|        | _                |                  |          | Cor       | 'e 1        | 240    | A-1H    | (        | Cored                                                       | interval: 0.0-3.5 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|------------------|------------------|----------|-----------|-------------|--------|---------|----------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE                                                      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |                  |                  |          |           |             |        |         |          |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| - 2.   | 4 3 2 1<br>1     |                  |          |           | 1           |        |         | 000      | SS<br>SS<br>SS<br>CAR<br>IW<br>PP<br>SS<br>CAR<br>IW<br>PAL | <ul> <li>DIATOM-BEARING NANNOFOSSIL OOZE and<br/>CLAY-BEARING NANNOFOSSIL OOZE</li> <li>This core is dominated by dark olive brown to pale olive,<br/>grayish olive, and light olive brown diatom-bearing<br/>nannofossil ooze and clay-bearing nannofossil ooze.<br/>Color mottled and black spots are frequent throughout<br/>the core and few vertical burrows are also present.<br/>Foraminifers are visible throughout the surface of the<br/>core. The top 50cm is very soupy.</li> </ul> |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Core 124                             | 10A-2H            | (Cored interval: 3.5-13.0 mbsf) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| METERS<br>CORE AND SECTION<br>GRAPHIC<br>LITH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BIOTURB.<br>STRUCTURE<br>ACCESSORIES | ICHNO.<br>FOSSILS | DISTURB.                        | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| -4 -<br>-6 -<br>-8 -<br>-10 -<br>-12 -<br>-12 -<br>-4 -<br>-14 - |                                      |                   | 000                             | SCAPPIN PP CAN PP SCAN PP CAN | DIATOM-BEARING NANNOFOSSIL OOZE, CLAY<br>DIATOM FORAMINIFER-BEARING NANNOFOSSIL<br>OOZE and NANNOFOSSIL OOZE<br>This core contains diatom-bearing nannofossil ooze, and<br>nannofossil ooze. Sediment color varies between<br>olive, pale olive and light olive gray. Mottles and<br>burrows, including Zoophycos traces, are common.<br>The mottling and often the outer rim of burrows is<br>purple-gray in color. Shell fragments are present in<br>Sections 2 and 6, including gastropods. The upper 50<br>cm are soupy. |  |  |

|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | (        | Core      | 124         | <b>0</b> A | -3H     | (Cored interval: 13.0-22.5 mbsf) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|-----------|-------------|------------|---------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| METERS                               | CORE AND SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO.     | FOSSILS | DISTURB.                         | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |          |           |             |            |         | 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| -14-<br>-16-<br>-18.<br>-20-<br>-22- | 3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 |                  |          |           |             | 2          |         |                                  | SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>SSSAR<br>S<br>SSSAR<br>SSAR<br>SSSAR<br>SSSAR | <ul> <li>CLAY DIATOM-BEARING NANNOFOSSIL OOZE,<br/>DIATOM SPICULE-BEARING NANNOFOSSIL OOZE,<br/>FORAMINIFER-BEARING NANNOFOSSIL OOZE, and<br/>NANNOFOSSIL OOZE</li> <li>This core contains clay-bearing nannofossil ooze,<br/>diatom spicule-bearing nannofossil ooze, and nannofossil<br/>ooze. Sediment color varies between light olive gray<br/>and light gray with abundant purple-gray color<br/>mottling. Section 1, 5-12 cm sediment show<br/>laminations and is composed by clay bearing<br/>nannofossil ooze. Burrows and Zoophycos traces,<br/>often outlined in purple-gray, are frequent. Sediment is<br/>mottled and bioturbated.</li> </ul> |  |  |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |          |           |             |            |         |                                  | ► PAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |

| Core 1240A-4H                        |                  |                  |          |                                  |             |        |         |          | (Cored interval: 22.5-32.0 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|--------------------------------------|------------------|------------------|----------|----------------------------------|-------------|--------|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| METERS                               | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE                        | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| -24-<br>-26-<br>-28-<br>-30-<br>-32- | β76544321<br>1   |                  |          | <b>₽</b><br><b>₽</b><br><b>₩</b> |             |        |         | 000      | SS<br>PP<br>CAR<br>CAR<br>PP<br>IW<br>CAR<br>PP<br>CAR<br>IW<br>CAR<br>PP<br>CAR<br>IW<br>PP<br>CAR<br>IW<br>PP<br>CAR<br>IW<br>CAR<br>IW<br>PP<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IW<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>CAR<br>IV<br>C | NANNOFOSSIL OOZE, DIATOM-BEARING<br>NANNOFOSSIL OOZE, and CLAY DIATOM-BEARING<br>NANNOFOSSIL OOZE This core contains nannofossil ooze, diatom-bearing<br>nannofossil ooze, and clay diatom-bearing<br>nannofossil ooze. Sediment color varies between light<br>olive gray and light gray. Bioturbation, expressed by<br>mottling and burrows, is common. Section 5 contains<br>an interval of intense mottling. A large vertical burrow<br>is present in Section 3, 24-30 cm. Section 4, 54 cm,<br>contains a patch of pyrite. A patch of gray ash is<br>present in Section 1, 33 cm. The upper 40 cm of the<br>core is extremely disturbed. Section 3, 16-18 cm is<br>soupy. |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Core                  | 1240A                 | -5H     | (Cored interval: 32.0-41.5 mbsf) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|---------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| METERS<br>CORE AND SECTION<br>GRAPHIC<br>LITH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BIOTURB.<br>STRUCTURE | ACCESSORIES<br>ICHNO. | FOSSILS | DISTURB.                         | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| -34-<br>-36-<br>-38-<br>-38-<br>-38-<br>-38-<br>-38-<br>-38-<br>-38-<br>-38-<br>-38-<br>-38-<br>-40-<br>-40-<br>-40-<br>-40-<br>-40-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50-<br>-50- | Py<br>↓<br>↓          | Py<br>J               |         | >                                | SS PP CAR<br>CAR<br>CAP SS WP CAS<br>WP | NANNOFOSSIL OOZE and DIATOM-BEARING<br>NANNOFOSSIL OOZE This core contains nannofossil ooze and<br>diatom-bearing nannofossil ooze. Sediment color is<br>light gray to light greenish gray except in Section 3,<br>below 80 cm, where the sediment is light olive gray.<br>Bioturbation, expressed as mottles and burrows, is<br>common. Zoophycos traces are abundant in Sections<br>5 and 6. Mottles are often purple-gray and burrows are<br>outlined by purple-gray halos. Light olive mottles are<br>also present. A patch of ash is present in Section 2,<br>97 cm. Pyrite patches occur in Sections 2 and 4. |  |  |

|                                      |                      |                  | (        | Core      | 124         | 10A    | -6H     | (Co         | red in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | terval: 41.5-51.0 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------|----------------------|------------------|----------|-----------|-------------|--------|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                               | CORE AND SECTION     | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB.    | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -42-<br>-44-<br>-46-<br>-48-<br>-50- | 6<br>8 7 6 5 4 3 2 1 |                  |          |           |             |        |         | ۲<br>۲<br>۲ | PP<br>CAR<br>SS<br>WP<br>CAR<br>CAR<br>CAR<br>PP<br>CAR<br>WP<br>CAR<br>WP<br>CAR<br>CAR<br>SS<br>WP<br>CAR<br>CAR<br>SS<br>WP<br>CAR<br>CAR<br>SS<br>WP<br>CAR<br>SS<br>WP<br>CAR<br>SS<br>WP<br>CAR<br>CAR<br>SS<br>W<br>PP<br>PAR<br>CAR<br>SS<br>W<br>PP<br>PAR<br>CAR<br>SS<br>W<br>PP<br>PAR<br>CAR<br>SS<br>W<br>PP<br>PAR<br>CAR<br>SS<br>W<br>PP<br>PAR<br>CAR<br>SS<br>W<br>PP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>SS<br>WP<br>PAR<br>CAR<br>PAR<br>CAR<br>PAR<br>CAR<br>PAR<br>CAR<br>PAR<br>CAR<br>PAR<br>CAR<br>PAR<br>CAR<br>PAR<br>CAR<br>PAR<br>CAR<br>PAR<br>CAR<br>PAR<br>CAR<br>PAR<br>CAR<br>PAR<br>SS<br>WP<br>PAR<br>CAR<br>PAR<br>SS<br>WP<br>PAR<br>SS<br>WP<br>PAR<br>CAR<br>PAR<br>SS<br>WP<br>PAR<br>SS<br>WP<br>PAR<br>SS<br>WP<br>PAR<br>SS<br>WP<br>PAR<br>SS<br>WP<br>PAR<br>SS<br>WP<br>PAR<br>SS<br>WP<br>PAR<br>SS<br>WP<br>PAR<br>SS<br>WP<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>SSW<br>SSW<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SSW<br>PAR<br>SS | DIATOM-BEARING NANNOFOSSIL OOZE and<br>FORAMINIFER DIATOM-BEARING NANNOFOSSIL<br>OOZE<br>This core contains diatom-bearing nannofossil ooze<br>and foraminifer diatom-bearing nannofossil ooze.<br>Sediment color is light greenish gray with purple-gray<br>mottles and some pale olive patches through Section<br>5. Burrows, including Zoophycos traces are common<br>and often have purple-gray halos. Section 5, 90 cm to<br>the base contains a more homogenous pale olive<br>ooze. Section 6, 15 cm through to the base of the<br>core, contains flow-in. |

|                                 |                  |                  | (        | Core      | 124         | IOA    | -7H     | (Cored interval: 51.0-60.5 mbsf) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|---------------------------------|------------------|------------------|----------|-----------|-------------|--------|---------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| METERS                          | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB.                         | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                 |                  |                  |          |           |             |        |         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| -52<br>-54<br>-56<br>-58<br>-58 | 8 7 6 5 4 3 2 1  |                  |          |           |             |        |         | 00                               | PP<br>SSAR<br>WP<br>CAR<br>W<br>PP<br>CAR<br>W<br>SSP<br>CAP<br>W<br>SSP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>PP<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>CAR<br>W<br>C<br>CAR<br>W<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | DIATOM-BEARING NANNOFOSSIL OOZE<br>This core contains light-greenish gray diatom-bearing<br>nannofossil ooze. Color changes gradationally to light<br>olive gray in Section 4, 100-150 cm, and then again in<br>Section 6. Color mottling is common, often purple-gray<br>in color. Burrows, including Zoophycos traces, are<br>common and especially intense in Section 3 and the<br>top 50 cm of Section 4. |  |  |

|                                              |                                     |                  | C        | ore       | 1240A-8H    |        |         | (Co      | ored in                                                                                    | nterval: 60.5-70.0 mbsf)                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|-------------------------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                                       | CORE AND SECTION                    | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE                                                                                     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                   |
| - 62<br>- 62<br>- 64<br>- 66<br>- 68<br>- 68 | 8     8       8     3       1     1 |                  |          |           |             |        |         | Î<br>Ţ   | CAR<br>PP<br>PP<br>CAR<br>PP<br>SS<br>IW<br>PP<br>CAR<br>PP<br>CAR<br>PP<br>PP<br>PP<br>PP | DIATOM-BEARING NANNOFOSSIL OOZE and<br>FORAMINIFER-BEARING NANNOFOSSIL OOZE<br>This core is dominated by pale olive to light olive gray<br>diatom-bearing nannofossil ooze and<br>foraminifer-bearing nannofossil ooze. Burrows and<br>purple-green-gray color bands are observed througout<br>the core. From Section 5, 130 cm, to the CC the core<br>sediment is very soupy due to flow-in. |

|        |                  |                  | C        | ore       | 1240A-9H    |        |         | (Co      | ored in                 | nterval: 70.0-79.5 mbsf)                                                                                                                                                                                                                                                                          |
|--------|------------------|------------------|----------|-----------|-------------|--------|---------|----------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE                  | DESCRIPTION                                                                                                                                                                                                                                                                                       |
|        |                  |                  |          | <u>^</u>  |             |        |         | ξ        |                         |                                                                                                                                                                                                                                                                                                   |
| - 72-  | 2                |                  |          |           |             |        |         | >        | E CAR<br>PP<br>SS<br>PP | NANNOFOSSIL OOZE<br>This core is dominated by pale olive to light olive gray<br>diatom-bearing nannofossil ooze and nannofossil<br>ooze. This core is very bioturbated, mottled, and<br>Zoophycos are abundant. Purple/green/gray color<br>bands occur throughout. A thin layer containig coarser |
| -74    | т<br>б           |                  |          |           |             |        |         |          | $\sum_{iw}^{SS}$        | sediment is present in Section 4, 123-124 cm.                                                                                                                                                                                                                                                     |
| -76    | 4                |                  |          | <br>      | ···.        |        |         |          |                         |                                                                                                                                                                                                                                                                                                   |
| - ·    |                  |                  |          | ~         |             |        |         |          |                         |                                                                                                                                                                                                                                                                                                   |
| -78    | 9                |                  |          | ÷<br>     |             |        |         |          | PP                      |                                                                                                                                                                                                                                                                                                   |
| ľ      | -                |                  |          |           |             |        |         |          | - PP                    |                                                                                                                                                                                                                                                                                                   |
| 80     | <u> </u>         | <u></u>          |          | Ŷ         |             |        |         |          | - PAL                   |                                                                                                                                                                                                                                                                                                   |



|                                      |                         |                  | С        | ore       | 1240A-11H   |        |         | (Co      | ored i                                                                                     | nterval: 89.0-98.5 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------|-------------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                               | CORE AND SECTION        | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE                                                                                     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                      |                         |                  | -        |           |             |        |         |          | I                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -90-<br>-92-<br>-94-<br>-96-<br>-98- | 11     12       3     2 |                  |          |           |             |        |         |          | CAR<br>PP<br>CAR<br>PP<br>CAR<br>CAR<br>CAR<br>CAR<br>CAR<br>PP<br>CAR<br>CAR<br>PP<br>CAR | FORAMINIFER-BEARING DIATOM NANNOFOSSIL<br>OOZE and NANNOFOSSIL DIATOM OOZE WITH<br>MICRITE This core contains olive gray and light olive gray<br>foraminifer-bearing diatom nannofossil ooze and<br>nannofossil diatom ooze with micrite. Bioturbation is<br>pervasive, and is expressed as mottles and burrows<br>including Zoophycos traces. Green, brown, gray, and<br>black color bands occur throughout. Most bands are<br>sub-horizontal, although some are nearly vertical. |

|                                                          | Core 1240A-12H   |                  |          |           |             |        |         |          | (Cored interval: 98.5-108.0 mbsf)                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|----------------------------------------------------------|------------------|------------------|----------|-----------|-------------|--------|---------|----------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| METERS                                                   | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE                                                                                                                           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| - 100-<br>- 102-<br>- 102-<br>- 104-<br>- 106-<br>- 108- | B7 6 5 4 3 2 1   |                  |          |           |             |        |         | ŝţ       | $     \begin{bmatrix}         CAR \\         PP \\         SS        PP         CAR \\         SS         V         SS         $ | DIATOM-BEARING NANNOFOSSIL OOZE and<br>DIATOM-BEARING NANNOFOSSIL OOZE WITH<br>MICRITE<br>This core is dominated by pale olive to light olive<br>gray, olive brown diatom-bearing nannofossil ooze<br>and diatom-bearing nannofossil ooze with micrite.<br>Burrows, Zoophycos traces, and purple-green-gray<br>color bands are observed througout the core. A<br>laminated interval in Section 4, 85-100 cm is<br>characterized by layered alternations of<br>diatom-bearing nannofossil ooze and nannofossil<br>diatom oozes. From Section 7 to the CC the core is<br>very soupy due to flow-in. |  |  |  |

|                                                   | С                | ore      | e 12      | 40A         | -13    | Η       | (Cored interval: 108.0-117.5 mbsf) |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|---------------------------------------------------|------------------|----------|-----------|-------------|--------|---------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| METERS<br>CORF AND SECTION                        | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB.                           | SAMPLE                                                                                                                             | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| -110-<br>-112-<br>-112-<br>-114-<br>-116-<br>-118 |                  |          |           | Â           |        |         |                                    | PP<br>SS<br>CAR<br>PP<br>SS<br>CAR<br>NW<br>SS<br>CAR<br>NW<br>SS<br>CAR<br>NW<br>SS<br>CAR<br>PP<br>CAR<br>PP<br>CAR<br>PP<br>CAR | DIATOM NANNOFOSSIL OOZE<br>This core is dominated by pale olive to light olive gray<br>diatom nannofossil ooze. In Sections 4 and 6, the<br>core contains darker olive brown layers composed by<br>clay-bearing nannofossil diatom ooze. The core is<br>mottled and contains Zoophycos burrowing<br>thorughout and is characterized by the presence of<br>abundant purple/green/gray color bands. H2S is<br>released when core is being opened. |  |  |  |



|                  |                  | С                | or       | e 12      | 40A         | -15    | Н       | ( | Cor      | ed int                                     | terval: 127.0-136.5 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------|------------------|------------------|----------|-----------|-------------|--------|---------|---|----------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS           | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS |   | DISTURB. | SAMPLE                                     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | 1                | * * * *          |          |           | À           |        |         |   |          |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -128·            | -                |                  |          | <b>*</b>  |             |        |         |   |          | $F_{\rm PP}^{\rm SS}_{\rm CAR}$            | <ul> <li>DIATOM-NANNOFOSSIL OO2E</li> <li>This core contains firm diatom-nannofossil ooze. The<br/>sediment color varies repeatedly and gradationally<br/>from dark olive to olive to dark olive brown. A series<br/>of are this color back of a comparison that for formation of the series o</li></ul> |
| -130-            | m<br>m           |                  |          |           |             |        |         |   |          |                                            | Section 1. Another series of light color bands occurs<br>in the lower half of Section 2. Thicker, fainter light<br>bands occur in Section 5, 50-60 cm, 90-100 cm, and<br>125-138 cm. Color patches or splotches are present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - 132.<br>- 132. | 15               | *********        |          | Î         | ≁           |        |         |   |          | CAR<br>PP<br>IW<br>CAR                     | in Section 3, 80-120 cm, and Section 4, 70-70 cm.<br>Burrows and mottled intervals are common.<br>Foraminifer and unidentified shell fragments occur<br>occasionally along the split core surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -134-            | -<br>L           | *****            |          | ×         |             |        |         |   |          | ${oldsymbol{	ilde{C}}}_{\sf PP}^{\sf CAR}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -<br>-136-       | 7 6              | *****            |          | <br> <br> |             |        |         |   |          | ${	extsf{car}}^{	extsf{pp}}_{	extsf{car}}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  |                  | ĚŽŽŽ             |          | ¢         |             |        |         |   |          | - PAL                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|                            |                  | С                                                                                                              | or       | e 12          | 40A         | -16    | H       | (Co      | red in                                                                                   | terval: 136.5-146.0 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------|------------------|----------------------------------------------------------------------------------------------------------------|----------|---------------|-------------|--------|---------|----------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                     | CORE AND SECTION | GRAPHIC<br>LITH.                                                                                               | BIOTURB. | STRUCTURE     | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE                                                                                   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                            |                  | IIII                                                                                                           | ]        | <u> </u>      |             |        |         |          |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - 138-<br>- 138-<br>- 140- | 3 2 1            | 0+++++++++++++++++++++++++++++++++++++                                                                         |          |               |             | t      |         |          | $\begin{bmatrix} PP \\ CAR \\ SS \end{bmatrix}$ $\begin{bmatrix} PP \\ SS \end{bmatrix}$ | <ul> <li>DIATOM-NANNOFOSSIL OOZE and<br/>NANNOFOSSIL-BEARING DIATOM OOZE WITH<br/>MICRITE</li> <li>This core contains diatom-nannofossil ooze and<br/>nannofossil-bearing diatom ooze with micrite.</li> <li>Sediment color varies repeatedly from dark olive,<br/>olive, and olive gray. The color changes are<br/>gradational. Burrows and color mottling is common<br/>and especially intense in Section 1, 120-150 cm</li> </ul> |
| <br>-142-                  | 16               | 0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+                                                                         |          | 4<br><br>4    |             |        |         |          |                                                                                          | Section 5, 16-30 cm, Section 5, 116-148 cm, and<br>Section 7, 1-34 cm. Shell fragments are present in<br>Section 6, 136 cm.                                                                                                                                                                                                                                                                                                          |
| - 144-                     | 6                | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ |          |               |             |        |         |          | $\sum_{CAR}^{PP}$                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -146-                      | 8                |                                                                                                                |          | ∂∂∂<br>1<br>↓ |             |        |         |          | PAL                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                      |





|                                                          |                                                                 | C                                      | )<br>OI  | re 12     | 2404        | <b>\-19</b> | Н       | ( | Core     | ed int | erval: 165.0-174.5 mbsf)                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|----------|-----------|-------------|-------------|---------|---|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                                                   | CORE AND SECTION                                                | GRAPHIC<br>LITH.                       | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO.      | FOSSILS |   | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                      |
| - 166-<br>- 168-<br>- 170.<br>- 172-<br>- 172-<br>- 174- | 8 7         6         5         4         3         2         1 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |          |           |             |             |         |   |          |        | <ul> <li>CLAY-BEARING DIATOM-NANNOFOSSIL OOZE and DIATOM-NANNOFOSSIL OOZE</li> <li>This core contains olive clay-bearing diatom-nannofossil ooze and diatom-nannofossil ooze. Sediment color varies slightly in darkness but is always olive. Discrete burrows, including Zoophycos traces occur througout. Mottling is faint but present throughout. Section 6 is intensely mottled.</li> </ul> |



|                                              | C                | Cor      | re 12     | 2404        | -21    | Η       | ( | Core     | ed int | erval: 184.0-193.5 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------|------------------|----------|-----------|-------------|--------|---------|---|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS<br>CORE AND SECTION                   | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS |   | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - 186- , , , , , , , , , , , , , , , , , , , |                  |          |           |             |        |         |   | 00       |        | CLAY DIATOM-BEARING NANNOFOSSIL OOZE and<br>DIATOM-BEARING NANNOFOSSIL OOZE This core contains clay diatom-bearing nannofossil<br>ooze and diatom-bearing nannofossil ooze. Sediment<br>color changes gradiationally from dark olive to olive,<br>pale olive, and light olive gray. Disperse color<br>mottling is present throughout and intense mottling<br>occurs in Sections 2, 4, and 5. Discrete burrows are<br>scattered downcore. Section 3, 39-64 cm, contains a<br>large vertical burrow in-filled with green-white<br>sediment. Section 1, 0-19 cm, is soupy. |

|        |                  | С                | or       | e 12      | 40A         | -22    | Η       | (Cor     | ed in                                   | terval: 193.5-203.0 mbsf)                                                                                                                                                                                                                                                        |
|--------|------------------|------------------|----------|-----------|-------------|--------|---------|----------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE                                  | DESCRIPTION                                                                                                                                                                                                                                                                      |
| -194-  | -                |                  |          |           |             |        |         | 000      |                                         | DIATOM NANNOFOSSIL OOZE and CLAY-BEARING<br>DIATOM NANNOFOSSIL OOZE This core contains diatom nannofossil ooze and                                                                                                                                                               |
| -196-  | ~                |                  |          |           |             |        |         |          | - 55<br>PP                              | clay-bearing diatom nannofossil ooze and. Sediment<br>color changes gradiationally from dark olive to olive,<br>pale olive, and light olive gray and the color becomes<br>darker in Sections 2 and 3. The core is mottled and<br>burrowed throughout A light gray ash layer with |
| - 198- | 22<br>4 3        |                  |          | <br>      |             |        |         |          | CAR<br>PP<br>SS<br>IW<br>PP             | sharp bottom contact and diffuse upward is observed<br>in Section 6, 103-106 cm.                                                                                                                                                                                                 |
| -200-  | -<br>L           |                  |          | ı         |             |        |         |          | ${oldsymbol{ abla}}_{\sf PP}^{\sf CAR}$ |                                                                                                                                                                                                                                                                                  |
| -202·  | 7 6              |                  |          | ~         | ~~          |        |         |          | PP<br>SS<br>PP                          |                                                                                                                                                                                                                                                                                  |
|        | <u></u>          | <u></u>          |          | Ŷ         |             |        |         |          | PAL                                     |                                                                                                                                                                                                                                                                                  |

|           |                  | C                | or       | e 12      | 2404        | <b>\-23</b> | Н       | ( | Core     | ed int            | erval: 203.0-212.5 mbsf)                                                                                                                                                                                                                                                        |
|-----------|------------------|------------------|----------|-----------|-------------|-------------|---------|---|----------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS    | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO.      | FOSSILS |   | DISTURB. | SAMPLE            | DESCRIPTION                                                                                                                                                                                                                                                                     |
|           |                  |                  |          |           |             |             |         |   |          |                   |                                                                                                                                                                                                                                                                                 |
| -204-     | 2 1              |                  |          |           |             |             |         |   |          |                   | DIATOM-BEARING NANNOFOSSIL OOZE and<br>DIATOM NANNOFOSSIL OOZE WITH MICRITE<br>This core contains moderately firm olive and light<br>olive diatom-bearing nannofossil ooze and diatom<br>nannofossil ooze with micrite. The color transitions                                   |
| -206-<br> | 3                |                  |          |           |             |             |         |   |          | $\sum_{CAR}^{PP}$ | are gradational and burrowed and the sediment is<br>mottled throughout. Color variations occur on several<br>depth scales, from meter-scale to centimeter-scale.<br>The sediment is brownest in Section 2, ~100 cm, and<br>then increasingly greenish until Section 6, ~120-130 |
| -208-<br> | 23               |                  |          | ļ.<br>    |             |             |         |   |          |                   | cm. It is browner again in Section 3, 30 cm, slightly<br>browner in Section 4, 20 cm, browner again in Section<br>5, ~90 cm, very slightly browner in Section 6, 40-50<br>cm, and browner again in Section 7, 65-77 and in the<br>CC. There are also cm-scale patches, pods and |
| -210-     | 5                |                  |          |           |             |             |         |   |          |                   | colored layers. Sulfides occur as pods and as black smears on the split surface.                                                                                                                                                                                                |
| -212-     | 8 7 6            |                  |          | ۵         |             |             |         |   |          |                   |                                                                                                                                                                                                                                                                                 |
|           |                  |                  |          |           |             |             |         |   | -        |                   |                                                                                                                                                                                                                                                                                 |

|                         |                  | С                | or       | e 12      | 40 <b>A</b> | -24    | Η       | (Cor     | ed in                                 | terval: 212.5-222.0 mbsf)                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------|------------------|------------------|----------|-----------|-------------|--------|---------|----------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                  | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE                                | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         |                  |                  | 1        | <u></u>   |             |        |         |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |
| -214·<br>-214·<br>-216· | 3 2 1            |                  |          | 4         |             |        |         |          | $\sum_{PP}^{SS}$<br>$\sum_{CAR}^{PP}$ | DIATOM-BEARING NANNOFOSSIL OOZE<br>This core contains slightly soft to moderately firm<br>olive and light olive diatom nannofossil ooze and<br>diatom-bearing nannofossil ooze. The color<br>transitions are gradational and burrowed and the<br>sediment is mottled throughout. Color variations<br>occur on several depth scales, from meter-scale to<br>centimeter-scale. The lightest sediment is in the |
| -218-                   | 24               |                  |          |           | I           |        |         |          |                                       | Sulfides occur as pods and as black smears on the split surface.                                                                                                                                                                                                                                                                                                                                             |
| -220-                   |                  |                  |          | "         |             |        |         |          | $\sum_{\text{CAR}}^{\text{PP}}$       |                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | 9                |                  |          |           |             |        |         |          | $\sum_{CAR}^{PP}$                     |                                                                                                                                                                                                                                                                                                                                                                                                              |
| -222                    | - <u>-</u> ∞-    |                  |          | Ţ         |             |        |         |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                  |                  |          |           |             |        |         |          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |

|                                           |                                                                         | С                | or       | e 12      | 40A         | -25    | Η       | (C        | or | ed in                                                                                               | terval: 222.0-231.5 mbsf)                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------|-------------------------------------------------------------------------|------------------|----------|-----------|-------------|--------|---------|-----------|----|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                                    | CORE AND SECTION                                                        | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTI IBR |    | SAMPLE                                                                                              | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                             |
| -224-<br>-226-<br>-228-<br>-230-<br>-232- | 8         7         6         5         4         3         2         1 |                  |          |           | ~~~         |        |         |           |    | $ \begin{bmatrix} CAR \\ SS \\ PP \\ SS \\ F \\ SS \\ F \\ PP $ | DIATOM NANNOFOSSIL OOZE This core contains olive gray to paleo olive clay diatom nannofossil ooze. Sediment color changes gradiationally. The core is mottled and burrowed throughout. Color becomes darker olive brown in Section 3 and more lighter from Section 5 to the bottom of the core. A light gray ash layer with sharp bottom contact and diffuse upward is observed in Section 2, 85-93 cm. |

|                              |                    | С                | or       | e 12      | 40A         | -26    | Η       | (Co      | red in                                       | terval: 231.5-241.0 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------|--------------------|------------------|----------|-----------|-------------|--------|---------|----------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                       | CORE AND SECTION   | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE                                       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              |                    |                  |          | <u> </u>  |             |        |         |          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -232<br>-234<br>-236<br>-236 | 26 26 1<br>4 3 2 1 |                  |          |           |             |        |         |          | CAR<br>PP<br>- PP<br>CAR<br>PP<br>SS<br>- PP | <ul> <li>DIATOM NANNOFOSSIL OOZE and CLAY-BEARING<br/>DIATOM NANNOFOSSIL OOZE</li> <li>This core contains primarily pale olive diatom<br/>nannofossil ooze. Sections 1 and 4 show dark live<br/>gray and olive gray intervals on a dm-scale. Color<br/>changes are gradational throughout. Within the pale<br/>olive intervals occasional olive gray mottles and<br/>burrows occur which often display dark halos.<br/>Bioturbation is comon throughout the core.</li> </ul> |
| -240·                        | 6                  |                  |          |           |             |        |         |          | $\sum_{\text{CAR}}^{\text{PP}}$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .                            | L 8                |                  |          | Ŷ         |             |        |         |          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



|            | -                | С                | or       | e 12      | 40A          | -28    | Н       | (Cor     | ed in                                                         | terval: 250.5-253.0 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|------------------|------------------|----------|-----------|--------------|--------|---------|----------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS     | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES  | ICHNO. | FOSSILS | DISTURB. | SAMPLE                                                        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |                  |                  |          |           |              |        |         |          |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| - 252·<br> | <u>4</u> 3 2 1 1 |                  |          |           | ~~~<br>-77 ↔ |        |         | 000      | CAR<br>SS<br>PP<br>SS<br>CAR<br>PP<br>SS<br>CAR<br>SS<br>WWHC | DIATOM-BEARING NANNOFOSSIL OOZE and<br>DIATOM-BEARING NANNOFOSSIL OOZE WITH<br>MICRITE This core contains pale olive diatom-bearing<br>nannofossil ooze and diatom-bearing nannofossil<br>ooze with micritre. Section 2 contains very pale<br>greenish patches. A dark gray layer of volcanic ash<br>is observed in Section 1, 88-91 cm. Section 3 is<br>soupy and contains purple/green/gray color bands<br>and is glauconite-rich. The last section of this core<br>was sampled and not provided for observation. |

|                      |                  |                  |          | Cor       | e 1         | 240    | B-1H    | (        | Cored  | interval: 0.0-8.7 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS               | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |                  |                  |          |           |             |        |         |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -2<br>-4<br>-6<br>-8 |                  |                  |          |           |             |        |         |          |        | DIATOM-BEARING NANNOFOSSIL OOZE and<br>CLAY-BEARING NANNOFOSSIL OOZE<br>This core contains very soft, moist diatom-bearing<br>nannofossil ooze and clay-bearing nannofossil ooze.<br>The sediment colors range from dark olive brown to pale<br>olive, grayish olive, and light olive brown. Bioturbation<br>is pervasive, and evident in abundant burrows and<br>mottled sediment. Some of the burrows are vertical and<br>extensive (>10 cm). Some apparent burrow structures<br>are present as elongate, soupy voids. Foraminifers are<br>visible scattered along the split core surface. The top 5<br>cm is distinctively brown and appears to be a mudline. |

|                            |                  | (        | Core      | 124         | 10B    | -2H     | (C       | ored i | interval: 8.7-18.2 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS<br>CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            |                  |          |           |             |        |         |          |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            |                  |          |           |             |        |         | 000      |        | <ul> <li>DIATOM-BEARING NANNOFOSSIL OOZE, CLAY<br/>DIATOM FORAMINIFER-BEARING NANNOFOSSIL<br/>OOZE, and NANNOFOSSIL OOZE</li> <li>This core contains diatom-bearing nannofossil ooze, clay diatom foraminifer-bearing nannofossil ooze, and<br/>nannofossil ooze. Sediment color varies between<br/>olive, pale olive and light olive gray. Mottles and<br/>burrows, including Zoophycos traces, are common.<br/>The mottling and often the outer rim of burrows is<br/>purple-gray in color. Shell fragments are present in<br/>Section 4, 23-25 cm. The upper 47 cm are soupy and<br/>disturbed.</li> </ul> |

|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | (        | Core      | 124            | 10B-   | -3H     | (Co      | red in | nterval: 18.2-27.7 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|-----------|----------------|--------|---------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                                        | CORE AND SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES    | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |          |           |                |        |         | •        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 20-<br>- 22-<br>- 22-<br>- 24-<br>- 26-<br> | 3         3         3         3         4         3         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<> |                  |          |           | <br> <br> <br> |        |         | 00 >     |        | <ul> <li>CLAY-BEARING NANNOFOSSIL OOZE, DIATOM<br/>SPICULE-BEARING NANNOFOSSIL OOZE,<br/>FORAMINIFER-BEARING NANNOFOSSIL OOZE, and<br/>NANNOFOSSIL OOZE</li> <li>This core contains clay-bearing nannofossil ooze,<br/>diatom spicule-bearing nannofossil ooze,<br/>foraminifer-bearing nannofossil ooze, and nannofossil<br/>ooze. Sediment color varies between light olive gray<br/>and light gray with abundant purple-gray color<br/>mottling. Burrows, including Zoophycos traces, often<br/>outlined in purple-gray, are frequent. The upper 30 cm<br/>of this core is soupy and slightly disturbed.<br/>Purple/green/gray color bands are observed<br/>throughout. Section 5, 12-14 cm contains an ash layer<br/>with a sharp base and difusse top.</li> </ul> |

|                                                      |                  |                  | C        | Core      | 124         | 0B-    | 4H      | (Co      | ored in | nterval: 27.7-37.2 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------|------------------|------------------|----------|-----------|-------------|--------|---------|----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                                               | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                      |                  |                  | _        |           |             |        |         |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -28-<br>-30-<br>-32-<br>-34-<br>-34-<br>-36-<br>-36- | 87654327         |                  |          |           | Py          |        |         | 00       |         | <ul> <li>NANNOFOSSIL OOZE, DIATOM-BEARING<br/>NANNOFOSSIL OOZE, and CLAY DIATOM-BEARING<br/>NANNOFOSSIL OOZE</li> <li>This core contains nannofossil ooze, diatom-bearing<br/>nannofossil ooze, and clay diatom-bearing<br/>nannofossil ooze. Sediment color varies between light<br/>olive gray and light gray. Bioturbation, expressed by<br/>mottling and burrows, is common. Section 3 contains<br/>an interval of intense mottling. Section 5, ~50 cm,<br/>Section 6, 60 cm, and Section 7, 2 cm contain patches<br/>of pyrite. The upper 40 cm of the core is extremely<br/>disturbed.</li> </ul> |

|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (                                         | Core      | 124         | 0B-    | 5H      | (Co      | ored in | nterval: 37.2-46.7 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------|-------------|--------|---------|----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS<br>CORE AND SECTION           | GRAPHIC<br>GRAPHIC<br>LITH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BIOTURB.                                  | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -38-<br>-40-<br>-42-<br>-44-<br>-44- | 3     3       3     3       4     4       5     4       6     4       7     4       7     4       7     4       8     4       9     4       10     4       10     4       10     4       11     4       12     4       13     4       14     4       15     4       16     4       17     4       18     4       19     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10     4       10 <td< td=""><td>ĬĔſĿĹĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſ</td><td></td><td></td><td></td><td></td><td></td><td></td><td>NANNOFOSSIL OOZE and DIATOM-BEARING<br/>NANNOFOSSIL OOZE This core contains nannofossil ooze and<br/>diatom-bearing nannofossil ooze. Sediment color is<br/>light gray to light greenish gray. Bioturbation,<br/>expressed as mottles and burrows, is common<br/>throughout. Zoophycos traces are abundant in<br/>Section 4. Often mottles are purple-gray and burrows<br/>outlined by purple-gray. Light olive mottles are also<br/>present.</td></td<> | ĬĔſĿĹĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſĿſ |           |             |        |         |          |         | NANNOFOSSIL OOZE and DIATOM-BEARING<br>NANNOFOSSIL OOZE This core contains nannofossil ooze and<br>diatom-bearing nannofossil ooze. Sediment color is<br>light gray to light greenish gray. Bioturbation,<br>expressed as mottles and burrows, is common<br>throughout. Zoophycos traces are abundant in<br>Section 4. Often mottles are purple-gray and burrows<br>outlined by purple-gray. Light olive mottles are also<br>present. |

|                                       | (                 | Core      | 124         | 0B-    | 6H      | (Co      | ored in | nterval: 46.7-56.2 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------|-------------------|-----------|-------------|--------|---------|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS<br>CORE AND SECTION<br>GRAPHIC | LITH.<br>BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                       |                   |           |             |        |         |          |         | <ul> <li>DIATOM-BEARING NANNOFOSSIL OOZE and<br/>FORAMINIFER DITAOM-BEARING NANNOFOSSIL<br/>OOZE</li> <li>This core contains diatom-bearing nannofossil ooze<br/>and foraminifer diatom-bearing nannofossil ooze.<br/>Sediment color is light greenish gray with purple-gray<br/>mottles and some pale olive patched. Burrows<br/>including Zoophycos traces are common and often<br/>have purple-gray halos. Section 6, 22 cm contains a<br/>cross-section of a shell that has been fragmented.<br/>Section 1, 0-100 cm is soupy.</li> </ul> |

|                                                | Core                  | 1240B                 | -7H     | (Co      | red in | terval: 56.2-65.7 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|------------------------------------------------|-----------------------|-----------------------|---------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| METERS<br>CORE AND SECTION<br>GRAPHIC<br>LITH. | BIOTURB.<br>STRUCTURE | ACCESSORIES<br>ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                                |                       |                       |         |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                |                       |                       |         | ↓ ↓ ↓    |        | DIATOM-BEARING NANNOFOSSIL OOZE<br>This core contains light-greenish gray diatom-bearing<br>nannofossil ooze. Color changes gradationally to pale<br>olive in Section 2, 5-50 cm, and then again in Section<br>5. Color mottling is common, often purple-gray in color.<br>Burrows, including Zoophycos traces, are common<br>and especially intense in Section 3, Section 4,<br>100-130 cm and Sections 6-7. The upper 100 cm of the<br>core are soupy and disturbed. |  |  |

|                                                            |                  |                  | C        | Core      | 124         | 0B-    | 8H      | (Co      | ored i | nterval: 65.7-75.2 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------|------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                                                     | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                            |                  |                  | =        |           |             |        |         |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -66-<br>- 68-<br>- 70-<br>- 72-<br>- 72-<br>- 72-<br>- 72- | 8 7 6 5 4 3 2 1  |                  |          |           |             |        |         |          |        | <ul> <li>FORAMINIFER-BEARING NANNOFOSSIL OOZE and<br/>DIATOM-BEARING NANNOFOSSIL OOZE</li> <li>This core contains foraminifer-bearing nannofossil<br/>ooze and diatom-bearing nannofossil ooze. Sediment<br/>color cycles gradually between pale olive and light<br/>greenish gray frequently downcore. Section 4 is a<br/>darker shade of pale olive with pale olive and light<br/>greenish gray burrows. Bioturbation, expressed as<br/>mottles and burrows, is common. Zoophycos traces<br/>are abundant in Sections 2-4. Often mottles are<br/>purple-gray and burrows outlined by purple-gray. Light<br/>olive mottles are also present.</li> </ul> |

|          |                  |                  | (        | Core      | 124         | I0B·   | -9H     | (Co      | red in | nterval: 77.2-86.7 mbsf)                                                                                                                                                                                                                                                                                                                                                       |
|----------|------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS   | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                    |
|          |                  |                  | 1        | <u>^</u>  |             |        |         | 8        |        | DIATOM-BEARING NANNOFOSSIL OOZE and                                                                                                                                                                                                                                                                                                                                            |
| -78-     |                  |                  |          | <u></u>   |             |        |         | ŏ        |        | NANNOFOSSIL OOZE                                                                                                                                                                                                                                                                                                                                                               |
| <br>-80- | 3                |                  |          |           | -           |        |         |          |        | This core contains diatom-bearing nannofossil ooze<br>and nannofossil ooze. Sediment color cycles<br>gradually between pale olive and light greenish gray<br>frequently downcore. Bioturbation, expressed as<br>mottles and burrows, is common. Section 3, 50-100<br>cm and Section 4, 0-70 cm, are intensely mottled.<br>Zoophycos traces are abundant in Sections 1-4. Often |
| -82-     | 4                |                  |          |           |             |        |         |          |        | mottles are purple-gray and burrows outlined by<br>purple-gray. Light olive mottles are also present. The<br>uppermost 68 cm of the core are soupy. Section 7 to<br>the base contains flow-in.                                                                                                                                                                                 |
| -84-     | ы                |                  |          | 4         |             |        |         |          |        |                                                                                                                                                                                                                                                                                                                                                                                |
| <br>-86- | 8 7 6            |                  |          | Ĵ         | ÷           | £      |         | Ĵ        |        |                                                                                                                                                                                                                                                                                                                                                                                |

|                                                | Core                  | 1240        | B-10H             | (Co      | ored i | nterval: 86.7-96.2 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------|-----------------------|-------------|-------------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS<br>CORE AND SECTION<br>GRAPHIC<br>LITH. | BIOTURB.<br>STRUCTURE | ACCESSORIES | ICHNO.<br>FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -88-<br>-90-<br>-92-<br>-92-<br>-94-<br>-96-   |                       | -           |                   | ° >      |        | DIATOM-BEARING NANNOFOSSIL OOZE<br>This core contains diatom-bearing nannofossil ooze.<br>Sediment color cycles gradually between light olive<br>gray and light greenish gray frequently downcore.<br>Bioturbation, expressed as mottles and burrows, is<br>common. Zoophycos traces are scattered downcore.<br>Often mottles are purple-gray and burrows outlined by<br>purple-gray. Small patches of pyrite are present in<br>Section 2. The upper 38 cm are disturbed and soupy. |

| Core 1240B-11H             |                  |          |           |             |        |         |  | (Cored interval: 96.2-105.7 mbsf) |        |                                                                                                                                                                                                                                                                                                                                                       |  |  |
|----------------------------|------------------|----------|-----------|-------------|--------|---------|--|-----------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| METERS<br>CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS |  | DISTURB.                          | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                           |  |  |
|                            |                  |          |           |             |        |         |  | 000                               |        | FORAMINIFER-BEARING DIATOM NANNOFOSSIL<br>OOZE This core contains light olive gray and light greenish<br>gray foraminifer-bearing diatom nannofossil ooze.<br>Bioturbation is pervasive, and is expressed as<br>mottles and burrows, including Zoophycos traces. A<br>gray ash layer is present in Section 6, 15-20 cm. The<br>upper 36 cm are soupy. |  |  |

| Core 1240B-12H                                           |                  |                  |          |           |             |        |         |  | Core     | ed int | erval: 105.7-115.2 mbsf)                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------|------------------|------------------|----------|-----------|-------------|--------|---------|--|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                                                   | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS |  | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                              |
| 100                                                      | <u> </u>         |                  | -        |           | <u> </u>    |        |         |  | 0        |        |                                                                                                                                                                                                                                                                                                                                                                                          |
| - 106.<br>- 108-<br>- 110-<br>- 112-<br>- 112-<br>- 114- | 6 5 4 3 2 1      |                  |          |           |             |        |         |  | 000      |        | DIATOM-BEARING NANNOFOSSIL OOZE<br>This core contains firm light gray diatom-bearing<br>nannofossil ooze with olive-colored sediment in<br>Section 7. Olive intervals typically contain more<br>diatoms. Mottling and Zoophycos traces are common<br>throughout, particularly in Sections 2, 4, and 7. Trace<br>sulfides occur on the sediment surface. Section 1,<br>0-50 cm, is soupy. |
|                                                          | <b>∞</b>         |                  |          | ~         | Ŷ           |        |         |  |          |        |                                                                                                                                                                                                                                                                                                                                                                                          |

| Core 1240B-13H |                  |                  |          |              |             |        |         |  | Core     | ed int | erval: 115.2-124.7 mbsf)                                                                                                                                                                                                                                     |
|----------------|------------------|------------------|----------|--------------|-------------|--------|---------|--|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS         | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE    | ACCESSORIES | ICHNO. | FOSSILS |  | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                  |
|                | 11               | · · · · · · ·    |          | 4            |             |        |         |  |          |        |                                                                                                                                                                                                                                                              |
| -116           |                  |                  |          |              |             |        |         |  |          |        | This core primarily consists of pole clive to light clive                                                                                                                                                                                                    |
|                |                  |                  |          |              |             |        |         |  |          |        | diatom nannofossil ooze. In Sections 1 and 2, darker<br>intervals on dm-scale are present which contain<br>clay-bearing nannofossil diatom ooze. The core is<br>mottled and Zoophycos burrows occur throughout.<br>The burrows often display sulfidic halos. |
| -120·          | 13               |                  |          | <br>         |             |        |         |  |          |        |                                                                                                                                                                                                                                                              |
| -122.<br>-     | 6                |                  |          |              |             |        |         |  |          |        |                                                                                                                                                                                                                                                              |
| -124·          | - L 8            |                  |          | $\downarrow$ |             |        |         |  |          |        |                                                                                                                                                                                                                                                              |

| Core 1240B-14H                                 |                                                                         |                  |          |           |             |        |         |  | (Cored interval: 124.7-134.2 mbsf) |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|------------------------------------------------|-------------------------------------------------------------------------|------------------|----------|-----------|-------------|--------|---------|--|------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| METERS                                         | CORE AND SECTION                                                        | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS |  | DISTURB.                           | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| - 126-<br>- 128-<br>- 130-<br>- 132-<br>- 134- | 8         7         6         5         4         3         2         1 |                  |          |           |             | Ε      |         |  | > ∞                                |        | DIATOM-BEARING NANNOFOSSIL OOZE and<br>DIATOM-NANNOFOSSIL OOZE<br>This core contains diatom-nannofossil ooze.<br>Sediment color varies gradationally from paleo olive<br>(Sections 1 and 2,130 cm) to dark olive brown<br>(Section 3, 75-150 cm). The interval of Section 2, 130<br>cm to Section 3, 75 cm represents a transition of two<br>lithologies, with frequently bioturbated and<br>Zoophycos traces. The whole core is bioturbated and<br>traces throughout and the upper 40 cm is soupy. |  |  |  |  |  |

|                                           | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cor      | re 12     | 240E        | 3-15   | H       | ( | Core     | ed int | erval: 134.2-143.7 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------------|--------|---------|---|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS<br>CORF AND SECTION                | GRAPHIC<br>LITH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS |   | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -136-<br>-138-<br>-140-<br>-142-<br>-142- | 8     7     6     5     4     3     2     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1       1     1     1     1     1     1     1 |          |           |             |        |         |   |          |        | DIATOM-NANNOFOSSIL OOZE and<br>NANNOFOSSIL-BEARING DIATOM OOZE WITH<br>MICRITE<br>This core contains firm olive and light olive gray<br>diatom-nannofossil ooze and nannofossil-bearing<br>diatom ooze with micrite. Mottling is common<br>throughout the core, especially in Section 4 at a color<br>transition from light olive gray to a dark shade of<br>olive. Horizontal and vertical burrows occur<br>frequently throughout the core. Mottling and burrows<br>are present, but less obvious in Sections 7 and CC. |

|            |                  | С                                       | or       | e 12       | 40B         | -16    | Н       | (Co      | red in | terval: 143.7-153.2 mbsf)                                                                                                                                                                                                                                       |
|------------|------------------|-----------------------------------------|----------|------------|-------------|--------|---------|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS     | CORE AND SECTION | GRAPHIC<br>LITH.                        | BIOTURB. | STRUCTURE  | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                     |
| -144-      |                  | <u>ttt</u> :                            |          | ~ /        |             |        |         | 000      |        | - DIATOM-NANNOFOSSIL OOZE                                                                                                                                                                                                                                       |
| <br>- 146· | 3 2 1            | 0+++++++++++++++++++++++++++++++++++++  |          |            |             |        |         |          |        | This core contains diatom-nannofossil ooze.<br>Sediment color varies repeatedly from dark olive,<br>olive, and olive gray. The color changes are<br>gradational. Burrows and color mottling are common.<br>A sharp color contact occurs in Section 4, 27-28 cm. |
| -148-      | 16<br>4          |                                         |          | <br>       | I           |        |         |          |        |                                                                                                                                                                                                                                                                 |
| -150·<br>  | -<br>-           | X04040404040404040404040404040404040404 |          | <b>₽</b> ₽ |             |        |         |          |        |                                                                                                                                                                                                                                                                 |
| -152·<br>- | 8 7 6            | X04040404040404040404040404040404040404 |          | ↓          |             |        |         |          |        |                                                                                                                                                                                                                                                                 |

|            |                  | C                | ;oi      | re 12        | 240E        | 8-17   | Ή       | ( | Core     | ed int | erval: 153.2-162.7 mbsf)                                                                                                                                                                                                            |
|------------|------------------|------------------|----------|--------------|-------------|--------|---------|---|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS     | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE    | ACCESSORIES | ICHNO. | FOSSILS |   | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                         |
|            | 1 1              | <del></del>      |          | 4            |             |        |         |   |          |        | <b>`</b>                                                                                                                                                                                                                            |
| -154       |                  |                  |          |              |             |        |         |   |          |        | <ul> <li>CLAY-BEARING DIATOM NANNOFOSSIL OOZE</li> <li>This core contains clay-bearing diatom nannofossil<br/>ooze. The sediment color varies repeatedly from dark<br/>olive to olive. All color changes are gradational</li> </ul> |
| -156-<br>- | 3                |                  |          |              |             |        |         |   |          |        | Burrows and motted intervals are common. Darker<br>sediments occur in Section 2, 70-80, 90-105,<br>110-120, 126-134, and 143-148. Section 5 contains<br>generally lighter sediments, particularly from<br>110-128.                  |
| -158·<br>- | 17               |                  |          | <br>         |             |        |         |   |          |        |                                                                                                                                                                                                                                     |
| -160·      | 6                |                  |          |              |             |        |         |   |          |        |                                                                                                                                                                                                                                     |
| -162.<br>- | 8 7              |                  |          | $\downarrow$ |             |        |         |   |          |        |                                                                                                                                                                                                                                     |

|                |                  | С                                      | or       | e 12      | 40B         | -18    | Н       | (C      | or | ed in  | terval: 162.7-172.2 mbsf)                                                                                                                                                                                                                                                                                                                      |
|----------------|------------------|----------------------------------------|----------|-----------|-------------|--------|---------|---------|----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS         | CORE AND SECTION | GRAPHIC<br>LITH.                       | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB |    | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                    |
|                | <u> </u>         | * * * *                                |          |           |             |        |         |         |    |        |                                                                                                                                                                                                                                                                                                                                                |
| - 164<br>- 164 | 2                | 00000000000000000000000000000000000000 |          |           |             |        |         |         |    |        | <ul> <li>CLAY-BEARING DIATOM-NANNOFOSSIL OOZE</li> <li>This core contains clay-bearing diatom-nannofossil<br/>ooze. Sediment color ranges from olive to dark olive<br/>with gradational changes on a m to dm-scales.</li> <li>Moderate to slight color mottling and discrete<br/>burrows occasionally occur throughout the core. In</li> </ul> |
| -166·          |                  | ******                                 |          |           |             |        |         |         |    |        | Section 1, 90 cm and Section 6, 65 cm, a slight color<br>banding is observed. There are abundant sulfides in<br>Section 2, 66-100 cm.                                                                                                                                                                                                          |
| -168-<br>-     | 18               | 0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+ |          | ÷.<br>    |             |        |         |         |    |        |                                                                                                                                                                                                                                                                                                                                                |
| -170·          | 9                | +>+>+>+>+>+>+>+>+>+>+>+>+>+>+>+>+>+>+> |          |           |             |        |         |         |    |        |                                                                                                                                                                                                                                                                                                                                                |
| -172-          | - 28             | >+>+>+>+>+>+>+>+>+>+>+>+>+>+>+>+>+>+>+ |          | Ŷ         |             |        |         |         |    |        |                                                                                                                                                                                                                                                                                                                                                |

|                     |                  | C                                      | <b>)</b> | re 12     | 240E        | 8-19   | Η       | ( | Core     | ed int | erval: 172.2-181.7 mbsf)                                                                                                                                                                                                                                  |
|---------------------|------------------|----------------------------------------|----------|-----------|-------------|--------|---------|---|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS              | CORE AND SECTION | GRAPHIC<br>LITH.                       | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS |   | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                               |
|                     |                  |                                        |          | ~         |             |        |         |   |          |        |                                                                                                                                                                                                                                                           |
| - 174<br>-<br>- 176 | 9 3 2 1          | ++++++++++++++++++++++++++++++++++++++ |          |           |             |        |         |   |          |        | DIATOM-NANNOFOSSIL OOZE<br>This core contains olive diatom-nannofossil ooze.<br>Sediment color varies slightly in darkness but is<br>always olive. Zoophycos traces and discrete burrows<br>occur througout. Mottling is faint but present<br>throughout. |
| -178-               | 5                | >+>+>+>+>+>+>+>+>+>+>+>+>+>+>+>+>+>+>+ |          |           | ,           |        |         |   |          |        |                                                                                                                                                                                                                                                           |
| -180<br>            | 8 7 6            | ***********<br>**********<br>******    |          |           |             |        |         |   |          |        |                                                                                                                                                                                                                                                           |
|                     |                  |                                        |          |           |             |        |         |   |          |        |                                                                                                                                                                                                                                                           |

|           |                  | С                | or       | e 12      | 40B         | -20    | Η       | (Cor     | ed in  | terval: 181.7-191.2 mbsf)                                                                                                                                                                                                                                                                                                   |
|-----------|------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS    | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                 |
| -182-     |                  |                  |          |           |             |        |         |          |        | DIATOM NANNOFOSSIL OOZE and CLAY-BEARING<br>DIATOM NANNOFOSSIL OOZE                                                                                                                                                                                                                                                         |
| - 184-    | 3                |                  |          | =         |             |        |         |          |        | This core contains diatom nannofossil ooze and<br>clay-bearing diatom nannofossil ooze. Sediment<br>color varies between dark olive, olive and light olive<br>gray. Some intervals show laminated structures with<br>alternations of dark brown to pale olive color. Mottling<br>and burrow traces are observed throughout. |
|           | 4                |                  |          |           |             |        |         |          |        |                                                                                                                                                                                                                                                                                                                             |
| -188-<br> | 2                |                  |          |           |             |        |         |          |        |                                                                                                                                                                                                                                                                                                                             |
| -190-     | 8 7 6            |                  |          | ↓<br>↓    |             |        |         |          |        |                                                                                                                                                                                                                                                                                                                             |

|                  | Core 1240B-21H   |                  |          |                      |             |        |         |  | Cor      | ed int | terval: 191.2-200.7 mbsf)                                                                                                                                                                                                                                                                                                            |
|------------------|------------------|------------------|----------|----------------------|-------------|--------|---------|--|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS           | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE            | ACCESSORIES | ICHNO. | FOSSILS |  | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                          |
|                  | <b>.</b>         | <u></u>          | _        |                      |             |        |         |  |          |        |                                                                                                                                                                                                                                                                                                                                      |
| 192              | -                |                  |          | 4                    |             |        |         |  |          |        | DIATOM-BEARING NANNOFOSSIL OOZE and<br>DIATOM NANNOFOSSIL OOZE                                                                                                                                                                                                                                                                       |
| - 194-<br>- 196- | 21 3 2 4         |                  |          | · · > < · ><- / · -> |             |        |         |  |          |        | This core contains firm olive and olive gray to light<br>olive gray diatom-bearing nannofossil ooze and<br>diatom nannofossil ooze. Mottling and burrows are<br>moderate to common throughout, indicating<br>bioturbation. Both horizontal and vertical burrows are<br>present, usually containing sediment of a different<br>color. |
| - 198-           | - L              |                  |          |                      |             |        |         |  |          |        |                                                                                                                                                                                                                                                                                                                                      |
| -200·            | 8                |                  |          |                      | 4           |        |         |  |          |        |                                                                                                                                                                                                                                                                                                                                      |



|                                           |                  | С                | or       | e 12      | 40B         | -23    | Η       | (Coi     | red in | terval: 210.2-219.7 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------|------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                                    | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                           | <b></b>          |                  |          |           |             |        |         |          | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -212.<br>-214.<br>-216.<br>-218.<br>-218. | 8 7 6 5 4 3 2 1  |                  |          |           |             |        |         |          |        | <ul> <li>DIATOM NANNOFOSSIL OOZE WITH MICRITE and<br/>DIATOM NANNOFOSSIL OOZE</li> <li>This core contains light gray, pale olive gray, and<br/>olive gray diatom nannofossil ooze with micrite and<br/>diatom nannofossil ooze. The core is bioturbated<br/>throughout, with abundant mottles and burrows<br/>including Zoophycos traces. Mottles and burrows are<br/>often outlined in purple-gray. Section 2, 20-50 cm,<br/>Section 4, 90-150 cm and Section 6, 110-150 cm are<br/>intensely mottled. Bits of pyrite occur in Section 6.</li> </ul> |

|                      | Core 1240B-24H   |                  |          |                  |             |        |         |  | Cor      | ed in  | terval: 219.7-229.2 mbsf)                                                                                                                                                                                                                                                                                                                                                               |
|----------------------|------------------|------------------|----------|------------------|-------------|--------|---------|--|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS               | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE        | ACCESSORIES | ICHNO. | FOSSILS |  | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                             |
|                      | <u> </u>         | <b></b>          | -        |                  |             |        |         |  |          |        |                                                                                                                                                                                                                                                                                                                                                                                         |
| -220.                |                  |                  |          |                  |             |        |         |  |          |        | DIATOM NANNOFOSSIL OOZE and<br>DIATOM-BEARING NANNOFOSSIL OOZE                                                                                                                                                                                                                                                                                                                          |
| - 222·<br><br>- 224· | 24 24 4 3 2      |                  |          | ····<br>✓ ,<br>↓ |             |        |         |  |          |        | This core contains olive and pale olive diatom<br>nannofossil ooze and diatom-bearing nannofossil<br>ooze. The color transitions are gradational. Color<br>variations occur on several depth scales, from<br>meter-scale to centimeter-scale. Burrows and<br>mottles occur throughout and mottling is most<br>intense where noted. A diffuse ash layer occurs in<br>Section 5, 129-135. |
| -226-                | •                |                  |          |                  |             |        |         |  |          |        |                                                                                                                                                                                                                                                                                                                                                                                         |
| <br>-228-<br>        | 8 7 6 5          |                  |          | ~~~              |             |        |         |  |          | — ss   |                                                                                                                                                                                                                                                                                                                                                                                         |

|        |                  | C                | ;01      | re 12        | 240E        | 3-25   | H       | ( | Core     | ed int | erval: 229.2-238.7 mbsf)                                                                                                                                  |
|--------|------------------|------------------|----------|--------------|-------------|--------|---------|---|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE    | ACCESSORIES | ICHNO. | FOSSILS |   | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                               |
|        |                  |                  |          |              |             |        |         |   |          |        |                                                                                                                                                           |
|        |                  |                  |          | Î            | Pu          |        |         |   |          |        | DIATOM NANNOFOSSIL OOZE                                                                                                                                   |
| -230·  |                  |                  |          | Ŷ            |             |        |         |   |          |        | This core contains diatom nannofossil ooze.<br>Sediment color varies between olive, pale olive, and<br>light gray. Mottling is common throughout the core |
| -232·  | л<br>2           |                  |          | <i></i><br>∼ | 1           |        |         |   |          |        | and more intense in Section 1, 0-40 cm, and Section<br>6. A patch of pyrite occurs at 60 cm. Zoophycos<br>traces are present in Section 4.                |
| -234·  | 25               |                  |          | ⇔<br>        |             |        |         |   |          |        |                                                                                                                                                           |
| -236·  | 6                |                  |          | <br><br>Î    |             |        |         |   |          |        |                                                                                                                                                           |
| -238   | <u>8</u> ک       |                  |          | Ŷ            |             |        |         |   |          |        |                                                                                                                                                           |

|                                                    | Core 1240B-26H   |          |           |             |        |         |          |  | ed in  | terval: 238.7-248.2 mbsf)                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------|------------------|----------|-----------|-------------|--------|---------|----------|--|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS<br>CORE AND SECTION                         | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. |  | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                     |
| -240-<br>-242-<br>-244-<br>-244-<br>-246-<br>-248- |                  |          |           | ~~~         |        |         | 3        |  | — SS   | CLAY-BEARING DIATOM NANNOFOSSIL OOZE<br>This core contains clay-bearing diatom nannofossil<br>ooze. Sediment color ranges from light gray to pale<br>olive. Mottling and burrows are present throughout.<br>They are intense in Section 5 and very faint in<br>Section 6. A harder layer of ooze occurs in Section 5,<br>111-115 cm. An interval of disperse black ash grains<br>occurs in Section 3, 55-66 cm. |

|                                  |                                                      |                  |          | Core      | 124         | 40C    | -1H     | (C       | ored i | interval: 2.2-11.7 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------|------------------------------------------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                           | CORE AND SECTION                                     | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                  | •                                                    |                  |          |           |             |        |         |          | •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 4 -<br>- 6 -<br>- 8 -<br>- 10- | 1     1       87     6     5     4     3     2     1 |                  |          |           | *           |        |         |          |        | <ul> <li>DIATOM-BEARING NANNOFOSSIL OOZE AND CLAY<br/>DIATOM FORAMINIFER-BEARING NANNOFOSSIL<br/>OOZE</li> <li>This core contains diatom-bearing nannofossil ooze<br/>and clay diatom foraminifer-bearing nannofossil ooze.<br/>The sediment alternates between bioturbated olive<br/>gray-olive ooze and slightly-moderately mottled light<br/>olive gray-light olive ooze. A patch of forams is<br/>present in Section 3, 13 cm. Zoophycos traces are<br/>common in Sections 3, 4, and 6.</li> </ul> |

|                                                    |                  |                  | (        | Core      | 124         | 40C    | -2H     | (Co      | red in | terval: 11.7-21.2 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------|------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                                             | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - 14-<br>- 16-<br>- 18-<br>- 18-<br>- 20-<br>- 22- | 8 7 6 5 4 3 2 1  |                  |          |           |             | :      |         |          |        | <ul> <li>DIATOM-BEARING NANNOFOSSIL OOZE, CLAY<br/>DIATOM FORAMINIFER-BEARING NANNOFOSSIL<br/>OOZE, and NANNOFOSSIL OOZE</li> <li>This core contains diatom-bearing nannofossil ooze, and<br/>nannofossil ooze. Sediment color varies between<br/>olive, light olive, light olive gray and light gray with<br/>abundant purple-gray color mottling in the lighter<br/>colored ooze. Burrows including Zoophycos traces,<br/>often outlined in purple-gray, are frequent. Visible<br/>forams are abundant.</li> </ul> |

|                                                                                                                                             |                  | C        | ore       | 124         | 0C-    | 3H      | (C         | ored i | nterval: 21.2-30.7 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|-----------|-------------|--------|---------|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS<br>CORE AND SECTION                                                                                                                  | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB.   | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                             |                  |          |           |             |        |         |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -22-<br>-24-<br>-26-<br>-28-<br>-28-<br>-28-<br>-28-<br>-24-<br>-26-<br>-28-<br>-29-<br>-24-<br>-29-<br>-29-<br>-29-<br>-29-<br>-29-<br>-29 |                  |          |           |             |        |         | - √- ∲<br> | — ss   | <ul> <li>NANNOFOSSIL OOZE, DIATOM-BEARING<br/>NANNOFOSSIL OOZE, and CLAY DIATOM-BEARING<br/>NANNOFOSSIL OOZE</li> <li>This core contains light gray and olive gray<br/>nannofossil ooze, diatom-bearing nannofossil ooze,<br/>and clay diatom-bearing nannofossil ooze with short<br/>intervals of olive colored sediment in Sections 2-3.<br/>The sediment is firm in Sections 1-4, and in Section 4,<br/>57 cm, the sediment becomes soft and cohesive for<br/>the remainder of the core. Bioturbation is evidenced<br/>by the occurrence of soft burrow fills, subtle mottling,<br/>and Zoophycos traces throughout, particularly in<br/>Sections 1-4. There is a gray ash layer in Section 2,<br/>132-136 cm, with a scoured basal contact. Section 5<br/>is disturbed by liner pieces throughout the section and<br/>a soupy interval from 84-150 cm. Section 1, 47-118<br/>cm, contains some flow deformation. There is a void in<br/>Section 5, 41-42 cm.</li> </ul> |

|                         |                  |                  | C        | ore       | 124         | 0C-    | 4H      | (Co      | ored i | nterval: 32.7-42.2 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                  | CORE AND SECTION | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                  |                  |          |           |             |        |         |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - 34·<br>- 36·<br>- 36· | 4 3 2 1          |                  |          | <br>      |             |        |         | > 00     |        | <ul> <li>NANNOFOSSIL OOZE and DIATOM-BEARING<br/>NANNOFOSSIL OOZE</li> <li>This core contains nannofossil ooze and<br/>diatom-bearing nannofossil ooze. Sediment color<br/>varies between light olive gray and light gray.</li> <li>Bioturbation, expressed by mottling and burrows, is<br/>common. Sections 2 and 3 contain green layers or<br/>spots. A light gray dark layer is found in Section 4,<br/>134-135 cm. The top 30 cm of the core is very soupy.</li> </ul> |
| -38-<br>                | 5                |                  |          |           | ~           |        |         | ///      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <br>-42·                | 8 7 6            |                  |          |           |             |        |         |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|                              |                               |                  | (        | Core      | 124         | 10C    | -5H     | (Co      | red ir | nterval: 42.2-51.7 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------|-------------------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                       | CORE AND SECTION              | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -44-<br>-46-<br>-48-<br>-50- | 8 7 6 5 <u>4</u> 3 2 <u>1</u> |                  |          |           |             |        |         |          |        | DIATOM-BEARING NANNOFOSSIL OOZE<br>FORAMINIFER DIATOM-BEARING NANNOFOSSIL<br>OOZE<br>This core contains diatom-bearing nannofossil ooze<br>and foraminifer diatom-bearing nannofossil ooze.<br>Sediment color is light gray to light greenish gray with<br>gradational changes. Purple/green/gray color bands<br>are observed throughout. Bioturbation, expressed as<br>mottles and burrows, is common. Zoophycos traces<br>are abundant in Sections 1, 2, and 5. |

|                                                   |                                                                                               |                  | C        | Core      | 124         | -0C-   | 6H      | (Co      | ored i | nterval: 51.7-61.2 mbsf)                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                                            | CORE AND SECTION                                                                              | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                  |
| 52                                                |                                                                                               |                  |          |           |             |        |         |          |        |                                                                                                                                                                                                                                                                                                                                                                                              |
| - 52.<br>- 54.<br>- 56.<br>- 58.<br>- 60.<br>- 0. | 6         6           8         7         6         5         4         3         2         1 |                  |          |           |             |        |         |          |        | <ul> <li>Diation-BEARING NANNOPOSSIL CO2E</li> <li>This core contains firm diatom-bearing nannofossil ooze. Sediment color is primarily pale olive to olive with gradational color changes on a meter scale. Mottling and burrows (partly Zoophycos) are common. The latter often have dark gray to black halos (probably iron sulfides). Section 6 and 7 appear more homogenous.</li> </ul> |

|                                     |                                                                                                |                  | C        | ore       | 124         | 0C-    | 7H      | (Co      | ored i | nterval: 61.2-70.7 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------|------------------------------------------------------------------------------------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                              | CORE AND SECTION                                                                               | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                     |                                                                                                |                  |          |           |             |        |         |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -62<br>- 64<br>- 66<br>- 68<br>- 68 | 7         7         8           87         6         5         4         3         2         1 |                  |          |           |             |        |         |          |        | DIATOM-BEARING NANNOFOSSIL OOZE and<br>FORAMINIFER-BEARING NANNOFOSSIL OOZE<br>This core contains firm diatom-bearing nannofossil<br>ooze and foraminifer-bearing nannofossil ooze.<br>Sediment color is primarily pale olive to olive with<br>gradational color changes. Decimeter-scale color<br>changes from pale olive to olive-brown are present in<br>Sections 5 and 6. Mottling and burrows (partly<br>Zoophycos) are common. The latter often have dark<br>gray to black halos (probably iron sulfides). From<br>Section 6 (120 cm) downcore the sediment is soupy. |

|                                                       | Core                  | 1240C                 | -8H     | (Co      | ored i | nterval: 70.7-80.2 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------|-----------------------|-----------------------|---------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS<br>CORE AND SECTION<br>GRAPHIC<br>LITH.        | BIOTURB.<br>STRUCTURE | ACCESSORIES<br>ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -72-<br>-74-<br>-76-<br>-76-<br>-78-<br>-800-<br>-78- |                       |                       |         |          |        | NANNOFOSSIL OOZE and DIATOM-BEARING<br>NANNOFOSSIL OOZE This core contains firm light olive gray to olive gray<br>nannofossil ooze and diatom-bearing nannofossil<br>ooze with burrows, including Zoophycos, throughout.<br>Some vertical burrows occur in Section 5, 54-62 cm<br>and 72-87 cm. Some burrows are filled with soft,<br>cohesive sediment, and some also have halos.<br>Zoophycos traces are especially abundant in Section<br>6. There is a sandy foraminifer-rich lamina in Section<br>5, 137 cm. |

|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |          | Core      | 124         | 40D    | -1H     | (C       | ored i | interval: 3.2-12.7 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| METERS                                    | CORE AND SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |          |           |             |        |         |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| - 4 -<br>- 6 -<br>- 8 -<br>- 10-<br>- 12- | B         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<> |                  |          |           |             |        |         | 000      |        | <ul> <li>DIATOM-BEARING NANNOFOSSIL OOZE, CLAY<br/>DIATOM FORAMINIFER-BEARING NANNOFOSSIL<br/>OOZE, AND NANNOFOSSIL OOZE</li> <li>This core contains soft diatom-bearing nannofossil<br/>ooze, clay diatom foraminifer-bearing nannofossil<br/>ooze, and nannofossil ooze. Sediment color varies<br/>between olive, pale olive and light olive gray. Mottles<br/>and burrows, including Zoophycos traces, are<br/>common. Zoophycos traces are concentrated in<br/>Section 5, 25-90 cm. Purple-gray mottles are common.<br/>Section 1, 25-58 cm, contains soupy sediment.<br/>Section 7 and the core catcher are very soft.</li> </ul> |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Core                  | 1240D-                | ·2H     | (Co      | ored i | nterval: 12.7-22.2 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|---------|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS<br>CORE AND SECTION<br>GRAPHIC<br>LITH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BIOTURB.<br>STRUCTURE | ACCESSORIES<br>ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -14-<br>-16-<br>$^{\sim}$<br>-18-<br>$^{\sim}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++}$<br>$^{++$ |                       |                       |         | 000 000  |        | CLAY DIATOM-BEARING NANNOFOSSIL OOZE,<br>DIATOM SPICULE-BEARING NANNOFOSSIL OOZE,<br>FORAMINIFER-BEARING NANNOFOSSIL OOZE, and<br>NANNOFOSSIL OOZE<br>This core contains clay-bearing nannofossil ooze,<br>diatom spicule-bearing nannofossil ooze, and nannofossil<br>ooze. Sediment color varies between pale olive and<br>light olive gray with abundant purple-gray color<br>mottling. Burrows, including Zoophycos traces, often<br>outlined in purple-gray, are frequent. Some coring<br>disturbance and soupy spots are present. |

|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | C        | ore       | 124         | 0D-    | 3H      | (Co      | ored i | nterval: 22.2-31.7 mbsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|-----------|-------------|--------|---------|----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| METERS                                    | CORE AND SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GRAPHIC<br>LITH. | BIOTURB. | STRUCTURE | ACCESSORIES | ICHNO. | FOSSILS | DISTURB. | SAMPLE | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |          |           |             |        |         |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 24-<br>- 26-<br>- 28-<br>- 30-<br>- 30- | 3         3         3         3         3         3         3         3         3         3         3         3         3         1         1         3         3         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<> |                  |          |           |             |        |         | 00       |        | <ul> <li>NANNOFOSSIL OOZE, DIATOM-BEARING<br/>NANNOFOSSIL OOZE, and CLAY DIATOM-BEARING<br/>NANNOFOSSIL OOZE</li> <li>This core contains firm light olive gray to olive gray<br/>nannofossil ooze, diatom-bearing nannofossil ooze,<br/>and clay diatom-bearing nannofossil ooze. Moderate<br/>to common bioturbation is evidenced by frequent<br/>horizontal and vertical burrow fills. Some of these<br/>burrow structures are filled with softer, more cohesive<br/>sediment of a different color than the surrounding<br/>sediment, and some have halos. Zoophycos occurs in<br/>Section 5. Sulfides occur on the sediment surface in<br/>Sections 3-6. Section 6 contains an interval with<br/>patchy green sediment from 40-100 cm. Section 1,<br/>5-12 cm, is soupy.</li> </ul> |

| San | nple             |       |          | Те       | Fexture     Mineral     Biogenic       Image: Imag |     |               |            |               |          |          |      |                  |    |     |              |     | 1   | Roc              | k            |        |    |       |     |         |               |     |      |      |          |          |          |            |             |          |          |           |         |         |        |               |              |       |                                              |
|-----|------------------|-------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|------------|---------------|----------|----------|------|------------------|----|-----|--------------|-----|-----|------------------|--------------|--------|----|-------|-----|---------|---------------|-----|------|------|----------|----------|----------|------------|-------------|----------|----------|-----------|---------|---------|--------|---------------|--------------|-------|----------------------------------------------|
|     |                  |       |          | 11       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ť   |               |            | T             | <u> </u> |          |      |                  |    |     |              |     | Γ   |                  |              |        | Т  |       |     |         |               | Т   | Т    | T    | <u> </u> |          |          | Ť          |             |          |          |           | 1       | 6       |        | -             | T            |       |                                              |
|     |                  |       |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               |            |               |          |          |      |                  |    |     |              |     |     |                  |              |        |    |       |     |         |               |     |      |      |          |          |          |            |             |          |          |           |         | 85      |        |               |              |       |                                              |
|     |                  |       |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               |            |               |          |          |      |                  |    |     |              |     |     |                  |              |        |    |       |     |         |               |     |      |      |          |          |          |            |             |          |          |           |         | E       |        |               |              |       |                                              |
|     |                  |       |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               |            |               |          |          |      |                  |    |     |              |     |     |                  |              |        |    |       |     |         |               |     |      |      |          | 6        |          |            |             |          |          |           |         | les     |        |               |              | 50    |                                              |
|     |                  |       |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               |            |               |          |          |      |                  |    |     |              |     | 5   |                  |              |        |    |       |     |         |               |     |      |      |          | õ        |          |            |             |          |          |           |         | cu      | 2      |               |              | 2     |                                              |
|     |                  |       |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               |            |               |          |          |      |                  |    |     | 6            |     | 6   |                  |              | 14     |    |       |     |         |               |     |      |      |          | S        |          |            |             |          |          |           |         | pi      | 8      |               |              | ts    |                                              |
|     |                  |       |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               |            |               | 7        | : 19     | Èl   |                  |    |     | 18           | 2   | Ę   | ຣ                |              | 15     | 1  |       |     |         |               |     |      | 8    |          | E        |          | 6          |             | _        | <b>@</b> | 22        | 13      | e S     | 5      |               |              | el    |                                              |
|     |                  |       |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               | <u>ج</u> ا | Ę             | 1 2      |          |      |                  |    | 6   | 2            |     | 5   | 50               |              |        |    | 184   | 2   |         | <u>a</u> l    |     |      | 12   |          | l:il     |          | e          | <u>a</u> li | 3        | 5        | Ë         | 15      | ng      | te     | 2             |              |       |                                              |
|     |                  |       | E I      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               | <u> </u>   |               | 2 6      | 8 8      | 5    | 6                | E  | _ا  |              | 518 | S   | s                |              | ₹ \$   | la | , I E | (E) | _       | 12            | ٦la | 12   | la   |          | S        | 8        | ja l       | 9           | Õ        | SI       | SI G      | us l    | Do      | lla    | č)            | <u> E</u> la | r a   |                                              |
|     |                  |       | q        | <b>N</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               | əlő        | ଚ୍ଚା          |          |          | e le | છે               | 5  | 6   | <u>ا</u> ا   | 6   | 0   | de               | <u>ا</u>     | 리      | 14 | Ē     | te  | 69      | <u>ا</u>      | 18  | 20   | U C  | 12       | m        | 3        | อ          | E .         | <u> </u> | ΪË       | SSI<br>62 | ia      | SI      | ge     | a S           |              | 비용    |                                              |
|     |                  | = Î   | 5        | 80       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | (ک            | ël,        | 3             | ğ i İ    |          | Ηđ   | e                | ar | Ĭ   | 2            | Ξ   | Ē   | X                |              | es les | 12 |       | psi | 5       | Ĩ B           | 15  | t l  | i    | 19       | Ş        | ns       | <b>a</b> 8 | st          | <u>-</u> | i.       | 312       | ar      | In      | la     |               |              | ni o  |                                              |
|     | 0                |       | th       |          | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ₹   | 2             | 된          |               | 3   ^    |          | 히분   | 2                | 5  | ala | 3 \$         | ) a | 60  | 2                | ē            | 6      |    |       | νĒ  | Ite     | ×1            |     |      | Call | 5        | a l      | 3        | 뒹          | 0           | Ē        |          | ŭ la      | io      | Dec.    | 5      | ă -           |              | =   B |                                              |
| 5   |                  | 3  6- | e        | Ē        | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ħ   | a.            | Ē,         | a a           |          | i i      | 6    | l i d            | E  | ar  | 6            | 6   | 1 ĝ | 5                | i:           | E   E  |    | a     | Ē   | y.      | A.            |     | ita  | 10   | Ĕ        | al       | ia       | E.         | .i          | 5        | E I      |           | ad      | llie    | Ě      | ā.            | <u>ē</u> ]:  | 16    |                                              |
| 0   | ΗJ               | 5  H  | <b>D</b> | I        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S.  | 0             | <   (      |               | 5        | 5        |      | E.               | Ä  | 9   | <u>א</u> ן פ |     | E   | F                | $\mathbf{z}$ |        |    |       | 6   | 2       | <u>n   (</u>  | 2 0 | 4 (F |      | N        | 0        | <b>e</b> | 9          | A           | Ē        | ¥.       | ZA        | 2       | S       | S.     |               | 2            | 5   > | Comments                                     |
| Hol | e A              |       |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               |            |               |          |          |      |                  |    |     |              |     |     |                  |              |        |    |       |     |         |               |     |      |      |          |          |          |            |             |          |          |           |         |         |        |               |              |       |                                              |
| 1   | H 1              | 1     | 0.01     | D        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            |            |               | 9        |          |      |                  | R  |     |              |     |     | 9                |              |        |    | R     |     |         |               |     |      | R    |          | 2        | 12       |            |             |          | 5        | 61        | R       | 2       | R      |               |              |       | Diatom-bearing nannofossil ooze              |
| 1   | H 1              | 20    | 0.2      | D        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               |            |               | 10       | )        |      |                  | R  |     |              |     |     | R                | R            | R      |    | R     |     |         |               |     |      | R    |          | 2        | 29       |            |             | 1        | 8        | 38        | 4       | R       | 2      | 4             | 4            |       | Clay-bearing diatom nannofossil ooze         |
| 1   | H   1            | 75    | 0.75     | D        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            |            |               | 7        |          |      |                  |    |     |              |     |     | R                |              |        |    |       |     |         |               |     |      | R    |          |          | 15       | R          |             |          | 7        | 67        | 3       |         | R      |               |              |       | Diatom-bearing nannofossil ooze              |
| 1   | H 2              | 75    | 2.26     | D        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            |            |               | 7        |          |      |                  | R  |     |              |     |     | 1                |              |        |    |       |     |         |               |     |      | R    |          | 1        | 26       | R          |             | 1        | 9        | 53        | R       | 1       | 1      |               |              |       | Diatom nannofossil ooze                      |
| 2   | H 1              | 75    | 4.25     | D        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               |            |               | 5        |          |      |                  |    |     |              |     |     |                  | R            |        |    |       |     |         |               | Т   |      | R    |          | R        | 18       | R          |             | ;        | 8        | 53        | 3       | 8       | 3      |               | 3            |       | Diatom-bearing nannofossil ooze              |
| 2   | H 3              | 75    | 7.27     | D        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 15            |            |               | 15       | 5        |      |                  |    |     |              |     |     |                  |              |        |    |       |     |         |               |     |      | R    |          |          | 10       | R          |             | 1        | 10       | 65        | 1       | R       | R      |               |              |       | Clay diatom-foram-bearing nannofossil ooze   |
| 2   | H 4              | 35    | 8.38     | D        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               | R          |               | 4        |          |      |                  | R  |     |              |     |     |                  | R            |        |    |       |     | R       |               |     |      | R    |          | R        | 6        | R          |             |          | 9        | 74        | 2       | R       | 1      |               | 4            |       | Nannofossil ooze                             |
| 3   | H 1              | 8     | 13.08    | М        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               | R          |               | 13       | 3        |      |                  |    |     |              | R   |     |                  | R            | R      |    |       |     | 1       |               | +   |      | R    |          |          | 33       |            |             |          | 7        | 39        | R       | 4       | R      |               | 3            |       | Clay-bearing diatom nannofossil ooze         |
| 3   | H 1              | 35    | 13.35    | D        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            |            |               | 16       | 5        |      |                  |    |     |              | R   |     |                  |              |        | +  | +     |     | 2       |               | +   | -    | 1    | $\vdash$ |          | 16       |            |             |          | 2        | 65        |         |         |        |               |              |       | Clay diatom-bearing nannofossil ooze         |
| 3   | H 1              | 74    | 13.74    | М        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            |            |               | 11       | 1        |      |                  |    |     | +            | 1   |     |                  |              |        | +  | 1     |     | 1       | -             | +   | +    | R    |          |          | 8        | R          |             |          | 2        | 77        | 1       | R       | R      |               | +            |       | Clay-bearing nannofossil ooze                |
| 3   | H 1              | 75    | 13.75    | D        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -   |               | +          | +             | 5        | -        | -    |                  |    | -   | +            | +   | +   |                  | R            | +      | +  | +     | +   | -       | I             | 2   | +    | R    | +        | R        | 13       | <u> </u>   | +           |          | 8        | 51        | R       | 18      | 2      |               | 12           |       | Diatom spicules-bearing nannofossil ooze     |
| 3   | H 3              | 75    | 16.77    | D        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -   | -             | R          |               | 8        |          | -    |                  | R  | -   | +            | +   | +   |                  | R            | +      | +  | +     | +   |         | -             | +   | +    | R    | +        | R        | 4        | -          | -           | 1        | 12       | 62        | 8       | R       | 4      |               | - E          |       | Foraminifer-bearing nannofossil ooze         |
| 3   | H 6              | 75    | 21.29    | D        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +   |               |            | +             | 4        |          | +    |                  | P  | +   | +            | +   | +   |                  | R            | +      | +  | +     | +   |         | +             | +   | +    | P    | $\vdash$ | IX.      | 6        | -          | +           |          | 2 9      | 85        | P       | R       | 2      |               | L L          | ,     | Nannofossil 002e                             |
| 4   | H 1              | 22    | 21.23    | M        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +   | +             |            | +             | - 4      | -        | +    |                  | K  | +   | +            | +   | +   |                  | K            | +      | +  | +     | +   |         | +             | +   | +    | IN   | +        |          | 0        | -          | +           |          | 2 0      | 03        | IN      | IN      | 2      | -             | -            | ·   - | Ash patch                                    |
| 4   | H 1              | 75    | 22.03    | D        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +   | +             |            | +             | 4        | +        | -    |                  | D  | +   | +            | +   | +   |                  | D            | +      | +  | +     | +   |         | +             | +   | +    | D    | +        |          | 0        | -          | +           | -        | 0        | 71        | 2       |         | 2      |               |              |       | Nappofossil 0070                             |
| 4   | 11 1<br>11 2     | 75    | 25.25    |          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +   | $\rightarrow$ | -          | +             |          | -        | +    | $\left  \right $ | K  | +   | +            | +   | +   |                  | K            | +      | +  | +     | +   |         | +             | +   | +    | IN   | ┢        |          | 2<br>15  | D          | +           | -        | 2        | 77        | 2<br>D  | -       | D      | +             |              | :     | Diatom hearing nannefossil eeze              |
| 4   |                  | /3    | 20.20    |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +   | -             | D          | +             | 5        |          | -    |                  |    | +   | +            | +   | +   |                  |              | +      | +  | +     | +   |         | +             | +   | -    | D    | +        |          | 13       | R<br>D     | -           |          | <u> </u> | //<br>5.4 | R       | D       | R<br>D |               | 1            | -     | Diatom-bearing nannoiossil ooze              |
| 4   |                  | 9     | 30.12    | M<br>D   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            | к          | _             | 10       |          | -    | $\left  \right $ |    | -   |              | - D | -   |                  | _            | _      | -  | - D   | -   | 1       | -             | -   | -    | R    | -        | D        | 14       | R          | -           | -        | 0        | 54        | K       | R       | K<br>1 | _             | 1            | 9     | Diatom-bearing nannoiossii ooze with michte  |
| 4   | H 6              | 35    | 30.38    | D        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            | <u>n</u>   |               | 10       | <u> </u> | _    |                  |    | _   | -            | K   | -   |                  | _            | _      | +  | K     | -   | 1       | -+            | K   | -    | R    | -        | К        | 16       | R          |             |          | / (      | 63        | 2       | R       | 1      |               |              |       | Clay diatom-bearing nannorossil ooze         |
| 5   | H I              | /5    | 32.75    | D        | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _   | -             | R          | $\rightarrow$ | 1        | _        | _    |                  |    | +   |              | _   | -   |                  | _            | +      | +  | _     | +   |         | $\rightarrow$ | +   | _    | K    | -        |          | 3        | K          |             | К.       | K S      | 92        | R       | K       | K      | $\rightarrow$ | 4            | -     | Nannofossil ooze                             |
| 5   | H 2              | 97    | 34.47    | M        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | -+            |            |               | <u> </u> |          |      |                  |    |     |              |     | _   |                  | -            |        | +  |       |     |         |               | +   | _    |      | <u> </u> |          |          | _          |             |          | _        |           | -       |         |        |               |              |       | Ash patch                                    |
| 5   | H 3              | 75    | 35.76    | D        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | $\rightarrow$ |            |               | 4        |          |      |                  |    |     |              |     |     |                  | R            |        |    |       | _   |         |               |     | _    | R    |          | R        | 10       |            |             |          | 7        | 71        | R       | 1       | 1      |               | 4            | :     | Diatom-bearing nannofossil ooze              |
| 6   | H 1              | 75    | 42.25    | D        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _   | _             |            |               | 3        |          |      |                  | R  |     |              | _   | _   |                  | R            |        | +  | R     |     | _       |               | +   | _    |      |          |          | 16       |            |             | _        | R        | 78        | R       | R       | R      |               | 3            |       | Diatom-bearing nannofossil ooze              |
| 6   | H 3              | 75    | 45.28    | D        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            |            |               | 8        |          |      |                  |    |     |              |     |     |                  |              |        |    |       |     | R       |               |     |      |      |          |          | 13       |            |             | 1        | 10       | 69        | R       | R       | R      |               |              |       | Foram diatom-bearing nannofossil ooze        |
| 6   | H 3              | 102   | 45.55    | M        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            |            |               | 5        |          |      |                  |    |     |              |     |     |                  | R            | R      |    |       |     | 2       |               |     |      | R    |          |          | 23       |            |             | 1        | 19       | 51        | R       | R       | R      |               |              |       | Foram diatom-bearing nannofossil ooze        |
| 6   | H 5              | 111   | 48.66    | D        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            |            |               | 4        | :        |      |                  |    |     |              |     |     |                  | R            |        |    | R     |     | 2       |               |     |      |      |          |          | 18       |            |             |          | 4        | 70        | R       | R       | R      |               | 4            |       | Diatom-bearing nannofossil ooze              |
| 7   | H   1            | 75    | 51.75    | D        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            |            |               | 6        |          |      |                  |    |     |              |     |     |                  |              |        |    |       |     | 1       |               |     |      |      |          |          | 12       |            |             |          | 4        | 76        | R       | R       | R      |               | 1            |       | Diatom-bearing nannofossil ooze              |
| 7   | H 3              | 75    | 54.77    | D        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               |            |               | 3        |          |      |                  |    |     |              |     |     |                  |              |        |    |       |     |         |               |     |      |      |          |          | 15       |            |             |          | R        | 76        | R       | 1       | 1      |               | 3            |       | Diatom-bearing nannofossil ooze              |
| 7   | H 4              | 58    | 56.11    | М        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            |            |               | 2        |          |      |                  |    |     |              |     |     |                  |              |        |    |       |     | 2       |               |     |      | R    |          | R        | 20       | R          |             |          | 3        | 70        | R       | R       | 1      |               | 2            | :     | Diatom-bearing nannofossil ooze              |
| 7   | H 6              | 75    | 59.3     | М        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               |            |               | 6        |          |      |                  | R  |     |              |     |     |                  |              |        |    |       |     | R       |               |     |      | R    |          | R        | 11       | R          |             |          | 8        | 72        | 1       | R       | R      |               | 2            | 1     | Diatom-bearing nannofossil ooze              |
| 7   | H 6              | 111   | 59.66    | М        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            |            |               | 13       | 3        |      |                  |    |     |              |     |     |                  | R            | R      |    | R     |     | 6       |               |     |      |      |          |          | 19       | R          |             | 1        | 19       | 38        | 4       | R       | R      |               | 3            |       | Clay foram-diatom-bearing nannofossil ooze   |
| 8   | H 1              | 75    | 61.25    | D        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               |            |               | 2        |          |      |                  |    |     |              |     |     |                  |              |        |    |       |     | R       |               |     |      | R    |          |          | 12       |            |             |          | 2        | 80        | 2       | R       | R      |               | 2            | :     | Diatom-bearing nannofossil ooze              |
| 8   | H 3              | 75    | 64.26    | D        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            |            |               | 2        |          |      |                  |    |     |              |     |     |                  | R            |        |    |       |     |         |               | Т   |      | R    |          |          | 8        |            |             | 1        | 17 (     | 68        | 2       | 2       | R      |               | 2            | 1     | Foraminifer-bearing nannofossil ooze         |
| 9   | H 1              | 75    | 70.75    | D        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               |            |               | 5        |          |      |                  |    |     |              |     |     |                  |              |        |    |       |     |         |               |     |      | R    |          |          | 17       |            |             |          | 3 (      | 68        | 2       | R       | R      |               | 5            |       | Diatom-bearing nannofossil ooze              |
| 9   | H 3              | 75    | 73.76    | D        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 1 | 00            |            |               | 2        |          |      |                  |    |     |              |     |     |                  |              |        |    |       |     | R       |               |     |      | R    |          |          | 12       |            |             |          | 9 (      | 69        | 3       | R       | 2      |               | 3            |       | Diatom-bearing nannofossil ooze              |
| 9   | H 4              | 120   | 75.72    | D        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |               |            |               | 2        |          |      |                  |    |     |              |     |     |                  |              |        | +  |       |     | R       |               | +   |      | 2    |          |          | 11       |            |             |          | 4        | 76        | R       | R       | 2      |               | 4            |       | Diatom-bearing nannofossil ooze              |
| 9   | H 4              | 126   | 75.78    | D        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +   | +             | +          | +             | 2        |          | 1    | $\square$        |    | +   | +            | +   | 1   |                  | +            | +      | +  | +     |     | R       |               | +   | 1    | R    | 1        |          | 8        | +          | +           |          | 5 8      | 81        | R       | R       | R      |               | 5            |       | Nannofossil ooze                             |
| 10  | H 1              | 75    | 80.25    | D        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R 1 | 00            | +          | +             | 5        |          |      | $\square$        | R  | +   | +            |     | 1   |                  | +            | +      | +  |       | 1   | 2       | +             | +   | +    | R    |          |          | 13       | +          | +           |          | 8        | 66        | 2       | R       | 2      | +             | 3            |       | Diatom-bearing nannofossil ooze              |
| 10  | H 3              | 75    | 83.26    | D        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -   |               | +          | +             | 2        | +        | +    |                  |    | +   | +            | +   | +   |                  | +            | +      | +  | +     | 1   | R       | +             | +   | +    | R    | 1        | $\vdash$ | 13       | +          | +           |          | 6        | 74        | 4       | R       | R      | +             | 12           |       | Diatom-bearing nannofossil ooze              |
| 11  | H 3              | 75    | 92.64    | D D      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +   | +             | +          | +             | 5        |          | +    |                  | R  | +   | +            | +   | +   |                  | +            | +      | +  | +     | +   | R       |               | +   | +    | +    | 1        |          | 34       | R          | +           | 1        | 10       | 36        | 2       | R       | 6      | +             | 17           | -     | Foram-bearing diatom nannofossil ooze        |
| 11  | HA               | 53    | 96.95    | D D      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +   | +             | +          | +             | 8        | +        | +    | $\left  \right $ | R  | +   | +            | +   | +   |                  | +            | +      | +  | +     | +   | R       | +             | +   | +    | +    | +        |          | 40       | <u>~</u>   | +           | ť        | 7        | 30        | 2       | P       | 2      | +             | 1            |       | Nannofossil diatom ooze with micrite         |
| 12  | H 1              | 75    | 90.93    |          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +   | +             | +          | +             | - 0      | -        | +    |                  | A  | +   | +            | +   | +   |                  | +            | +      | +  | +     | -   | R R     | -             | +   | +    | P    | +        |          | 14       | +          | +           | -        |          | 62        | 2       | P       | 2<br>P | +             | -            |       | Diatom-bearing nannofossil coze              |
| 12  | 11   1<br>11   2 | 75    | 102.25   | HD D     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +   | +             | +          | +             | 4        | -        | +    | $\vdash$         |    | +   | +            | +   | +   | $\left  \right $ | +            | +      | +  | +     | -   | IV      | -             | +   | +    | 2    | -        | $\vdash$ | 20       | +          | +           |          | 2        | 10        | 4       | D       | 1      |               | 1            |       | Diatom bearing nannofossil ooze with micrite |
| 12  | 11 3<br>11 4     | 00    | 102.23   | M        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +   | +             | +          | +             | 0        | -        | +    | $\vdash$         |    | -   | +            | +   | +   |                  | +            | +      | +  | +     | -   | D       |               | +   | +    |      | -        |          | 45       | +          | +           |          | 5        | 77        | 1       | IX<br>D | 7      | -             | - 1          |       | Nannofossil diatom 2020 "diatom made"        |
| 12  | 11   4<br>LI   1 | 90    | 103.96   | D IVI    | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +   | +             | +          | +             | 19       | -        | +    | $\left  \right $ | D  | +   | +            | +   | +   |                  | +            | +      | +  | +     | -   | T.<br>D | -             | +   | +    | D D  | -        |          | 13       | +          | +           | -        | 5        | 10        | 12<br>D | N<br>D  | 4      | +             | - 2          |       | Distom pappofossil 0020 - Ulatolii Illaus    |
| 13  |                  | /5    | 108.75   |          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +   | +             | +          | +             | 8        | -        | +    | $\left  \right $ | к  | +   | +            | +   | +   |                  | +            | +      | +  | +     | -   | K<br>D  |               | +   | +    | R    | -        |          | 24       | +          | +           | -        | 5        | 40        | K       | K       | 1      | +             | -13          | -     | Diatom nannofossil ooze                      |
| 13  | п   3            | 1/5   | 111./5   | ln I     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | - 1           |            |               | 8        |          |      |                  |    |     |              |     | 1   |                  | 1            |        |    |       | 1   | к       |               |     |      | 12   | 1        | l l      | 54       |            | 1           | - I ·    | o ŀ      | 42        | 12      | К       | 2      |               | 12           |       | Diatom nannorossil ooze                      |

| Sam  | ple        |       |        | Tey           | Texture     Mineral     Biogenic |         |        |           |           |          |     |                  |          |     |        |                  |                 |            | ŀ        | loc | k                |           |               |              |             |     |          |                  |               |      |               |       |     |    |      |          |        |        |         |        |            |          |                                                   |
|------|------------|-------|--------|---------------|----------------------------------|---------|--------|-----------|-----------|----------|-----|------------------|----------|-----|--------|------------------|-----------------|------------|----------|-----|------------------|-----------|---------------|--------------|-------------|-----|----------|------------------|---------------|------|---------------|-------|-----|----|------|----------|--------|--------|---------|--------|------------|----------|---------------------------------------------------|
|      |            |       |        |               |                                  |         |        |           |           |          |     |                  |          |     |        |                  |                 |            |          |     |                  |           |               |              |             |     |          |                  |               |      |               |       |     |    |      |          |        | 6      |         |        |            |          |                                                   |
|      |            |       |        |               |                                  |         |        |           |           |          |     |                  |          |     |        |                  |                 |            |          |     |                  |           |               |              |             |     |          |                  |               |      |               |       |     |    |      |          |        | (18    |         |        |            |          |                                                   |
|      |            |       |        |               |                                  |         |        |           |           |          |     |                  |          |     |        |                  |                 |            |          |     |                  |           |               |              |             |     |          |                  |               | ଳ    |               |       |     |    |      |          |        | es     |         |        |            | 0        |                                                   |
|      |            |       |        |               |                                  |         |        |           |           |          |     |                  |          |     |        |                  | 2               |            |          |     |                  |           |               |              |             |     |          |                  |               | 22   |               |       |     |    |      |          |        | cul    |         |        |            | 5        |                                                   |
|      |            |       |        |               |                                  |         |        |           |           |          | -   |                  |          |     | 6      | •                | 6               |            |          | 13  |                  |           |               |              |             |     |          |                  |               | es   |               |       |     |    |      |          |        | pid    | 8       |        |            | ts       |                                                   |
|      |            |       |        |               |                                  |         |        |           |           | 6        | Ê   |                  |          |     | 8      | ·                | te              | ଚ          |          | E   |                  |           |               |              |             |     |          | 8                | !             |      |               | 6     |     | 0  | 32   | ĵ        | 73     | eS     | S       |        |            | lei      |                                                   |
|      |            |       |        |               |                                  |         | l 🗟    |           | 6         | <u>7</u> | ຢ   |                  |          | 6   | als    |                  | lc:             | 13         | la       | i e |                  | <b>1</b>  | 55            | E            | F           |     |          | 8                | - I'          | ă.   | -             | 2 2   | 3   |    | 15   | -        | 5      | ng     | ate     |        |            | 15       |                                                   |
|      |            |       | bsf    |               |                                  |         | e      | Í         | A.        | ral      | 2 3 | 5                | E        | ົ   | Jer 1  | 6)               | ő               | S.         | 14       | Ĭ   | 9                | e         | 딠             | <u> </u>     | 315         | Ì@  | E        | Gla              | <u></u>       | SS   | 8             |       | 918 | E. | sils | ลิ       | ans    | d      | ell'    | 5      | 5 6        | Fra      |                                                   |
|      |            | Ē     | E      | 60            | <u>و</u> ا _                     |         |        | (3        | 5         | ine      | E B | 9                | Ľ.       | 5 - | ļ      | te               | ii              | id         | 9        |     | 14               | lit       | i i i         | <u> 1</u>    | 2 E         | 915 | ()<br>   | <u>.</u>         | 3             |      | s             | 3     |     |    | 0    | 19       | i.     | 15 5   | ag      |        |            | 95       |                                                   |
|      |            | 5     | P I    | 19            | ଥାନ୍ତି                           | ି ା ୭   | ļ      | te        | e e       | Ξļ       |     | ote              | ba       | t ŝ | 312    | ati              | ga              | ő          |          | 8   | es               | ŝ         | ij.           | e   \$       | t k         | l j | it       | an               |               | al a |               |       | e L | Ē  |      | E.       | olŝ    | 103    | G       |        | ite<br>ite |          |                                                   |
| lre  | cti        | d     | ept    | Ē             |                                  | ay      |        | lci       | lar       | ay       | 18  | bid              | Id       |     | ea   e | em               | o               | 8.         |          | ĮĘ  | kid              | la        |               |              |             | Ē   | ta       | 3                | 2             |      | at            |       | 2   | La | Inc  | Į        | adi    | lic    | lić,    |        | i li       | 19       |                                                   |
| Ŭ F  | Se         | Ţ     | Ď      | Li            | S S                              | 5 0     | P      | ů         | Ö         | 5 5      | 5 A | EI               | Fe       | 3 3 | 5 H    | H                | E               | <u>ة</u> ; | 20       | δ   | ô                | Pa        | ā į           | <u> </u>     | <u>କ </u> ଚ | 2   | Ë        | ž                | Zi            | ů ž  |               | 5   2 |     | 2  | Ž    | ď        | R      | Si     | S       | 5   2  |            | ž        | Comments                                          |
| Hole | A (0       | ontir | ued)   |               |                                  |         | _      |           |           |          |     |                  |          |     | _      | _                |                 |            | _        | _   |                  |           |               |              |             | _   |          |                  |               |      | _             |       | _   |    |      | _        |        |        |         | _      | _          |          |                                                   |
| 13 H | I 4        | 95    | 113.46 | D             |                                  |         |        |           | 1         | 10       |     |                  |          |     |        |                  |                 |            |          |     |                  |           | 1             | 2            |             |     |          | R                |               | 4    | 3             |       |     | 1  | 36   | 5        | 3      | R      | 1       |        | 4          |          | Clay-bearing nannofossil diatom ooze              |
| 14 F | I 1        | 75    | 118.25 | D             |                                  | _       |        |           |           | 3        | _   |                  |          | _   |        |                  |                 | 1          | 2        | _   |                  |           |               | _            | +           |     | _        | R                |               | 3    | 5             |       | _   | R  | 56   | 5        | R      |        | 1       |        | 4          |          | Diatom nannofossil ooze                           |
| 14 1 | 1 3        | 75    | 121.26 | D             |                                  | _       | +      | _         |           | 5        | _   |                  | D        | +   | _      |                  | $\rightarrow$   |            | _        | +   |                  |           | $\rightarrow$ | +            | +           | +   | -        | R                | $\rightarrow$ | 1    | 8             | +     | +   | R  | 74   | -        | R      | R      | R       | _      | 2          | +        | Diatom-bearing nannotossil ooze                   |
| 15 1 | 1 1        | 75    | 12/./5 | D             | _                                | -       | +      | -         | <u> </u>  | 4        | _   |                  | К        | +   | +      |                  | -               | - 1        |          | +   |                  |           | -             | +            | +           | +   | -        |                  | $\rightarrow$ | 4    | 3             | +     | +   | R  | 45   |          | 1<br>D |        | 1       | _      | 5          | +        | Diatom-nannoiossil ooze                           |
| 15 F | 1 3        | 75    | 130.77 | D             | -                                | -       | -      |           | Ľ         | 5        | _   |                  | 1        |     |        |                  | -               | -          |          | D   |                  |           | - 1           | 4            | +           | -   | -        | 2                | -             | 4    | 4             | +     | +   | 2  | 44   | -        | K<br>D | D      | 2       | _      | 5          | +        | Diatom-nannolossil ooze                           |
| 10 F | 1 1<br>1 2 | 75    | 137.23 |               | _                                | -       | +      | -         |           | 2        | +-  |                  | 1        | K   | -      | $\vdash$         | -               | - 1        | K        | K   |                  |           | -             | ,            | +           | +   | -        | D                | $\rightarrow$ | - 4- | 2             | +     | +   |    | 41   | -        | K<br>D | K      | 1<br>D  | -      | 10         | +        | Nannofossil hearing diatom coze with micrite      |
| 16 F | 1 2        | 75    | 140.25 | D             |                                  | -       | -      |           |           | 5        | +   |                  | P        | +   | +      |                  | -               | 1          | ,        | +   |                  |           |               | `+           | +           | -   | -        | R                | -             | 1    | 2             | +     | +   | 2  | 43   |          | 1      |        | R       | -      | 5          | -        | Diatom-nannofossil ooze                           |
| 17 F | I 1        | 75    | 146.75 | D             |                                  | 100     |        |           |           | 11       | +   |                  | K        | +   | +      |                  | -               |            | +        | +   |                  |           | -             | +            | +           | +   | +        |                  | +             | 2    | 6             | +     | +   | 3  | 53   | -        | 1      | R      | 2       | +      | 3          | +        | Clay-bearing diatom nannofossil ooze              |
| 17 F | 13         | 75    | 149.77 | D             |                                  | 100     | +      | -         | 1         | 17       | -   |                  | $\vdash$ | R   |        |                  | +               | 1          | 2        | +   |                  |           |               | i –          | +           | +   | +        |                  | +             | 2    | 6             | +     | +   | 3  | 51   | +        | R      | R      | R       | +      | 3          | +        | Clay-bearing diatom nannofossil ooze              |
| 18 H | I 1        | 75    | 156.25 | D             |                                  |         | +      |           | 1         | 14       | +   |                  | $\vdash$ |     |        |                  | -               | 1          | ί.       | +   |                  |           | 1             | 2            | +           | +   | +        | 3                | +             | 5    | 5             | +     | +   | R  | 20   | )        | R      |        | 1       | +      | 7          | +        | Clay nannofossil-bearing diatom ooze              |
| 18 F | I 3        | 75    | 159.25 | D             | 0 0                              | 100     |        |           | 1         | 13       |     |                  |          | R   |        |                  |                 | +          | +        | +   |                  |           |               | ιŤ           | +           | 1   | +        |                  | +             | 2    | 2             | +     | +   | 2  | 57   | ,        | 2      |        | +       | +      | 4          | +        | Clay diatom-bearing nannofossil ooze              |
| 19 H | I 1        | 75    | 165.75 | D             |                                  |         | 1      |           | 1         | 12       | +   |                  |          | +   | -      |                  |                 |            | -        | +   |                  |           | +             | +            | +           |     |          |                  |               | 4    | 2             |       | +   | R  | 42   | :        | R      |        | R       | +      | 5          | +        | Clay-bearing diatom-nannofossil ooze              |
| 19 H | I 3        | 75    | 168.77 | D             |                                  |         |        |           | 1         | 4        |     |                  |          |     |        |                  |                 |            |          |     |                  |           |               |              |             | 1   |          | R                |               | 4    | 5             | +     | +   | R  | 45   |          | R      |        | 1       |        | 4          |          | Diatom-nannofossil ooze                           |
| 20 H | I 1        | 75    | 175.25 | D             | 0 0                              | 100     | )      |           |           | 6        |     |                  |          |     |        |                  |                 | 1          | 2        |     |                  |           | 1             | 2            |             |     |          |                  |               | 3    | 0 F           | 2     |     | 4  | 55   |          | R      | R      | R       |        | 2          |          | Diatom nannofossil ooze                           |
| 20 H | I 3        | 75    | 178.27 | D             | 0 0                              | 100     | )      |           | 1         | 11       |     |                  |          |     |        |                  |                 |            |          |     |                  |           |               | L            |             |     |          |                  |               | 3.   | 4 F           | 2     | R   | 3  | 45   | ;        | R      | R      | R       |        | 6          |          | Clay-bearing diatom nannofossil ooze              |
| 20 H | I 4        | 101   | 180.04 | D             |                                  |         |        |           | 3         | 30       |     |                  |          | R   |        | R                |                 | 7          |          |     |                  |           | ]             | 2            |             |     |          |                  |               | 1    | 5             |       |     | 3  | 45   | 5        | R      |        | R       |        |            |          | Clayey diatom-bearing nannofossil ooze            |
| 20 H | I 5        | 72    | 181.26 | М             |                                  |         |        |           | 1         | 9        |     |                  | R        |     |        |                  |                 | 1          | 2        |     |                  |           | 2             | 2            |             |     |          | R                |               | 1    | 9             |       |     | 4  | 66   | 5        | R      | R      | R       |        |            |          | Diatom-bearing nannofossil ooze                   |
| 21 H | I 1        | 75    | 184.75 | D             |                                  |         |        |           | 1         | 13       |     |                  | R        |     |        |                  |                 |            |          |     |                  |           | 1             | ۱ ا          |             |     |          | R                |               | 1    | 9             |       |     | 4  | 58   | ;        | R      | R      | R       |        | 6          |          | Clay diatom-bearing nannofossil ooze              |
| 21 H | I 3        | 75    | 187.77 | D             |                                  |         | R      |           | ŀŀ        | 4        |     |                  | R        |     |        |                  |                 |            |          |     |                  |           | 1             | 2            |             |     |          | R                |               | 1.   | 4             |       |     | 6  | 71   | _        | 2      | R      | R       |        | 2          |          | Diatom-bearing nannofossil ooze                   |
| 21 H | I 4        | 75    | 189.26 | D             |                                  |         | _      |           |           | 2        | _   |                  |          | +   |        |                  | _               |            |          | _   |                  |           | 1             | 2            | _           |     | -        | 2                | _             | 2    | 5             | _     | _   | 2  | 59   | 2        | 2      | R      | R       |        | 8          | -        | Diatom-bearing nannofossil ooze                   |
| 22 F | I 1        | 75    | 194.25 | D             |                                  | _       |        |           | R         | R        |     |                  | R        |     |        | R                |                 |            | _        | _   |                  |           | 1             | <b>ξ</b>   F |             |     | _        | R                | _             | 3    | 2             | -     |     | 1  | 63   |          | 1      | R      | 1       | _      | 1          |          | Diatom nannofossil ooze                           |
| 22 F | 13         | /5    | 197.27 | D             |                                  | _       | R      |           | K I       | 12       | _   |                  | R        | _   | -      |                  | _               | _          | _        | -   |                  |           |               | L            | K           | -   | -        | 1                | _             | 2    | 9             | _     | _   | 2  | 4/   |          | 1      | K      | 2       | _      | 4          | -        | Clay-bearing diatom nannofossil ooze              |
| 22 1 | 10         | 75    | 202.09 | M             | _                                | -       | +      | -         |           | 0        | +-  |                  |          | +   | +      | $\vdash$         | +               |            | <u> </u> | +   |                  |           | -             | +            | +           | +   | +        | D                | $\rightarrow$ |      |               | +     | +   | 5  | 50   | _        | 2      | D      | D       | _      | -          | +        | ASD<br>Distant hearing many efectil serve         |
| 23 F | 1 1        | 75    | 205.75 |               |                                  | -       | D      | -         | D         | D        | +   |                  | D        | +   | +      | $\vdash$         | +               | - 1        |          | +   |                  |           | -             | +            | +           | +   | +        | 2                | +             | 2    | 7             | +     | +   | 3  | 55   | -        | 2      | D      | 1       | +      | 10         | <u> </u> | Diatom pappofossil oozo with micrito              |
| 23 I |            | 75    | 213 25 | D             | -                                |         | IN     |           | R         | 0        | -   |                  | R        | +   | -      |                  | -               | -          | +        | +   |                  |           | -             | +            | +           | -   | -        | 1                | -             | 2    | 2             | -     | +   | 2  | 45   | <u> </u> | 2      | R      | 2       | +      | 4          |          | Diatom nannofossil ooze                           |
| 24 F | 1 3        | 75    | 215.25 | D             |                                  | -       | +      | -         | 2         | R        | +   |                  | R        | +   | +      |                  | -               | 1          | 2        | +   |                  |           | -             | -            | +           | +   | +        | 2                | +             | 2    | 3             | +     | +   | 5  | 62   |          | 2      | R      | 2       | +      | 3          | +        | Diatom-bearing nannofossil ooze                   |
| 24 H | I 6        | 31    | 220.37 | M             |                                  |         | +      |           |           | 9        | +   |                  | R        | +   | +      |                  | -               | 1          | ` -      | +   |                  |           | 1             | 1            | +           | +   | +        | 1                | +             | 2    | 6             | +     | +   | 3  | 51   |          | 3      |        | 1       | +      | 6          | +        | Diatom nannofossil ooze                           |
| 25 H | I 1        | 75    | 222.75 | D             |                                  |         | +      |           | R         | 4 R      | 1   |                  | R        | +   | +      |                  |                 | +          |          | +   |                  |           | 1             | 2            | +           | 1   | $\vdash$ | 3                | $\neg$        | 2    | 7             |       | +   | 7  | 53   |          | 1      | R      | 1       | +      | 4          | +        | Diatom nannofossil ooze                           |
| 25 H | I 2        | 91    | 224.42 | M             |                                  | +       | $\top$ |           | $\square$ |          | +   |                  |          | +   | +      |                  | -1              |            |          |     |                  |           | 1             | +            | +           | 1   |          |                  | $\neg$        | Ť    |               |       | +   |    |      |          |        |        | +       | $\top$ | Ť          | $\top$   | Ash                                               |
| 25 H | I 3        | 75    | 225.77 | D             |                                  |         |        |           | R         | 3        |     |                  | R        |     |        |                  | 1               |            |          |     |                  |           | 1             | 2            |             |     |          | 3                |               | 2    | 8             |       |     | 1  | 56   | 5        | 1      | R      | 1       |        | 7          |          | Diatom nannofossil ooze                           |
| 25 F | I 4        | 78    | 227.31 | М             |                                  |         |        |           |           |          |     |                  |          |     |        |                  |                 |            |          |     |                  |           |               |              |             |     |          |                  |               |      |               |       |     |    |      |          |        |        |         |        |            |          | Ash                                               |
| 25 H | I 4        | 85    | 227.38 | М             |                                  |         |        |           |           |          |     |                  |          |     |        |                  |                 |            |          |     |                  |           |               |              |             |     |          |                  |               |      |               |       |     |    |      |          |        |        |         |        |            |          | Ash                                               |
| 26 H | I 1        | 75    | 232.25 | D             |                                  |         |        |           | R         | 9        |     |                  | R        |     |        |                  |                 | 1          | ۱.       |     |                  |           |               | L            |             |     |          | 1                |               | 3    | 0             |       |     | 2  | 49   | 2        | 1      | R      | 2       |        | 4          |          | Diatom nannofossil ooze                           |
| 26 H | I 3        | 75    | 235.27 | D             |                                  | $\perp$ |        | $\square$ | R 1       | 11       |     |                  | R        |     |        |                  | $ \rightarrow $ | 1          | 2        |     |                  |           | 1             | 2            | $\perp$     |     |          |                  |               | 3    | 3             |       |     | 5  | 44   | -        | 1      | R      | 2       |        | 3          | $\perp$  | Clay-bearing diatom nannofossil ooze              |
| 27 H | I 1        | 75    | 241.75 | D             |                                  | _       |        |           | R 1       | 10       |     |                  | R        |     |        |                  | $\square$       |            |          |     |                  |           | 1             | 2            | _           | _   |          | 1                |               | 3    | 0             |       |     | 3  | 51   | -        | 1      |        | 2       |        | 2          | _        | Clay-bearing diatom nannofossil ooze              |
| 27 H | 1 3        | 75    | 244.77 | D             |                                  | -       | R      |           | R 1       | 11       | _   |                  | R        | +   | _      |                  | -+              | _          | _        | -   |                  | $\square$ | - 1           | 4            | _           | -   | -        | 1                | -             | 3    | 4             | _     | _   | 3  | 45   | -        | ĸ      | R      | R       | _      | 6          | -        | Clay-bearing diatom nannofossil ooze              |
| 27 H | 1 7        | 36    | 250.43 | M             | _                                | +       | +      | +         | D         | 9        | +   | $\left  \right $ | $\vdash$ | +   | +      | $\left  \right $ | +               | _          | +        | -   | $\left  \right $ |           |               | 4            | +           | +   | -        | 2                | -+            | 3    | 4             | +     | +   | 2  | 52   | :        | 2      | R      | R       | +      | -          | +        | Diatom nannotossil ooze                           |
| 28 1 | 1 1        | /5    | 251.25 | D             | _                                | +       | +      | $\square$ | R I       | 4        | -   |                  | $\vdash$ | +   | -      | $\square$        | +               | _          | +        | +   |                  |           | - 1           | 4            | +           | +   | -        | 6                | $\rightarrow$ | 1    |               | +     | +   | 4  | /3   | -        | 2      | R      | K<br>D  | +      | 1          | <u> </u> | Diatom-bearing nannofossil ooze                   |
| 20 1 | 1 2        | 20    | 252.71 | M             | -                                | +       | +      | +         | T D 1     | 0        | -   |                  | D        | +   | -      | +                | +               | +          | +        | +   |                  |           | +             | +            | +           | -   | -        | $\left  \right $ | +             | 1    | 4             | +     | +   | 6  | 10   | -        | 4      | R<br>D | r(<br>D | +      | 1/         |          | Clay diatom boaring nanno core with micrite       |
| 20 F | 1 3        | 45    | 253.72 | M             | -                                | +       | +      | +         | 2 1       | 12       | +   |                  | R        | 2   |        | +                | +               | +          | 8        | +   |                  |           | -             | +            | +           | +   | -        | $\left  \right $ | +             | 1    | $\frac{2}{2}$ | +     | +   | 8  | 40   | ,        | +<br>2 | R      | R       | +      | 10         |          | Clay diatom-bearing nannofossil ooze with micfile |
| 28 1 | 13         | 60    | 253.57 | M             | +                                | +       | R      | +         |           | 8        | 5   |                  |          |     |        | +                | +               | +          | -        | +   |                  |           | 1             | 5            | +           | +   | +        | $\left  \right $ | +             | 1    | 5             | +     | +   | 5  | 30   | )        | R      | R      | R       | +      | 2.0        |          | Diatom-bearing nanno w. micrite+pvr : auth. G     |
|      |            | 00    |        | [ <sup></sup> |                                  |         | 1      |           |           | -        | ľ   |                  |          | 1   |        |                  |                 |            |          |     |                  |           | ľ             |              |             |     |          |                  |               |      | Ĩ             |       |     |    |      |          | ·      |        | -       |        | Γ          |          |                                                   |
|      |            |       |        |               |                                  |         |        |           |           |          |     |                  |          |     |        | 1                |                 |            |          |     |                  |           |               |              |             |     |          |                  |               |      |               |       |     |    |      |          |        |        |         |        |            |          |                                                   |

| Sample                                              | Texture                                       | Mineral                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                               | Biogenic                                                                                                                                                                                                                                                                                        | Rock                                                                         |                        |
|-----------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------|
| Core<br>Type<br>Section<br>Top (cm)<br>Depth (mbsf) | Lithology<br>Sand (%)<br>Silt (%)<br>Clay (%) | Amphibole (8)<br>Calcite (30)<br>Chalcedony (42)<br>Clay Mineral (47)<br>Clanypyroxene (49)<br>Dolomite (62)<br>Epidote (67)<br>Feldspar (71)<br>Garnet (79) | Glauconite (82)<br>Heavy Minerals (89)<br>Hematite (90)<br>Inorganic Calcite (97)<br>Iron Oxides (260)<br>Mica (118)<br>Opaques (140)<br>Orthopyrosene (143)<br>Orthopyrosene (143)<br>Orthopyrosene (143)<br>Palagonite (148)<br>Palagonite (148)<br>Palagonite (148)<br>Phillipsite (155)<br>Pyrite (169)<br>Pyrosene (171)<br>Quartz (172) | Volcanic Glass (81)<br>Zircon (223)<br>Calcareous Spicules (259)<br>Diatoms (58)<br>Dinoflagellate (59)<br>Discoaster (61)<br>Fish Teeth (261)<br>Foraminifers (78)<br>Nannofossils (132)<br>Pollen (162)<br>Pollen (162)<br>Siliceous Sponge Spicules (185)<br>Siliceous Sponge Spicules (185) | Unknown (258)<br>Bioclasts (21)<br>Micrite (119)<br>Volcante Fearments (220) | Comments               |
| Hole B                                              |                                               |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                 |                                                                              |                        |
| 4 H 3 140 32.11                                     | M 0 0 100                                     | 8                                                                                                                                                            | RR                                                                                                                                                                                                                                                                                                                                            | 3 8 8 71 3 R                                                                                                                                                                                                                                                                                    |                                                                              | Nannofossil ooze       |
| 5 H 2 79 39.5                                       | M 0 0 100                                     | 8                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                               | R 4 2 84 R R R                                                                                                                                                                                                                                                                                  |                                                                              | Nannofossil ooze       |
| 22 H 3 43 204.15                                    | 5 M                                           |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                 |                                                                              | Ash - mixed with ooze  |
| 24 H 5 133 227.07                                   | 7 M                                           |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                 |                                                                              | Ash                    |
| 26 H 3 67 242.38                                    | 3 M                                           |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                 |                                                                              | Ash - brown glass only |