REFERENCES

Aharon, P., and Fu, B., 2000. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionation at oil and gas seeps in deepwater Gulf of Mexico. Geochim. Cosmochim. Acta, 4:233–246. doi:10.1016/S0016-7037(99)00292-6

Baker, P.A., Stout, P.M., Kastner, M., and Elderfield, H., 1991. Large-scale lateral advection of seawater through oceanic crust in the central equatorial Pacific. Earth Planet. Sci. Lett., 105:522–533. doi:10.1016/0012-821X(91)90189-O

Berner, R.A., 1971. Principles of Chemical Sedimentology: New York (McGraw-Hill).

Berner, R.A., 1980. Early Diagenesis: A Theoretical Approach: Princeton, NJ (Princeton Univ. Press).

Boudreau, B.P., and Westrich, J.T., 1984. The dependence of bacterial sulfate reduction on sulfate concentration in marine sediments. Geochim. Cosmochim. Acta, 48:2503–2516. doi:10.1016/0016-7037(84)90301-6

Böttcher, M.E., Bernasconi, S.M., and Brumsack, H.-J., 1999. Carbon, sulfur, and oxygen isotope geochemistry of interstitial waters from the western Mediterranean. In Zahn, R., Comas, M.C., and Klaus, A. (Eds.), Proc. ODP, Sci. Results, 161: College Station, TX (Ocean Drilling Program), 413–422. [HTML]

Böttcher, M.E., Brumsack, H.-J., and de Lange, G.J., 1998. Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters from the Eastern Mediterranean. In Robertson, A.H.F., Emeis, K.-C., Richter, C., and Camerlenghi, A. (Eds.), Proc. ODP, Sci. Results, 160: College Station, TX (Ocean Drilling Program), 365–373. [PDF]

Böttcher, M.E., Jørgensen, B.B, Kallymeyer, J., and Wehausen, R., 2004. S and O isotope fractionation in the western Black Sea. Geochim. Cosmochim. Acta, 68:A345.

Böttcher, M.E., Oelschläger, B., Höpner, T., Brumsack, H.-J., and Rullkötter, J., 1998. Sulfate reduction related to the early diagenetic degradation of organic matter and "black spot" formation in tidal sandflats of the German Wadden Sea: stable isotope (13C, 34S, 18O) and other geochemical results. Org. Geochem., 29:1517–1530. doi:10.1016/S0146-6380(98)00124-7

Böttcher, M.E., and Thamdrup, B., 2001. Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2. Geochim. Cosmochim. Acta, 65:1573–1581. doi:10.1016/S0016-7037(00)00622-0

Böttcher, M.E., Thamdrup, B., and Vennemann, T.W., 2001. Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur. Geochim. Cosmochim. Acta, 65:1601–1609. doi:10.1016/S0016-7037(00)00628-1

Bottrell, S.H., Parkes, R.J., Cragg, B.A., and Raiswell, R., 2000. Isotopic evidence for anoxic pyrite oxidation and stimulation of bacterial sulphate reduction in marine sediments. J. Geol. Soc. London, 157:711–714.

Brunner, B., Berasconi, S., Kleikemper, J., and Schroth, M.H., 2005. A model for oxygen and sulfur isotope fractionation in sulfate during bacterial sulfate reduction process. Geochim. Cosmochim. Acta, 69:4773–4785. doi:10.1016/j.gca.2005.04.017

Canfield, D.E., and Thamdrup, B., 1994. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science, 266:1973–1975.

Canfield, D.E., Thamdrup, B., and Fleischer, S., 1998. Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria. Limnol. Oceanogr., 43:235–264.

Chambers, L.A., and Trudinger, P.A., 1979. Microbiological fractionation of stable sulfur isotopes: a review and critique. Geomicrobiol. J., 1(3):249–293.

Chanton, J.P., Martens, C.S., and Goldhaber, M.B., 1987. Biogeochemical cycling in an organic-rich coastal marine basin, 8. A sulfur isotope budget balanced by differential diffusion across the sediment-water interface. Geochim. Cosmochim. Acta, 51:1201–1208. doi:10.1016/0016-7037(87)90212-2

Clesceri, L.S., Greenberg, A.E., and Trussell, R.R., 1989. Standard Methods for the Examination of Water and Wastewater, 17th ed.: Washington, D.C. (American Public Health Association).

Cypionka, H., Smock, A., and Böttcher, M.E., 1998. A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans. FEMS Microbiol. Lett., 166(2):181–186. doi:10.1016/S0378-1097(98)00330-9

D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., 2003. Proc. ODP, Init. Repts., 201 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. [HTML]

D'Hondt, S.D., Jørgensen, B.B., Miller, D.J., Batzke, A., Blake, R., Cragg, B.A., Cypionka, H., Dickens, G.R., Ferdelman, T., Hinrichs, K.-H., Holm, N.G., Mitterer, R., Spivack, A., Wang, G., Bekins, B., Engelen, B., Ford, K., Gettemy, G., Rutherford, S.D., Sass, H., Skilbeck, C.G., Aiello, I.W., Guerin, G., House, C., Inagaki, F., Meister, P., Naehr, T., Niitsuma, S., Parkes, R.J., Schippers, A., Smith, D.C., Teske, A., Wiegel, J., Naranjo Padillo, C., and Solis Acosta, J.L., 2004. Distributions of microbial activities in deep subseafloor sediments. Science, 306:2216–2221. doi:10.1126/science.1101155

Fritz, P., Basharmal, G.M., Drimmie, R.J., Ibsen, J., and Qureshi, R.M., 1989. Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem. Geol. (Isot. Geosc. Sec.), 79:99–105.

Gieskes, J.M., Gamo, T., and Brumsack, H., 1991. Chemical methods for interstitial water analysis aboard JOIDES Resolution. ODP Tech. Note, 15 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/tnotes/tn15/f_chem1.htm>. [Cited 2004-08-28]

Goldhaber, M.B., and Kaplan, I.R., 1974. The sulfur cycle. In Goldberg, E.D. (Ed.), The Sea (Vol. 5): Marine Chemistry: The Sedimentary Cycle: New York (Wiley-Interscience), 569–655.

Goldhaber, M.B., and Kaplan, I.R., 1980. Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California. Mar. Chem., 9:95–143. doi:10.1016/0304-4203(80)90063-8

Habicht, K.S., and Canfield, D.E., 1996. Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle. Nature (London, U. K.), 382:342–343. doi:10.1038/382342a0

Habicht, K.S., Canfield, D.E., and Rethmeier, J., 1998. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochim. Cosmochim. Acta, 62:2585–2595. doi:10.1016/S0016-7037(98)00167-7

Hensen, C., Zabel, M., Pfeifer, K., Schwenk, T., Kasten, S., Riedinger, N., Schulz, H.D., and Boetius, A., 2003. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments. Geochim. Cosmochim. Acta, 67:2631–2647. doi:10.1016/S0016-7037(03)00199-6

Jørgensen, B.B., 1979. A theoretical model of the stable sulfur isotope distribution in marine sediments. Geochim. Cosmochim. Acta, 43:363–374. doi:10.1016/0016-7037(79)90201-1

Jørgensen, B.B., 1990. A thiosulfate shunt in the sulfur cycle of marine sediments. Science, 249:152–154.

Jørgensen, B.B., Böttcher, M.E., Lüschen, H., Neretin, L.N., and Volkov, I.I., 2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim. Cosmochim. Acta, 68:2095–2118. doi:10.1016/j.gca.2003.07.017

Kaplan, I.R., Emery, K.O., and Rittenberg, S.C., 1963. The distribution and isotopic abundance of sulphur in Recent marine sediments off southern California. Geochim. Cosmochim. Acta, 27:297–331. doi:10.1016/0016-7037(63)90074-7

Kaplan, I.R., and Rittenberg, S.C., 1964. Microbiological fractionation of sulfur isotopes. J. Gen. Microbiol., 34:195–212.

Kemp, A.L., and Thode, H.G., 1968. The mechanism of the bacterial reduction of sulphate and of sulfite from isotope fractionation studies. Geochim. Cosmochim. Acta, 32:71–91. doi:10.1016/0016-7037(68)90088-4

Kornexl, B.E., Gehre, M., Höfling, R, and Werner, R.A., 1999. On-line 18O measurement of organic and inorganic substances. Rapid Commun. Mass Spectrom., 13:1685–1693.

Ku, T.C.W., Walter, L.M., Coleman, M.L., Blake, R.E., and Martini, A.M., 1999. Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, USA. Geochim. Cosmochim. Acta, 63:2529–2546. doi:10.1016/S0016-7037(99)00115-5

Lloyd, R.M., 1967. Oxygen-18 composition of oceanic sulfate. Science, 156:1228–1231.

Lloyd, R.M., 1968. Oxygen isotope behavior in the sulfate-water system. J. Geophys. Res., 73:6099–6110.

Longinelli, A., 1989. Oxygen-18 and sulphur-34 in dissolved oceanic sulphate and phosphate. In Fritz, P., and Fontes, J.C. (Eds.), Handbook of Environmental Isotope Geochemistry, 3:219–256.

Longinelli, A., and Craig, H., 1967. Oxygen-18 variations in sulfate ions in sea-water and saline lakes. Science, 146:56–59.

Mandernack, K.W., Krouse, H.R., and Skei, J.M., 2003. A stable sulfur and oxygen isotopic investigation of sulfur cycling in an anoxic marine basin, Framvaren Fjord, Norway. Chem. Geol., 195:181–200. doi:10.1016/S0009-2541(02)00394-7

Manheim, F.T., and Sayles, F.L., 1974. Composition and origin of interstitial waters of marine sediments, based on deep sea drill cores. In Goldberg, E.D. (Ed.), The Sea (Vol. 5): Marine Chemistry: The Sedimentary Cycle: New York (Wiley), 527–568.

Mizutani, Y., and Rafter, T.A., 1973. Isotopic behaviour of sulphate oxygen in the bacterial reduction of sulphate. Geochem. J., 6:183–191.

Niewöhner, C., Henson, C., Kasten, S., Zabel, M., and Schultz, H.D., 1998. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Nambia. Geochim. Cosmochim. Acta, 62:455–464. doi:10.1016/S0016-7037(98)00055-6

Oyun, S., Elderfield, H., and Klinkhammer, G.P., 1995. Strontium isotopes in pore waters of east equatorial Pacific sediments: indicators of seawater advection through oceanic crust and sediments. In Pisias, N.G., Mayer, L.A., Janecek, T.R., Palmer-Julson, A., and van Andel, T.H. (Eds.), Proc. ODP, Sci. Results, 138: College Station, TX (Ocean Drilling Program), 813–819.

Pierre, C., 1985. Isotopic evidence for the dynamic redox cycle of dissolved sulphur compounds between free and interstitial solutions in marine salt pans. Chem. Geol., 53:191–196. doi:10.1016/0009-2541(85)90068-3

Rees, C.E., 1973. A steady state model for sulfur isotope fractionation in bacterial reduction processes. Geochim. Cosmochim. Acta, 37:1141–1162. doi:10.1016/0016-7037(73)90052-5

Taylor, B.E., Wheeler, M.C., and Nordstrom, D.K., 1984. Stable isotope geochemistry of acid mine drainage: experimental oxidation of pyrite. Geochim. Cosmochim. Acta, 48:2669–2678. doi:10.1016/0016-7037(84)90315-6

van Stempvoort, D.R., and Krouse, H.R., 1994. Controls of 18O in sulfate: review of experimental data and application to specific environments. In Alpers, C.N., and Blowes, D.W. (Eds.), Environmental Geochemistry of Sulfide Oxidation (Amer. Chem. Soc. Sympos. Ser.), 466–480.

Zak, I., Sakai, H., and Kaplan, I.R., 1980. Factors controlling the 18O/16O and 34S/32S isotope ratios of ocean sulfates, evaporites and interstitial sulfates from modern deep sea sediments. In Goldberg, E.D., Horibe, Y., and Saruhashi, K. (Eds.), Isotope Marine Chemistry: Tokyo (Rokakuho), 339–373.