Bale, S.J., Goodman, K., Rochelle, P.A., Marchesi, J.R., Fry, J.C., Weightman, A.J., and Parkes, R.J., 1997. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int. J. Syst. Bacteriol., 47:515–521.
Berner, R.A., 1980. Early Diagenesis: A Theoretical Approach: Princeton, NJ (Princeton Univ. Press).
Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., and Pfannkuche, O., 2000. A marine microbial consortium apparently mediating the anaerobic oxidation of methane. Nature (London, U. K.), 407:623–626. doi:10.1038/35036572
Bolliger, C., Schroth, M.H., Bernasconi, S.M., Kleikemper, J., and Zeyer, J., 2001. Sulfur isotope fractionation during microbial sulphate reduction by toluene-degrading bacteria. Geochim. Cosmochim. Acta, 65(19):3289–3298. doi:10.1016/S0016-7037(01)00671-8
Borowski, W.S., Paull, C.K., and Ussler, W., III, 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24(7):655–658. doi:10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2
Böttcher, M.E., Boetius, A., and Rickert, D., 2000a. Sulfur isotope biogeochemistry related to intense microbial sulfate reduction and anaerobic methane oxidation in marine deep-sea sediments (Hydrate Ridge). J. Conf. Abstr., 5:230.
Böttcher, M.E., Brumsack, H.-J., and de Lange, G.J., 1998. Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters from the eastern Mediterranean. In Robertson, A.H.F., Emeis, K.-C., Richter, C., and Camerlenghi, A. (Eds.), Proc. ODP, Sci. Results, 160: College Station, TX (Ocean Drilling Program), 365–373. [PDF]
Böttcher, M.E., Brumsack, H.-J., Schipper, A., Arndt, S., and Hetzel, A., 2004a. Authigenic sulfur phases as recorders for black shale-triggered anaerobic oxidation of methane (ODP Leg 207). Eur. J. Mineral., 16:18.
Böttcher, M.E., Khim, B.-K., Suzuki, A., Gehre, M., Wortmann, U.G., and Brumsack, H.-J., 2004b. Microbial sulfate reduction in deep sediments of the southwest Pacific (ODP Leg 181: Sites 1119–1125): evidence from stable sulfur isotope fractionation and pore water modeling. Mar. Geol., 205(1–4):249–260. doi:10.1016/S0025-3227(04)00026-X
Böttcher, M.E., Rinna, J., Warning, B., Wehausen, R., Howell, M.W., Schnetger, B., Stein, R., Brumsack, H.-J., and Rullkötter, J., 2003. Geochemistry of sediments from the connection between the western and eastern Mediterranean Sea (Strait of Sicily, ODP Site 963). Palaeogeogr., Palaeoclimatol., Palaeoecol., 190:165–194. doi:10.1016/S0031-0182(02)00604-1
Böttcher, M.E., Schale, H., Schnetger, B., Wallmann, K., and Brumsack, H.-J., 2000b. Stable sulfur isotopes indicate net sulfate reduction in near-surface sediments of the deep Arabian Sea. Deep-Sea Res., Part II, 47:2769–2783.
Böttcher, M.E., and Schnetger, B., 2004. Direct measurement of the content and isotopic composition of sulfur in black shales by means of combustion-isotope-ratio-monitoring mass spectrometry (C-irmMS). In de Groot, P. (Ed.), Handbook of Stable Isotope Analytical Techniques: Amsterdam (Elsevier), 597–603.
Brady, S., and Gieskes, J.M., 1976. Interstitial water studies, Leg 34. In Yeats, R.S., Hart, S.R., et al., Init. Repts. DSDP, 34: Washington (U.S. Govt. Printing Office), 625–628.
Brüchert, V., Knoblauch, C., and Jørgensen, B.B., 2001. Controls on stable sulfur isotope fractionation during bacterial sulfate reduction in Arctic sediments. Geochim. Cosmochim. Acta, 65(5):763–776. doi:10.1016/S0016-7037(00)00557-3
Brumsack, H.J., Zuleger, E., Gohn, E., and Murray, R.W., 1992. Stable and radiogenic isotopes in pore waters from Leg 127, Japan Sea. In Pisciotto, K.A., Ingle, J.C., Jr., von Breymann, M.T., Barron, J., et al., Proc. ODP, Sci. Results, 127/128 (Pt. 1): College Station, TX (Ocean Drilling Program), 635–650.
Cameron, D.H., 1976. Carbon and carbonate analyses, Leg 34. In Yeats, R.S., Hart, S.R., et al., Init. Repts. DSDP, 34: Washington (U.S. Govt. Printing Office), 601–602.
Canfield, D.E., 1991. Sulfate reduction in deep-sea sediments. Am. J. Sci., 291:177–188.
Canfield, D.E., 2001. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta, 65(7):1117–1124. doi:10.1016/S0016-7037(00)00584-6
Canfield, D.E., and Thamdrup, B., 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science, 266:1973–1975.
Canfield, D.E., Thamdrup, B., and Fleischer, S., 1998. Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria. Limnol. Oceanogr., 43:235–264.
Chambers, L.A., and Trudinger, P.A., 1979. Microbiological fractionation of stable sulfur isotopes: a review and critique. Geomicrobiol. J., 1(3):249–293.
Chambers, L.A., Trudinger, P.A., Smith, J.W., and Burns, M.S., 1975. Fractionation of sulfur isotopes by continuous cultures of Desulfovibrio desulfuricans. Can. J. Microbiol., 21:1602–1609.
Claypool, G.E., 2004. Ventilation of marine sediments indicated by depth profiles of porewater sulfate and 34S. In Hill, R.J., Leventhal, J., Aizenshtat, Z., Beadecker, M.J., Claypool, G.E., Eganhouse, R., Goldhaber, M.B., and Peters, K. (Eds.), Geochemical Investigations in Earth and Space Science. Spec. Publ.—Geochem. Soc., 9:59–65.
Cypionka, H., Smock, A., and Böttcher, M.E., 1998. A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans. FEMS Microbiol. Lett., 166(2):181–186. doi:10.1016/S0378-1097(98)00330-9
D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., 2003. Proc. ODP, Init. Repts., 201 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML]
D'Hondt S., Jørgensen, B.B., Miller, D.J., Batzke, A., Blake, R., Cragg, B.A., Cypionka, H., Dickens, G.R., Ferdelman, T., Hinrichs, K.U., Holm, N.G., Mitterer, R., Spivack, A., Wang, G.Z., Bekins, B., Engelen, B., Ford, K., Gettemy, G., Rutherford, S.D., Sass, H., Skilbeck, C.G., Aiello, I.W., Guerin, G., House, C.H., Inagaki, F., Meister, P., Naehr, T., Niitsuma, S., Parkes, R.J., Schippers, A., Smith, D.C., Teske, A., Wiegel, J., Padilla, C.N., and Acosta, J.L.S., 2004. Distributions of microbial activities in deep subseafloor sediments. Science, 306:2216–2221. doi:10.1126/science.1101155
D'Hondt, S., Rutherford, S., and Spivack., A.J., 2002. Metabolic activity of the subsurface biosphere in deep-sea sediments. Science, 295:2067–2070. doi:10.1126/science.1064878
Detmers, J., Bruechert, V., Habicht, K., and Küver, J., 2001. Diversity of sulfur isotope fractionation by sulfate-reducing procaryotes. Appl. Environ. Microbiol., 76:888–894.
Ding, T., Bai, R., Li, Y., Wan, D., Zou, X., and Zhang, Q., 1999. Determination of the absolute 32S/34S ratio of IAEA-S-1 reference material and V-CDT sulfur isotope standard. Sci. China, Ser. D: Earth Sci., 42:45–51.
Emeis, K.-C., and Morse, J.W., 1990. Organic carbon, reduced sulfur, and iron relationships in sediments of the Peru margin, Sites 680 and 688. In Suess, E., von Huene, R., et al., Proc. ODP, Sci. Results, 112: College Station, TX (Ocean Drilling Program), 441–453.
Ferdelman, T., Fossing, H., Neumann, K., and Schulz, H.D., 1999. Sulfate reduction in surface sediments of the southwest Atlantic continental margin between 15°38´S and 27°57´S (Angola and Namibia). Limnol. Oceanogr., 44:650–661.
Fossing, H., Ferdelman, T.G., and Berg, P., 2000. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (south-east Atlantic off Namibia). Geochim. Cosmochim. Acta, 64:897–910. doi:10.1016/S0016-7037(99)00349-X
Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta, 43(7):1075–1090. doi:10.1016/0016-7037(79)90095-4
Giesemann, A., Jäger, H.-J., Norman, A.L., Krouse, H.R., and Brand, W.A., 1994. On-line sulphur isotope determination using an elemental analyzer coupled to a mass spectrometer. Anal. Chem., 66:2816–2819.
Gieskes, J.M., Gamo, T., and Brumsack, H., 1991. Chemical methods for interstitial water analysis aboard JOIDES Resolution. ODP Tech. Note, 15 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/tnotes/tn15/f_chem1.htm>. [Cited 2005-11-02]
Goldhaber, M.B., and Kaplan, I.R., 1974. The sulfur cycle. In Goldberg, E.D. (Ed.), The Sea (Vol. 5): Marine Chemistry: The Sedimentary Cycle: New York (Wiley-Interscience), 569–655.
Goldhaber, M.B., and Kaplan, I.R., 1980. Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California. Mar. Chem., 9:95–143. doi:10.1016/0304-4203(80)90063-8
Habicht, K.S., and Canfield, D.E., 2001. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology, 29:555–558. doi:10.1130/0091-7613(2001)029<0555:IFBSRN>2.0.CO;2
Habicht, K.S., Canfield, D.E., and Rethmeier, J., 1998. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochim. Cosmochim. Acta, 62:2585–2595. doi:10.1016/S0016-7037(98)00167-7
Hartmann, M., and Nielsen, H., 1969. 34S-Werte in rezenten Meeressedimenten und ihre Deutung am Beispiel einiger Sedimentprofile aus der westlichen Ostsee. Geol. Rundsch., 58:621–655.
Hoehler T.M., Alperin, M.J., and Martens, C.S., 1994. Field and laboratory studies of methane oxidation in an anoxic sediment—evidence for methanogen-sulfate reducer consortium. Global Biogeochem. Cycles, 8:451–463.
Jørgensen, B.B., 1979. A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochim. Cosmochim. Acta, 43:363–374. doi:10.1016/0016-7037(79)90201-1
Jørgensen, B.B., 1982. Mineralization of organic matter in the seabed—the role of sulphate reduction. Nature (London, U. K.), 296:643–645. doi:10.1038/296643a0
Jørgensen, B.B., Böttcher, M.E., Lüschen, H., Neretin, L.N., and Volkov, I.I., 2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim. Cosmochim. Acta, 68:2095–2118. doi:10.1016/j.gca.2003.07.017
Kaplan, I.R., and Rittenberg, S.C., 1964. Microbiological fractionation of sulfur isotopes. J. Gen. Microbiol., 34:195–212.
Longinelli, A., 1989. Oxygen-18 and sulphur-34 in dissolved oceanic sulphate and phosphate. In Fritz, P., and Fontes, J.C. (Eds.), The Marine Environment. Handb. Environ. Isot. Geochem., 3:219–255.
Manheim, F.T., and Sayles, F.L., 1974. Composition and origin of interstitial waters of marine sediments, based on deep sea drill cores. In Goldberg, E.D. (Ed.), The Sea (Vol. 5): Marine Chemistry: The Sedimentary Cycle: New York (Wiley), 527–568.
Mossmann, J.-R., Aplin, A.C., Curtis, C.D., and Coleman, M.L., 1990. Sulfur geochemistry at Sites 680 and 686 on the Peru margin. In Suess, E., von Huene, R., et al., Proc. ODP, Sci. Results, 112: College Station, TX (Ocean Drilling Program), 455–464.
Parkes, R.J., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochelle, P.A., Fry, J.C., Weightman, A.J., and Harvey, S.M., 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature (London, U. K.), 371:410–413. doi:10.1038/371410a0
Parkes, R.J., Webster, G., Cragg, B.A., Weightman, A.J., Newberry, C.J., Ferdelman, T.G., Kallmeyer, J., Jørgensen, B.B., Aiello, I.W., and Fry, J.C., 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature (London, U. K.), 436:390–394. doi:10.1038/nature03796
Paytan, A., Kastner, M., Campbell, D., and Thiemens, M.H., 1998. Sulfur isotopic composition of Cenozoic seawater sulfate. Science, 282:1459–1462. doi:10.1126/science.282.5393.1459
Paytan, A., Kastner, M., and Chavez, F., 1996. Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science, 274:1355–1357. doi:10.1126/science.274.5291.1355
Rudnicki, M.D., Elderfield, H., and Spiro, B., 2001. Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures. Geochim. Cosmochim. Acta, 65:777–789. doi:10.1016/S0016-7037(00)00579-2
Suess, E., 1980. Particulate organic carbon flux in the oceans: surface productivity and oxygen utilization. Nature (London, U. K.), 288:260–263. doi:10.1038/288260a0
Suess, E., von Huene, R., et al., 1988. Proc. ODP, Init. Repts., 112: College Station, TX (Ocean Drilling Program).
Torres, M.E., Brumsack, H.J., Bohrmann, G., and Emeis, K.C., 1996. Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chem. Geol., 127:125–139. doi:10.1016/0009-2541(95)00090-9
von Breymann, M.T., Emeis, K.-C., and Camerlenghi, A., 1990. Geochemistry of sediments from the Peru upwelling area: results from Sites 680, 682, 685, and 688. In Suess, E., von Huene, R., et al., Proc. ODP, Sci. Results, 112: College Station, TX (Ocean Drilling Program), 491–503.
Wortmann, U.G., Bernasconi, S.M., and Böttcher, M.E., 2001. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology, 29:647–650.
doi:10.1130/0091-7613(2001)029<0647:HDBIES>2.0.CO;2
Yeats, R.S., Hart, S.R., et al., 1976. Init. Repts DSDP, 34: Washington (U.S. Govt. Printing Office).
Zak, I., Sakai, H., and Kaplan, I.R., 1980. Factors controlling the 18O/16O and 34S/32S isotope ratios of ocean sulfates, evaporites and interstitial sulfates from modern deep sea sediments. In Goldberg, E.D., Horibe, Y., and Saruhashi, K. (Eds.), Isotope Marine Chemistry: Tokyo (Rokakuho), 339–373.