REFERENCES

Berner, R.A., 1980. Early Diagenesis: A Theoretical Approach: Princeton, NJ (Princeton Univ. Press).

Borowski, W.S., Hoehler, T.M., Alperin, M.J., Rodriguez, N.M., and Paull, C.K., 2000a. Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates. In Paull, C.K., Matsumoto, R., Wallace, P.J., and Dillon, W.P. (Eds.), Proc. ODP, Sci. Results, 164: College Station, TX (Ocean Drilling Program), 87–99. [HTML version]

Borowski, W.S., Paull, C.K., and Ussler, W., III, 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24:655–658.

Borowski, W.S., Paull, C.K., and Ussler, W., III, 1999. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates. Mar. Geol., 159:131–154.

Borowski, W.S., Paull, C.K., and Ussler, W., III, 2000b. Geologic implications of sulfide mineralization at the sulfate-methane interface in marine sediments. Geol. Soc. Am. Bull., 32(7):A-256.

Canfield, D.E., 1991. Sulfate reduction in deep-sea sediments. Am. J. Sci., 291:177–188.

Chambers, L.A., and Trudinger, P.A., 1979. Microbiological fractionation of stable sulfur isotopes: a review and critique. Geomicrobiol. J., 1:249–293.

Claypool, G.E., and Threlkeld, C.N., 1983. Anoxic diagenesis and methane generation in sediments of the Blake Outer Ridge, Deep Sea Drilling Project Site 533, Leg 76. In Sheridan, R.E., Gradstein, F.M., et al., Init. Repts. DSDP, 76: Washington (U.S. Govt. Printing Office), 391–402.

Deines, P., 1980. The isotopic composition of reduced organic carbon. In Fritz, P., and Fontes, J.C. (Eds.), Handbook of Environmental Isotope Geochemistry (Vol. 1): The Terrestrial Environment, A: Amsterdam (Elsevier), 329–406.

D'Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., 2003. Proc. ODP, Init. Repts., 201 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/201_IR/201ir.htm>. [Cited 2005-07-08]

Gieskes, J.M., Gamo, T., and Brumsack, H., 1991. Chemical methods for interstitial water analysis aboard JOIDES Resolution. ODP Tech. Note, 15 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/tnotes/tn15/f_chem1.htm>. [Cited 2005-07-08]

Goldhaber, M.B., and Kaplan, I.R., 1974. The sulfur cycle. In Goldberg, E.D. (Ed.), The Sea (Vol. 5): Marine Chemistry: The Sedimentary Cycle: New York (Wiley-Interscience), 569–655.

Henrichs, S.M., and Reeburgh, W.S., 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. J. Geomicrobiol., 5:191–237.

Holt, B.D., and Engelkemeir, A.G., 1970. Thermal decomposition of barium sulfate to sulfur dioxide for mass spectrometric analysis. Anal. Chem., 42:1451–1453.

Jørgensen, B.B., 1983. The microbial sulfur cycle. In Krumbein, W.E. (Ed.), Microbial Geochemistry: St. Louis (Blackwell Scientific Publications), 91–124.

Manheim, F.T., and Sayles, F.L., 1974. Composition and origin of interstitial waters of marine sediments, based on deep sea drill cores. In Goldberg, E.D. (Ed.), The Sea (Vol. 5): Marine Chemistry: The Sedimentary Cycle: New York (Wiley), 527–568.

Price, F.T., and Shieh, Y.N., 1979. Fractionation of sulfur isotopes during laboratory synthesis of pyrite at low temperatures. Chem. Geol., 27:245–253.

Reeburgh, W.S., 1982. A major sink and flux control for methane in marine sediments: anaerobic consumption. In Fanning, K.A., and Manheim, F.T. (Eds.), The Dynamic Environment of the Ocean Floor: Lexington, MA (D.C. Heath), 203–217.

Reeburgh, W.S., 1983. Rates of biogeochemical processes in anoxic sediments. Annu. Rev. Earth Planet. Sci., 11:269–298.

Rees, C.E., Jenkins, W.J., and Monster, J., 1978. The sulphur isotopic composition of ocean water sulphate. Geochim. Cosmochim. Acta, 42:377–381.

Schulz, H.D., Dahmke, A., Schinzel, U., Wallmann, K., and Zabel, M., 1994. Early diagenetic processes, fluxes, and reaction rates in sediments of the South Atlantic. Geochim. Cosmochim. Acta, 58:2041–2060.

Studley, S.A., Ripley, E.M., Elswick, E.R., Dorais, M.J., Fong, J., Finkelstein, D., and Pratt, L.M., 2002. Analysis of sulfides in whole rock matrices by elemental analyzer-continuous flow isotope ratio mass spectrometry. Chem. Geol., 192:141–148.

Takacs, K.G., and Borowski, W.S., 2004. Changes in sulfur concentration and sulfur isotopic composition within authigenic sulfide minerals from sediments of Miocene age to the present: ODP Site 995, Blake Ridge, offshore southeastern United States. Geol. Soc. Am. Bull., 36(2):47.

Thompson, M.K., Borowski, W.S., Ussler, W., III, and Paull, C.K., 2004. Sulfide mineralization in deep-water marine sediments related to methane transport, methane consumption, and methane gas hydrates. Geol. Soc. Am. Bull., 36(2):124.

Tréhu, A.M, Bohrmann, G., Rack, F.R., Torres, M.E., et al., 2003. Proc. ODP, Init. Repts., 204 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/204_IR/204ir.htm>. [Cited 2005-07-08]

Trehu, A.M., Long, P.E., Torres, M.E., Bohrmann, G., Rack, F.R., Collett, T.S., Goldberg, D.S., Milkov, A.V., Riedel, M., Schultheiss, P., Bangs, N.L., Barr, S.R., Borowski, W.S., Claypool, G.E., Delwiche, M.E., Dickens, G.R., Gracia, E., Guerin, G., Holland, M., Johnson, J.E., Lee, Y.-J., Liu, C.-S., Su, X., Teichert, B., Tomaru, H., Vanneste, M., Watanabe, M., and Weinberger, J.L., 2004. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204. Earth Planet. Sci. Lett., 222:845–862.

Valentine, D.L., and Reeburgh, W.S., 2000. New perspectives on anaerobic methane oxidation. Environ. Microbiol., 2:477–484.

Werne, J.P., Lyons, T.W., Hollander, D.J., Formolo, M.J., and Sinninghe Damste, J.S., 2003. Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur formation. Chem. Geol., 195:159–179.

Westrich, J.T., and Berner, R.A., 1984. The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol. Oceanogr., 29:236–249.

Wilkin, R.T., and Barnes, H.L., 1996. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochim. Cosmochim. Acta, 60:4167–4179.