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INTRODUCTION

As part of a wider paleoclimate and paleoceanographic study of Ho-
locene–upper Pleistocene laminated sediments from the eastern equato-
rial Pacific and Peru continental margin, we completed 32 accelerator
mass spectrometry (AMS) 14C dates from cores recovered during Ocean
Drilling Program (ODP) Leg 201. Sample preparation and measurement
were carried out at the ANTARES AMS facility, Australian Nuclear Sci-
ence and Technology Organisation (ANSTO), in Sydney, Australia (Law-
son et al., 2000; Fink et al., 2004). Although the sediments are
predominantly diatomaceous oozes (D’Hondt, Jørgensen, Miller, et al.,
2003), they contain sufficient inorganic (e.g., foraminifer tests and nan-
nofossil plates) and organic (Meister et al., this volume) carbon to al-
low 14C dating. These dates permitted us to reconstruct a history of
sediment accumulation over the past 20 k.y., particularly on the Peru
continental margin.

During previous ODP legs in the eastern equatorial Pacific (Leg 138;
Mayer, Pisias, Janecek, et al., 1992) and the Peru continental margin
(Leg 112; Suess, von Huene, et al., 1988), dating of upper Pleistocene–
Holocene sections was determined by biostratigraphic study of several
microfossil groups, including calcareous nannofossils, planktonic fora-
minifers, radiolarians, and diatoms. These studies only allowed division
of the sections within a broad chronological range of ~100 k.y. in the
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Quaternary. More often than not, however, the uppermost parts of
cores have been lumped together as “Quaternary” or “Holocene–Pleis-
tocene” (Mayer, Pisias, Janecek, et al., 1992; Suess, von Huene, et al.,
1988). Previous studies of sedimentary records off the coast of central
Peru have employed radiocarbon dating. De Vries and Schrader (1981)
undertook a study of the upwelling record through analysis of diatom
taxonomy over the Holocene Marine Oxygen Isotope (MOI) Stage 2 de-
glaciation (from ~25 to 10 ka; also named the last glacial–interglacial
transition [LGIT]), and their data suggest the presence of several local-
ized unconformities throughout this part of the record. More recently,
Rein et al. (2003) reported 42 AMS 14C dates from the study of an 11-m
core (106 KL) spanning the period from Last Glacial Maximum (LGM)
to present from the vicinity of Sites 1228 and 1229.

In this report we present 14C AMS dates and other pertinent data
from cores from Sites 1227, 1228, and 1229 collected during Leg 201 at
the Peru continental margin. The majority of these are either in correct
stratigraphic order or, where this is not the case, within the 2σ range of
adjacent dates. Regardless, groups of between five and six consecutive
(with respect to depth) radiocarbon ages define consistent linear sedi-
mentation rates with a high degree of confidence (R2 > 0.9) for the late
Holocene and part of the LGIT period. Fewer dates are available for the
lower Holocene section, and these cannot be interpreted with confi-
dence; however, they do suggest a significantly lower early Holocene
sedimentation rate compared with either the late Holocene or the LGIT
(MOI Stage 2) periods. Six radiocarbon ages from the stratigraphically
deepest part of the section dated in Hole 1228B yielded late MOI Stage 3
ages ranging from 28,740 to 44,550 radiocarbon yr. The age-depth pro-
file for these samples is not as well defined as those for the later periods
cited above. With an R2 approximately equal to 0.1 and inverse strati-
graphic ordering, no conclusion can be made with respect to estimation
of a reliable sedimentation rate. This could be a result of the very low
total carbon contents of these samples (<3 wt%), which may lead to in-
consistencies in extracting a uniform component of organic carbon
during sample processing, inhomogeneity in carbon distribution in the
sediment, and/or postdepositional alteration of carbon through the
sample profile, which may invert stratigraphic control. The results,
therefore, are not considered reliable enough to be used for further
high-resolution studies. We obtained only single radiocarbon ages for
sediment samples from the uppermost parts of the sedimentary section
at Sites 1225, 1226, 1230, and 1231 for the reasons discussed below.

METHODS

In all cases, radiocarbon ages were obtained from the organic carbon
fraction extracted from bulk sediment samples cut from 1-cm-thick
sample slices taken from the sample half of the nominated core. Sam-
ples were pretreated with addition of dilute 2-M HCl for 3 hr at 60°C in
order to remove any carbonate materials, including microfossils and de-
trital matter. The residue was then washed three times with water,
dried, and combusted to convert all organic carbon to CO2. The CO2

was reduced to graphite by conventional means (Hua et al., 2001). All
sample processing steps were carried out at ANSTO. AMS measurements
were carried out at the ANSTO ANTARES AMS facility. All Holocene 14C
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dates were completed with radiocarbon age precision between 0.3%
and 0.7% error (Fink et al., 2004).

The initial sample batch collected during Leg 201 (sample numbers
OZG and OZF in Table T1) were shipped under frozen carbon dioxide
from Valparaiso, Chile, to Sydney and then refrigerated until analysis. A
second batch of samples (sample numbers OZH in Table T1) was dis-
patched from the Gulf Coast Core Repository at Texas A&M University
(TAMU; USA) under ice and similarly refrigerated until analysis. Ini-
tially, a single sample from a depth between ~10 and 20 cm at each site
was 14C dated. For those yielding sedimentation rates of <5 cm/k.y., no
further age dating was carried out, as the sedimentation rate was too
low to allow subcentury resolution for geochemical, magnetic suscepti-
bility, or reflected light study for paleoceanographic purposes. This re-
sulted in solitary 14C dates for uppermost sections (approximately <20
cm) at Sites 1225, 1226, 1230, and 1231. The stratigraphic position of
these dated samples within each core and geographic core location are
shown in Figure F1. Comprehensive dating of a core from each of the
remaining three sites (1227, 1228, and 1229), all from the Peru conti-
nental margin, was then carried out. Sedimentation patterns and the
stratigraphy defined by the dates are discussed in the following section.

RESULTS

Conventional radiocarbon and calibrated ages are given in Table T1.
Calibrations were carried out using the CALIB program (Stuiver and Re-
imer, 1993; v4.4.2) with the MARINE98 calibration curve. The local ma-
rine reservoir correction used was ΔR = 238 ± 49 (Marine Reservoir
Correction Database [MRCD; radiocarbon.pa.qub.ac.uk/marine/; Re-
imer and Reimer, 2001, supplementary material at www.calib.org] Site
108 [Taylor and Berger, 1967]) for Sites 1227–1231 and ΔR = 58 ± 47
(MRCD Site 107) for Sites 1225 and 1226. We are aware that the ΔR cor-
rections of Taylor and Berger (1967) have been obtained from coastal
shell samples and so probably represent the 14C reservoir effect of sur-
face waters rather than that of the seabed. Given that deep waters usu-
ally have an older 14C age than surface waters, our use of this ΔR
correction should be considered as a minimum correction. Regardless of
the age relative to present (AD 1950), application of a constant ΔR
downcore will allow us to calculate sediment accumulation rates that
can be reliably compared, unless there have been significant fluctua-
tions in atmospheric radiometric carbon production over the accumula-
tion interval.

For all dates that fall within the marine calibration range (i.e., those
less than ~21 ka), with the exceptions of Samples 201-1228B-1H-2, 92–
93 cm (OZG107); 60–61 cm (OZH149); and 179–80 cm (OZH150), the
age quoted in Table T1 is the median probability age, and the error is
plus or minus one-half of the second standard deviation range, which
contains 100% of the probability distribution. For the three exceptions
listed above, the error is plus or minus one-half of the first standard de-
viation range containing the largest proportion of the probability distri-
bution, these being 73%, 82%, and 52%, respectively. All ages and
errors have been rounded according to the conventions of Stuiver and
Polach (1977). With one exception (the reversal of ages for Samples
201-1227B-1H-1, 26–27 cm, and 54–56 cm, which we consider to be
equivalent within the 1σ error), all other 14C ages obtained for the Ho-
locene and LGIT core sections are in correct stratigraphic order.

T1. 14C dates, p. 14.
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The radiocarbon ages obtained in this study allow division of the
stratigraphic section at the Peru continental margin sites into an upper-
most Holocene section underlain by an upper Pleistocene (MOI Stages 2
and 3) interval, where both are present. As described below, these can
be equated with subtle changes in the lithostratigraphy. They reveal
that the Holocene is probably not present at Site 1227 but is repre-
sented by >2 m of core at both Sites 1228 and 1229.

STRATIGRAPHY

All core photographs shown in Figures F1 and F2 have been digitally
contrast enhanced using Adobe Photoshop 7.0 to highlight visible
lithostratigraphy. Although the actual contrast and brightness modifi-
cation applied was different for each image, they were applied uni-
formly to each image individually, so that relative differences within
each image are retained.

Single-Date Sites

Images of the four cores with single 14C ages are shown in Figure F1.
Detailed high-resolution chronological division of these sections is not
possible, but examination of the single age dates and their relationship
to the visible lithology suggests that decimeter-scale layering is present
in the uppermost parts of at least three of the four images (representing
the uppermost parts of Holes 1225B, 1226C, and 1230D). At Site 1225,
the banding comprises alternations of paler and darker predominantly
nannofossil ooze. The boundaries between the layers are gradational,
and the layers themselves are mottled, indicating bioturbation (Ship-
board Scientific Party, 2003a). At Sites 1226 and 1230, the cyclicity is of
the same magnitude and style, comprising alternations of nannofossil
(paler color) and diatom ooze, but a higher clay content, represented by
the increase in greenish gray color in the sediments, is attributed to in-
creasing proximity to the South American continent. The layering in
cores from Site 1231 is similar to that at Sites 1226 and 1230, but there
is a sharp curvilinear discontinuity at 27 cm below seafloor (cmbsf) sep-
arating mottled reddish brown sediments above from gray-green ooze
below. We suspect this boundary represents an unconformity. A thin, 5-
cm brownish layer is present at the top of Hole 1226B, but this unit has
a gradational lower boundary and is more similar to the brownish gray
layers in Hole 1225B that the Shipboard Scientific Party (2003a) de-
scribed as containing Mn and iron oxides, attributed to redox processes.

Peru Margin Holocene

A 2.0- to 2.5-m Holocene section is present at Sites 1228 and 1229
(Fig. F2). Holocene sediments are absent at Site 1227. The sediments are
nannofossil-bearing diatom oozes with subordinate quartz and clay
(Shipboard Scientific Party, 2003b).

In both Holes 1228B and 1229E, the Holocene section is character-
ized by subtle, fine laminations at millimeter to submillimeter scale.
The Holocene has an overall slightly darker olive green–gray color com-
pared with underlying upper Pleistocene sediments. This subtle differ-
ence can be attributed to slightly higher total organic carbon (TOC)
values in the Holocene section (Meister et al., this volume; Watson,
2003), a slightly higher clay content, and a slightly lower carbonate per-
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centage overall, although there are significantly different values be-
tween the pale and dark laminae for each of these components in both
the Holocene and upper Pleistocene deglaciation sections.

Peru Margin Last Glacial–Interglacial Transition

Almost 6 m of latest Pleistocene deglaciation sediments are present
in Hole 1227B (Fig. F2). These strata are finely laminated at millimeter
to submillimeter scale with the laminations more obvious than in the
overlying Holocene section. The increased visibility of the laminations
is a result of increasing contrast between the darker and lighter layers,
with the latter being overwhelmingly dominated by diatom frustules
(Shipboard Scientific Party, 2003b). The upper Pleistocene section over-
all has a paler greenish gray color compared with the overlying Ho-
locene section, with the boundary between the two being gradational
at both Sites 1228 and 1229.

A much thinner LGIT section is present in Hole 1228B, represented
by <50 cm of stratigraphic section, and we cannot discount the pres-
ence of an unconformity between 2.7 and 3.0 mbsf in Hole 1228B. Such
unconformities or depositional hiatuses are common throughout the
Quaternary section (De Vries and Schrader, 1981; Reinhardt et al.,
2002), where they are attributed by the latter authors to variations in
activity of the poleward moving undercurrent on the shelf. Late Pleis-
tocene sediment older than the LGM (i.e., MOI Stage 3) is identical in
composition and stratification to post-LGM sediments, and so it is not
possible to distinguish them on lithostratigraphic grounds. We believe
we can extrapolate the Holocene/Pleistocene boundary in Hole 1229E
to 270 cmbsf, based on the lithostratigraphic criteria described above,
but would not be confident in assigning post- and pre-LGM ages to the
sediment beneath this level in the absence of radiocarbon ages.

SEDIMENTATION RATES

Single-Date Cores

Sedimentation rates determined for the equatorial upwelling (Sites
1225 and 1226), open-ocean (Site 1231), and Peru Trench (Site 1230)
sites are based on single dates for depths <23 cmbsf and assume the sea-
floor at 0 cm to be 0 ka. Rates calculated for these sites are 1.8, 2.4, 1.5,
and 2.0 cm/k.y., respectively (Table T2). These values fit well within the
average sedimentation rate range determined by Hagelberg et al. (1995)
for the 0- to 5-Ma sections of cores recovered from approximately the
same sites during Leg 138 (Site 1225 at Site 851 and Site 1226 at Site
846). In these cases, the sequences were determined by gamma ray at-
tenuation density data to be stratigraphically continuous, and the ages
were yielded biostratigraphically. Overall, these sedimentation rates are
also comparable with those from elsewhere in the equatorial eastern Pa-
cific, such as the 2.5- to 5.0-cm/k.y. sedimentation rates reported by Lea
et al. (2000) from the Cocos Ridge just north of the equatorial up-
welling zone in the eastern Pacific.

T2. Sedimentation rate summary, 
p. 15.
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Age-Depth Profiles for Peru Margin Cores

Sedimentation rates for the Peru margin sites have been calculated
from linear regression fits to multiple data points where these are avail-
able (Fig. F3), and the results are summarized in Table T2.

Hole 1227B

Holocene sediments are absent in Hole 1227B, with ~15.7 k.y. of sed-
iment missing at the top of the hole. A continuous 1500-yr section de-
fined by five radiocarbon ages is present below 26 cmbsf (Fig. F3A). This
section spans the early part of the LGIT from ~15.7 to 17.2 ka. We esti-
mate an accumulation rate of ~265 cm/k.y., nearly three times that of
late Holocene. This period of extremely high sedimentation can proba-
bly be extended back to just prior to the LGM at ~21.5 ka.

Holes 1228B and 1229E

Well preserved upper Holocene sections are present at both Sites
1228 and 1229. At both they contain a sedimentation interval span-
ning 0 to ~2.8 ka that is characterized by sedimentation rates between
70 and 100 cm/k.y. (Fig. F3; Table T2). We are confident that in both
Holes 1228B and 1229E a continuous section is present from the surface
to ~2.8 ka.

In both Holes 1228B and 1229E the middle to early Holocene is rep-
resented by a much thinner stratigraphic section with fewer (Hole
1228B) or no (Hole 1229E) radiocarbon ages, and although we believe
we can identify the base of the Holocene in the latter hole, we cannot
be confident that unconformities are not present in this interval at
both sites. Possible locations of breaks based on lithostratigraphic crite-
ria are between 195 and 200 cmbsf in Hole 1228B and at ~250 cmbsf in
Hole 1229E. With these possibilities in mind, average sediment accu-
mulation rates over the middle–early Holocene were ~4–6 cm/k.y. at
both sites.

A thin, 1000-yr duration deglaciation section at the Holocene/Pleis-
tocene transition is present in Hole 1228B and is defined by three radio-
carbon dates that yield a sedimentation rate of ~30 cm/k.y. (Table T2).
This section can probably be extrapolated to ~270 cmbsf with a result-
ant age span increase of ~900 yr, from 10.2 to 12.2 ka.

The six late MOI Stage 3 radiocarbon ages from Hole 1228B (Fig. F3)
do not represent a coherent data set for the reasons outlined above, and
a repeat measurement on Sample 201-1228B-1H-3, 22–23 cm (OZG472
and OZH143), further exemplifies the problems where there is low re-
sidual modern carbon. Nevertheless, linear regression through these
data points yields a sedimentation rate of ~20 cm/k.y., which is not in-
compatible with lithologically similar sediments from the uppermost
Pleistocene deglaciation section in the same hole. We note, however,
that the very high sedimentation rate early deglaciation section present
in Hole 1227B is probably absent at these more southerly and shallower
water sites.
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DISCUSSION

Equatorial Pacific Upwelling, Peru Basin and Trench

Ages from the sites with single age dates (Site 1225, 1226, 1230, and
1231) suggest a typical oceanic pattern of precessional Milankovitch
marine glacial–interglacial bedding (cf. Hodell, 1993) but with a clearly
increasing terrestrial influence from west to east. Sediments are domi-
nantly pelagic marine microfossil oozes but with variable amounts of
clay and other terrestrial components. Sedimentation rates revealed by
the 14C dates are not considered unusual.

Peru Margin

The Peru continental margin is a shelf area dominated by upwelling
and bottom-flowing countercurrents over at least the last 40 k.y. These
currents prevent supply of oxygen to the bottom waters, as manifested
by the absence of bioturbation and finely laminated sediments and ad-
ditionally result in a number of localized sedimentation hiatuses or un-
conformities (De Vries and Schrader, 1981), particularly in water depths
between 250 and 400 m (Reinhardt et al., 2002). The localized nature of
unconformities is demonstrated by the absence of correlation between
northernmost Site 1227 and southern Sites 1228 and 1229. In the
north, Holocene and latest Pleistocene sediments are absent, and a well-
developed late Pleistocene early deglaciation sequence accumulated at
the considerable rate of 265 cm/k.y. for at least 1500 yr. The commence-
ment of the rapid sedimentation at ~17.2 ka corresponds almost exactly
with the onset of El Niño-Southern Oscillation activity proposed by
Rein et al. (2003). The same time interval at Sites 1228 and 1229 is rep-
resented either by absent sections or very low sedimentation rates. Our
interpretation is that initial melting of high-Andean glaciers after the
LGM resulted in a flood of material and possibly nutrients to the shelf,
but deposition on the shelf was not uniform at this time. Clearly, in
some areas, particularly nearer the shoreline, sediment bypass or ero-
sion took place.

In contrast, Holocene sedimentation is present at both Sites 1228
and 1229 but is absent from Site 1227. Within the Holocene, however,
early to middle Holocene sedimentation (10.0–2.8 ka) was either very
slow or missing. This observation corresponds with the findings of
other authors that the Peruvian margin and hinterland was undergoing
drought, at least during the period between 10.0 and 5 ka (Rein et al.,
2003; Moy et al., 2002; Sandweiss et al., 1996), possibly as far back as
15.0 ka (Hebbeln et al., 2002). Most authors attribute this drought to
the absence or reduction of El Niño during this period, resulting in
much reduced precipitation along the northern South American hinter-
land.

The onset of more rapid sedimentation from 2.8 ka coincides with
the timing of marked climate changes reported from Chile by Van Geel
et al. (2000), which they interpreted to be a result of solar-induced
changes to atmospheric circulation. At this stage, we cannot determine
with confidence whether the high sedimentation rates along the Peru
margin during the early part of deglaciation were enhanced by the on-
set of El Niño or were purely a result of glacial outwash, although Skil-
beck et al. (2004) suggested the presence of El Niño cyclicity in these
sediments. Our data do support a pattern whereby high sedimentation



C.G. SKILBECK AND D. FINK
DATA REPORT: RADIOCARBON DATING AND SEDIMENTATION RATES 8
rates existed from at least 17.2–15.7 ka, were reduced between ~12.0
and 2.8 ka, and then accelerated again over the past 2800 yr.
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Figure F3. Sedimentation rates for Peru margin Sites (A) 1227, (B) 1228, and (C) 1229. Projected base of
Holocene shown in C was determined from lithostratigraphy (see Fig. F2, p. 12). Regression coefficients of
1.0 indicate only two dates used. MOI = Marine Oxygen Isotope, cal yr BP = calibrated year before present.
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Table T1. Conventional and calibrated 14C dates.

Notes: All analyses were carried out at the ANSTO ANTARES AMS laboratory at Lucas Heights in Syd-
ney, Australia, on bulk marine sediment samples and calculated using δ13C relative to Peedee
belemnite as shown. Calibrations were carried out using the CALIB program (Stuiver and Reimer,
1993; v4.4.2) with the MARINE98 calibration curve. The local marine reservoir correction in all
cases is ΔR = 238 ± 49, with the exception of Sites 1225 and 1226, where a value of ΔR = 58 ± 47
was used. Conventional radiocarbon ages and errors are unrounded. Rounding of calibrated ages
was carried out according to the protocols of Stuiver and Polach (1977). BP = before present, * =
assumed values, † = repeat measurement on adjacent sample from same depth in core.

Core, section, 
interval (cm)

Laboratory 
code

Conventional 
14C date 
(yr BP)

1σ 
error

Calibrated 
14C date 

(cal yr BP)
1σ 

error
δ13C 
(‰)

Depth 
(cmbsf)

Geographic 
location

201-1225B-
1H-1, 9–10 OZF998 5,310 43 5,610 60 –20.7 9 2°46′N, 110°34′W

201-1226C-
1H-1, 12–13 OZG004 5,064 44 5,360 70 –21 12 3°6′S, 90°49′W

201-1227B-
1H-1, 26–27 OZG474 13,956 84 15,890 250 –21.0* 26 8°59′S, 79°57′W
1H-1, 54–56 OZG475 13,796 78 15,690 270 –21.0* 55 8°59′S, 79°57′W
1H-1, 84–85 OZG105 14,141 67 16,100 240 –21.0* 84 8°59′S, 79°57′W
1H-2, 109–110 OZG104 14,528 75 16,550 250 –20.3 259 8°59′S, 79°57′W
1H-3, 97–98 OZG103 15,103 107 17,220 280 –21.0* 397 8°59′S, 79°57′W
2H-1, 55–57 OZG106 21,439 122 21,410 130 –21.7 556 8°59′S, 79°57′W

201-1228B-
1H-1, 20–21 OZG001 1,142 39 520 50 –21.0* 20 11°4′S, 78°5′W
1H-1, 39–40 OZH144 1,449 50 760 70 –20.1 39 11°4′S, 78°5′W
1H-1, 69–70 OZH145 1,902 35 1,220 50 –20.8 69 11°4′S, 78°5′W
1H-1, 94–95 OZH146 2,134 36 1,440 70 –20.9 94 11°4′S, 78°5′W
1H-1, 140–141 OZH147 2,550 36 1,920 70 –20.3 140 11°4′S, 78°5′W
1H-2, 15–16 OZH148 3,251 45 2,790 60 –21.0* 165 11°4′S, 78°5′W
1H-2, 40–41 OZG109 5,151 40 5,230 100 –21.6 190 11°4′S, 78°5′W
1H-2, 60–61 OZH149 9,793 50 10,230 130 –21.5 210 11°4′S, 78°5′W
1H-2, 79–80 OZH150 10,042 82 10,580 90 –19.7 229 11°4′S, 78°5′W
1H-2, 92–93 OZG107 10,648 58 11,360 170 –21.7 242 11°4′S, 78°5′W
1H-3, 15–16 OZH151 42,879 760 42,900 800 –21.3 315 11°4′S, 78°5′W
1H-3, 22–23 OZG472 28,779 251 28,740 250 –20.5 322 11°4′S, 78°5′W
1H-3, 22–23† OZH143 37,446 599 37,450 600 –21.0* 322 11°4′S, 78°5′W
1H-3, 69–70 OZH152 44,554 935 44,550 950 –20.5 369 11°4′S, 78°5′W
1H-3, 98–99 OZH153 44,095 883 44,050 900 –21.3 398 11°4′S, 78°5′W
1H-3, 99–100 OZG473 36,156 514 36,160 520 –21.0* 399 11°4′S, 78°5′W

201-1229E-
1H-1, 20–21 OZG002 1,331 42 650 60 –21.0* 20 10°59′S, 77°57′W
1H-1, 61–62 OZH154 1,484 35 790 70 –20.3 61 10°59′S, 77°57′W
1H-1, 109–110 OZG108 1,884 30 1,200 60 –20.8 109 10°59′S, 77°57′W
1H-1, 139–140 OZH155 2,313 32 1,650 70 –20.5 139 10°59′S, 77°57′W
1H-2, 36–37 OZH156 2,501 49 1,870 80 –21.3 186 10°59′S, 77°57′W
1H-2, 80–81 OZH157 3,348 42 2,880 80 –20.7 230 10°59′S, 77°57′W

201-1230D-
1H-1, 10–11 OZG003 5,478 40 5,600 60 –23.4 10 9°7′S, 80°35′W

201-1231C-
1H-1, 23–24 OZG005 14,059 89 16,010 250 –21.5 23 12°1′S, 81°54′W



C.G. SKILBECK AND D. FINK
DATA REPORT: RADIOCARBON DATING AND SEDIMENTATION RATES 15
Table T2. Summary of sediment accumulation rates deter-
mined using 14C chronology.

Notes: Rates shown in italics are based on two dates only. In some cases,
one of the dates is assumed, either seafloor age of 0 yr or base Holocene
in Hole 1229E. — = coefficient not used.

Hole
Depth 

(cmbsf)
Geological 

period

Correlation 
coefficient 

(R2)

Sediment 
accumulation 
rate (cm/k.y.)

1225B 0–10 Holocene — 1.8
1226B 0–13 Holocene — 2.4
1227B 0–21 latest Holocene — 116.7

26–398 Late last deglaciation 0.95 266.8
1228B 0–21 latest Holocene — 40.4

20–166 late Holocene 0.96 70.1
190–211 early–middle Holocene — 4
210–243 Late last deglaciation 0.9 29.3
315–400 Late MOI Stage 3 0.11 19.2

1229E 0–21 latest Holocene — 32.3
20–231 late Holocene 0.93 98.1

230–270 early–middle Holocene — 5.1
1230D 0–11 Holocene — 2
1231C 0–24 Holocene–late last deglaciation — 1.5
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