhedral to euhedral skeletal pl and anhedral to euhedral equant mt. The space between skeletal pl is filled by microlites of cpx and dendritic op.
Segregation vesicles ~	~ 30						Dark brown to black. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny elongated op (ilmenite?) in a devitrified glassy matrix. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of pl and mt crystals.
SECONDARY MINERALOGY Per	ercent		Size (mm)		Replacing/filling	Morphology	Comments
		min.	max.	av.			
Clay minerals	~ 5						Possibly replaces former gl and cpx. Brownish, associated with segregation vesicles.
Nontronite	~ 1				Fills cavities and vescicles	Subspherical (filling cavities) to anhedral (filling vesicles)	Green. Concentrated toward the bottom of the Unit (oriented section $$ at ~ 20 cm). Distinguished from chlorite for the higher birefringence.
Vesicles/cavities							
Cavities	~ 3	0.15	1.1	0.5		Subspherical	~ 60 % empty; ~ 15 % partially filled; ~ 25 % totally filled. The filling material can be 1) nontronite, 2) microlitic intergrowth of pl, cpx, elongated op (all with size < 0.1 mm) plus possibly glass and clay minerals or 3) both.
- Pos	ossible presence	e of pyrite (pale y	ellow in reflecte	d light) as	er birefringence, and by glauconite for sociated with chlorite at cm 20 of the laterial of segregation vesicles and ma		ellow)
Microphotos? Yes							
LEGEND: ol =	olivine; cpx =	clinopyroxene;	pl = plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Very fine		OBSERVER: ML					
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts								
Groundmass/matrix						_		
Groundmass	~ 85		0.05	0.4	0.2	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$ in intergranular to subophitic relationship with subhedral to euhedral skeletal pl and equant mt. The space between skeletal pl is filled by microlites of cpx and dendritic op. Rare presence (< 1%) of bytownite ($2V\alpha \sim 90^\circ$) microphenocrysts.
Segregation vesicles	~ 10							Dark brown to black. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny elongated op (ilmenite?) in a devitrified glassy matrix. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of pl and mt crystals.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
		-	min.	max.	av.	_ 1 0 0	2 9,	
Clay minerals	< 5							Possibly replace former volcanic glass. Brownish, found with segregation vesicles and in cavities.
Vesicles/cavities								
Cavities	~ 2		0.15	1.1	0.5		Subspherical	~ 60 % empty; ~ 15 % partially filled; ~ 25 % totally filled The filling material can be 1) brownish clay minerals, 2) microlitic intergrowth of pl, cpx, elongated op (all with size < 0.1 mm) plus possibly glass and clay minerals, 3) pyrite or 4) the previous ones in variable amount.
Vesicles	< 1						Irregular	
COMMENTS:	- In some ca	ises brownish	clay minei		norph of	crystalline phases (former olivine?) naterial of segregation vesicles and ma	represent late stage magmatic	melt patches
Microphotos?	Yes							
LEGEND:	ol = olivine	cpx = clinopy	roxene: p	l = plagioclase:	on = Fe-Ti	oxides; mt = magnetite		

THIN SECTION:	200-1224Γ	D-1R-1 47-50	cm (34)				Unit: 1	OBSERVER: ML
ROCK NAME:	Aphyric b		` ,					
GRAIN SIZE:	Very fine	grained						
TEXTURE:	Intergran	ular to subo	phitic; is	otropic, equi	granular	, holocrystalline		
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts								
Plagioclase	~ 1	~ 1	0.3	0.7	0.5	Bytownite	Subhedral to euhedral. Columnar to equant	% An > 80 %. Microphenocrysts. Fresh. Max extinction angle measured $\sim 40^{\circ}; 2V\alpha \sim 80^{\circ}.$
Groundmass/matrix								
Groundmass	~ 80		0.1	0.4	0.3	pl, cpx, op	Hypidiomorphic	Anhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$) in intergranular to subophitic relationship with subhedral to euhedral pl. In some cases pl is skeletal and the space between its arms is filled by microlites of cpx and skeletal op. Interstitial euhedral to anhedral op indicates its late appearance as liquidus phase.
Segregation vesicles	~ 10							Dark brown to black. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny elongated op (ilmenite?) in a devitrified glassy matrix. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of pl and mt crystals.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
		-	min.	max.	av.		,	
Clay minerals	< 5							Possibly replace former volcanic glass. Brownish, found in segregation vesicles and in cavities.
Vesicles/cavities			-					
Cavities	~ 3		0.3	1	0.5		Subspherical	~5 % empty; ~45 % partially filled; ~50 % totally filled. The filling material can be 1) brownish clay minerals, 2) microlitic intergrowth of pl, cpx, elongated op (all with size < 0.1 mm) plus possibly glass and clay minerals, 3) (?) chalcedony or 4) clay minerals plus aragonite.
	- In some ca		regation ve		undmass s	hows iso-orientation and skeletal acic aterial of segregation vesicles and ma		The filling material can be 1) brownish clay minerals, 2) microlitic intergrowth of pl, cpx, elongated op (all with size < 0.1 mm) plus possibly glass and clay minerals, 3) (?) chalcedony or 4) clay minerals plus aragonite.
Cavities	- In some ca		regation ve		undmass s		ular (i.e. needle-like) shapes.	The filling material can be 1) brownish clay minerals, 2) microlitic intergrowth of pl, cpx, elongated op (all with size < 0.1 mm) plus possibly glass and clay minerals, 3) (?) chalcedony or 4) clay minerals plus aragonite.

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Very fine	grained	` '	otropic, equi	granular	, holocrystalline	Unit: 1	OBSERVER: ML Comments
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts			0.5	4.0	4.0			0.4. 000, 5.1.34
Plagioclase	~ 1	~ 1	0.5	1.8	1.0	Bytownite	Euhedral to anhedral. Columnar to equant	% An > 80 %. Fresh. Max extinction angle measured ~ 40°; $2V\alpha$ ~ 80°. Some pl may be clasts of larger crystals.
Groundmass/matrix								
Groundmass	~ 80		0.1	0.4	0.3	pl, cpx, op	Hypidiomorphic	Anhedral pale yellow cpx (augite; $2V\gamma \sim 65^\circ$) in intergranular to subophitic relationship with subhedral to euhedral pl. In some cases pl is skeletal and the space between its arms is filled by microlites of cpx and skeletal op. Interstitial euhedral to anhedral op indicates its late appearance as liquidus phase.
Segregation vesicles	~ 10							Dark brown to black. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny elongated op (ilmenite?) in a devitrified glassy matrix. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of pl and mt crystals.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.			
Clay minerals	~ 5							Possibly replace former volcanic glass. Brownish, found in segregation vesicles and in cavities.
Vesicles/cavities								
Cavities	~ 4		0.8	1.2	1		Spherical	~ 50 % empty; ~ 35 % partially filled; ~ 25 % totally filled. The filling material can be 1) brownish clay minerals, 2) microlitic intergrowth of pl, cpx, elongated op (all with size < 0.1 mm) plus possibly glass and clay minerals, 3) brownish (?) chalcedony or 4) the previous ones in variable amount.
COMMENTS:	- In some ca - Microlitic	ases, op in seg intergrowth p	regation ve artially fill	esicles or in gro	undmass s he same m	hows iso-orientation and skeletal acic laterial of segregation vesicles and ma	cular (i.e. needle-like) shapes. ly represent late stage magmatic melt patc	ches.
Microphotos?	Yes							
LEGEND:	ol = olivine	: cpx = clinop	vroxene: n	l = plagioclase:	on = Fe-Ti	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE:	Clinopyro Very fine	grained	clase spar	sely phyric b			Unit: 1	OBSERVER: ML		
TEXTURE:	Intergran	ular to sub	ophitic; is	otropic, equi	granular	, holocrystalline				
PRIMARY MINERALOGY	Percent Present	Percent Original	min.	Size (mm) max.	av.	Approximate composition	Morphology	Comments		
Phenocrysts	Tresent	Original	ши.	max.	av.					
Clinopyroxene	~ 1	~ 1	0.4	1.5	0.6	Augite (?)	Subhedral	Pale yellow. Partially fractured. Textural relationships indicate contemporaneous crystallization with plagioclase. The only phenocrysts come from a cpx-pl glomerule.		
Plagioclase	~ 1	~ 1	0.7	1.2	0.8	Bytownite	Subhedral to euhedral	% An > 80 %. Fresh. Max extinction angle measured ~ 25°; $2V\alpha$ ~ 80°. Some pl are stressed and show ondulate extintion.		
Groundmass/matrix										
Groundmass	~ 60		0.1	0.5	0.3	pl, cpx, op	Hypidiomorphic	Anhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$) in intergranular to subophitic relationship with subhedral to euhedral pl. In some cases pl is skeletal and the space between its arms is filled by microlites of cpx and skeletal op. Interstitial euhedral to anhedral op indicates its late appearance as liquidus phase.		
Segregation vesicles	~ 30							Dark brown to black. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny elongated op (ilmenite?) in a devitrified glassy matrix. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of pl and mt crystals.		
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology			
			min.	max.	av.			Comments		
Clay minerals	~ 5							Possibly replace former volcanic glass. Brownish, found in segregation vesicles and in cavities.		
Cavities/veins										
Cavities	~ 3		0.3	1	0.5		Subspherical	~ 25 % empty; ~ 35 % partially filled; ~ 40 % totally filled. The filling material can be 1) brownish clay minerals, 2) microlitic intergrowth of pl, cpx, elongated op (all with size < 0.1 mm) plus possibly glass and clay minerals, 3) (?) chalcedony, 4) aragonite or 5) the previous ones in variable amount.		
Veins	~ 2-3		0.5	1.5	0.7		Cutting at ~ 90°	Filled with aragonite festoons and anhedral to euhedral sulfide minerals (pyrite?). Possible presence also of serpentine minerals.		
COMMENTS:						nce and its negative biaxial ($2V\alpha \sim 15$ naterial of segregation vesicles and ma		elt patches.		
Microphotos?	Yes									
LEGEND:	ol = olivine	e; cpx = clinop	yroxene; pl	= plagioclase;	op = Fe-Ti	oxides; mt = magnetite				

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Very fine	grained	` ,	otropic, equi	granular	, holocrystalline	Unit: 1	OBSERVER: ML	
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments	
	Present	Original	min.	max.	av.				
Phenocrysts									
Groundmass/matrix Groundmass	~ 75		0.1	0.3	0.2	pl, cpx, op	Hypidiomorphic	Anhedral pale yellow cpx (augite; $2V\gamma \sim 60^{\circ}$) in intergranular to subophilitic relationship with subhedral to euhedral pl. In some cases pl is skeletal and the space	
								between its arms is filled by microlites of cpx and skeletal op. Interstitial euhedral to anhedral op indicates its late appearance as liquidus phase. Rare presence (< 1%) of bytownite ($2V\alpha \sim 90^\circ$) microphenocrysts (size < 0.6 mm)	
Segregation vesicles	~ 20							Dark brown to black. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny elongated op (ilmenite?) in a devitrified glassy matrix. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of pl and mt crystals.	
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments	
		·-	min.	max.	av.				
Clay minerals	~ 5							Possibly replace former volcanic glass. Brownish, found in segregation vesicles and in cavities.	
Vesicles/cavities									
Cavities	~ 3		0.6	0.8	0.7		Spherical	~ 20 % empty; ~ 60 % partially filled; ~ 20 % totally filled. The filling material can be 1) brownish clay minerals, 2) microlitic intergrowth of pl, cpx, elongated op (all with size < 0.1 mm) plus possibly glass and clay minerals or 3) both.	
COMMENTS:						hows iso-orientation and skeletal acic laterial of segregation vesicles and ma		melt patches.	
Microphotos?	No								
LEGEND:					n m	oxides; mt = magnetite			

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Plagioclas Very fine	•	ohyric bas		granular	r, holocrystalline	Unit: 1	OBSERVER: ML
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts Plagioclase	~ 1-2	~ 1-2	0.4	3	0.8	Bytownite	Euhedral, columnar	% An > 80 (2V α ~ 85°). Fresh, with no signs of alteration Presence of one anhedral crystal ~ 0.9 mm long.
Groundmass/matrix Groundmass Segregation vesicles	~ 60		0.1	0.6	0.3	pl, cpx, op	Hypidiomorphic	Anhedral pale yellow cpx (augite; $2V\gamma \sim 65^\circ$) in intergranular to subophitic relationship with subhedral to euhedral pl. In some cases pl is skeletal and the space between its arms is filled by microlites of cpx and skeleta op. Interstitial euhedral to anhedral op indicates its late appearance as liquidus phase. Rare presence (< 1%) of bytownite ($2V\alpha \sim 90^\circ$) microphenocrysts (size < 0.6 mm) Dark brown to black. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny elongated op (ilmenite?) in a devitrified glassy matrix. These vesicles represent late stage magmatic melt. The rapid cooling is
SECONDARY MINERALOGY	Percent		min.	Size (mm)	av.	Replacing/filling	Morphology	responsible for the skeletal shape of pl and mt crystals. Comments
Clay minerals	~ 5		min.	шах.	av.			Possibly replace former volcanic glass. Brownish, found ir segregation vesicles and in cavities.
Vesicles/cavities								
Cavities	~ 5-6		0.4	2.8	1.1		Spherical	All the cavities are totally filled. The filling material can be 1) brownish clay minerals (< 1 %), 2) microlitic intergrowth of pl, cpx, elongated op (all with size < 0.1 mm) plus possibly glass and clay minerals (~ 10 %) or 3) aragonite plus microlitic material (~ 90 %). Aragonite is always present in the biggest cavities, whereas microlitic material is the only filling only in the smallest cavities.
Vesicles	~ 1							Aragonite.
COMMENTS:	- Microlitic	intergrowth p	partially fill	ing cavities is t	he same m	naterial of segregation vesicles and ma	y represent late stage magmatic n	nelt patches
Microphotos?	Yes							
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Plagioclas Very fine	grained	xene spar	sely phyric b		, holocrystalline	Unit: 1	OBSERVER: ML
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts Plagioclase	~ 1-2	~ 1-2	0.4	1.5	0.9	Bytownite	Euhedral, columnar	% An > 80 (2V α ~ 90°). Relatively fresh, with few signs o alteration. Some phenocrystals are acicular.
Clinopyroxene	< 1	< 1			0.3	Augite (?)		Pale yellow. Max extintion angle measured $c^{\wedge}\gamma \sim 37^{\circ}.$ Only two microphenocrysts associated with larger pl.
Groundmass/matrix								
Groundmass	~ 40		0.2	0.6	0.4	pl, cpx, op	Hypidiomorphic	Anhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$) in intergranular to subophitic relationship with subhedral to euhedral pl. In some cases pl is skeletal and the space between its arms is filled by microlites of cpx and skeleta op. Pl is elongated to acicular (average size 0.4×0.02 mm). Interstitial euhedral to anhedral op indicates its lat appearance as liquidus phase. Rare presence (< 1%) of bytownite ($2V\alpha \sim 90^\circ$) microphenocrysts (size < 0.6 mm)
Segregation vesicles	~ 40							Dark brown to black. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny elongated op (ilmenite?) in a devitrified glassy matrix. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of pl and mt crystals.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
Clay minerals	~ 10		min.	max.	av.			Possibly replace former volcanic glass. Brownish, found in segregation vesicles and in cavities.
Vesicles/cavities								
Cavities	~ 2						Spherical	Totally filled. The filling material is microcrystalline overgrowth (95%) and calcite (5%).
Veins	~ 10		0.3	3.5	2			Veins filled by calcite (uniaxial negative) festoons, anhedral to euhedral sulfide minerals (pyrite?), low birefringence minerals (zeolites?), Fe-oxyhydroxides and acicular colorless mineral with high birefringence and parallel extinction (lawsonite?).
COMMENTS:						so aragonite, because it has a very sm aterial of segregation vesicles and ma		melt patches.
Microphotos?	Yes							
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Very fine	grained	, ,	otropic, equiş	granular	, holocrystalline	Unit: 1	OBSERVER: ML
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
Phenocrysts	Present	Original	min.	max.	av.			
rnenocrysts								
Groundmass/matrix								
Groundmass	~ 65		0.1	0.4	0.3	pl, cpx, op	Hypidiomorphic	Anhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$) in intergranular to subophitic relationship with subhedral to euhedral pl. In some cases pl is skeletal and the space between its arms is filled by microlites of cpx and skeletal op. Interstitial euhedral to anhedral op indicates its late appearance as liquidus phase. Rare presence (< 1 %) of pl microphenocrystals (average size 0.6 mm).
Segregation vesicles	~ 25							Dark brown to black. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny skeletal from acicular to equant op (ilmenite?) in a devitrified glassy matrix. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of pl and mt crystals.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.			
Clay minerals	~ 10							Possibly replace former volcanic glass. Brownish, found in segregation vesicles and in cavities.
Vesicles/cavities								
Cavities	~ 1						Spherical	More than 90 % of the cavities are filled. The filling material can be 1) brownish clay minerals or Feoxyhydroxides (~70 %), 2) microlitic intergrowth of pl, cpx, elongated op (all with size < 0.1 mm) plus possibly glass and clay minerals (~20 %) or 3) calcite/aragonite plus brownish clay minerals or Fe-oxyhydroxides (~100 %).
COMMENTS:	- Microlitic	intergrowth p	artially filli	ing cavities is th	ne same m	aterial of segregation vesicles and ma	y represent late stage magmatic	melt patches.
Microphotos?	No							
LEGEND:	ol – olivino	. cnv – clinon	rmorono, nl	– plagicalaca.	on – Eo Ti	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Fine grain	ed			granular	, holocrystalline	Unit: 1	OBSERVER: ML
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
The same of the sa	Present	Original	min.	max.	av.			
Phenocrysts								
Groundmass/matrix								
Groundmass Segregation vesicles	~ 70 ~ 20		0.2	0.7	0.5	pl, cpx, op	Hypidiomorphic	Texture: intergranular and, less common, subophitic. Main constituents: anhedral to subhedral pl, pale yellow anhedral cpx, equant anhedral to euhedral small mt. Pl and cpx often fracturated and with signs of incipient alteration. About 10% of cpx is rimmed by discrete small opaque mineral trial. Abundant presence of equant to elongated anhedral to euhedral op with relatively large size (avg. 0.25 mm) associated with the altered zones. Dark brown to black. These vesicles are made up by
								acicular to skeletal pl, equant cpx, tiny elongated of p (ilmenite?) and equant euhedral to anhedral op (? mt) in a devitrified glassy matrix. More than 50% of this microcrystalline overgrowth is altered in clay minerals. These vesicles represent late stage magmatic melt.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
Clay minerals + Fe-	~ 10		min.	max.	av.			Brownish. Clay minerals and Fe-oxyhydroxides probably
oxyhydroxides	10							replace some interstitial glass.
Zeolites?	~ 3						Needle-like (acicular)	Low birefringence, colorless to pale yellow minerals found in groundmass, partially replacing cpx.
Vesicles/cavities								
Veins	~ 5		2	2.3	2.2			Veins filled by calcite festoons, Fe-oxyhydroxides and possibly clay minerals. The narrower veins (~ 0.4 mm wide) are almost totally filled by Fe-oxyhydroxides. A large pale brownish halo of ~ 1.5 cm is present on both sides of the veins. This is due to the presence of a brown film possibly made up of Fe-oxyhydroxides coating mineral grains.
					€ 5° Dorbo	ns it is aragonite		
COMMENTS:	- Calcite in - Maximum			edral op in grou				
COMMENTS: Microphotos?								

TEXTURE:	Fine grain Intergran		phitic; iso	otropic, equi	granular	, holocrystalline		OBSERVER: ML
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts								
Groundmass/matrix								
Groundmass	~ 70		0.1	1.2	0.5	pl, cpx, op	Hypidiomorphic	Texture: intergranular and, less common, subophitic. Main constituents: subhedral pl (rarely skeletal), pale yellow anhedral cpx $(2V\gamma \sim 65^\circ)$, equant to skeletal mt. About 10% of cpx is rimmed by discrete small opaque mineral trial. Rare presence $\sim 2\text{-}3\%$ of pl microphenocrystals with an average size ~ 1.5 mm
Segregation vesicles	~ 20							Dark brown to black. These vesicles are made up by acicular to skeletal pl, equant cpx, tiny elongated op (ilmenite?) and equant euhedral to anhedral op (mt?) in a devitrified glassy matrix. More than 50% of this microcrystalline overgrowth is altered in clay minerals. These vesicles represent late stage magmatic melt.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.			
Clay minerals + Fe- oxyhydroxides	~ 10							Brownish. Clay minerals and Fe-oxyhydroxides probably replace some interstitial glass. In some cases skeletal equant opaque are aligned following the shape of a former pl. This overgrowth of op is associated with the presence of high birefringence mineral (epidote?). These alteration zones are associated with spherical drops of sulfide minerals (pyrite?).
	op in altered	d zones are alv brownish zon	ways associ es a skeleta	ated to cpx reli l to euhedral pl	cts or are ! (2Vγ ~ 75	px. PI is much less sensible to alterati in the same intergranular position of s ⁹) is found. It seems a new phases gro One ~ 0.3 and the other ~ 0.6 mm	the former cpx.	
Microphotos?	Yes							
LEGEND:	ol = olivine;	cpx = clinopy	vroxene; pl	= plagioclase; o	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Fine grain	ed	, ,	ophitic; isotr	opic, equ	iigranular, holocrystalline	Unit: 1	OBSERVER: ML		
PRIMARY MINERALOGY	Percent	Percent	t Size (mm)			Approximate composition	Morphology	Comments		
	Present	Original	min.	max.	av.		1 67			
Phenocrysts										
Groundmass/matrix										
Groundmass	~ 70		0.1	1.5	0.6	pl, cpx, op	Hypidiomorphic	Main constituents: anhedral to subhedral columnar pl, pale yellow anhedral to subhedral equant cpx, anhedral to euhedral small equant mt. Pl and cpx often fresh with no signs of alteration. Rare presence (< 1 %) of subhedral to anhedral pl (~ 2 mm) and cpx (~ 1.2 mm) microphenocrysts. Small intersertal patches of brownish volcanic glass partially devitrified and partially altered in clay minerals. Cpx microphenocrysts show $c^{\wedge}\gamma$ ~ 46° indicating augitic composition.		
Segregation vesicles	~ 25							Dark brown. These vesicles are made up by acicular to skeletal pl, equant cpx, tiny elongated op (ilmenite?) and equant euhedral to anhedral op (mt?) in a devitrified glassy matrix. These vesicles represent late stage magmatic melt.		
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments		
			min.	max.	av.		2 9,			
Clay minerals + Fe- oxyhydroxides + zeolites	~ 5-7						Anhedral	Brownish. Elongated op (ilmenite?) and skeletal pl is often associated to these alteration zones. In some cases skeletal equant opaque are aligned following the shape of a former (?) cpx. These alteration zones are associated with spherical drops of sulfide minerals (pyrite?) and with zeolites.		
COMMENTS:						ols rapidly crystallized (skeletal op and es rather than on the other coarser gro				
Microphotos?	No									
LEGEND:	ol = olivine; cpx = clinopyroxene; pl = plagioclase; op = Fe-Ti oxides; mt = magnetite									

Main constituents: anhedral to subhe pale yellow euhedral to anhedral equ subhedral shape. Pl and cpx relatively: of alteration. Less than 10 % of cpx is clay minerals. Segregation vesicles ~ 25 Brownish. These vesicles are made up skeletal pl, equant cpx, large equant e op (mt?) (avg size 0.6 mm) and tiny e (ilmenite?) in a devitrified glassy mat this microcrystalline overgrowth is all minerals. Rare (~ 1%) presence of sph sulfide mineral (pyrite?). These vesicles tage magmatic melt. SECONDARY MINERALOGY Percent Size (mm) Replacing/filling Morphology Comments Clay minerals + Fe- ~ 5 Anhedral Brownish. Often a rim of tiny subhed oxyhydroxides + zeolites	IIN SECTION:		-3R-1 50-53 cm	n (44)				Unit: 1	OBSERVER: ML
Phenocrysts Groundmass/matrix Groundmass Property Property	RAIN SIZE:	Fine graine	ed	hitic; iso	otropic, equi	granular	, holocrystalline		
Phenocrysts Coundmass Co	IMARY MINERALOGY	Percent			Size (mm)		Approximate composition	Morphology	Comments
Groundmass — 70 0.1 1.5 0.6 pl. cpx, pgn, op Hypidiomorphic Texture: intergranular and, less communication of the pale yellow eulerdral to an Intergranular and pale yellow eulerdral to an Intergranular prismatic piece distinguished by cpx on the basis of a cuchedral shape. Pl and cpx relatively of alteration. Less than 10 % of cpx is clay minerals. Segregation vesicles — 25 Segregation vesicles — 25 SECONDARY MINERALOGY Percent — Size (mm) — Replacing/filling Morphology — Comments with in microcrystalline overgrowth is all minerals. Rare (– 196) presence of sph sulfide mineral (pyrite?). These vesicles are granted to syntydroxides + zeolites — 5 Clay minerals + Fe oxyhydroxides + zeolites — 5 COMMENTS : — Pl and cpx are associated in the groundmass with 1) brownish clay minerals (– 5 %), in intergranular relation with pl, and generally in reaction with cpx and 2) microcrystalline overgrowth constituted by a) accutal low-birefringence mineral with roughly parallel extinction, 2V — 90° and radiate texture (albite-oligoclase ?), b) high birefringence mineral with columnar shape (epidote ?), c) large (avg. size – 0.5 mm) skeletal rhombohedral opaque mineral (Ti-mt ?), d) accutal ropaque mineral (ilmentie ?), e) rare zeolites and f) drops of pyrite(?).		Present	Original	min.	max.	av.			
Groundmass - 70	enocrysts								
Main constituents: anhetral to subhe pale yellow euhedral to anhetral at on a whole pale yellow euhedral to anhetral euh subhedral to euhedral prismatic pige distinguished by cpx on the basis of 2 euhedral shape. Pl and cpx relatively of alteration. Less than 10 % of cpx is clay minerals. Segregation vesicles - 25 Brownish. These vesicles are made up skeletal pl, equant cpx, large equant to op (mtr) (arg size 0.6 mm) and till mineral (milmentire?) in a devitrified glassy mast this microcrystalline overgrowth at mineral (pyrite?). These vesicle stage magmatic melt. SECONDARY MINERALOGY Percent Size (mm) min. max. av. Replacing/filling Morphology Comments Clay minerals + Feoxyhydroxides + zeolites - 5 Anhedral Brownish. Often a rim of tiny subhed opaque crystals border the cpx in alteration zones are associated with 2 extinction, 2V - 90° and radiate texture (albite-oligoclase ?), b) high birefringence mineral with columnar shape (epidote ?), c) large (avg. size - 0.5 mm) skeletal rhombohedral opaque mineral (firmt?), d) acicular opaque mineral (filmenite?), e) rare zeolites and f) drops of pyrite(?).	oundmass/matrix								
SECONDARY MINERALOGY Percent Size (mm) min. max. av. Replacing/filling Morphology Comments Clay minerals + Feory Hydroxides + zeolites - 5 Anhedral Brownish. Often a rim of tiny subbed opaque crystals border the cpx in alteration zones are associated with zero-constituted by a) acicular low-birefringence mineral with roughly parallel extinction, 2V ~ 90° and radiate texture (albite-oligoclase?), b) high birefringence mineral with columnar shape (epidote?), c) large (avg. size volume). Skeletal pl, equant cpx, large equant op (ilmenite?) and tiny (ilmenite?) and they company the swifted as a mineral skeletal pl, equant cpx, large equant op (ilmenite?) and this with columnar shape (epidote?), c) large (avg. size ~ 0.5 mm) skeletal rhombohedral opaque mineral (Ti-mt?), d) acicular opaque mineral (limenite?), e) rare zeolites and f) drops of pyrite(?).	oundmass	~ 70		0.1	1.5	0.6	pl, cpx, pgn, op	Hypidiomorphic	Texture: intergranular and, less common, subophitic. Main constituents: anhedral to subhedral columnar pl, pale yellow euhedral to anhedral equant cpx and subhedral to euhedral prismatic pigeonite. Pigeonite distinguished by cpx on the basis of $2V\gamma$ (-0°) and euhedral shape. Pl and cpx relatively fresh with rare signs of alteration. Less than 10 % of cpx is altered in brownish clay minerals.
Clay minerals + Feoxyhydroxides + zeolites -5 -75 Anhedral Brownish. Often a rim of tiny subhed opaque crystals border the cpx in alter alteration zones are associated with zeolites -Pl and cpx are associated in the groundmass with 1) brownish clay minerals (- 5 %), in intergranular relation with pl, and generally in reaction with cpx and 2) microcrystalline overgrowth constituted by a) acicular low-birefringence mineral with roughly parallel extinction, 2V ~ 90° and radiate texture (albite-oligoclase ?), b) high birefringence mineral with columnar shape (epidote ?), c) large (avg. size ~ 0.5 mm) skeletal rhombohedral opaque mineral (Ti-mt ?), d) acicular opaque mineral (ilmenite ?), e) rare zeolites and f) drops of pyrite(?).	regation vesicles	~ 25							Brownish. These vesicles are made up by acicular to skeletal pl, equant cpx, large equant euhedral to anhedral op (mt?) (avg size 0.6 mm) and tiny elongated op (ilmenite?) in a devitrified glassy matrix. Less than 5 % of this microcrystalline overgrowth is altered in clay minerals. Rare (~ 1%) presence of spherical drops of sulfide mineral (pyrite?). These vesicles represent late stage magmatic melt.
Clay minerals + Feoxyhydroxides + zeolites -5 -75 Anhedral Brownish. Often a rim of tiny subhed opaque crystals border the cpx in alteral alteration zones are associated with zeolites -Pl and cpx are associated in the groundmass with 1) brownish clay minerals (- 5 %), in intergranular relation with pl, and generally in reaction with cpx and 2) microcrystalline overgrowth constituted by a) acicular low-birefringence mineral with roughly parallel extinction, 2V ~ 90° and radiate texture (albite-oligoclase ?), b) high birefringence mineral with columnar shape (epidote ?), c) large (avg. size ~ 0.5 mm) skeletal rhombohedral opaque mineral (Ti-mt ?), d) acicular opaque mineral (ilmenite ?), e) rare zeolites and f) drops of pyrite(?).	CONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
oxyhydroxides + zeolites opaque crystals border the cpx in alteration zones are associated with z COMMENTS: -Pl and cpx are associated in the groundmass with 1) brownish clay minerals (~ 5 %), in intergranular relation with pl, and generally in reaction with cpx and 2) microcrystalline overgrowth constituted by a) accular low-birefringence mineral with roughly parallel extinction, 2V ~ 90° and radiate texture (albite-oligoclase?), b) high birefringence mineral with columnar shape (epidote?), c) large (avg. size ~ 0.5 mm) skeletal rhombohedral opaque mineral (Ti-mt?), d) accular opaque mineral (ilmenite?), e) rare zeolites and f) drops of pyrite(?).				min.		av.		Fg ,	
in reaction with cpx and 2) microcrystalline overgrowth constituted by a) acicular low-birefringence mineral with roughly parallel extinction, 2V ~ 90° and radiate texture (albite-oligoclase ?), b) high birefringence mineral with columnar shape (epidote ?), c) large (avg. size ~ 0.5 mm) skeletal rhombohedral opaque mineral (Ti-mt ?), d) acicular opaque mineral (ilmenite ?), e) rare zeolites and f) drops of pyrite(?).		~ 5						Anhedral	Brownish. Often a rim of tiny subhedral to euhedral opaque crystals border the cpx in alteration zones. These alteration zones are associated with zeolites.
Microphotos? Yes	MMENTS:	in reaction v extinction, 2	vith cpx and 2) : 2V ~ 90° and rad	microcry diate text	stalline overgr ure (albite-olig	owth consoclase ?), l	stituted by a) acicular low-birefringer b) high birefringence mineral with c	nce mineral with roughly parallel columnar shape (epidote ?), c) lars	l Ége (avg. size
	crophotos?	Yes							
LEGEND: ol = olivine; cpx = clinopyroxene; pl = plagioclase; op = Fe-Ti oxides; mt = magnetite	GEND:	ol = olivine;	cpx = clinopyro	oxene; pl	= plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION:	200-1224E)-3R-2 54-57	cm (45)				Unit: 1	OBSERVER: ML
ROCK NAME: GRAIN SIZE:	Aphyric b Very fine	grained	` ,					
TEXTURE:	Intergran	ular; isotroj	pic, equig	ranular, holo	ocrystalli	ine		
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts								
Groundmass/matrix								
Groundmass	~ 90		0.1	0.8	0.4	pl, cpx, op	Hypidiomorphic	Texture: intergranular. Main constituents: anhedral to subhedral pl and pale yellow subhedral to anhedral cpx and subhedral to euhedral pigeonite. Pigeonite distinguished by cpx on the basis of $2V\gamma$ (- 0°) and euhedral shape. Pl and cpx relatively fresh with rare signs of alteration. Less than 10 % of cpx is associated with brownish clay minerals.
Segregation vesicles	~ 5							Brownish. These vesicles are made up by acicular to skeletal pl, equant cpx, large equant euhedral to anhedral op (mt?) (avg size 0.5 mm) and, rarely, elongated op (ilmenite?) in a devitrified glassy matrix. About 50 % of this microcrystalline overgrowth is altered in clay minerals. Rare (~ 1%) presence of spherical drops of opaque mineral (pirite?). These vesicles represent late stage magmatic melt.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.			
Clay minerals + Fe- oxyhydroxides + zeolites	~ 10						Anhedral	Brownish. Rare presence of zeolites. Probably the presence of clay minerals is related to the former existence of interstitial glass pools
Vesicles/cavities								
Vesicles	~ 1						Anhedral	Filled with chlorite and clay minerals.
COMMENTS:	constituted	by a) acicular	r low-birefre	engence minera	al with rou	sh clay minerals (~ 2-3 %), in intergrangely parallel extinction, 2V ~ 90° and Ti-mt?), d) acicular opaque mineral (d radiate texture (albite-oligoclas	rally in reaction with cpx and 2) microcrystalline overgrowth se?), b) colorless isotropic skeletal mineral with rhombic shape, c) drops of (?) pyrite.
Microphotos?	Yes							
LEGEND:	ol = olivine	; cpx = clinop	yroxene; pl	= plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Very fine	grained			granular	, holocrystalline	Unit: 1	OBSERVER: ML		
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments		
	Present	Original	min.	max.	av.		1 0,			
Phenocrysts Clinopyroxene-Plagioclase	~ 1						subhedral	Glomerocrysts of cpx and pl. The cpx is poikilitic and with subhedral to anhedral equant shape. Pl is subhedral to euhedral with columnar habit.		
Groundmass/matrix										
Groundmass	~ 80		<0.1	0.3	0.15	pl, cpx, op	Hypidiomorphic	Main constituents: fresh subhedral to euhedral columnar pl (~ 60 %), anhedral equant cpx (~ 30 %), anhedral to euhedral equant rarely skeletal op (~ 10 %). Cpx $(2V\gamma\sim65^\circ)$ is in intergranular relationship with pl together with ~ 15 % brownish clay mineral. Op mineral are larger than cpx.		
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments		
			min.	max.	av.					
Clay minerals Nontronite	~ 15 ~ 2							Brownish. Possibly replace intersertal glass pools. Nontronite is present both as subangular to subrounded discrete granules (avg. size ~ 0.3 mm) and as small veins (< 0.1 mm wide).		
Vesicles/cavities										
Vein	~ 1							A vein cut the thin section parallel to the shorter edge. It is made up of Fe-oxyhydroxides with high reflectance under reflected light examination. This vein is associated with a brownish halo ~ 12 mm wide. The halo is due to the presence of a diffuse brownish Fe-oxyhydroxides film around groundmass minerals.		
COMMENTS:		esence of gible e biaxial chara			Gibbsite	identified on the basis of hexagonal sl	hape, color (colorless) low birefringence			
Microphotos?	Yes									
LEGEND:	ol = olivine; cpx = clinopyroxene; pl = plagioclase; op = Fe-Ti oxides; mt = magnetite									

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	200-1224D-3R-3 45-48 cm (49) Aphyric basalt Very fine grained Intergranular to intersertal; isotropic, equigranular, hypohyaline (~ 90 % glass)												
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments					
	Present	Original	min.	max.	av.								
Phenocrysts Plagioclase	~1			2.5	1.8		Euhedral, columnar	Fresh and fractured. Fractures filled by a colorless mineral with high birefringence.					
Groundmass/matrix Plagioclase-Clinopyroxene	~ 7		<0.1	0.6	0.2			Pl: euhedral to subhedral with columnar habit; cpx: pale yellow, anhedral to subhedral with equant habit. Often in glomerophyric relations.					
Glass	~ 90							From dark brown to black.					
SECONDARY MINERALOGY	Percent		min.	Size (mm) max.		Replacing/filling	Morphology	Comments					
Calcite	~ 2		0.1	0.6	av. 0.2		Subrounded to irregular	Calcite is present as discrete granules (possibly cavities). The smallest commonly it hosts euhedral pale yellow crystallites with prismatic to pseudoctagonal and rhombic habit, high birefringence and inclined extinction (cpx?).					
Vesicles/cavities													
COMMENTS:													
Microphotos?	No												
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite							

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Fine grain	ied	` ,	ranular, holo	ocrystalli	ine	Unit: 1	OBSERVER: ML
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.		- 0,	
Phenocrysts								
Groundmass/matrix								
Groundmass	~ 90					pl, cpx, op	Hypidiomorphic	Main constituents: euhedral to subhedral columnar to acicular pl (avg size ~ 0.3 mm) and pale yellow anhedral equant cpx (avg. size ~ 0.1 mm) glomerocrystals set in a very fine grained groundmass (avg. size < 0.05 mm) madup of anhedral cpx, small euhedral to subhedral equant op and subhedral columnar pl. The avg. size of glomerules is ~ 0.4 mm. N-S oriented bands (~0.5-5 mm wide) of the same minerals but with coarser size (max pl size ~ 0.6 mm) are interpreted as gas pipes. Rare presence (< 1%) of pl microphenocrysts (avg. size ~ 0.7 mm).
Segregation cavities	~ 2							Dark brown. Made up by acicular to columnar pl, equan anhedral cpx, small acicular oriented op in a devitrified glassy matrix. Less than 10 % is altered in brownish clay minerals. This cavity is within a gas pipe associated with a large (~ 6x3 mm) calcite aggregate.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
52001131111 3111121212001		-	min.	max.	av.		pgy	
Carbonate minerals	~ 3							Carbonate mineral aggregate of prismatic shape (\sim 6x3 mm) made up of single calcite crystals optically oriented with granoblastic texture and size ranging from 0.9 to < 0.1 mm. $2V\alpha \sim 0$ (calcite ?).
Clay minerals	~ 5							Brownish clay minerals occur both in groundmass and associated with gas pipes (of which they form ~ 20 %).
Vesicles/cavities								
Veins	< 1							Narrow (< 0.1 mm wide) brownish vein filled with clay.
Cavities	< 1		0.2	0.4	0.3		Suspherical	Filled with brownish to pale greenish clay minerals.
COMMENTS:								
Microphotos?	Yes							
LEGEND:	ol = olivine	; cpx = clinopy	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Very fine	grained		sotropic, equi	granulaı	, holocrystalline	Unit: 1	OBSERVER: ML
PRIMARY MINERALOGY	Percent Present	Percent Original	min.	Size (mm) max.	av.	Approximate composition	Morphology	Comments
Phenocrysts	Fresent	Original	шш.	шах.	av.			
Groundmass/matrix								
Groundmass Groundmass	~ 60		0.1	0.4	0.3	pl, cpx, op	Hypidiomorphic	Texture: intergranular and, less common, subophitic. Main constituents: subhedral columnar pl (in some cases skeletal), pale yellow anhedral equant cpx and anhedral mt. Rare presence (<< 1 %) of pl microphenocrysts (average size 0.4 mm). Presence of "open" pl spherulites.
Segregation vesicles	~ 25							Made up by acicular to skeletal, often hollow columnar pl, equant subhedral to anhedral cpx, small elongated to equant op in a devitrified glassy matrix. About 50 % is altered in brownish clay minerals. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of many microlites.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
Clay minerals	~ 15		min.	max.	av.			From brownish to greenish. They are found both as intersitial pools among plagioclase laths in groundmass and within segregation vesicles between skeletal pl.
Vesicles/cavities								
Calcite	~ 1						Anhedral	Associated to clay minerals in altered zone of segregation vesicles.
Cavities	~ 3						Spherical	More than 90 % of the cavities are filled. The filling material can be 1) brownish clay minerals or Feoxyhydroxides (\sim 50%), 2) microlitic intergrowth of pl, cpx, elongated op (all with size $<$ 0.1 mm) plus possibly glass and clay minerals (\sim 30%) or 3) both (\sim 20%).
COMMENTS:		" pl spherulite and smaller p			nar to acic	ular pl radiating from a center. The sp	ace between each pl crystal is o	occupied by
Microphotos?	Yes							
LEGEND:	ol = olivine	; cpx = clinopy	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Very fine	grained		otropic, equi	granular	, holocrystalline	Unit: 1	OBSERVER: ML
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts								
Groundmass/matrix								
Groundmass	~ 60		0.1	0.7	0.4	pl, cpx, op	Hypidiomorphic	Pale yellow anhedral equant cpx (augite; $2V\gamma \sim 60^\circ$) and small subhedral to euhedral equant op in intergranular to subophitic relationship with subhedral to euhedral columnar pl. In some cases pl is skeletal and the space between its arms is filled by microlites of cpx and skeletal op.
Segregation vesicles	~ 30							Dark brownish. These vesicles are made up by acicular to skeletal pl, anhedral to subhedral equant cpx and subhedral to euhedral skeletal elongated to equant op in a devitrified glassy matrix. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of pl and op crystals.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
		-	min.	max.	av.		F8)	
Clay minerals	< 5							Possibly replaces former glass. Brownish, associated with segregation vesicles and in cavities.
Vesicles/cavities								
Cavities	~ 10		0.3	3.5	1		Subspherical	~ 95 % totally filled. The filling material can be 1) calcite (~ 75 %), 2) microlitic intergrowth of pl, cpx, elongated op (all with size < 0.1 mm) plus possibly glass and clay minerals, the same of the segregation vesicles (~10 %), 3) calcite (~80 % relative) and microlitic material (~20 % relative) (~ 15 %). Occasional presence of single grains euhedral (?) pyrite.
COMMENTS:	0.4 mm lor not reflect l	ng and < 0.01 r light and is str	mm wide r ongly plea	adiating from tl	ne outer p orless to g	rown clayey rim. Calcite inside cavitie ortions toward the center of the cavit ray-brownish. However, this last feat c material.	y. This vermicular material does	to
Microphotos?	Yes							
LEGEND:	.1 .1			1	n m	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Very fine	grained	` ,	otropic, eq	uigranula	r, holocrystalline	Unit: 1	OBSERVER: ML
PRIMARY MINERALOGY	Percent	Percent		Size (mm		Approximate composition	Morphology	Comments
Phenocrysts	Present	Original	min.	max.	av.			
Plagioclase	< 1				2	Bytownite ?	Subhedral, columnar	Fresh. Only one phenocryst found.
Groundmass/matrix								
Groundmass	~ 65		0.1	0.9	0.4	pl, cpx, op	Hypidiomorphic	Texture: intergranular and, less common, subophitic. Main constituents: subhedral columnar pl (in some cases skeletal), pale yellow anhedral equant cpx and anhedral mt. Presence of "open" pl spherulites made up of acicular to columnar pl radiating from a center composed by cpx and pl.
Segregation vesicles	~ 15							From black to dark brown. Made up by acicular to skeletal, often hollow columnar pl, equant subhedral to anhedral cpx, small elongated to equant op in a devitrified glassy matrix. Less than 10 % is altered in brownish clay minerals. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of many microlites.
SECONDARY MINERALOGY	Percent		min.	Size (mm max.	av.	Replacing/filling	Morphology	Comments
Clay minerals	~ 5		mm.	шах.	av.			Brownish. Found both as interstitial pools among plagioclase laths in groundmass, within segregation vesicles and segregation cavities associated with microlitic pl, cpx and op.
Vesicles/cavities								
Cavities	~ 3		0.4	2	1		Spherical	More than 60 % of the cavities are filled. The filling material can be 1) brownish clay minerals or Feoxyhydroxides (~50%), 2) microlitic intergrowth of pl, cpx, elongated op (all with size < 0.1 mm) plus possibly glass and clay minerals (~10%) or 3) both (~40%).
COMMENTS:								
Microphotos?	No							
LEGEND:	ol = olivine	; cpx = clino	pyroxene; p	l = plagioclas	e; op = Fe-Ti	i oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE:

1224E-3R-1 1-4 cm (53) Hyaloclastite

TEXTURE:

OBSERVER: ML

PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts/clasts								
Glassy shards	~ 5	~ 40	0.6	30	10		Subangular, rectangular	Grayish to light brownish. Some of the glassy shards are totally altered in palagonite, whereas in other cases the alteration is limited to the rim. The glass has euhedral to subhedral microlites of plagioclase, clinopyroxene and iddingsitized olivine. The development of acicular spherulites of plagioclase around all these microlites is very common, thought that some shard are virtually spherulite-free and show only few microlites. In few cases euhedral microphenocrysts of plagioclase (max siz ~ 0.8 mm) have been found.
Groundmass/matrix								
Fe-oxyhydroxides	~ 2							From reddish to black. Found both as discrete grains within the calcitic matrix and, sometime, as a tiny film around glassy shards.
Calcite	~ 60							From microcrystalline to coarse grained. Generally, coarser calcite (2V $\alpha\sim0)$ forms a rim around the glassy shards.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
		-	min.	max.	av.	F6 , 6	F 8)	
Palagonite	~ 35							Orange-yellow. Replaces in part or totally the glassy shards.
Zeolites?	~ 5							Colorless with low relief and extremely low birefringence rhombic to prismatic habit and multiple twinning. Confined in calcite veins and at the contact with the glassy shards.
Vesicles/cavities								
COMMENTS:								
Microphotos?	Yes							

OBSERVER: ML

THIN SECTION: ROCK NAME: GRAIN SIZE:

1224E-3R-1 6-10 cm (54) Hyaloclastite

TEXTURE:

PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts/clasts								
Glassy shards	~ 10	~ 45	0.6	20	10		Subangular	Grayish to light brownish. Some of the glassy shards are totally altered in palagonite, whereas in other cases the alteration is limited to the rim. The glass has euhedral to subhedral microlites of plagioclase, clinopyroxene and iddingsitized olivine. The development of acicular spherulites of plagioclase around all these microlites is very common, thought that some shard are virtually spherulite-free and show only few microlites. The abundance of microlites and spherulites generally increase from the rim to the core and this change the color of the shard from yellow-orange to dark brown. Some glassy shards are mostly holohyaline with less than 5% microlites, whereas in other cases microlites and spherulites are more than 60% of the shard. In few cases euhedral microphenocrysts of plagioclase (max size ~ 1mm) has been found.
Plagioclase	<1				0.3	Bytownite?	Anhedral	A single clast. $2V\alpha \sim 70^{\circ}$.
Groundmass/matrix								
Fe-oxyhydroxides	~ 2							From reddish to black. Found both as discrete grains
								within the calcitic matrix and, sometime, as a tiny film around glassy shards.
Calcite	~ 50							From microcrystalline to coarse grained. Generally, coarser calcite (2V $\alpha\sim0^\circ$) forms a rim around the glassy shards.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
SECONDARY MINERALEOGY	10100111		min.	max.	av.	Kepmenig/Ininig	Morphology	Comments
Palagonite	~ 35							Orange-yellow. Replaces in part or totally the glassy shards.
Zeolites?	~ 5							Colorless with low relief and extremely low birefringence rhombic to prismatic habit and multiple twinning. Confined in calcite veins and at the contact with the glassy shards.
Vesicles/cavities								
·								
COMMENTS:					_			
Microphotos?	Yes							

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Very fine	grained	` ,	arely subophi	tic; isotr	opic, equigranular, holocrystalli	ine	OBSERVER: ML
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
Discourse of the factor	Present	Original	min.	max.	av.			
Phenocrysts/clasts Groundmass	~ 60		0.1	0.4	0.3	pl, cpx, op	Hypidiomorphic	Anhedral pale yellow cpx (augite; $2V\gamma \sim 65^\circ$) in intergranular to subophitic relationship with subhedral to euhedral pl. In some cases pl is skeletal and the space between its arms is filled by microlites of cpx and skeletal op. Interstitial euhedral to anhedral op indicates its late appearance as liquidus phase. Rare presence (< 1 %) of pl microphenocrysts (max size \sim 2.2 mm)
Segregation vesicles	~ 30							Dark brownish. These vesicles are made up by acicular to skeletal pl, equant cpx and acicular to equant skeletal op set in a devitrified glassy matrix This is generally fresh and alteration in brownish clay is generally <10%. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of pl and mt crystals.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.		1 0,	
Clay minerals	< 5							Possibly replace former volcanic glass. Brownish, found in segregation vesicles and in cavities.
Vesicles/cavities								
Cavities	~ 3		0.3	1	0.5		Subspherical	Totally filled. The filling material can be 1) brownish clay minerals, 2) microlitic intergrowth of pl, cpx, elongated op (all with size < 0.1 mm) plus possibly glass and clay minerals, 3) calcite (?) $(2V\alpha \sim 0^\circ)$ or 4) the previous ones in various amount.
COMMENTS:								
Microphotos?	No							
LEGEND:	ol – olivino	e cny – clinon	vrovene n	l – plagioclase:	on – Fe-Ti	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Very fine	grained	. ,	otropic, equi	OBSERVER: ML			
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts								
Groundmass/matrix								
Groundmass	~ 70		0.05	1.1	0.4	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$, in intergranular to subophitic relationship with subhedral to euhedral skeletal pl and equant mt. The space between skeletal pl is filled by microlites of cpx and dendritic op. Rare presence (< 1%) of bytownite ($2V\alpha \sim 90^\circ$) microphenocrysts (max size ~ 1.2 mm).
Segregation vesicles	~ 20							Dark brown to black. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny elongated op (ilmenite?) in a devitrified glassy matrix altered in brownish-yellowish clay minerals. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of pl and mt crystals.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.			
Clay minerals	~ 10							Brownish, found in interstitial relation with groundmass pl, possibly replacing former glass and associated both with segregation vesicles/cavities.
Vesicles/cavities								
Cavities	~ 10		0.20	1.2	0.5		Subspherical	~ 80 % empty; ~ 10 % partially filled; ~ 10 % totally filled. The filling material is brownish clay minerals and possibly Fe-oxyhydroxides.
COMMENTS:								
Microphotos?	No							
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION:	200-1224F	-1R-4 63-65	cm (57)					OBSERVER: ML
ROCK NAME:	Aphyric b	asalt						
GRAIN SIZE:	Very fine	grained						
TEXTURE:	Intergran	ular to subo	phitic; is	otropic, equi	granulaı	, holocrystalline		
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts								
Groundmass/matrix								
Groundmass	~ 70		0.1	0.6	0.4	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; 2Vγ ~ 600) in intergranular to subophitic relationship with subhedral to euhedral skeletal to columnar pl and subhedral to euhedral equant mt. The space between skeletal pl is filled by microlites of cpx and dendritic op. Rare presence (< 1%) of pl microphenocrysts (max size ~ 1.4 mm).
Segregation vesicles	~ 15							Dark brown to black. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny elongated op (ilmenite?) in a devitrified glassy matrix strongly altered in brownish-yellowish clay minerals. These vesicles represent late stage magmatic melt. Some pl in the clayey matrix have low $2V\gamma$ (< 70°), suggesting labradoritic composition.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.		F8)	
Clay minerals + Fe- oxyhydroxides	~ 20							Brownish, found in interstitial relation with groundmass pl, possibly replacing former glass, and associated both with segregation vesicles.
Vesicles/cavities								
Cavities	~ 2		0.3	0.5	0.4		Subspherical	Always empty. It is possible that the filling was lost during the thin section preparation. Possible original filling were clay minerals and Fe-oxyhydroxides.
COMMENTS:		vish color of the		is due to a yello	wish-brow	rnish film coating pl and cpx in groun	ndmass and to the alteration	
Microphotos?	No							
LEGEND:						oxides; mt = magnetite		

THIN SECTION:	200-1224F	-1R-4 115-11	1 7 cm (58))				OBSERVER: ML
ROCK NAME:	Aphyric b	asalt						
GRAIN SIZE:	Fine grain	ed						
TEXTURE:	Intergran	ular to subo	ophitic; is	otropic, equ	igranulaı	r, holocrystalline		
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.		1 3 37	
Phenocrysts								
Groundmass/matrix								
Groundmass	~ 80		0.1	1.2	0.5	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 65^\circ$) in intergranular to subophitic relationship with subhedral to euhedral skeletal to columnar pl and subhedral to euhedral equant mt. The space between skeletal pl is filled by cpx. Rare presence of pl microphenocrysts (max size ~ 1.1 mm).
Segregation vesicles	~ 20							Brownish to yellowish. These vesicles are made up by skeletal pl, equant cpx and and large equant skeletal op in a devitrified glassy matrix almost totally altered in brownish-yellowish clay minerals.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.		1 0,	
Clay minerals + Fe- oxyhydroxides	~ 10							Brownish, found associated with segregation vesicles. Rare presence (<<1 %) of green grains in groundmass, possibly nontronite.
Vesicles/cavities								
Vein	<< 1		0.1	0.3	0.2			Reddish vein of Fe-oxyhydroxides.
COMMENTS:								
Microphotos?	No							
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	200-1224F-1R-5 31-33cm (59) Aphyric Basalt Fine grained Intergranular to subophitic; isotropic, equigranular, holocrystalline.											
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments				
	Present	Original	min.	max.	av.							
Phenocrysts/clasts												
Groundmass/matrix												
Groundmass	~ 80		0.2	1.2	0.5	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$ and small subhedral to euhedral equant op in intergranular to subophitic relationship with subhedral to euhedral skeletal to columnar pl. Pl and cpx often fractured. Rare presence (<1%) of bytownite ($2V\alpha \sim 80-85$) microphenocrysts (max size 1.2 mm). Rare presence of anhedral quarz microcrysts.				
Segregation vesicles	~ 10							Brownish to yellowish. These vesicles are made up by hollow pl, equant cpx and tiny elongated and equant op in a devitrified glassy matrix almost totally altered in brownish-yellowish clay minerals and Fe-oxyhydroxides				
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments				
			min.	max.	av.		1 9,					
Clay minerals + Fe- oxyhydroxides	~ 15							Brownish, found associated both with segregation vesicles.				
Vesicles/cavities												
COMMENTS:	Rare presen	ice of anhedra	ıl quartz mi	crocrysts and o	open spher	ulites made up by radiating pl and in	tergranular cpx.					
Microphotos?	No											
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite						

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Fine grain	red	. ,	otropic, equi	OBSERVER: ML			
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts								
Pyroxene + plagioclase	~ 1							Only one subhedral prismatic phenocryst of cpx (max size ~ 3 mm) (c ^{$^{\circ}$} $\gamma \sim 33^{\circ}$) associated with a smaller subhedral columnar pl (~ 1.8 mm).
Groundmass/matrix								
Groundmass	~ 80		0.1	1.2	0.5	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$) in intergranular to subophitic relationship with subhedral to euhedral skeletal to columnar pl and subhedral to euhedral equant mt. The space between skeletal pl is filled by cpx and pl microphenocrysts (max size ~ 1.1 mm).
Segregation vesicles	~ 15							Brownish to yellowish. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny elongated and large equant op in a devitrified glassy matrix almost totally altered in brownish-yellowish clay minerals and Fe-oxyhydroxides.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.		2 0,	
Clay minerals	~10							Brownish, found associated both with segregation vesicles. Rare presence of subspherical sulfide drops (pyrite?) associated with clay minerals.
Vesicles/cavities								
Cavity	<< 1						Subspherical	Filled with calcite or aragonite.
COMMENTS:	~ 15 % of c	avities. These	are probabl	ly produced du	ring thin	section preparation. They are associate	ed with altered segregation vesion	cles.
Microphotos?	Yes							
LEGEND:	ol = olivine	; cpx = clinop	yroxene; pl	= plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

Aphyric b	asalt	m (62)					OBSERVER: ML
		phitic; is	otropic, inequ	iigranul	ar, holocrystalline		
Percent	Percent	cent Size (mm)		Approximate composition	Morphology	Comments	
Present	Original	min.	max.	av.			
~ 80		0.2	2.2		pl, cpx, op	Hypidiomorphic	Main constituents: euhedral to subhedral columnar pl, pale yellow anhedral cpx and subhedral to euhedral equant mt. The average size of crystals changes from top (0.8 mm) to bottom (0.3 mm). This is probably due to different cooling rates.
~ 20							Brownish. These vesicles are made up by acicular to skeletal pl, equant cpx and anhedral to euhedral, acicular (ilm?) to equant (mt?) op in a devitrified altered glassy matrix. These vesicles represent late stage magmatic melt.
Percent			Size (mm)		Replacing/filling	Morphology	Comments
		min.	max.	av.			
~ 15							Brownish, found in interstitial relation with groundmass pl, possibly replacing former glass of segregation vesicles. In some cases pale yellow clay mineral partially substitutes cpx in segregation vesicles.
						ate.	
Van							
162							
ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase; c	p = Fe-Ti	oxides; mt = magnetite		
	Aphyric befine grain Intergran Percent Present ~ 80 ~ 20 Percent ~ 15 The average Altered seg	Aphyric basalt Fine grained Intergranular to subore Percent Present Original ~ 80 Percent ~ 20 Percent ~ 15 The average size of crysta Altered segregation vesice Yes	Fine grained Intergranular to subophitic; is Percent Present Original min. - 80 0.2 Percent	Aphyric basalt Fine grained Intergranular to subophitic; isotropic, inequality in the present of	Aphyric basalt Fine grained Intergranular to subophitic; isotropic, inequigranul Percent Present Original Min. Max. av. - 80 0.2 2.2 - 20 Percent Size (mm) Max. av. - 80	Aphyric basalt Fine grained Intergranular to subophitic; isotropic, inequigranular, holocrystalline Percent Percent Original Size (mm) Approximate composition min. max. av. - 80 0.2 2.2 pl, cpx, op Percent Size (mm) Replacing/filling min. max. av. - 15 The average size of crystals changes from top to bottom, this is probably due to different cooling real Altered segregation vesicles often show small equant op around cpx and/or pl rim.	Aphyric basalt Fine grained Intergranular to subophitic; isotropic, inequigranular, holocrystalline Percent Percent Original Morphology Present Original Morphology - 80 - 80 - 20 - 20 - 20 - 21 - 20 - 20 - 21 - 20 - 21 - 20 - 21 - 20 - 21 - 25 - 21 - 20 -

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	200-1224F-2R-4 141-143 cm (64) Aphyric basalt Fine grained Intergranular to subophitic; isotropic, equigranular, holocrystalline											
PRIMARY MINERALOGY	Percent Present	Percent Original	min.	Size (mm) max.	av.	Approximate composition	Morphology	Comments				
Phenocrysts	rresent	Original		max.	av.							
Groundmass/matrix Groundmass	~ 80		0.1	1.2	0.5	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 65^{\circ}$				
	00		0.1	2	0.0	k-1, -k-1, -k-1	Пуршологра	in intergranular to subophitic relationship with subhedral to euhedral skeletal to columnar pl and subhedral to euhedral equant mt. The space between skeletal pl is filled by cpx. Rare presence of pl microphenocrysts (max size ~ 1.1 mm).				
Segregation vesicles	~ 10							Brownish to yellowish. These vesicles are made up by skeletal pl, equant cpx and and large equant skeletal op (up to 0.5 mm) in a devitrified glassy matrix almost totally altered in brownish-yellowish clay minerals.				
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments				
	10		min.	max.	av.			8 11 (11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Clay minerals + Fe- oxyhydroxides	~ 10							Brownish, found in interstitial relation with groundmass pl, possibly replacing former glass, and associated both with segregation vesicles.				
Vesicles/cavities												
COMMENTS:												
Microphotos?	No											
LEGEND:	ol = olivine	cpx = clinop	vroxene: p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite						

THIN SECTION:	200-1224F	-2R-5 63-65 c	cm (65)					OBSERVER: ML
ROCK NAME:		d aphyric ba	ısalt					
GRAIN SIZE:	Very fine							
TEXTURE:	Intergran	ular to subo	ophitic; is	sotropic, equig	granulaı	r, holocrystalline		
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts/clasts								
Groundmass/matrix								
Groundmass	~ 80		0.1	0.6	0.2	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$) in intergranular to subophitic relationship with subhedral to euhedral skeletal to columnar pl and subhedral to euhedral equant mt. Presence of pillow fragments made up by altered glassy shards with pl microlites. Possible presence of iddingsitiged olivine.
Segregation vesicles	~ 5							Brownish. These vesicles are made up by acicular to skeletal pl, equant cpx and anhedral to euhedral op in a devitrified glassy matrix. These vesicles represent late stage magmatic melt.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.		1 0,	
Clay minerals	~ 15							Brownish, found in segregation vesicles. Presence of green minerals, probably nontronite, distinguished from chlorite for the higher birefringence.
Vesicles/cavities								
COMMENTS:	Impregnate	d thin section	n. The origi	inal material is i	ncoheren	t breccia made up by very fine-grained	d lava flow and pillow fragments	s.
Microphotos?	No							

THIN SECTION:	200-1224F	-2R-5 66-68	cm (66)					OBSERVER: ML
ROCK NAME:	Brecciate	d aphyric ba	salt					
GRAIN SIZE:	Very fine	grained						
TEXTURE:	Intergran	ular to subo	phitic; is	otropic, equ	igranular	, holocrystalline		
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.		1 0,	
Phenocrysts/clasts								
Groundmass/matrix								
Groundmass	~ 80		0.1	0.5	0.3	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$) in intergranular to subophitic relationship with subhedral to euhedral skeletal to columnar pl and subhedral to euhedral equant op.
Segregation vesicles	~ 10							Brownish. These vesicles are made up by acicular to skeletal pl, equant cpx and anhedral to euhedral op in a devitrified glassy matrix. These vesicles represent late stage magmatic melt.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
		•	min.	max.	av.			
Clay minerals	~ 5							Brownish, found in segregation vesicles. Presence of green minerals, probably nontronite, distinguished from chlorite for the higher birefringence.
Vesicles/cavities								
COMMENTS:	Impregnate	ed thin section	1. The origin	nal material is	incoheren	t breccia made up by very fine-grained	d lava flow and pillow fragments	i.
Microphotos?	No							
LEGEND:	ol = olivine	; cpx = clinop	yroxene; pl	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION:	200-1224F	-3R-1 14-16	cm (67)		OBSERVER: ML			
ROCK NAME:	Aphyric b	asalt						
GRAIN SIZE:	Fine grain	1ed						
TEXTURE:	Interserta	al to suboph	itic; isotr	opic, inequig	ranular,	holocrystalline		
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts/clasts								
Groundmass/matrix								
Groundmass	~ 80		0.1	1.0	0.4	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$) in intergranular to subophitic relationship with subhedral to euhedral skeletal to columnar pl and subhedral to euhedral equant op. Rare presence ($\sim 1~\%$) of pl microphenocryst with an average size $\sim 1.4~\text{mm}$.
Segregation vesicles	~ 5							Brownish. Made up by acicular to skeletal pl, equant cpx and anhedral to euhedral op in a devitrified altered glassy matrix. These vesicles represent late stage magmatic melt.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.		1 0,	
Clay minerals	~ 5							Brownish. Found both as interstitial pools among groundmass pl, within segregation vesicles between skeletal pl and in cavities.
Vesicles/cavities								
Cavities	~ 1							Almost totally filled by brownish clay minerals
COMMENTS:	Groundma	ss pl rims in so	ome cases a	are transformed	in a verm	icular overgrowth.		
Microphotos?	Yes							
LEGEND:	ol – olivine	e cny = clinon	vrovene. n	l = nlagioclase:	on – Fe-Ti	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Glomerop Very fine		ısalt	otropic, equi	OBSERVER: ML			
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
TRIMART MINERALOGI	Present	Original	min.	max.	av.	Approximate composition	Morphology	Comments
Phenocrysts/clasts								
Plagioclase	< 2		0.4	2.4	1.2	Bytownite	Subhedral to euhedral. Columnar to equant	% An >80. Fresh. Phenocrysts are part of a gabbroic glomerule. Max angle extinction measured =39°; $2V\alpha$ ~90°.
Clinopyroxene	< 2		0.2	2.2	0.8	Augite	Subhedral	$c^{\wedge}\gamma\sim48^{\circ}.$ Pale yellow. Partially deformed. Textural relationships indicate contemporaneous crystallization with plagioclase.
Groundmass/matrix								
Groundmass	~ 80		<0.1	0.3	0.2	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$ in intergranular to subophitic relationship with subhedral to euhedral skeletal to columnar pl and subhedral to euhedral equant op.
Segregation vesicles	~ 15							Brownish. These vesicles are made up by columnar pl, equant cpx and anhedral to subhedral op in a devitrified altered glassy matrix. These vesicles represent late stage magmatic melt.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.		P8)	
Clay minerals	~ 5							Brownish. Found both as interstitial pools among groundmass pl, within segregation vesicles and in cavities.
Vesicles/cavities								
Cavities	~ 1							Partially filled by clay minerals.
COMMENTS:	Probably th	e glomerules	represent c	ognate xenolith	18.			
Microphotos?	No							
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

Aphyric b	asalt	m (69)				OBSERVER: ML		
,		phitic; is	otropic, equi	granular	, holocrystalline			
Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments	
Present	Original	min.	max.	av.				
~ 60		0.1	0.7	0.3	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$) in intergranular to subophitic relationship with subhedral to euhedral skeletal pl and equant mt. Rare presence (< 1%) of euhedral to subhedral columnar pl microphenocrysts (max size ~ 1 mm).	
~ 25							These vesicles are made up by skeletal pl, equant cpx and large equant skeletal op in a devitrified glassy matrix. These vesicles represent late stage magmatic melt. The rapid cooling is responsable for the skeletal shape of pl and mt crystals.	
Percent			Size (mm)		Replacing/filling	Morphology	Comments	
		min.	max.	av.				
~ 2							Brownish, found in interstitial relation with groundmass pl, possibly replacing former glass and associated both with segregation vesicles.	
~ 1-2		0.3	0.8	0.6		Subspherical	~ 60 % empty; ~ 13 % partially filled; ~ 27 % totally filled. The filling material can be 1) calcite, 2) brownish clay minerals or Fe-oxyhydroxides.	
~ 10		0.1	3.5	1.4			Filled by calcite festoons, Fe-oxyhydroxides and anhedral op $(?)$	
No								
ol = olivine	: cpx = clinopy	roxene: p	l = plagioclase:	op = Fe-Ti	oxides: mt = magnetite			
	Aphyric b Very fine Intergran Percent - 60 - 25 Percent - 2 - 1-2 - 10	Aphyric basalt Very fine grained Intergranular to subo Percent Present ~ 60 ~ 25 Percent ~ 2 ~ 1-2 ~ 10	Very fine grained Intergranular to subophitic; is Percent Present Original min. ~ 60 0.1 Percent	Aphyric basalt Very fine grained Intergranular to subophitic; isotropic, equilibrium in	Aphyric basalt Very fine grained Intergranular to subophitic; isotropic, equigranular to subophitic; isotropic, equigranular max. Percent Present Percent Moriginal Size (mm) max. Av. ~ 60 0.1 0.7 0.3 ~ 25 Size (mm) max. Av. ~ 2 3 0.8 0.6 ~ 10 0.1 3.5 1.4	Aphyric basalt Very fine grained Intergranular to subophitic; isotropic, equigranular, holocrystalline Percent Present Percent Original Size (mm) min. Approximate composition ~ 60 0.1 0.7 0.3 pl, cpx, op ~ 25 Size (mm) min. Replacing/filling ~ 2 — 22 — 23 ~ 1-2 0.3 0.8 0.6 ~ 10 0.1 3.5 1.4	Apphyric basel Very fine grained Integrant to sub-plitic; isotropic, equigranular, bolocrystalline Percent Percent Original min. max. av.	

THIN SECTION: ROCK NAME: GRAIN SIZE:	Aphyric b Very fine	grained	. ,				OBSERVER: ML	
TEXTURE:	Intergran	ular to subo	ophitic; is	otropic, equi	igranula	r, holocrystalline		
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts								
Groundmass/matrix								
Groundmass	~ 55		0.05	0.6	0.3	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$) in intergranular to subophitic relationship with subhedral to euhedral skeletal pl and equant mt. The space between skeletal pl is filled by microlites of cpx and dendritic op. Rare presence (< 1%) of euhedral to subhedral columnar pl microphenocrysts (max size ~ 1.2 mm).
Segregation vesicles	~ 30							Brownish. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny skeletal equant op in a devitrified glassy matrix slightly altered in brownish-yellowish clay minerals. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of pl and mt crystals.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.		1 0,	
Clay minerals + Fe- oxyhydroxides	~ 15							Brownish, found in interstitial relation with groundmass pl, possibly repalacing former glass, and associated both with segregation vesicles.
Calcite	<< 1			0.2				Rare small calcite vesicles.
Vesicles/cavities								
COMMENTS:								
Microphotos?	No							
LEGEND:	ol = olivine	; cpx = clinop	yroxene; pl	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE:	Aphyric b	200-1224F-4R-2 79-82 cm (72) Aphyric basalt Very fine grained Intergranular to subophitic; isotropic, equigranular, holocrystalline												
TEXTURE:	Intergran	ular to subo	ophitic; is	otropic, equi	granula	r, holocrystalline								
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments						
Phenocrysts/clasts	Present	Original	min.	max.	av.									
i nenoci yoto, ciusto														
Groundmass/matrix Groundmass	~ 50		0.1	0.7	0.3	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$) in intergranular to subophitic relationship with subhedral to euhedral skeletal pl and equant mt. Rare presence (< 1%) of euhedral to subhedral columnar pl microphenocrysts (max size ~ 1.3 mm). Presence of "open" pl spherulites.						
Segregation vesicles	~ 20							These vesicles are made up by skeletal pl, equant cpx and large equant skeletal op in a devitrified glassy matrix. These vesicles represent late stage magmatic melt. The rapid cooling is responsable for the skeletal shape of pl and mt crystals.						
Clay minerals	~ 20							Brownish, found in interstitial relation with groundmass pl, possibly replacing former glass and associated both with segregation vesicles.						
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments						
			min.	max.	av.									
Vesicles/cavities														
Calcite	<< 1		0.1	0.6	0.2		Subspherical to irregular	Rare small calcite vesicles.						
Vesicles	~ 10						Irregular	More than 90% are empty. The filling material is brownish and greenish (nontronite?) clay minerals and calcite.						
COMMENTS:	Wide (~ 2 c	m) vesicular a	rea toward	the top of the	thin section	on.								
Microphotos?	Yes													
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	i oxides; mt = magnetite								

THIN SECTION:	200-1224I	-4R-3 4-6 cm	1 (73)				OBSERVER: ML		
ROCK NAME:	Aphyric b	asalt							
GRAIN SIZE:	Very fine	grained							
TEXTURE:	Intergran	ular to subo	ophitic; is	otropic, equi	granulaı	r, holocrystalline			
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments	
	Present	Original	min.	max.	av.		1 0,		
Phenocrysts/clasts									
Groundmass/matrix									
Groundmass	~ 80		0.1	1.0	0.4	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx in intergranular to subophitic relationship with subhedral to euhedral skeletal to columnar pl and subhedral to euhedral equant op. Presence of "open" pl spherulite.	
Segregation vesicles	~ 10							Brownish. These vesicles are made up by acicular to skeletal pl, equant cpx and anhedral to euhedral op in a devitrified glassy matrix. These vesicles represent late stage magmatic melt.	
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments	
			min.	max.	av.		1 0,		
Clay minerals	~ 10							Brownish. Found both as interstitial pools among plagioclase laths in groundmass and within segregation vesicles between skeletal pl.	
Vesicles/cavities									
COMMENTS:									
Microphotos?	Yes								
LEGEND:	ol – olivine	cnx = clinon	vroxene: n	l = plagioclase:	on = Fe-Ti	i oxides; mt = magnetite			

THIN SECTION:	200-1224I	F-4R-6 11-13 c	cm (74)					OBSERVER: ML
ROCK NAME:		se sparsely p		low basalt				
GRAIN SIZE:	Very fine		,					
TEXTURE:	,		sic. eanig	ranular, hvn	ocrystall	ine (glass ~ 10 %)		
12.1101.21		1301101	ore, equip	,, ,., ,,	our yours	10 /0/		
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts/clasts								
Plagioclase	~ 1		0.6	1.2	0.8	Bytownite	Euhedral, columnar	% An >80 ($2V\alpha \sim 90^{\circ}$). Fresh, with no signs of alteration
Groundmass/matrix								
Groundmass	~ 90					pl, cpx, ol	Hypidiomorphic	Mainly constituents: pl (often skeletal), pale yellow anhedral cpx, equant to acicular skeletal op. Average dimension of the minerals in the groundmass ~ < 0.1 mm. Pale yellow glass content decreases upward. The bands of different colors are related to the percentage of glass and microcrysts in the groundmass. Presence of euhedral to skeletal iddingsitized olivine.
Clay minerals + Fe- oxyhydroxides	~ 5							Brownish, found in cavities.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
		•	min.	max.	av.		1 0,	
Vesicles/cavities								
Cavities	~ 7		0.1	0.8	0.3		Subspherical	~ 10 % empty; ~ 75 % partially filled; ~ 15 % totally filled The filling material can be clay minerals, Fe- oxyhydroxides and low birefringence minerals.
COMMENTS:								
Microphotos?	No							
LEGEND:	ol = olivine	e; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION: ROCK NAME: GRAIN SIZE:	200-1224F Hyaloclas	-6R-1 29-34 tite	cm (80)		OBSERVER: ML			
TEXTURE:	Holohyali	ine to hypol	yaline					
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
Phenocrysts/clasts	Present	Original	min.	max.	av.			
Glassy shards	~ 20	~ 45	4.0	23.0	12.0		Subangular, rectangular	Grayish to pale brownish. Some of the glassy shards are totally altered in palagonite, whereas in other cases the alteration is limited to the rim. The glass has euhedral to subhedral microlites of pl, cpx and iddingsitized ol. Acicular pl spherulites around all these microlites are common, thought that some shards are virtually spherulite-free and show only few microlites. In few cases euhedral pl microphenocrysts (max size ~ 1 mm) have been found.
Groundmass/matrix								
Calcite	~ 40							From microcrystalline to coarse grained. Generally, coarser calcite ($2V\alpha\sim0^\circ$) forms a rim around the glassy shards.
Palagonite	~ 25							Orange-yellow. Replaces in part the glassy shards.
Zeolites?	~ 15							Colorless with low relief and extremely low birefringence rhombic to prismatic habit and multiple twinning. Confined in calcite veins and at the contact with the glassy shards.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.			
Vesicles/cavities								
Cavities Cavities	~ 1		<0.1	0.7	0.2		Subspherical	Found in the glassy shards. ~ 40 % empty; ~ 60 % partially filled. The filling material can be low birefringence mineral arranged in concentric shells.
COMMENTS:	Oversized t	hin section.						
Microphotos?	No							
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION:	200-1224F	-6R-1 105-10	7 cm (75)	1	OBSERVER: ML			
ROCK NAME:	Aphyric b	asalt						
GRAIN SIZE:	Fine grain	ed						
TEXTURE:	Intergran	ular to subo	phitic; is	otropic, equ	igranulaı	, holocrystalline		
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts/clasts								
Groundmass/matrix								
Groundmass	~ 60		0.1	0.9	0.5	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx in intergranular to
						.,.,.		subophitic relationship with subhedral to euhedral skeletal pl and equant mt. Rare presence (< 1%) of euhedral to subhedral columnar pl microphenocrysts
								(max size ~ 1.6 mm).
Segregation vesicles	~ 30							Brownish. These vesicles are made up by acicular to
segregation vesteres	50							skeletal pl, equant cpx and anhedral to euhedral op in a
								devitrified glassy matrix. These vesicles represent late stage magmatic melt.
Clay minerals	~ 20							Brownish, found in interstitial relation with groundmass
•								pl, possibly replacing former glass and associated both with segregation vesicles and cavities.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
		•	min.	max.	av.			
Vesicles/cavities								
Cavities	~ 3		0.1	0.6	0.3		Irregular to subspherical	~ 40 % empty; ~ 55 % partially filled; ~ 5 % filled. The
Cavitics	- 3		0.1	0.0	0.5		iriegular to subspirencar	filling material can be brownish clay minerals.
COMMENTS:								
Microphotos?	No							
LEGEND:	ol = olivine	: cnx = clinon	vroxene. n	l = plagioclase	on = Fe-Ti	oxides; mt = magnetite		
	or = onvinc	, срл – сппор	, rokene, p	. – piugioeiuse,	, op = 10-11	omaco, me = magnetice		

THIN SECTION:	200-1224F	-7R-1 98-100	cm (76)					OBSERVER: ML
ROCK NAME:	Pillow ba	salt	` ,					
GRAIN SIZE:	Very fine	grained						
TEXTURE:	Intergran	ular to subo	ophitic; is	otropic, ineq	l uigranul	ar, hypocrystalline (glass ~ 10 %	6)	
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts/clasts								
Groundmass/matrix								
Groundmass	~ 90					pl, cpx, ol	Hypidiomorphic	Mainly constituents: pl (often skeletal), pale yellow anhedral cpx, euhedral to skeletal iddingsitized ol also in glomerophyric relationships. Average dimension of the minerals in the groundmass ~ < 0.1 mm. Pale yellow glass decreases upward. The bands of different colors are related to the percentage of glass and microcrysts. Rare presence of pl microphenocrysts (max size ~ 0.9 mm).
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.			
Vesicles/cavities								
Cavities	~ 2		0.1	1.2	0.4		Subspherical	More than 95 % of the cavities are empty. The filling material are brownish clay minerals.
Veins	~ 2		< 0.1	0.7	0.3		Irregular	The veins are empty.
COMMENTS:								
Microphotos?	Yes							
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

200-1224I	-10R-1 120-	122 cm (7	7)				OBSERVER: ML		
Aphyric b	asalt								
Very fine	grained								
Intergran	ular to sub	ophitic; is	otropic, equi	igranular	, holocrystalline				
Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments		
Present	Original	min.	max.	av.		1 0,			
~ 95		<0.1	1.0	0.3	pl, cpx, ol	Hypidiomorphic	Anhedral to subhedral pale yellow cpx in intergranular to subophitic relationship with subhedral to euhedral skeletal to columnar pl and euhedral to skeletal iddingsitized ol microphenocrysts in a fine grained groundmass. Very small skeletal op confined in the groundmass. Presence of "open" pl spherulites.		
~ 2							Brownish to yellowish, found in interstitial relation with groundmass pl, possibly replacing former glass.		
Percent			Size (mm)		Replacing/filling	Morphology	Comments		
		min.	max.	av.					
~ 1-2		0.1	0.6	0.3		Subspherical	More than 95 % of the cavities are empty.		
Yes									
ol = olivine; cpx = clinopyroxene; pl = plagioclase; op = Fe-Ti oxides; mt = magnetite									
	Aphyric bevery fine Intergran Percent Present ~ 95 ~ 2 Percent ~ 1-2	Aphyric basalt Very fine grained Intergranular to sub Percent Present Original ~ 95 ~ 2 Percent ~ 1-2	Aphyric basalt Very fine grained Intergranular to subophitic; is Percent Present Original min. ~ 95 < <0.1 Percent	Very fine grained Intergranular to subophitic; isotropic, equivalent forms and intergrant to subophitic; isotropic, equivalent forms are subspiciously as a subspicious form of the present of the p	Aphyric basalt Very fine grained Intergranular to subophitic; isotropic, equigranular to subophitic; isotropic, equiprature to subophitic; isotropic, equiprature to subophitic; i	Aphyric basalt Very fine grained Intergranular to subophitic; isotropic, equigranular, holocrystalline Percent Present Percent Original Size (mm) max. Approximate composition ~95 <0.1	Aphyric basalt Very fine grained Intergranular to subophitic; isotropic, equigranular, holocrystalline Percent Present Percent Original Size (mm) max. Approximate composition ave. Morphology ~95 <0.1		

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	200-1224F-11R-2 13-15 cm (78) Pillow basalt Very fine grained Intergranular to subophitic; isotropic, inequigranular, hypocrystalline (glass ~ 10 %)											
PRIMARY MINERALOGY	Percent	Percent		Size (mm))	Approximate composition	Morphology	Comments				
	Present	Original	min.	max.	av.							
Phenocrysts/clasts												
Groundmass/matrix												
Groundmass	~ 90		<0.1	0.7	<0.1	pl, cpx, ol	Hypidiomorphic	Mainly constituents: pl (often skeletal), pale yellow anhedral cpx and euhedral to skeletal iddingsitized ol. Average dimension of the minerals in the groundmass ~ < 0.1 mm. Pale yellow glass content decreases from the rim inward. The bands of different colour are related to the percentage of glass and microcrysts. Glass rim is altered in palagonite. Presence of "open" pl spherulites.				
SECONDARY MINERALOGY	Percent			Size (mm))	Replacing/filling	Morphology	Comments				
			min.	max.	av.							
Vesicles/cavities												
Cavities	~ 1-2		0.1	0.3	0.1		Subspherical	More than 95 % of the cavities are partially filled. The filling material can be low birefringence mineral arranged in concentric shells.				
COMMENTS:												
Microphotos?	No											
LEGEND:	ol = olivine	e; cpx = clinop	pyroxene; p	l = plagioclase	; op = Fe-Ti	oxides; mt = magnetite						

THIN SECTION:	200-1224F	-12R-1 61-64	1 cm (79)		OBSERVER: ML										
ROCK NAME:	Hyaloclas	tite breccia													
GRAIN SIZE:															
TEXTURE:	From hyp	From hypohyaline to holohyaline													
PRIMARY MINERALOGY	Percent	Percent	cent Size (mm)			Approximate composition	Morphology	Comments							
	Present	Original	min.	max.	av.		1 0,								
Phenocrysts/clasts															
Glassy shards	~ 2	~ 50	0.1	3.4	1.4		Subangular, rectangular	Grayish to pale brownish. Most of the glassy shards are totally altered in palagonite, whereas in few cases an unaltered core is found. Some of the glassy shards are totally aphanitic, whereas in other cases pl, cpx, iddingsitized ol microlites have been found. Rare presence of relatively large pl and cpx microphenocrysts							
Groundmass/matrix															
Calcite	~ 40							Microcrystalline							
Palagonite	~ 48							Orange-yellow. Replaces in part or totally the glassy shards.							
Fe-oxyhydroxides	~ 2							Brownish, found in the matrix and as a film around palagonized glassy shards.							
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments							
SECONDARY MINERALEOGY	10100111		min.	max.	av.		Morphology	Comments							
Zeolites?	< 1							Colorless with low relief and extremely low birefringence acicular habit and multiple twinning. Confined at the contact with the glassy shards.							
Vesicles/cavities															
Cavities	< 1						Subspherical	Rare small subspherical cavities (average size $< 0.1 \ mm$) partially filled found in the glassy shards.							
COMMENTS:															
Microphotos?	No														
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite									

THIN SECTION: ROCK NAME: GRAIN SIZE:	200-1224F-13R-1 113-116 cm (81) Vesicular aphyric basalt Very fine grained OBSERVER: ML														
TEXTURE:		very fine graineu Intersertal to intergranular; isotropic, equigranular, hypocrystalline													
	1111013011					, ny poer y semine									
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments							
Diameter (Jane	Present	Original	min.	max.	av.										
Phenocrysts/clasts															
Groundmass/matrix															
Groundmass	~ 50		<0.1	0.5	0.3	pl, cpx, op, ol	Hypidiomorphic	Skeletal and acicular pl microphenocrysts; small pale yellow equant intergranular cpx, small equant to acicula op and small euhedral to subhedral iddingsitized ol set in a glassy, partially devitrified and altered, brownish groundmass.							
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments							
			min.	max.	av.		2 3,								
Aragonite	~ 45							Anhedral large (~ 1.5 mm) to small (< 0.1 mm) aragonite (2V α < 10) filling subparallel veins.							
Zeolites?	~ 2-3							Colorless with low relief and extremely low birefringence rhombic to prismatic habit and multiple twinning. Confined in aragonite veins.							
Vesicles/cavities															
Veins	~ 45		1.0	10.0			Subparallel	Filled by aragonite and zeolites.							
Cavities	~ 1		0.2	0.3	0.3		Subspherical	~ 20 % empty, ~ 80 % totally filled. The filling material can be aragonite and clay minerals.							
COMMENTS:				has been iden y biaxial unde		agonite on the bases of its biaxial char- rcumstances.	acter; however it is worth of no	te that also							
Microphotos?	Yes														
LEGEND:	ol = olivine;	; cpx = clinop	yroxene; pl	= plagioclase;	op = Fe-Ti	oxides; mt = magnetite									

THIN SECTION:	200-1224F	-14R-1 109-1	112 cm (82	2)				OBSERVER: ML						
ROCK NAME:		Aphyric basalt												
GRAIN SIZE:	Fine grained Intergranular to subophitic; isotropic, equigranular, holocrystalline													
TEXTURE:														
PRIMARY MINERALOGY	Percent Present	Percent Original	min.	Size (mm) max.	av.	Approximate composition	Morphology	Comments						
Phenocrysts/clasts	11030111	011811111												
Groundmass/matrix														
Groundmass	~ 80		0.1	1.0	0.4	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx in intergranular to subophitic relationship with subhedral to euhedral skeletal to columnar pl and subhedral to euhedral equan (mt?) and acicular (ilm?) op. Pl and cpx often fractured						
Segregation vesicles	~ 20							Brownish. These vesicles are made up by acicular to skeletal pl, equant cpx and anhedral to euhedral op in a devitrified glassy matrix. These vesicles represent late stage magmatic melt.						
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments						
			min.	max.	av.									
Vesicles/cavities														
Cavities	~ 1		0.2	1.5	0.6		Subspherical	More than 95 % of the cavities are empty.						
COMMENTS:														
Microphotos?	No													
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite								

THIN SECTION: ROCK NAME: GRAIN SIZE: TEXTURE:	Aphyric b Fine grain	ed	, ,	otropic, equi	OBSERVER: ML			
PRIMARY MINERALOGY	Percent	Percent	Percent Size (mm)			Approximate composition	Morphology	Comments
	Present	Original	min.	max.	av.			
Phenocrysts/clasts								
Groundmass/matrix								
Groundmass	~ 65		0.2	1.3	0.8	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx in intergranular to subophitic relationship with subhedral to euhedral skeletal to columnar pl and subhedral to euhedral equant mt. The space between skeletal pl is filled by microlites of cpx and dendritic op. Rare presence of pl microphenocrysts (max size ~ 2 mm).
Segregation vesicles	~ 30							Brownish. These vesicles are made up by acicular to skeletal pl, equant cpx and anhedral to euhedral, skeletal to acicular (often iso-oriented) op in a devitrified glassy matrix. These vesicles represent late stage magmatic melt.
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments
			min.	max.	av.			
Clay minerals	~ 2-3							Brownish, found in interstitial relation with groundmass pl, possibly replacing former glass, associated both with segregation vesicles and in cavities.
Vesicles/cavities								
Cavities	< 1						Subspherical	30% empty; $70%$ totally filled. The filling material can be clay minerals.
COMMENTS:								
Microphotos?	Yes							
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-Ti	oxides; mt = magnetite		

THIN SECTION:	200-1224	F-14R-2 65-6	8 cm (84)					OBSERVER: ML					
ROCK NAME:	Aphyric l	Aphyric basalt											
GRAIN SIZE:	Fine grained												
TEXTURE:	Intergranular to subophitic; isotopic, equigranular, holocrystalline												
PRIMARY MINERALOGY	Percent	Percent	ent Size (mm)			Approximate composition	Morphology	Comments					
	Present	Original	min.	max.	av.								
Phenocrysts/clasts													
Groundmass/matrix													
Groundmass	~ 65		0.2	1.4	0.8	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx in intergranular to subophitic relationship with subhedral to euhedral skeletal to columnar pl and subhedral to euhedral equant mt.					
Segregation vesicles	~ 30							Grey to brown. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny elongated op (ilmenite?) in a devitrified glassy matrix altered in brownish clay minerals. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of pl and mt crystals.					
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments					
			min.	max.	av.		,						
Clay minerals	~ 2-3							Brownish, found in interstitial relation with groundmass pl, possibly replacing former glass and associated both with segregation vesicles and in some small veins.					
Vesicles/cavities													
Veins	< 1				0.2			Brownish vein of clay minerals.					
COMMENTS:													
Microphotos?													
LEGEND:	ol = olivine	e; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-T	i oxides; mt = magnetite							

THIN SECTION: ROCK NAME:	200-1224F Aphyric b	-15R-1 88-90 pasalt) cm (85)		OBSERVER: ML							
GRAIN SIZE:	Fine grained											
TEXTURE:	Intergranular to subophitic; isotropic, equigranular, holocrystalline											
PRIMARY MINERALOGY	Percent	Percent		Size (mm)		Approximate composition	Morphology	Comments				
Phenocrysts/clasts	Present	Original	min.	max.	av.							
Groundmass/matrix Groundmass	~ 60		0.2	1.4	0.8	pl, cpx, op	Hypidiomorphic	Anhedral to subhedral pale yellow cpx (augite; $2V\gamma \sim 60^\circ$) in intergranular to subophitic relationship with subhedral to euhedral skeletal pl and equant op. Rare presence (< 1%) of bytownite ($2V\alpha \sim 90^\circ$) phenocrysts (max size ~ 3.2 mm).				
Segregation vesicles	~ 35							Grey to brown. These vesicles are made up by acicular to skeletal pl, equant cpx and tiny elongated op (ilmenite?) in a devitrified glassy matrix altered in brownish clay minerals. These vesicles represent late stage magmatic melt. The rapid cooling is responsible for the skeletal shape of pl and mt crystals.				
SECONDARY MINERALOGY	Percent			Size (mm)		Replacing/filling	Morphology	Comments				
			min.	max.	av.							
Clay minerals	~ 3							Brownish, found in interstitial relation with groundmass pl, possibly replacing former glass and associated both with segregation vesicles and in some small veins.				
Vesicles/cavities												
Veins	< 1				< 0.1			Brownish narrow veins filled by clay minerals.				
COMMENTS:												
Microphotos?	No											
LEGEND:	ol = olivine	; cpx = clinop	yroxene; p	l = plagioclase;	op = Fe-T	i oxides; mt = magnetite						