11. DATA REPORT: REORIENTED STRUCTURES IN THE EAST PACIFIC RISE BASALTIC CRUST FROM ODP HOLE 1256D, LEG 206: INTEGRATION OF CORE MEASUREMENTS AND ELECTRICAL-ACOUSTIC IMAGES¹

P. Tartarotti,² L. Crispini,³ F. Einaudi,⁴ and E. Campari²

ABSTRACT

Brittle structures (open fractures and veins) from basaltic oceanic crust drilled at Ocean Drilling Program (ODP) Site 1256 (Guatemala Basin, Pacific Ocean) during Leg 206 were reoriented to the geographic coordinates by (1) correlating structures observed on the core with unoriented images of the exterior of the core and (2) correlating core structures and unoriented images with oriented borehole images. The images of the exterior of the core were obtained by scanning wholecore pieces with the Deutsche Montan Technologie Digital Color Core-Scan system. In the unrolled core images, nonhorizontal planar structures (e.g., veins, faults, or fractures) produce sinusoidal-shaped curves. These can be matched to similar-shaped features imaged along the borehole wall. The borehole images were obtained by the Formation MicroScanner (FMS)-sonic (Dipole Sonic Imager) tool string and the Ultrasonic Borehole Imager (UBI). The FMS provides high-resolution electrical resistivity-based images of borehole walls. FMS images are oriented to magnetic north using the General Purpose Inclinometer Tool. This allows the dip and azimuth of geological features intersecting the hole to be measured from the processed FMS image. The UBI features a high-resolution transducer that provides acoustic images of the

¹Tartarotti, P., Crispini, L., Einaudi, F., and Campari, E., 2006. Data report: reoriented structures in the East Pacific Rise basaltic crust from ODP Hole 1256D, Leg 206: integration of core measurements and electrical-acoustic images. In Teagle, D.A.H., Wilson, D.S., Acton, G.D., and Vanko, D.A. (Eds.), Proc. ODP, Sci. Results, 206: College Station, TX (Ocean Drilling Program), 1-26. doi:10.2973/ odp.proc.sr.206.004.2006 ²Dipartimento di Scienze della Terra, Università di Milano, via Mangiagalli 34, 20133 Milano, Italy. Correspondence author:

paola.tartarotti@unimi.it

³DIPTERIS, Dipartimento per lo Studio del Territorio e delle sue Risorse Universita' di Genova, Corso Europa 26, 16132 Genova, Italy. ⁴Laboratoire de Geophysique et Hydrodynamique en Forage, Université de Montpellier II, ODP/ Naturalia et Biologia (NEB) ISTEEM, cc56, 34095 Montpellier, France.

Initial receipt: 30 April 2005 Acceptance: 22 December 2005 Web publication: 20 November 2006 Ms 206SR-004

borehole wall. The UBI was used in hard rocks for the first time in the history of the ODP during Leg 206.

INTRODUCTION

Structural and microstructural studies have only been systematically carried out on Ocean Drilling Program (ODP) drill cores from the oceanic crust since Leg 118 (Robinson, Von Herzen, et al., 1989), mostly because it is difficult to core and recover continuous records of basement stratigraphy and structural features. In addition, cores recovered by rotary drilling are not oriented with respect to geographic coordinates. Consequently, the attitude of planar structures such as joints, veins, lithologic boundaries, foliation, and other structural features is measured with respect to the core reference frame but not to magnetic north. Cores can be reoriented to north by means of paleomagnetism, commonly performed during ODP cruises (i.e., by reorienting cores and structures to the stable magnetic remanence direction) (e.g., MacLeod et al., 1995; Cannat and Pariso, 1991; Allerton et al., 1995). However, this method does not perform well in areas close to the equator. Alternatively, in situ orientation of structures can be determined by comparing cores with borehole wall images obtained using downhole logging tools (Haggas et al., 2001). Logging data provide a continuous record of the physical and chemical properties of the rock surrounding the borehole walls (Pezard, 1990; Brewer et al., 1998). Acoustic and electrical borehole wall images are oriented to the geographic reference frame because the logging tools determine reference direction.

In this report, we present the results obtained by reorienting structures from basaltic oceanic crust drilled at Site 1256 (Guatemala Basin, Pacific Ocean) (Wilson, Teagle, Acton, et al., 2003). Core orientation is particularly important for Leg 206 because Site 1256 has a low paleolatitude (i.e., the paleomagnetic inclination will be nearly horizontal and the magnetic polarity will be indeterminate from azimuthally unoriented cores). Reorienting operations were done at first by correlating the natural fractures and veins measured in the massive basalt flow in Hole 1256D with unoriented unrolled digital images obtained by scanning cores with the Deutsche Montan Technologie (DMT) Digital Color CoreScan system (DMT, 1996, 2000). Afterward, core structures were compared with oriented images supplemented by the Formation Micro-Scanner (FMS)-sonic (Dipole Sonic Imager) tool string and by the Ultrasonic Borehole Imager (UBI), which was used in hard rocks for the first time in the history of ODP (Wilson, Teagle, Acton, et al., 2003). Such an integration procedure is addressed to identify as many potential matches as possible on the cores, on the whole-round core image, and in the oriented image logs.

GEOLOGICAL SETTING AND BASEMENT STRATIGRAPHY

During Leg 206, drilling was conducted at Site 1256 (6.736°N, 91.934°W; Guatemala Basin, Cocos plate) on ~15-Ma oceanic lithosphere formed by superfast spreading (>200 mm/yr) at the East Pacific Rise (Wilson, 1996). Four holes were drilled at Site 1256 (Fig. F1). Holes 1256A, 1256B, and 1256C provided a complete section for sedimentary stratigraphy, whereas Holes 1256C and 1256D were deepened into base-

F1. Regional bathymetry for Site 1256, p. 8.

ment. Hole 1256C was cored 88.5 m into basement, and Hole 1256D, the case reentry hole, was cored 502 m into basement.

Structural measurements and analyses were carried out during Leg 206 on the basement sections of the two holes. In this report, only structures from Hole 1256D, namely those from the ponded lava Unit 1256D-1, are described and utilized for the reorientation procedure because logging operations were not successful in the Hole 1256C basement (Wilson, Teagle, Acton, et al., 2003). Unit 1256D-1 consists of a single cooling unit of cryptocrystalline to fine-grained basalt, which was interpreted as a ponded lava flow (Wilson, Teagle, Acton, et al., 2003). The first core in Hole 1256D (Core 206-1256D-2R) consists of aphyric microcrystalline basalt rather than the deformed cryptocrystalline flow top recovered in Hole 1256C. Nevertheless, the minimum thickness of 74.2 m of the flow in Hole 1256D can be determined from the cored interval (276.1–350.3 meters below seafloor [mbsf]), of which 68.4 m was recovered, and is more than twice that in Hole 1256C. Units 1256C-18 in Hole 1256C and 1256D-1 in Hole 1256D have been correlated despite the difference in their thicknesses based on the similarity in mineralogy, general appearance, similarity in the depth of the top of each unit, and geochemical similarities between the two units (Wilson, Teagle, Acton, et al., 2003).

DATA ACQUISITION

Structure Orientation on Cores

Joints, veins, shear veins, and faults were described and measured on cores during Leg 206. Structures related to contractional cooling of lava were discarded (Shipboard Scientific Party, 2003). Structures were measured on the archive half relative to the core reference frame used by ODP for which the plane normal to the axis of the borehole is referred to as the horizontal plane. On this plane, a 360° net is used with pseudosouth (180°) pointing into the archive half and pseudonorth (0°) pointing out of the archive half and perpendicular to the cut surface of the core (Fig. F2). The cut surface of the core is a vertical plane striking 90°–270°. In order to obtain a true dip value of structures, two apparent dip angles for each planar structure were measured on the cut face of the archive half and possibly in a section perpendicular to the core face, respectively. The two apparent dips and dip directions (or one apparent direction combined with the strike) are used to calculate the true orientation using the "LinesToPlane" Macintosh program by S.D. Hurst. Calculated orientations of structures for Unit 1256D-1 are reported in Table T1.

Whole-Core Images

During Leg 206, unrolled digital images of the core (Fig. F3) were supplemented by using a DMT Digital Color CoreScan system (Shipboard Scientific Party, 2003). On unrolled core images, planar features can be identified and measured for comparison with core structural analysis and for integration with structures measured on geographically oriented FMS and UBI images.

F2. Sketch of the archive half of the core, p. 9.

T1. Database of natural structures measured at Unit 1256D-1, p. 14.

F3. An example of a WR digital image, p. 10.

High-Resolution Images of the Borehole Surface

During Leg 206, downhole wireline tools were deployed to obtain spatially continuous records of the in situ physical, chemical, and structural properties of the penetrated rock formation. Five different tool strings were utilized (Shipboard Scientific Party, 2003), including the FMS-sonic tool string and the UBI tool string. The FMS provides highresolution electrical resistivity-based images of the formation which can be displayed in either gray scale or color (e.g., Pezard et al., 1990). The tool string also contains a triaxial accelerometer and three fluxgate magnetometers, which are part of the General Purpose Inclinometry Tool (GPIT) that is used to orient and position the images. Comparison of the data from the four GPIT runs carried out during Leg 206 (see "Downhole Measurements" section in Shipboard Scientific Party, 2003) shows good reproducibility in magnetic field H- (horizontal) and Z-(vertical) components. The deviation values for the last three runs coincide well, whereas these values from the first run seem to be reduced by ~1°.

Measurements of hole size, cable speed, and natural gamma ray intensity also are used in the processing. The image is displayed as an unwrapped borehole cylinder (its circumference is derived from the bit size) (Fig. F4). A dipping plane in the borehole will be displayed as a sinusoid on the image; the amplitude of this sinusoid is proportional to the dip of the plane. The images are oriented with respect to north; therefore, the dip direction of dipping features can also be determined.

The UBI provides an acoustic image of the borehole wall by scanning it with a narrow pulsed acoustic beam transmitted by a rotating transducer while the tool is pulled up the hole. Excellent quality images were obtained from Hole 1256D (see Fig. F4). Massive basalt, breccia, and pillows can all be identified in the images, especially in the amplitude image (Fig. F5). Fractures can also be easily identified. High-angle fractures are much easier to identify in the UBI images than in the FMS images because UBI images provide complete coverage of the borehole wall. The FMS and UBI images are best interpreted side-by-side, as the 360° coverage of the UBI images. Moreover, the UBI and FMS respond to contrasting physical properties, enabling differentiation of open and filled fractures.

REORIENTING STRUCTURES BY CORE-LOGGING INTEGRATION

Although methods employed for core and logging measurements are different, they can be combined and integrated to obtain useful information from the subsurface oceanic crust. For this study, FMS and UBI high-resolution images are fundamental because of their orientation with respect to the geographic coordinates. These images allow planar structures to be reoriented to north, provided that the structural features recorded and measured on core match the conductive features detected on logging images.

In order to match the core and logging data accurately, the quality of each data set must be checked. First, the accurate location of core pieces downhole must be obtained. Core depths are based on drill pipe measurements to the top of each core interval. According to ODP convention, all recovered core pieces are moved to the top of each core barrel **F4.** FMS/UBI images from the massive ponded basalt, p. 11.

F5. Detailed FMS and UBI image, p. 12.

during curation (Alt et al., 1993). Consequently, many of the core pieces may not be recorded at their drilled depth. Many cores in Hole 1256D have recoveries >100% because the core barrel contained material cored but not retrieved during previous coring runs. For the logging data, the wireline depth to seafloor is usually determined from a step increase in gamma ray values at the sediment/water interface or at the sediment/basement interface, where a clear downward decrease occurs in gamma ray activity along with a sharp increase in electrical resistivity (Shipboard Scientific Party, 2003).

Correlation between the whole-round core images and electrical or acoustic representations of the borehole wall allows determination of the true core depth (as opposed to ODP curated depth), especially in holes where recovery is by far <100%. During Leg 206, the average recovery was 61.3% in Hole 1256C, and 47.3% in Hole 1256D (Wilson, Teagle, Acton, et al., 2003). Determination of the true core depth is problematic in intervals with <100% recovery (e.g., Core 206-1256D-16R, with 22% recovery) and >100% recovery (e.g., Core 206-1256D-16R, with 110.2% recovery). The overall recovery in Unit 1256D-1, where our data come from, was 93%. Conductive features such as lithologic boundaries, fractures, veins, and breccias can be depth-matched to allow repositioning of core pieces. Individual core pieces (and associated structural data) that can be confidently depth-matched and then ultimately be reoriented or rotated so they are oriented with respect to true geographic north.

RESULTS

Geographic orientation and downhole location of core pieces and structural features were achieved by cross-correlation of the FMS/UBI and DMT images with core data. Reorientation of core pieces from Unit 1256D-1 was performed using the methods described in Haggas et al. (2001). Results of relocation/reorientation processing performed on Unit 1256D-1 cores are reported in Table T1.

The first step in location/reorientation processing was to relocate the position of core pieces by comparing curated and logging depth values. Corrections to the curated depths were applied as follows:

- If core recovery is >100%, then the curated depth of core bottom is shifted downward in order to include all exceeding core pieces. A new corrected depth value is obtained for the top of each core (column "1" in Table T1).
- 2. If core recovery is <100%, then depth error is E(m) = Lc Lr, with Lc = length of the cored interval and Lr = length of the recovered interval (see column "4" in Table T1).
- 3. The depths of the measured structures are reassigned according to the corrected depth of the core top (columns "2" and "3" in Table T1).
- 4. After shifting and relocating core pieces and structures, correlation of the FMS/UBI and DMT images with core data was attempted. Core data to be reoriented first were selected (numbers in bold in Table T1) if depth and dip angle of core structures were comparable with those of conductive features on logging images. In addition, the downward distribution and pattern of structures in a core piece were determined and compared with analog dis-

tribution of conductive features on logging images. Secondly, all structures of the same core piece were relocated accordingly.

- 5. The dip directions of core structures as obtained by onboard measurements (Shipboard Scientific Party, 2003; columns 5, 6, 7 in Table **T1**) were then rotated by an angle Δ° (+ Δ° , if rotation is clockwise; $-\Delta^{\circ}$ if rotation is counterclockwise), with $\Delta^{\circ} = [\text{dip direction of FMS structure dip direction of core structure]}. For each selected core structure, the angle <math>\Delta^{\circ}$ was calculated (column 11 in Table **T1**). If more than one core structure is suitable for reorientation, either the average value of Δ° was applied (in case the structures have comparable dip angles) or the structure with higher dip angle was chosen to be rotated by calculated Δ° (column 12 in Table **T1**).
- 6. Depth of reoriented core structures are reported in column 13 in Table T1. Dip angle of reoriented structure should be corrected after taking into account the hole deviation, which was 1.8° at 368.9 mbsf (119 m into basement, i.e., at a depth deeper than the bottom of Unit 1256D-1).
- 7. Dip directions of reoriented core structures are shown in the rose diagram of Figure F6. The most frequent value for dip direction is N260°.

ACKNOWLEDGMENTS

The authors would like to thank the Leg 206 Science Party and the *JOIDES Resolution* staff and crew for the ultimate success of the cruise. An anonymous reviewer and staff scientist G. Acton are thanked for the critical revision of the manuscript. This research used samples and/or data provided by the Ocean Drilling Program (ODP). ODP is sponsored by the U.S. National Science Foundation (NSF) and participating countries under management of Joint Oceanographic Institutions (JOI), Inc. This work was funded by CONISMA and PRIN 2004 grants to P. Tartarotti.

REFERENCES

- Allerton, S.A., McNeill, A.W., Stokking, L.B., Pariso, J.E., Tartarotti, P., Marton, F.C., and Pertsev, N.N., 1995. Structures and magnetic fabrics from the lower sheeted dike complex of Hole 504B reoriented using stable magnetic remanence. *In Erz*inger, J., Becker, K., Dick, H.J.B., and Stokking, L.B. (Eds.), *Proc. ODP, Sci. Results*, 137/140: College Station, TX (Ocean Drilling Program), 245–252.
- Alt, J.C., Kinoshita, H., Stokking, L.B., et al., 1993. *Proc. ODP, Init. Repts.*, 148: College Station, TX (Ocean Drilling Program).
- Brewer, T.S., Harvey, P.K., Lovell, M.A., Haggas, S., Williamson, G., and Pezard, P., 1998. Ocean floor volcanism: constraints from the integration of core and downhole logging measurements. *In* Harvey, P.K., and Lovell, M.A. (Eds.), *Core-Log Integration*. Geol. Soc. Spec. Publ., 136:341–362.
- Cannat, M., and Pariso, J., 1991. Partial reorientation of the deformational structures at Site 735 using paleodeclination measurements. *In* Von Herzen, R.P., Robinson, P.T., et al., *Proc. ODP, Sci. Results*, 118: College Station, TX (Ocean Drilling Program), 409–414.
- DMT-GeoTec/Geo-Engineering, 1996. DMT Color CoreScan Users Manual. Acquisition and Evaluation Software.
- DMT GmbH, 2000. DMT CoreScan Color Acquisition Software Digicore and Hardware Information: Essen, Germany (Deutsche Montan Technologie GmbH).
- Haggas, S., Brewer, T.S., Harvey, P.K., and Iturrino, G., 2001. Relocating and orienting cores by the integration of electrical and optical images: a case study from Ocean Drilling Program Hole 735B. *J. Geol. Soc. (London, U. K.)*, 158:615–623.
- MacLeod, C.J., Célérier, B., and Harvey, P.K., 1995. Further techniques for core reorientation by core-log integration: application to structural studies of lower oceanic crust in Hess Deep, eastern Pacific. *Sci. Drill.*, 5:77–86.
- Pezard, P.A., 1990. Electrical properties of mid-ocean ridge basalt and implications for the structure of the upper oceanic crust in Hole 504B. *J. Geophys. Res.*, 95:9237–9264.
- Pezard, P.A., Lovell, M.A., and ODP Leg 126 Shipboard Scientific Party, 1990. Downhole images: electrical scanning reveals the nature of subsurface oceanic crust. *Eos, Trans. Am. Geophys. Union*, 71:709.
- Robinson, P.T., Von Herzen, R., et al., 1989. *Proc. ODP, Init. Repts.*, 118: College Station, TX (Ocean Drilling Program).
- Shipboard Scientific Party, 2003. Site 1256. *In* Wilson, D.S., Teagle, D.A.H., Acton, G.D., *Proc. ODP, Init. Repts.*, 206: College Station, TX (Ocean Drilling Program), 1–396. doi:10.2973/odp.proc.ir.206.103.2003
- Smith, W.H.F., and Sandwell, D.T., 1997. Global seafloor topography from satellite altimetry and ship depth soundings. *Science*, 277:1956–1962. doi:10.1126/science.277.5334.1956
- Wilson, D.S., 1996. Fastest known spreading on the Miocene Cocos-Pacific plate boundary. *Geophys. Res. Lett.*, 23(21):3003-3006. doi:10.1029/96GL02893
- Wilson, D.S., Teagle, D.A.H., Acton, G.D., et al., 2003. *Proc. ODP, Init. Repts.*, 206: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.206.2003

Figure F1. Regional bathymetry for Site 1256 and the Cocos plate (from Smith and Sandwell, 1997) and location map showing positions of the four holes drilled at Site 1256 during Leg 206.

Figure F2. Sketch of the archive half of the core showing the conventions used by ODP policy for measuring orientation of structural features. Examples of orientation measurements with the protractor-based device are shown.

Figure F3. An example of a whole-round (WR) digital image obtained with the Deutsche Montan Technologie (DMT) tool, shown beside a slabbed image for comparison.

Figure F4. Formation MicroScanner (FMS)/Ultrasonic Borehole Imager (UBI) images from the massive ponded basalt (Subunit 1256D-1c) recovered in Section 206-1256D-6R-5 (at ~300 mbsf). Unrolled core image is also reported for comparison. WR = whole-round.

Figure F5. Detailed Formation MicroScanner (FMS) and Ultrasonic Borehole Imager (UBI) image displaying typical pillow (743–746 mbsf).

Figure F6. Rose diagram illustrating the distribution of dip direction of all reoriented structures at Hole 1256D.

Table T1. Database including all natural structures measured at Unit 1256D-1 with respect to the ODP reference frame and reorientation results obtained with respect to the geographic coordinates. (See table notes. Continued on next 12 pages.)

		1	2	2	4	F	(7	0	0	10	11	12	12
		I	2	3	4	2	6	/	8	9	10	11	12	13
			-	Core	e data									
			De	pth										
		bsf)		Ð										
		Ē	\sim	squ								Rota	ation	
		top	lbsf	e (r								()		Reoriented
		u	ц Ц	ctur								e (⊽	(۵۷	structures
		ecti	ture	truc	Ê							lĝu	e (7	
		of se	ruc	of s	j) er	Real a	nd calc	ulated	FMS	/UBI da	ata	_ u	lgn	lbsf
		ţ	of st	E	Ō		<u></u>			0		atio	u a	Ę
		dep	do do	otto	r of		u (()) uc	<u></u>	rot	atic	pth
	*	eqe	of to	ofb	erro		sctio	jle (Ê	ectio	Jle (ted	rot	de
Core section piece	tifie	ect	the	tho	the	و د (dire	anç	th (dire	anç	ula	zed	age
interval (cm)	den	Corr	Jep	Jep	Jep	îtrik	dic	diC	Jep	dic	dic	Calc	Jtili	Ver
	-	0				0)						0		
206-1256D-		27/10			0.50									
2P-1 (Piece 1A 10 20)	V/1	276.10	276 11	276 12	0.58	185	275	7	275 72	231	24		196	276 11
2R-1 (Piece 1A, 3.5–5.0)	V2		276.14	276.12		288	18	36	275.94	129	35		-196	276.14
2R-1 (Piece 1A, 9.5–10.0)	V3		276.20	276.20		200	90	3	2/ 5.7 1	122	55		-196	276.20
2R-1 (Piece 1A, 13.0–14.0)	V4		276.23	276.24		0	90	10					-196	276.23
2R-1 (Piece 1A, 15.5–20.0)	V5		276.26	276.30		166	256	31					-196	276.28
2R-1 (Piece 1A, 17.5–18.5)	V6		276.28	276.29		346	76	21					-196	276.28
2R-1 (Piece 1B, 16.3–17.8)	V27		276.26	276.28		345	75	35	276.77	119	15		-196	276.27
2R-1 (Piece 1B, 29.0–30.0)	V7		276.39	276.40		71	161	28					-196	276.40
2R-1 (Piece 1B, 31.0–32.0)	V8		276.41	276.42		94	184	66					-196	276.41
2R-1 (Piece 1C, 33.5–34.0)	V28		276.44	2/6.44		180	2/0	14	277.00	1.0	10		-196	276.44
2R-1 (Piece 1C, 32.5–33.0)	V9 V10		276.43	276.43		28/	1/ 02	1/	277.00	169	19		-196	276.43
2R-1 (Piece 1C, 34.0–38.0) 2R-1 (Piece 1C, 40.0, 41.0)	V10 V11		276.50	276.00		160	250	12					-190	276.55
2R-1 (Piece 1C, $42.5-44.0$)	V12		276.53	276.54		135	225	14				-143	-196	276.53
2R-1 (Piece 1C, 44.5–44.5)	V13		276.55	276.55		\	\	0				115	-196	276.54
2R-1 (Piece 1C, 53.0–53.5)	V14		276.63	276.64		309	39	13					-196	276.53
2R-1 (Piece 1C, 47.0–47.5)	V15		276.57	276.58		242	332	20	277.26	82	26	-250	-196	276.57
2R-1 (Piece 1C, 54.0–54.0)	V16		276.64	276.64		270	0	8					-196	276.64
2R-1 (Piece 1C, 57.5–58.2)	V17		276.68	276.68		149	239	6	277.41	167	16		-196	276.68
2R-1 (Piece 1D, 64.0–65.0)	V18		276.74	276.75		177	267	7					-196	276.74
2R-1 (Piece 1E, 75.0–76.0)	V20		276.85	276.86		40	130	13					-196	276.85
2R-1 (Piece 1E, 75.0–76.0)	V21		276.85	2/6.86		223	313	49	277.44	1//	16		-196	2/6.85
2R-1 (Piece 1F, 73.5–79.0)	V19 V22		270.84	270.89		1 225	313 210	46	277.50	142	14		-196	2/6.86
2R-1 (Piece 1C, 105.0, 111.0)	V22 V23		277.09	277.12		20	110	41 60	277.01	170	21		-190	277.11
2R-1 (Piece 1G, 105.0-111.5)	V24		277.21	277.22		180	270	5	277.98	121	11		-196	277.21
2R-1 (Piece 1G, 119.5–120.5)	V25		277.30	277.31		49	139	19					-196	277.30
2R-1 (Piece 1G, 128.0–129.0)	V26		277.38	277.39		١	١	0					-196	277.38
		278.10			2.39									
3R-1 (Piece 2, 18.0–19.0)	V1		278.28	278.29		39		22						
3R-1 (Piece 3, 19.0–28.0)	V1		278.29	278.38		187		90						
3R-1 (Piece 4, 29.5–34.0)	V I V 2		278.40	278.44		170		90 70						
$3R_{-1}$ (Piece 5, 37.0, 37.0)	V 5 V 1		278.44	278.47		90		70						
3R-1 (Piece 5, 44 0–44 5)	V2		278.54	278 55		169		10	278 83	137	19			
3R-1 (Piece 5, 42.0–46.0)	V3		278.52	278.56		180		74	270.05	137	12			
3R-1 (Piece 6, 47.0–48.0)	V1		278.57	278.58		195		9						
3R-1 (Piece 7, 77.0–80.0)	V1		278.87	278.90		158	68	50	279.08	350	53	-78	-78	278.88
3R-1 (Piece 9, 85.0–86.5)	V1		278.95	278.97		0	90	15					131	278.96
3R-1 (Piece 9, 88.0–104.0)	V2		278.98	279.14		0		90						
3R-1 (Piece 9, 109.0–110.0)	V3		279.29	279.20		217	307	40	279.34	78	39	131	131	279.20
3R-1 (Piece 10, 112.0–112.0)	V1		279.22	279.22		122	212	51	279.38	89	49	-124	-124	279.22
3K-1 (Piece 10, 126.0–126.5)	V2 V2		2/9.36	2/9.3/		45 171	135 261	8 21	270 50	110	72	140	-124 124	279.36
SN-1 (FIECE 10, 129.3-130.0)	v٥	279 41	279.40	279.40		171	201	21	279.50	110	27	-143	-124	279.40
									279.81	100	25			
									280.09	111	21			
3R-2 (Piece 1, 1.0–1.5)	V1		279.42	279.43		220	310	31	280.25	121	30	-189	4	279.42
3R-2 (Piece 1, 13.5–14.0)	V2		279.55	279.55		90	0	15					4	279.55

		1	2	3 Cor	4 e data	5	6	7	8	9	10	11	12	13
			De	pth										
		ef)												
		mbs		bsf)								Rota	ation	
) d	(fac	E)										
		n tc	(mt	ure								(∿)		Reoriented
		ctio	are	ruct	Ê							gle	°∆°	structures
		f sec	ucti	of sti	۲) ع	Real a	nd calc	ulated	FMS	/UBI da	ita	n an	ıgle	(Jsc
		о Ч	f str	с Е	core		<u> </u>			\sim		tior	ן ar	Ĩ,
		ept	bo	otto	of		° L			° L		ota	itior	oth
	*_	qq	f to	f bc	rror	-	ctio	е (°	Ē	ctio	。) ə	eq	rota	deb
	ifie	ecte	h oi	h of	h ei	<u>،</u>	lire	lgn	Р С	lire	lgni	ulato	edi	age
Core, section, piece,	lent	orre	ept	ept	ept	trike	ip c	ip a	ept	ip c	ip a	alcı	tiliz	vera
	0	0	Δ	Δ	Δ	St	Δ	Δ	Δ	Δ	Δ	0	Γ	Ŕ
3R-2 (Piece 1, 19.0–20.0)	V3		279.60	279.61		45	135	14					4	279.60
3R-2 (Piece 1, 21.0–21.5)	V4		279.62	279.63		\	\	0					4	279.62
3R-2 (Piece 1, 26.0–27.0)	V5		279.67	279.68		329	59	15	280.34	143	30	4	4	279.67
3R-2 (Piece 1, 29.3–30.3) 3R-2 (Piece 1, 32.5, 33.0)	V0 V7		279.71	279.72 270 74		328	58	34	260.52	/1	24	4	4	279.71
3R-2 (Piece 2, 34.0–34.0)	V1		279.75	279.75		520	1	-FC 0					16	279.75
3R-2 (Piece 2, 46.0–59.0)	V2		279.87	280.00		217	307	69	280.78	323	77		16	279.93
3R-2 (Piece 2, 76.0–77.0)	V5		280.17	280.18		26	116	9					16	280.18
3R-2 (Piece 2, 88.0–93.0)	V6		280.29	280.34		331	61	44	280.88	142	17		16	280.31
3R-2 (Piece 2, 88.5–92.5)	V7		280.30	280.34		331	61	44					16	280.31
3R-2 (Piece 2, 90.0–91.5)	SV8		280.31	280.33		340	70	52					16	280.32
3R-2 (Piece 3, 97.5–99.0)	201	280.52	280.39	280.40		340		52						
3R-3 (Piece 1, 9.0–10.0)	V1	200.52	280.61	280.62		180	270	7					-121	280.61
3R-3 (Piece 1, 29.0–29.5)	V2		280.81	280.82		180	270	11	281.34	88	26		-121	280.81
3R-3 (Piece 1, 33.0–35.5)	V3		280.85	280.88		150	240	19	281.44	74	38		-121	280.86
3R-3 (Piece 1, 47.5–49.0)	V5		281.00	281.01		180	270	22	281.86	149	21		-121	281.00
3R-3 (Piece 1, 53.0–53.5)	V4		281.05	281.06		151	241	10					-121	281.05
3R-3 (Piece 2, 55.5–57.0)	VI V2		281.08	281.09		204		32						
3R-3 (Piece 3, 80, 5–85, 0)	VZ V1		281.09	201.11		174	264	70				_229	_229	281 35
3R-3 (Piece 3, 73.0–75.0)	V2		281.25	281.27		0	90	45				22)	-229	281.26
3R-3 (Piece 4, 86.0–91.0)	F1		281.38	281.43		142	232	59					-197	281.05
3R-3 (Piece 4, 95.5–95.5)	V2		281.48	281.48		90	180	59	282.11	222	22		-197	281.47
3R-3 (Piece 4, 87.0–98.0)	V3		281.39	281.50		136	226	65	282.55	158	9		-197	281.45
3R-3 (Piece 4, 97.0–99.0)	V5		281.49	281.51		245	335	38	282.61	138	39	–197	-197	281.50
3R-3 (Piece 4, 102.0–106.5)	504		281.54	281.59		175	265	53	282.88	342 70	15		-197	281.56
3R-3 (Piece 5, 111 0–112 0)	V5		281 63	281 64		49	139	35	283.20 283.70	80	37	_59	107	281.63
3R-3 (Piece 5, 109.0–121.0)	V1		281.61	281.73		0	90	85	283.96	198	76	107	107	281.67
3R-3 (Piece 5, 122.0–129.0)	V2		281.74	281.81		183		90						
3R-3 (Piece 5, 123.0–124.0)	V3		281.75	281.76		264	354	33					107	281.75
3R-3 (Piece 5, 129.5–132)	V4	201.05	281.82	281.84		232	322	44					107	281.83
3R-4 (Piece 1 1 0 1 5)	1/2	281.85	281 86	281 87		165		10						
3R-4 (Piece 1, 1.0–1.3)	v 3 V1		282.15	282.15		90		4						
3R-4 (Piece 1, 36.0–37.5)	V2		282.21	282.23		150		28	284.07	64	48			
3R-4 (Piece 2, 39.0–42.0)	V1		282.24	282.27		157	247	40	284.09	88	21		-243	282.25
3R-4 (Piece 2, 43.0–46.0)	V2		282.28	282.31		195	285	15	284.57	43	15	-243	-243	282.29
3R-4 (Piece 3, 47.0–49.0)	V1		282.32	282.34		350	80	22					-105	282.33
3R-4 (Piece 3, 59.0–59.0)	V3 V2		282.44	282.44		90 175	180	35	201 76	161	61	105	-105	282.44
3R-4 (Piece 4, 65, 57.3–64.0)	V∠ 11		282.43 282.51	282.49 282.59		184	203	03 90	204.70	101	04	-105	-105	282.40
3R-4 (Piece 4, 74.5–74.5)	V1		282.60	282.60		39		6						
		285.10			0									
4R-1 (Piece 1, 0.5–5.0)	V1		285.11	285.15		337		40						
4R-1 (Piece 1, 19.5–20.5)	V2		285.30	285.31		0		20						
4R-1 (Piece 1, 28.5–29.5)	V3		285.39	285.40		321		14						
4π -1 (PIECE 1, $40.0-41.0$)	V4 V5		285.50	∠ŏ⊃.51 285.52		0	270	10 10					117	285 52
4R-1 (Piece 2, 42.0-42.3)	v3 V1		285.63	285.65		120	210	28	285.23	94	27	_117	-117	285.64
4R-1 (Piece 2, 68.0–69.0)	V2		285.78	285.79		45	135	14	286.13	124	2	,	-117	285.79
4R-1 (Piece 2, 89.0–90.0)	V3		285.99	286.00		116	206	11					-117	286.00
4R-1 (Piece 2, 93.5–95.0)	V4		286.04	286.05		149	239	12					-117	286.04

		1	2	3	4	5	6	7	8	9	10	11	12	13
			Da	Cor	e data									
		Ģ	De	ptn		-								
		mbst		bsf)								Rota	tion	
		j) do	bsf)	E)										Desidented
		on t	e (D	cture								e (⊽,	(°1	structures
		secti	cture	strue	Ê							angle	le (∠	¢
		l of s	stru	n of	ore	Real a	nd calc	ulated	- FMS	/UBI da	ita	ion	ang	mbs
		epth	p of	otton	ofo		С П			с) п		otat	tion	oth (
	*-	ed d	of to	of bc	error		ctio) el	Ê	ctio) el	ed r	rota	deb
Core section piece	ntifie	rect	oth c	oth c	oth e	ke (°	dire	ang	oth (dire	ang	culat	ized	rage
interval (cm)	lder	Cor	Dep	Dep	Dep	Stri	Dip	Dip	Dep	Dip	Dip	Cal	Util	Ave
4R-1 (Piece 3, 119.5–120.0)	V1		286.30	286.30		129		13						
4R-1 (Piece 3, 120.0–122.0)	V2		286.30	286.32		205		90						
4R-1 (Piece 3, 117.5–120.0) 4R-1 (Piece 3, 121.5–122.0)	V5		286.28	286.30 286.32		23		47 4						
4R-1 (Piece 3, 136.5–138.5)	V4		286.47	286.49		296		22						
4P. 2 (Piece 1A, 1.0, 1.0)	1/1	286.49	296 50	286 50		207	207	10					02	286 50
4R-2 (Piece 1A, 10–10) 4R-2 (Piece 1A, 10.0–12.5)	V1 V2		286.50	286.50		185	297	21					-93 -93	286.50
4R-2 (Piece 1A, 44.0-46.0)	V3		286.93	286.95		248	338	26					-93	286.94
4R-2 (Piece 1A, 52.5–55.0)	V4 V5		287.02	287.04		180 180	270	16					-93 93	287.03 287.04
4R-2 (Piece 1A, 55.0–56.0)	V3 V11		287.04	287.04		193	283	35					-93 -93	287.04
4R-2 (Piece 1B, 57.0–59.5)	V6		287.06	287.09		142	232	24					-93	287.07
4R-2 (Piece 1B, 68.5–70.5) 4R-2 (Piece 1B, 72.0–74.0)	V7 V8		287.18 287 21	287.20 287 23		120 140	210 230	25 24	286 75	113	31	_117	-93 -93	287.18 287.22
4R-2 (Piece 1B, 78.0–80.0)	V9		287.27	287.29		175	265	21	200.75	115	51	-117	-93	287.28
4R-2 (Piece 1B, 120.5–122.0)	V10	207 70	287.70	287.71		183	273	32	287.22	205	30	-68	-93	287.70
4R-3 (Piece 1A, 1.0–2.0)	V1	287.70	286.50	286.51		198		20	287.32	315	19			
4R-3 (Piece 1A, 41.5–44.0)	V3		288.12	288.14		124		28						
4R-3 (Piece 1A, 33.0–37.0)	V2		288.03	288.07 288.43		180 212		32						
4R-3 (Piece 1A, 72.0–76.0)	V5		288.42	288.46		166		30						
4R-3 (Piece 1A, 83.0–86.0)	V6		288.53	288.56		235		36						
4R-3 (Piece 1A, 95.0–96.5) 4R-3 (Piece 1B, 131.5–132.0)	V7 V8		288.65	288.67 289.02		165		11	288.72	6	8			
		289.06				,								
4R-4 (Piece 1B, 2.5–6.0)	V1		289.09	289.12		237	327	42					-65	289.10
4R-4 (Piece 1B, 54.0–57.0)	V3		289.60	289.63		225	315	39					-65	289.61
4R-4 (Piece 1B, 71.5–74.0)	V5		289.78	289.80		298	28	20	289.17	60	24	32	-65	289.79
4R-4 (Piece 1B, 80.0–83.5) 4R-4 (Piece 1B, 98 5–101 0)	V6 V7		289.86	289.90 290.07		190 165	280 255	30 19					-65 -65	289.88 290.06
4R-4 (Piece 1B, 107.5–110.0)	V8		290.14	290.16		165	255	19	289.47	93	27	-162	-65	290.15
4R-4 (Piece 1B, 113.0–117.0)	V9		290.19	290.23		165	255	19	289.99	354	18		-65	290.22
4K-4 (Piece TB, 126.0–129.0)	VII	290.40	290.32	290.35	0	165	255	19					-05	290.33
5R-1 (Piece 1, 1.0–2.0)	V2		290.41	290.42		199		19						
5R-1 (Piece 1, 4.5–5.0) 5R-1 (Piece 1, 14, 5–15, 5)	V3 V1		290.45 290.55	290.45 290.56		200		17						
5R-1 (Piece 2, 24.0–25.0)	V1		290.64	290.65		0		10						
5R-1 (Piece 2, 28.5–29.0)	V2		290.69	290.69		\		0						
эк-т (Piece 2, 31.0–32.0) 5R-1 (Piece 3A, 43.0–46.0)	v 3 V1		290.71 290.83	290.72 290.86		0 345	75	21 25					-5	290.85
5R-1 (Piece 3A, 57.0–75.0)	F1		290.97	291.15		175	265	64	290.28	260	74	-5	-5	291.06
5R-1 (Piece 3B, 105.0–109.5)	V4		291.45	291.50		23	113	34	290.78	107	22		-5	291.47
5R-1 (Piece 36, 117.0–119.0) 5R-1 (Piece 4, 124.5–125.0)	v 5 V1		291.3/ 291.65	291.39 291.65		185	ےد 275	23	290.84 290.91	115	∠ı 21	-161	د– 161–	291.56
5R-1 (Piece 4, 125.5–126.0)	V2		291.66	291.66		180	270	4		o	<i>a</i> -		-161	291.66
5R-1 (Piece 4, 139.0–139.5)	J1	291.80	291.79	291.80		345	75	6	291.17	216	15		-161	291.75
5R-2 (Piece 1A, 1.0–1.0)	J1		291.81	291.81		١		0	292.10	177	33		240	291.81
5R-2 (Piece 1B, 72.0–72.5)	V1		292.52	292.53		327	57	14	292.22	18	62		240	292.52
JN-2 (FIECE ID, /U.J-/1.J)	J∠		272.31	272.JZ		27	117	/					240	272.31

		1	2	3 Cor	4 e data	5	6	7	8	9	10	11	12	13
			De	pth	e dutu									
		sf)												
		qm)		nbsf								Rota	tion	
		top	nbsf	e (n								(.,		Reoriented
		ion	.e (n	Ictui								le (∠	(°∆	structures
		sect	Ictur	stru	Ē	Pool a	nd calc	ulatod	EMS	/IIRI da	ta	ang	gle (sf)
		n of	stru	n of	core	Real a		ulateu	FIVIS		ita	tion	i ang	dm)
		leptl	p of	ottor	ofo		С Г	$\hat{}$		С Г	<u>_</u>	rotat	atior	oth (
	*	ed c	of to	of bc	Stror	0	ectio	jle (°	Ê	ectio	jle (°	ted	rota	e del
Core section niece	ntifie	rect	oth o	oth o	oth e	ke (°	dire	anc	oth (dire	anç	culat	ized	rage
interval (cm)	Ider	Cor	Dep	Dep	Dep	Stri	Dip	Dip	Dep	Dip	Dip	Calo	Util	Ave
5R-2 (Piece 1B 113 0–113 0)	V2		292 93	292 93		90	0	7					240	292 93
5R-2 (Piece 1C, 139.0–144.0)	V3		293.19	293.24		24	114	42	292.30	355	50	240	240	293.22
	14	293.27	202.27	202.20		175	255	16					122	202.20
5R-3 (Piece 1A, 0.0–2.0) 5R-3 (Piece 1A, 11.5–12.5)	JI 12		293.27	293.29		300	255 30	16					123	293.28
5R-3 (Piece 1B, 13.0–19.0)	V1		293.40	293.46		159	249	45	292.91	33	43	143	123	293.43
5R-3 (Piece 1B, 27.0–35.0)	V2		293.54	293.62		248	338	62	293.37	165	23		123	293.58
5R-3 (Piece 1B, 31.0–32.5) 5R-3 (Piece 1B, 51.0–55.0)	V3 V4		293.58	293.60		30	120	19 65					123	293.59
5R-3 (Piece 1C, 69.0–74.0)	V5		293.96	294.01		230	320	48	293.18	64	43	103	123	293.98
5D ((D' 1 12 0 10 0)	1/1	294.30	204.42	204.40		20		47	202 (1	170	0			
5R-4 (Piece 1, 12.0–19.0) 5R-4 (Piece 1, 62.0–64.0)	V1 V2		294.42 294 92	294.49 294 94		30 137		4/ 21	293.61 294 31	85	8 25			
5			27 1172						294.37	257	47			
					•				294.41	267	40			
6R-1 (Piece 2A, 42 0–42 5)	11	295.20	295.62	295.63	0	59		6	295.61	338	59			
6R-1 (Piece 2B, 72.5–79.0)	V1		295.93	295.99		157		72	295.70	295	25			
		206.40					_		295.86	173	16			
6R-2 (Piece 1, 3.0–7.0)	F1	290.40	296.43	296.47		168		56						
6R-2 (Piece 3A, 13.5–15.0)	V1		296.54	296.55		171	261	12	296.58	68	20		-10	296.54
6R-2 (Piece 3A, 12.0–16.0)	SV19		296.52	296.56		198	288	70	296.56	316	73	28	-10	296.54
6R-2 (Piece 3A, 14.0–16.5) 6R-2 (Piece 3A, 16.5–16.5)	V2 V20		296.54 296.57	296.57 296.57		180	270 180	28 15					-10 -10	296.55 296.56
6R-2 (Piece 3B, 17.0–18.0)	V3		296.57	296.58		225	315	11					-10	296.58
6R-2 (Piece 3B, 26.0–29.5)	SV4		296.66	296.70		70	340	80					-10	296.68
6R-2 (Piece 3B, 19.5–31.0)	SV5		296.60	296.71		167	257 128	82 00	296.66	310 105	68 23	53	-10 10	296.55
6R-2 (Piece 3C, 70.0–20.0)	V8		290.30	290.00		172	264	90 74	297.12	175	25		-10 -10	290.38
6R-2 (Piece 3C, 80.0–95.0)	V9		297.20	297.35		209	299	78	297.30	226	72	74	-10	297.27
6R-2 (Piece 3C, 97.0–99.0)	V10		297.37	297.39		317	47	19					-10	297.38
6R-2 (Piece 3C, 98.0–98.5) 6R-2 (Piece 3C, 111.0–112.5)	V11 V12		297.38	297.39		311 19	41 109	19					-10 -10	297.38
6R-2 (Piece 3C, 115.0–116.0)	V13		297.55	297.56		54	144	13					-10	297.55
6R-2 (Piece 3C, 116.5–116.5)	V14		297.57	297.57		334	64	9		~ ~ ~			-10	297.56
6R-2 (Piece 3D, 114.0–130.0) 6R-2 (Piece 3D, 121.0–129.5)	SV15 SV17		297.54	297.70 297.70		182 160	2/2	72 71	297.56	311	80	39	-10 -10	297.62
6R-2 (Piece 3D, 129.0–130.5)	V18		297.69	297.71		160	250	38	297.60	204	48	-47	-10	297.70
	1/1	297.71	207 72	207.75		222	(2)	20					70	207.74
6R-3 (Piece 1A, 2.0–4.0) 6R-3 (Piece 1A, 3.5–8.0)	V I SV 2		297.73 297.75	297.75 297 79		332 327	62 57	20 68	297 87	135	65	78	78 78	297.74 297.77
6R-3 (Piece 1A, 19.0–24.0)	V3		297.90	297.95		219	309	52	297.88	159	53	70	78	297.90
6R-3 (Piece 1A, 40.0–40.0)	V4		298.11	298.11		90	0	12					78	298.11
6K-3 (Piece 2, 69.0–78.5) 6R-3 (Piece 2, 105 5–120 5)	V1 SV2		298.40 298.77	298.50 298.92		5		62 90	298 21	218	74			
6R-3 (Piece 2, 108.0–111.5)	SV2		298.79	298.83		177		71	298.52	352	21			
6R-3 (Piece 2, 121.0–121.5)	V3		298.92	298.93		137		19	298.57	266	19			
6R-4 (Piece 14, 0.0, 6.0)	V/1	298.94	208 04	299.00		0		50						
6R-4 (Piece 1A, 7.0–7.0)	j1		299.01	299.00		\		0						
6R-4 (Piece 1B, 9.0–11.5)	V3		299.03	299.06		195		32	299.12	218	31			
6R-4 (Piece 3, 37.0–38.0)	V1		299.31	299.32		4	94	36	299.27	349	31	-105	-105	299.32
ur-4 (riece 4A, 37.3-37.3)	V I		277.54	277.54		90	100	12	277.03	229	٦Ζ		142	277.33

		1	2	3	4	5	6	7	8	9	10	11	12	13
			D.	Cor	e data									
			De	ptn										
		nbsf		(fac								Doto	tion	
		b (r	(Jsc	lu)								ROLA		
		on to	lu	ture								(∆°	()	Reoriented
		ectic	ture	struc	Ê							ngle	e (⊘	<u> </u>
		of s	struc	l of	ore (Real a	nd calc	ulated	FMS	/UBI da	ata	on a	ang	nbsi
		epth	o of :	ttom	of ce		Ĵ	-		Ĵ	-	otati	tion	th (r
	*_	p g	f top	f bo	rror	-	ctior	e ()	Ê	ctior	e (°)	eque	rotal	deb
Core section piece	ıtifie	ecte	th o	tho	th e	ر) e	dire	ang	th (r	dire	ang	ulat	zed	age.
interval (cm)	lden	Corr	Dep	Dep	Dep	Strik	Dip	Dip	Dep	Dip	Dip	Calc	Utili	Aver
6R-4 (Piece 4A, 40 0–40 0)	V2		299.34	299.34		90	180	7					142	299.34
6R-4 (Piece 4A, 73.0–74.5)	V3		299.67	299.69		180	270	14					142	299.68
6R-4 (Piece 4B, 83.0–83.5)	V5		299.77	299.78		126	216	13	299.87	170	18	142	142	299.77
6R-4 (Piece 4B, 98.0–108.0) 6R-4 (Piece 4B, 108.0–108.0)	V8 V7		300.02	300.02		141	231	6	299.81	224	12	-4	142	300.02
, , , ,									299.99	227	25			
6R-5 (Piece 1, 2,0–4,0)	V1	300.21	300.23	300.25		167	257	43	300.31	147	40	-111	-111	300.24
6R-5 (Piece 1, 13.5–16.0)	V2		300.35	300.37		335	65	32					-111	300.36
6R-5 (Piece 1, 16.0–17.0)	V3		300.37	300.38		292	22	13					-111	300.38
6R-5 (Piece 1, 16.0–16.5) 6R-5 (Piece 1, 16.0–19.0)	vs SV4		300.37	300.38		292	22 95	75					-111 -111	300.37
6R-5 (Piece 2, 21.0-40.0)	V1		300.42	300.61		180		82						
6R-5 (Piece 2, 39.0–45.0)	V2 V3		300.60	300.66		167 170		65 56						
6R-5 (Piece 2, 49.0–54.0)	V3 V4		300.70	300.75		185		90						
6R-5 (Piece 2, 59.0–62.0)	V5		300.80	300.83		171		30						
6R-5 (Piece 2, 68.0–69.5) 6R-5 (Piece 3A, 73.5–73.8	V6 V1		300.89	300.91		339 180	90	16	300.63	165	8		-260	300.94
6R-5 (Piece 3A, 73.5–75.0)	V2		300.95	300.96		11	101	10	300.76	198	17		-260	300.95
6R-5 (Piece 3A, 80.0–81.5)	V3		301.01	01.03		166	256	8	300.97	120	15		-260	301.02
6R-5 (Piece 3A, 84.0–84.5)	V4 V5		301.04	301.04		43	155	0	501.17	130	10		-260 -260	301.05
6R-5 (Piece 3B, 85.0-85.0)	V6		301.06	301.06		112	202	5		_			-260	301.06
6R-5 (Piece 3B, 77.0–97.5) 6R-5 (Piece 3B, 89.0–90.0)	SV7 V8		300.98	301.19 301.11		170 26	260 116	80 22	301.70	0	70	-260	-260 -260	301.08 301.10
6R-5 (Piece 4, 130.0–131.0)	V0 V1		301.51	301.52		51	110	13					-200	501.10
$(\mathbf{P} \in (\mathbf{P}; \mathbf{r}; \mathbf{r}; 1) \cap (0, 0))$	1/1	301.52	201.52	201.52		210	120	11					107	201.52
6R-6 (Piece 1A, 0.0–0.0) 6R-6 (Piece 1A, 24.0–24.5)	V1 V2		301.52	301.32 301.77		210 64	120	11	301.51	143	34		-107 -107	301.52
6R-6 (Piece 1B, 38.0–41.0)	V3		301.90	301.93		173	263	25	301.98	156	31	-107	-107	301.92
6R-6 (Piece 1C, 61.0–61.5) 6R-6 (Piece 1C, 73 5–73 5)	V4 V5		302.13	302.14 302.26		64 101	154 191	11 19	302.42	238 237	5 48		-107 -107	302.13
6R-6 (Piece 2, 132.5–133.0)	V2		302.85	302.85		198	121	6	502.71	257	-10		-107	502.25
6R-6 (Piece 2, 134.0–135.0)	V3		302.86	302.87		215		9	302.76	160	8			
6R-6 (PIECE 2, 136.5–137.5)	V4	303.04	302.89	302.90		296		11						
6R-7 (Piece 1A, 0.0–0.0)	V1		303.04	303.04		١		0						
6R-7 (Piece 1A, 11.0–11.0) 6R-7 (Piece 1A, 12.0–21.0)	V2 V3		303.15	303.15		90 165		3 54	303 52	29	72			
6R-7 (Piece 1A, 34.0–68.0)	V4		303.38	303.72		340		77	505102		/ _			
6R-7 (Piece 1A, 44.5–44.5)	V5		303.49	303.49		180		3						
6R-7 (Piece 1B, 79.0–81.0) 6R-7 (Piece 1B, 82.5–85.0)	V15 V7		303.83	303.85		308		38						
6R-7 (Piece 1B, 129.5–130.0)	V8		304.34	304.34		53		16						
6R-7 (Piece 1C, 130.0–135.0)	V9 V11		304.34	304.39 304 41		173		64 0	303.55	201	64			
6R-7 (Piece 1D, 134.5–138.0)	V10		304.39	304.42		36		57						
6R-7 (Piece 1D, 137.5–141.0)	F1	204.40	304.42	304.45	1	119		48						
7R-1 (Piece 1A, 0.0–3.0)	V1	304.49	304.49	304.52	1	133		51	304.54	161	10			
7R-1 (Piece 1A, 0.0–6.0)	V2		304.49	304.55		355		58	304.62	66	9			
7R-1 (Piece 1A, 5.0–10.0) 7R-1 (Piece 1A, 7.0, 16.0)	SV3		304.54	304.59 304.65		177 351		90 74	304.74	103 152	6 5			
			221.30			551			200.00		5			

		1	2	3	4 o data	5	6	7	8	9	10	11	12	13
			De	pth	e uala									
		sf)		-										
		iqu)	_	Ոն								Rota	tion	
) do	(Ìsdi	e (T								<u>.</u>		Decriceted
		on t	e (m	ctun								e (7	۲°)	structures
		secti	ctur	stru	Ê							Igne	le (∠	¢
		of	stru	l of	ore	Real a	nd calc	ulated	FMS	/UBI da	ita	- Lo	ang	mbs
		epth	o of	tton	of c		<u>ی</u>	~		Ĵ	~	otati	tion	th (
	*	ğ g	ftop	f bo	rror	-	ctior	e (°	Ê	ctior	e (°	equ	rota	deb
	tifieı	ecte	th of	th of	th ei	e (°)	direa	angl	th (r	dire	angl	ulate	i pə	age
Core, section, piece, interval (cm)	den	Corr	Dept	Dept	Dept	Strik	oip e	Oip	Dept	oip (jip i	Calc	Jtiliz	Aver
		0				•,						0		
/R-1 (Piece 1A, 11.0–12.5) 7R-1 (Piece 1B, 16.0–18.0)	V5 V6		304.60 304.65	304.62 304.67		144 348		24 57	305.45	97	4			
7R-1 (Piece 1B, 42.5–43.0)	V7		304.92	304.92		135		6						
7R-1 (Piece 1C, 48.5–49.5)	V9		304.98	304.99		180		10						
7R-1 (Piece 1C, 46.0–46.5)	V8		304.95	304.96		172		14	205 40	207	2			
7R-1 (Piece 2A, 96.0–144.0) 7R-1 (Piece 2A, 125.0, 126.0)	VI V2		305.45	305.93		326		90 7	305.48	297 100	3 15			
7R-1 (Piece 2B, 131.5–132.5)	V2 V3		305.81	305.82		158		11	305.77	43	18			
7R-1 (Piece 2C, 138.0–138.5)	V4		305.87	305.88		250		12						
		306.00								(3)	_			
/R-2 (Piece 1, 0.5–0.5) 7R-2 (Piece 3, 76 0, 76 0)	V1 V1		305.97	305.97		326		4	305.98	63 298	5			
7R-2 (Piece 3B, 79.0–79.5)	V1 V2		306.72	306.72		225		4	306.93	290 98	37			
7R-2 (Piece 3B, 76.0–79.0)	V5		306.72	306.75		228		90						
7R-2 (Piece 3C, 108.5–110.5)	F1		307.05	307.07		165		13						
78.2 (8:22.24.24.0.20.0)	1/1	307.00	207.51	207.55		100	200						0.4	207.52
7R-3 (Piece 2A, 24.0–28.0) 7R-3 (Piece 2A, 35.0–35.0)	V1 V2		307.51	307.55		189	280	66 0					-94 -94	307.53
7R-3 (Piece 2A, 60.5–60.5)	V2 V3		307.88	307.88		135	225	6					-94	307.87
7R-3 (Piece 2A, 60.0–60.5)	SV4		307.87	307.88		225	315	6					-94	307.87
7R-3 (Piece 2B, 70.0–70.5)	SV5		307.97	307.98		24	114	10					-94	307.97
7R-3 (Piece 2C, 76.0–82.0)	V6		308.03	308.09		207	297	48					-94	308.06
7R-3 (Piece 2D, 80.0–80.3) 7R-3 (Piece 2D, 97.5–99.0)	V7 V8		308.25	308.26		215	305	13					-94 -94	308.25
7R-3 (Piece 2D, 98.0–98.0)	V9		308.25	308.25		\	\	0					-94	308.25
7R-3 (Piece 2E, 111.0–136.0)	V10		308.38	308.63		39	129	76	307.01	36	69	-94	-94	308.50
7R-3 (Piece 2E, 135.0–137.0)	V11		308.62	308.64		236	316	19	307.05	76	12		-94	308.63
7R-3 (Piece 2E, 135.0–137.0)	SV12	200.00	308.62	308.64		218	308	25					-94	308.63
7R-4 (Piece 1A, 0.0–6.0)	V1	509.00	308.64	308.70		143		15						
7R-4 (Piece 4A, 44.5–49.5)	V1		309.09	309.14		90		75	307.43	97	14			
7R-4 (Piece 4A, 44.5–49.0)	V2		309.09	309.13		160		76	307.68	56	22			
7R-4 (Piece 4A, 49.0–50.0)	SV3		309.13	309.14		4		10						
/K-4 (Piece 4B, 49.5–59.0) 7R-4 (Piece 64, 65, 0, 66, 5)	V4 s\/1		309.14	309.23		168 12		// 51	308 31	220	17			
7R-4 (Piece 6A, 68.5–81.0)	V2		309.33	309.45		12		70	308.50	68	2			
7R-4 (Piece 6A, 80.0–81.0)	V3		309.44	309.45		51		6	309.22	199	11			
7R-4 (Piece 6B, 114.5–116.0)	V4		309.79	309.80		187		8						
7R-4 (Piece 6C, 143.5–143.5)	V5	210.00	310.08	310.08		90		4						
7R-5 (Piece 1A, 0, 0–1, 0)	V1	510.00	310.08	310.09		160		10						
7R-5 (Piece 1A, 9.0–9.5)	V2		310.17	310.18		135		6						
7R-5 (Piece 1A, 13.0–31.0)	V3		310.21	310.39		200		81	310.25	357	6			
7R-5 (Piece 1B, 34.0–37.0)	V4		310.42	310.45		212		34	310.43	287	6			
78-5 (Piece 1B, 58.0-60.5) 78-5 (Piece 1B, 60 5, 63 0)	V5 F1		310.66 310.60	310.69 310 71		29 220		27 40	310.66 310.75	26/ 50	14 10			
7R-5 (Piece 10, 112.0–112.5)	V1		311.20	311.21		230 310		15	310.73	233	18			
				=.				-	310.85	28	16			
									311.06	64	20			
7D ((Diana 14, 0, 0, 3, 0)	1/2	311.00	211 22	211.24		175		(5	211 51	00	11			
7K-0 (PIECE TA, U.U-3.U) 7R-6 (Piece 1A 3 5_12 0)	∨∠ V3		311.33 311 37	311.36 311.45		105		65 47	311.51 311.60	80 68	1 I Q			
7R-6 (Piece 1A, 7.0–8.0)	V4		311.40	311.41		135		21	511.07	00	,			
7R-6 (Piece 1B, 23.0–24.0)	V5		311.56	311.57		325		12						

		1	2	3 Cor	4 re data	5	6	7	8	9	10	11	12	13
			De	pth	euata									
		ţ)		pui										
		mbs		(Jsd								Rota	tion	
) dc	bsf)	E)										
		on te	E)	ture								(∆°	•	Reoriented
		sctic	ture	truc	Ê							Jgle	e (⊽	
		of se	truc	of s	re (r	Real a	nd calc	ulated	FMS	/UBI da	ita	u ai	ngl	lbsf
		oth	of si	шо	f co		\odot			Ĵ		tatic	on ê	<u>ь</u>)
		del	top	oott	or o		ion	Ĵ	\sim	ion	\odot	I TOT	tati	eptl
	fier*	cted	of	l of	i err	\odot	rect	Jgle	Ľ,	rect	Jgle	lated	p	ge d
Core, section, piece,	entii	orree	epth	epth	epth	rike	p di	p ar	epth	p di	p ar	Icul	illize	era
interval (cm)	Id	Ŭ	ă	ð	ă	St	ā	Ō	ă	ā	Ō	ů	5	¥
7R-6 (Piece 1C, 28.0–29.0)	V6		311.61	311.62		0		15						
7R-6 (Piece 2A, 30.0–32.0)	V1		311.63	311.65		180	90	7		_			-40	311.64
7R-6 (Piece 2A, 31.0–31.0)	V2		311.64	311.64		90 207	0	10	312.06	6	6		-40	311.64
7R-6 (Piece 2B, 51.0–59.0) 7R-6 (Piece 2B, 40.0–49.0)	V3 V4		311.04	311.72		156	297	67					-40 -40	311.00
7R-6 (Piece 2B, 46.0–50.0)	F1		311.79	311.83		0	270	44	312.50	231	36	-40	-40	311.81
7R-6 (Piece 4, 54.0–60.0)	F1		311.87	311.93		196	106	42	312.63	80	32	-26	-26	311.90
7R-6 (Piece 7, 107.5–108.0)	V1		312.41	1312.41		30	300	13					-26	312.40
7R-6 (Piece 8, 109.0–109.0)	VI	313.00	312.42	312.42		170	260	8					-26	312.42
7R-7 (Piece 1A, 0.0–0.5)	V1	5.5.00	312.64	312.65		186		12	313.40	265	47			
7R-7 (Piece 1A, 1.5–2.0)	V2		312.66	312.66		١		0						
8P.1 (Diana 2, 21.0, 22.0)	1/1	314.00	214.20	214 21	1.15	100		25						
8R-1 (Piece 3, 31.0–32.0) 8R-1 (Piece 4A 34 0–36 5)	VI V1		314.20	314.21		160		25 23	314 64	130	73			
8R-1 (Piece 4A, 35.0–38.0)	V2		314.24	314.27		173		34	315.16	30	20			
8R-1 (Piece 4B, 46.5-47.0)	V13		314.36	314.36		29		10						
8R-1 (Piece 4C, 51.0–51.5)	V4		314.40	314.41		40		8	215.14	1.62	-			
8R-1 (Piece 4B, 86.0–87.0)	SV5 SV1		314.75	314.76		180		20	315.16	163	/			
8R-1 (Piece 5B, 113.0–119.5)	V2		315.02	315.09		203		54						
8R-1 (Piece 5B, 115.5–120.0)	V3		315.05	315.09		210		40						
8R-1 (Piece 5C, 116.0–140.5)	V4		315.05	315.30		180		76						
8R-1 (Piece 5C, 127.0–127.5)	V5 V6		315.16	315.17		45 101		14 24						
ok-1 (Piece 3D, 139.0–141.0)	vo	315.00	515.20	515.50		191		24						
8R-2 (Piece 1A, 0.0–3.0)	V1		315.32	315.35		195		26	315.35	316	7			
8R-2 (Piece 1A, 6.0–14.0)	SV2		315.38	315.46		151		57	315.37	295	7			
8R-2 (Piece 1A, 10.0–14.0)	V3		315.42	315.46		130		53	315.96	270	6 12			
8R-2 (Piece 1B, 13.0–16.3)	SV5		315.51	315.52		264		60	316.55	222	7			
8R-2 (Piece 2A, 39.0–34.0)	V1		315.71	315.66		90	180	5					-189	315.68
8R-2 (Piece 2B, 75.5–79.0)	V2		316.08	316.11		232	322	31	316.63	82	29	-241	-189	316.09
8R-2 (Piece 2B, 77.5–79.5)	V3		316.10	316.12		129	219	26				-138	-189	316.10
ok-2 (Piece 2B, 78.0-80.3)	V4	316.00	510.10	510.15		230	320	54					-109	510.11
8R-3 (Piece 1A, 0.0–1.0)	V1		316.16	316.17		0		18						
8R-3 (Piece 1A, 2.0–4.0)	SV2		316.18	316.20		173		20						
8R-3 (Piece 1B, 4.0–6.0)	SV3		316.20	316.22		190		20						
8R-3 (Piece 1C, 7.0–8.0)	3V4 SV6		316.22	316.23		59 64		22						
8R-3 (Piece 1E, 5.5–12.5)	SV7		316.22	316.29		227		54						
8R-3 (Piece 1E, 10.0–28.0)	V8		316.26	316.44		347		83						
8R-3 (Piece 1E, 23.5–24.5)	V9		316.40	316.41		180		10						
8R-3 (Piece 1E, 53.0–54.0) 8R-3 (Piece 1E, 66.0–68.0)	V10 V11		316.69	316.70		180		23						
8R-3 (Piece 1E, 68.0–68.0)	V12		316.84	316.84		236		7						
		317.00												
8R-4 (Piece 1A, 0.0–0.5)	V1		316.85	316.86		4	94	5	317.05	309	3		-31	316.85
ok-4 (Piece 1A, 20.5–22.0) 8R-4 (Piece 1A, 23.5–25.0)	۷2 V3		317.06	317.07 317.10		137 301	227 31	17	317.14 317.35	209 338	15 13		-31 _31	317.06
8R-4 (Piece 1A, 72.5–74.0)	V4		317.58	317.59		32	122	19	317.47	222	7		-31	317.58
8R-4 (Piece 1A, 75.5–83.5)	SV5		317.61	317.69		2	272	85	317.50	236	9		-31	317.64
8R-4 (Piece 1B, 84.0-84.5)	V7		317.69	317.70		123	213	18	317.81	194	32		-31	317.69

		1	2	3 Cor	4 e data	5	6	7	8	9	10	11	12	13
			De	pth										
		sf)		_										
		qu		lbsf								Rota	tion	
) dc	(Jsd	E)										
		on to	E)	ture								(∆°	()	Reoriented
		ectic	ture	truc	Ê							ngle	e (⊽	
		of se	truc	of s	re (I	Real a	nd calc	ulated	FMS	/UBI da	ita	n al	ngl	lbsf
		othe	of st	ш	f co		Ĵ			\odot		atic	on a	ت) (
		dep	do	pott	or o		on	\odot	-	on	Ĵ	l rot	tatio	ept
	ier*	ted	of t	of b	erro	\odot	recti	gle	Ē	recti	gle	atec	d ro	je d
Core, section, piece,	ntif	rrec	pth	pth	pth	ike (ib c	o an	pth	i p c	o an	Icula	lize	erag
interval (cm)	Ide	S	De	De	De	Str	Dip	Ξi	De	Dip	ē	Ca	Uti	Ave
8R-4 (Piece 1B, 84.0–105.0)	SV8		317.69	317.90		188	278	87					-31	317.80
8R-4 (Piece 1B, 102.5–107.0)	V9		317.88	317.92		4	94	78					-31	317.90
8R-4 (Piece 1B, 90.0–90.0)	V10		317.75	317.75		90	180	6					-31	317.75
8R-4 (Piece 1B, 98.0–98.0)	V11		317.83	317.83		175	245	0	318.85	57	3 24		-31	317.83
8R-4 (Piece 1B, 110.0–117.0) 8R-4 (Piece 1B, 117.0–130.0)	SV12		317.95	318.15		175	265 260	ია 77	318.94 319.01	211 229	24 82	-31	-31 -31	317.98
8R-4 (Piece 1B, 117.0–134.0)	V14		318.02	318.19		350	80	83	517.01	/	01	51	-31	318.10
8R-4 (Piece 1B, 134.0–136.0)	SV15		318.19	318.21		350	80	65					-31	318.20
8R-4 (Piece 1B, 133.5–142.0)	SV16		318.19	318.27		350	80	33					-31	318.23
8R-4 (Piece 1B, 136.0–140.0)	SV17	318.00	318.21	318.25		30	120	44					-31	318.23
8R-5 (Piece 1, 1.0–3.0)	SV1	510.00	318.31	318.33		197		33						
8R-5 (Piece 1, 3.0–6.5)	SV2		318.33	318.37		182		65						
8R-5 (Piece 1, 40.0–43.0)	V3		318.70	318.73		135		28						
8R-5 (Piece 2A, 56.5–57.0)	V1 V2		318.87	318.87		90		6						
8R-5 (Piece 2B, 57.3–57.5)	VZ V3		318.95	318.96		0		7						
8R-5 (Piece 2D, 68.0–68.0)	V4		318.98	318.98		Ň		0						
8R-5 (Piece 2D, 68.5–70.5)	V5		318.99	319.01		118		20						
8R-5 (Piece 2D, 65.0–67.5)	V6		318.95	318.98		0		90 20	210.04	42	10			
8R-5 (Piece 3A 87 5-87 5)	V7 V1		319.10	319.12		1187		20 18	519.04	45	15			
8R-5 (Piece 3A, 89.5–89.5)	V2		319.20	319.20		90		8						
8R-5 (Piece 3A, 92.5–92.5)	V3		319.23	319.23		١		0	319.46	38	5			
8R-5 (Piece 3A, 93.5–106.0)	V4		319.24	319.36		192		72	319.69	31	19			
8R-5 (Piece 3A, 99.0–102.0)	V5		319.29	319.32		180		15						
8R-5 (Piece 3A, 104.0–105.0)	V0 V7		319.34	319.35		542 48		13						
8R-5 (Piece 3C, 106.0–109.5)	V9		319.36	319.40		2		67						
8R-5 (Piece 3C, 109.0–110.0)	V8		319.39	319.40		39		6						
8R-5 (Piece 3D, 126.0–128.0)	V10	220.00	319.56	319.58		17		17						
8R-6 (Piece 1A, 0.0–0.5)	V1	320.00	319.70	319.71		١		0						
8R-6 (Piece 1A, 2.0–2.0)	V2		319.72	319.72		Ň		0						
8R-6 (Piece 1A, 3.5–4.5)	V3		319.74	319.75		231		13						
8R-6 (Piece 1B, 8.0–8.5)	V4		319.78	319.79		98		32						
8R-6 (Piece 1B, 9.0–15.5) 8R-6 (Piece 1B, 18.0–23.0)	V5 V6		319.79	319.86		250 242		70 61	319 77	48	13			
8R-6 (Piece 1B, 14.0–14.0)	V7		319.84	319.84		90		9	320.20	103	2			
8R-6 (Piece 1B, 18.0–18.5)	V8		319.88	319.89		\		0	320.49	353	8			
8R-6 (Piece 1B, 63.5–63.5)	V9		320.34	320.34		\		0						
8R-6 (Piece 1B, 64.0–64.0)	V10		320.34	320.34		200		0	320.87	76	7			
8R-6 (Piece 2A, 74.0-74.0) 8R-6 (Piece 2B, 82 5-100 0)	VI SV/2		320.44	320.44		309 187		0 73	321.12	30	15			
8R-6 (Piece 2B, 92.5–93.0)	V5		320.63	320.63		0		9	321.43	26	36			
8R-6 (Piece 2B, 103.0–108.0)	SV6		320.73	320.78		157		70	321.51	36	17			
8D 7 (Diece 1D 2 0 2 0)	1/1	321.00	220.92	220.92		1		0	221 54	20	15			
on-7 (riece 1B, 3.0-3.0) 8R-7 (Piece 1B, 3.0-22.0)	vi SV2		320.82	320.82 321.01		\ 184		76	321.34 321.72	50 12	15 23			
8R-7 (Piece 1A, 7.0–10.0)	V3		320.86	320.89		223		58	322.04	23	57			
8R-7 (Piece 1A, 16.0–17.0)	V4		320.95	320.96		225		25						
8R-7 (Piece 1A, 20.0–21.5)	V5		320.99	321.01		232		25						
8R-7 (Piece 1A, 40.0–53.0)	SV6		321.19	321.32		157		73	222 54	177	22			
UN-/ (FIECE IA, 43.3-47.3)	v /		521.23	521.27		220		20	522.34	1/3	22			

		1	2	3	4 a data	5	6	7	8	9	10	11	12	13
			De	Cor	e data									
		6	De	ptii		-								
		nbsf		(Jsc								Dete		
		p (r	(Jso	, m								ROLA	luon	
		n to	(mb	ure								(⊽)	\sim	Reoriented
		ctio	ure	ruct	ĉ							igle	°∆°	structures
		f se	ructi	of st	e (n	Real a	nd calc	ulated	FMS	/UBI da	ita	n a ר	Jgle	bsf)
		th o	of sti	E	cor		(。			(。		ation	n ar	Ē
		deb	dc	otto	r of) uo	C) uo	C	roti	atic	pth
	er*	ted	of te	of b	erro	.	ecti	gle	(L	ecti	gle (ited	l rot	e de
Core, section, piece,	ntifi	rec	oth	oth	oth	ke (dir	an	oth	dir	an	cula	lizec	erag
interval (cm)	Ide	ē	Del	Del	Del	Stri	Dip	Dip	Del	Dip	Dip	Cal	Util	Ave
8R-7 (Piece 1A 45 0-46 0)	V8		321.24	321.25		39		13	322.78	10	13			
8R-7 (Piece 1A, 49.5–50.0)	V9		321.29	321.29		26		22	522.70					
8R-7 (Piece 1C, 62.5–63.0)	V10		321.42	321.42		99		12						
8R-7 (Piece 3A, 76.0–76.5)	V1		321.55	321.56		\		0						
8R-7 (Piece 3A, 78.0–78.5)	V2 V3		321.57	321.58		1/4		5 10						
8R-7 (Piece 3B, 99.0–90.0)	V3 V4		321.68	321.09		97		23	323.49	35	5			
8R-7 (Piece 3C, 93.5–93.5)	V5		321.73	321.73		90		34	323.59	2	6			
8R-7 (Piece 3C, 112.0-112.5)	V6		321.91	321.92		90		3	324.43	289	17			
8R-7 (Piece 3D, 122.0–140.0)	V7	222.20	322.01	322.19		157		72						
9R-1 (Piece 1, 0,0–0,0)	V1	323.39	323.39	323.39				0						
9R-1 (Piece 1, 0.0–2.5)	V2		323.39	323.42		345		75						
9R-1 (Piece 4, 53.0–54.0)	V1		323.92	323.93		5		20						
9R-1 (Piece 5A, 55.5–56.5)	V1		323.95	323.96		195	285	12	324.90	198	22		-98	323.95
9R-1 (Piece 5A, 80.5–84.5)	V2		324.20	324.24		202	292	34 19	324.94	195	34	-98	-98	324.21
9R-1 (Piece 5B, 99.5–101.0)	V4		324.39	324.40		164	254	18					-98	324.39
		325.00												
9R-2 (Piece 1A, 0.5–1.0)	V1		324.59	324.59		193		23						
9R-2 (Piece 1A, 3.0–15.5) 9R-2 (Piece 1A, 27.0–32.0)	V2 V3		324.61	324.74 324.90		37		70 61						
9R-2 (Piece 1A, 31.5–32.0)	V4		324.90	324.90		0		10						
9R-2 (Piece 1B, 32.0–36.0)	V5		324.90	324.94		0		65	325.49	91	44			
9R-2 (Piece 1B, 34.0–60.0)	V6		324.92	325.18		184		80						
9R-2 (Piece TB, 91.0–104.0)	V/	326.00	325.49	325.62		216		/4				_		
9R-3 (Piece 1, 0.0–37.0)	V1	520.00	325.63	326.00		220		82	326.05	30	28			
9R-3 (Piece 1, 36.0–56.5)	V2		325.99	326.20		170		78						
9R-3 (Piece 3A, 85.0–85.5)	V1		326.48	326.49		180		6	326.96	356	15			
9R-3 (Piece 3B, 32.5–32.5)	V3	327.00	325.96	325.96		\		0						
9R-4 (Piece 1A, 12.0–24.0)	V1	527.00	327.08	327.20		43	133	69					-62	327.14
9R-4 (Piece 1A, 45.0–45.0)	V2		327.41	327.41		90	0	3	327.51	322	19		-62	327.41
9R-4 (Piece 1A, 39.5–77.0)	V3		327.63	327.73		35	125	82	328.34	36	42		-62	327.54
9R-4 (Piece 1B, 126.0–134.0)	V5		328.22	328.30		342	42	61	328.92	341	63	-62	-62	328.26
9R-4 (Piece TB, 136.3–136.0)	vo	328.00	520.55	520.54		170	100	13					-02	520.55
9R-5 (Piece 1, 0.0–3.0)	SV1		328.41	328.44		215		77						
9R-5 (Piece 1, 58.0–60.0)	V2		328.99	329.01		45		21						
9R-5 (Piece 2A, 59.5–61.5) 9R-5 (Piece 2A, 62.0, 70.0)	VI V2		329.01 329.02	329.03 320 11		343 201	/3 201	31 52					-107 -107	329.01 329.07
9R-5 (Piece 2A, 71.5–73.5)	V2 V3		329.13	329.11		65	155	32	329.69	347	10		-107	329.13
9R-5 (Piece 2B, 72.0–73.5)	V4		329.13	329.15		45	135	27	329.76	28	23	-107	-107	329.14
9R-5 (Piece 2B, 76.5–84.0)	V5		329.18	329.25		135	225	64					-107	329.21
9R-5 (Piece 2B, 90.0–92.0)	V7		329.31	329.33		332	62	20					-107	329.32
2R-3 (FIECE 2B, 97.3-99.0)	۷ŏ	329.00	529.39	529.40	0	322	52	22					-107	529.39
10R-1 (Piece 1A, 20.5–48.0)	V2		329.61	329.88		170		74						
10R-1 (Piece 1A, 47.5–49.5)	V3		329.88	329.90		335		16						
10R-1 (Piece 1A, 50.5–65.0)	V4		329.91	330.05		174		65 74						
10R-1 (Piece 1A, 38.0–73.0) 10R-1 (Piece 1A, 83.0–90.0)	v 5 V6		329.98 330.23	330.15		133		70 70						
10R-1 (Piece 1A, 93.0–97.0)	J1		330.33	330.37		60		54	330.13	254	4			

		1	2	3	4 a data	5	6	7	8	9	10	11	12	13
			De	nth	e dala									
			De	ptii										
		nbst		osf)								Dete		
		p (r	(Jso	ĨĽ,								ROLA	uon	
		n to	dm)	ure								(⊽)	\sim	Reoriented
		ctio	ure	ruct	Ê							gle	°∆°	structures
		f se	ucti	of st	e (n	Real a	nd calc	ulated	FMS	/UBI da	ita	า ลท	ngle	osf)
		th o	f str	Ę	con		(.			(utior	n ar	E)
		deb	b do	otto	r of) uc	()) u	<u>_</u>	rotā	atio	pth
	*	eq	of to	of b	erro	0	ectio	gle (Ê	ectio	gle (ted	rot	e de
Core section niece	htifi	rect	oth e	th e	th e	, e	dire	ang	sth (dire	anç	cula	ized	rage
interval (cm)	lder	Cor	Dep	Dep	Dep	Stril	Dip	Dip	Dep	Dip	Dip	Calc	Util	Ave
100 1 (Diago 14, 05 0, 100 0)	12		220.25	220.40		104		(0	220.71	20	24			
10R-1 (Piece 1A, 95.0–100.0) 10R-1 (Piece 2, 140.0–143.0)	J2 V3		330.80	330.40		104 97	187	00 78	330.71	20	24		-270	330.81
10R-1 (Piece 2, 145.0–147.0)	V4		330.85	330.87		225	315	40	331.25	45	40	-270	-270	330.86
		331.00												
10R-2 (Piece 1, 1.0–5.0)	V1 V2		330.90	330.94		205	295	50 65	331.46	240	23		-89 80	330.92
10R-2 (Piece 1, 36.5–38.0)	VZ V3		331.26	331.27		51	141	22	332.02	52	25	-89	-89	331.26
10R-2 (Piece 1, 46.0–49.0)	V4		331.35	331.38		73	163	73	552.02				-89	331.37
10R-2 (Piece 1, 39.0–46.0)	V5		331.28	331.35		47	137	67					-89	331.31
10R-2 (Piece 1, 71.0–76.0)	V6	221 67	331.60	331.65		209	299	44					-89	331.62
10R-3 (Piece 1A, 11.0–19.0)	V1	551.07	331.78	331.86		144	234	59					195	331.82
10R-3 (Piece 1A, 39.0–52.5)	V2		332.06	332.20		333	63	69					195	332.12
10R-3 (Piece 1A, 48.0–60.0)	V3		332.15	332.27		331	61	68					195	332.21
10R-3 (Piece 1A, 71.0–87.0)	V4		332.38	332.54		331	61	68	222.21	10	24		195	332.46
10R-3 (Piece 1A, 86.3–100.0)	V5 V6		332.54	332.67		529 180	270	00 26	332.51	264	24 10		195	332.60 332.60
10R-3 (Piece 1B, 93.0–95.0)	V7		332.60	332.62		180	270	26	552.00	201	10		195	332.61
10R-3 (Piece 1B, 110.5–123.0)	V8		332.78	332.90		335	65	66					195	332.84
10R-3 (Piece 1B, 119.0–131.0)	V9		332.86	332.98		335	65	66	222.10	240	~	105	195	332.92
TOR-3 (Piece TB, 122.0–133.0)	V10	333.00	332.89	333.00		335	65	66	333.10	260	60	195	195	332.95
10R-4 (Piece 2A, 17.0–27.0)	V1	555.00	333.20	333.30		331	61	64					199	333.25
10R-4 (Piece 2A, 37.0–37.0)	V2		333.40	333.40		180	90	5	333.85	5	18		199	333.40
10R-4 (Piece 2B, 35.0–43.5)	V3		333.38	333.47		331	61	64	334.03	229	14		199	333.42
10R-4 (Piece 2B, 73.0–81.0) 10R-4 (Piece 2C, 80.0–85.0)	V4 V5		333.83	333.88		160	90 98	55 55					199	333.85
10R-4 (Piece 2C, 98.5–107.0)	V6		334.02	334.10		24	114	60					199	334.05
10R-4 (Piece 2C, 117.0–120.5)	V7		334.20	334.24		0	90	45	334.16	237	40		199	334.22
		334.00			2.99				224.20	270	14			
11R-1 (Piece 1A. 0.0–4.0)	V1		334.25	334.29		168	258	46	334.29 334.58	270 54	44	-204	69	334.27
11R-1 (Piece 1A, 13.0–19.0)	V2		334.38	334.44		310	40	57	334.60	213	43	172	69	334.41
11R-1 (Piece 1A, 16.5–22.0)	V3		334.42	334.47		310	40	57	334.55	240	58	200	69	334.44
11R-1 (Piece 1A, 49.5–55.0)	V4		334.75	334.80		345	75	51					69	334.77
11R-1 (Piece 1B, 63.0–69.5) 11R-1 (Piece 1B, 69.0–74.5)	V6 V7		334.88 334.94	334.95		325 325	55 55	56	334 81	233	15		69 69	334.91
11R-1 (Piece 1B, 87.0–91.0)	V8		335.12	335.16		298	28	59	335.45	74	68		69	335.14
11R-1 (Piece 1B, 106.5–108.0)	V9		335.32	335.33		125	215	22					69	335.32
11R-1 (Piece 1B, 123.0–127.5)	V10	226.00	335.48	335.53		21	111	42	335.68	218	47	107	69	335.50
11R-2 (Piece 1A 4 0–9 0)	V1	336.00	335.70	335.75		66	156	59	336.29	43	54	_114	_114	335 75
11R-2 (Piece 1A, 52.0–65.0)	V2		336.18	336.31		180	270	62	550.27		•••		-114	336.24
11R-2 (Piece 1A, 58.5-63.0)	V3		336.25	336.29		224	314	44					-114	336.27
11R-2 (Piece 1A, 84.0–91.0)	V5		336.50	336.57		122	212	62	336.83	231	19		-114	336.53
11K-2 (Piece 1A, 114.0–120.0)	V6	337.00	330.80	330.86		163	253	51					-114	330.83
11R-3 (Piece 1A, 1.0–4.0)	V1		336.90	336.93		180	270	50	336.83	231	19		-15	336.92
11R-3 (Piece 1A, 4.0–9.0)	V2		336.93	336.98		180	270	45	336.99	250	13		-15	336.95
11R-3 (Piece 1A, 10.0–15.0)	V3		336.99	337.04		180	270	45	337.12	280	12		-15	337.02
11R-3 (Piece 1A, 13.0–19.0)	V4 V5		337.02	337.35		180	∠70 270	45 45	337.17	289 301	1Z 6		-15 -15	337.31
11R-3 (Piece 1A, 47.0–52.0)	V6		337.36	337.41		180	270	39	337.80	0	52		-15	337.38
11R-3 (Piece 1, 54.0–60.0)	V7		337.43	337.49		180	270	51	337.91	342	19		-15	337.46

		1	2	3 Cor	4 e data	5	6	7	8	9	10	11	12	13
			De	pth	e uata									
		ţ)												
		gm		lbsf)								Rota	tion	
) do	(Jsd	E)										
		on te	E)	ture								°∆°	<u>,</u>	Reoriented
		ectic	ture	truc	Ê							ngle	e (⊽	
		of se	truc	of s	re (i	Real a	nd calc	ulated	FMS	/UBI da	ata	n al	ngl	lbsf
		oth	of st	шо	f co		\odot			Ĵ		tatic	on ê	<u>ь</u>)
		deb	top	oott	or o		ion	Ĵ	~	ion	\odot	L IO	tati	eptl
	fier*	cted	of 1	of l	err	Ĵ	rect	ıgle	E	rect	Jgle	atec	d ro	ge d
Core, section, piece,	enti	orree	epth	epth	epth	rike	p di	p ar	epth	p di	p ar	Icul	illize	era
interval (cm)	Ide	Ö	ď	ă	ď	Stı	Ō	Ō	ă	Ō	Ō	C	Ļ	Av
11R-3 (Piece 1, 76.0–80.0)	V8		337.65	337.69		176	266	50	338.65	167	10		-15	337.67
11R-3 (Piece 1, 78.5–85.0)	SV9		337.68	337.74		180	90	50					-15	337.70
11R-3 (Piece 1, 80.0–86.0)	V10		337.69	337.75		180	90	50	339.56	76	78	-15	-15	337.72
11R-3 (Piece 1, 85.0–84.3) 11R-3 (Piece 1, 86.0–90.0)	11		337.72	337.74		130	270	20 41					-15	337.73
11R-3 (Piece 1, 97.0–97.5)	j2		337.86	337.87		67	157	15					-15	337.86
11R-3 (Piece 1, 89.0–93.0)	V12		337.78	337.82		186	276	34	339.24	275	27		-15	337.80
11R-3 (Piece 1, 102.0–102.5)	J3		337.91	337.92		\	\	0	220 70	200	22		-15	337.91
11R-3 (Piece 1, 102.5–102.0) 11R-3 (Piece 1, 106.5–110.0)	V15 V16		337.92	337.91		215	305	49 75	339.70	208	23		-15 -15	337.91
The s (neee 1, 100.3–110.0)	10	338.00	557.70	557.77		100	10	75					-15	557.77
11R-4 (Piece 1, 0.0–7.0)	V1		337.99	338.06		350	80	60					206	338.02
11R-4 (Piece 1, 2.0–22.0)	V2		338.01	338.21		45	135	76	339.94	341	79	206	206	338.11
11R-4 (Piece 1, 18.3–22.0) 11R-4 (Piece 1, 29,5–35,0)	V3 V4		338.18	338.21		331	54	40 51					206	338.19
11R-4 (Piece 1B, 60.0–72.0)	F1		338.59	338.71		180	270	67					206	338.65
11R-4 (Piece 1B, 62.0–66.0)	V5		338.61	338.65		304	34	49					206	338.63
11R-4 (Piece 1C, 80.0–84.0)	V6		338.79	338.83		314	44	55					206	338.81
11R-4 (Piece TC, 104.5–105.5)	V/	339.00	339.04	339.05		345	/5	54					206	339.04
11R-5 (Piece 1, 0.0–2.0)	V1	557100	339.09	339.11		175	265	25					-209	339.10
11R-5 (Piece 1, 7.0–12.0)	V2		339.16	339.21		174	264	60	341.14	56	64	-209	-209	339.18
11R-5 (Piece 1, 10.0–18.0)	V3		339.19	339.27		174	264	60					-209	339.23
11R-5 (Piece 1, 44.0–58.0) 11R-5 (Piece 1, 72.0–80.0)	V4 V5		339.81	339.89		174	264 264	60 60					-209 -209	339.30
11R-5 (Piece 1, 77.0–83.0)	V6		339.86	339.92		174	264	60					-209	339.89
11R-5 (Piece 1, 95.0–101.0)	V8		340.04	340.10		174	264	60	341.32	245	74		-209	340.07
11R-5 (Piece 1, 80.0–86.0)	V7		339.89	339.95		174	264	60 20	341.70	201	29		-209	339.92
11R-5 (Piece 2A, 107.0–111.0) 11R-5 (Piece 2B, 121.0–121.0)	V2 V5		340.10	340.20		550 244	334	30 11	342.41	10	4		228	340.18
11R-5 (Piece 2B, 138.0–142.0)	V6		340.47	340.51		337	67	34	342.57	296	33		228	340.49
		344.00			0	_								
12R-1 (Piece 1A, 21.0–22.5)	V1 V2		343.76	343.78		100	97 280	12					98	343.77
12R-1 (Piece 1A, 28.0–34.0)	V2 V3		343.82	343.89		190	272	47					98	343.82
12R-1 (Piece 1A, 27.0–29.0)	V4		343.82	343.84		213	303	70	343.22	41	78	98	98	343.83
12R-1 (Piece 1B, 42.0–43.0)	V5		343.97	343.98		180	270	5					98	343.97
12R-1 (Piece 1C, 47.5–48.0)	V6		344.03	344.03		90 21	180	22	343.59	17	51		98	344.04
12R-1 (Piece 1C, 91.0–92.3)	V7 V8		344.40	344.40		19	109	15	344.60	140	56		98	344.47
12R-1 (Piece 1C, 116.0–116.0)	V10		344.71	344.71		297	27	7	344.92	174	19		98	344.71
12R-1 (Piece 1D, 141.0–142.0)	V11		344.96	344.97		26	116	22					98	344.69
12R-2 (Piece 1A 13 0-13 5)	V3	345.00	345 15	345 16		90	0	6					-166	345 15
12R-2 (Piece 1B, 38.0–40.5)	V6		345.40	345.43		194	284	21					-166	345.41
12R-2 (Piece 1B, 50.5–51.0)	V9		345.53	345.53		229	319	11					-166	345.53
12R-2 (Piece 1B, 58.0–58.0)	V10		345.60	345.60		79	169	53					-166	345.60
12R-2 (Piece 1C, 61.5–63.0) 12R-2 (Piece 1C, 71.0, 71.5)	V11 V12		345.64 345 72	345.65 345 74		230 254	320 344	18 15					-166 -166	345.64 345 73
12R-2 (Piece 1C, 81.5–82.0)	V13		345.84	345.84		180	270	4					-166	345.84
12R-2 (Piece 1D, 93.0–128.5)	SV14		345.95	346.31		185	275	82					-166	346.13
12R-2 (Piece 1D, 94.0–102.0)	V15		345.96	346.04		67	157	76	346.25	351	74	-166	-166	346.00
12R-2 (Piece 1E, 109.0–109.5)	V16		346.11 346.16	346.12 346.14		115	205	16					-166 166	346.11 346.15
12N-2 (FIELE 1E, 113.3-113.3)	J 1		540.10	540.10		1	١	U					-100	540.15

			1	2	3 Cor	4 e data	5	6	7	8	9	10	11	12	13
				De	pth	e dutu									
			G	20	pui										
			squ		(Jsc								Data	*:	
			p L	sf)	Ľ,								Rota	ition	
			n to	qm	ure								(₀∇)	~	Reoriented
			tior	Ire (ucti								gle	(∆°	structures
			sec	nctı	f str	E,	Real a	nd calc	ulated	FMS/	UBI da	ta	ano	gle	sf)
			h of	stri	ομ	core		~			~		tion	n an	g L
			ept	o of	tto	of o		Ĵ L	\sim		С Ч		ota	tior	ţ
		*	q	to	oq	ror		ctio	е (°	Ê	ctio	е (°	2	ota	deb
		ifier	ecte	h of	h of	h er	0	lired	ngl	h (r	lired	ng	Ilate	eqr	ge
	Core, section, piece,	lent	orre	ept	ept	ept	rike	ip c	ip a	ept	ip o	ip a	alcı	tiliz	vera
_	interval (Cff)	la	Ŭ	D	D	D	St	Δ	Δ	D	Δ	Δ	Ű	\supset	Ŕ
			346.00												
	12R-3 (Piece 1, 1.0–7.5)	SV1		346.33	346.40		183	273	74	346.72	99	68	-174	-174	346.36
	12R-3 (Piece 2A, 38.5–40.0)	V1		346.71	346.72		160		9						
	12R-3 (Piece 26, 74.3–76.0) 12R-3 (Piece 26, 82 5–83 0)	VZ V3		347.07	347.08		284		20						
	12R-3 (Piece 2D, 101.0–105.5)	V4		347.33	347.38		68		55						
	12R-3 (Piece 2D, 105.5–107.5)	V5		347.38	347.40		233		37						
	12R-3 (Piece 2D, 109.0-109.5)	V6		347.41	347.42		211		15						
	12R-3 (Piece 2F, 138.0–144.0)	V7		347.70	347.76		312		61						
÷	12R-3 (Piece 2F, 139.0–141.0)	V8	247 77	347.71	347.73		128		66						
1	12R-4 (Piece 2A 79 0-79 0)	√2	347.77	348 56	348 56		90		2						
	12R-4 (Piece 2B, 92.0–96.0)	V3		348.69	348.73		180		40						
	, , , , , , , , , , , , , , , , , , ,		348.73												
1	12R-5 (Piece 1A, 1.0–3.0)	V1		348.74	348.76		280		45						
	12R-5 (Piece 1A, 66.5–69.0)	V2		349.40	349.42		159		16						
	12R-5 (Piece 1B, 73.0–86.0)	SV4		349.46	349.59		225		11						
	12R-5 (Piece 1C, $955-1000$)	V 5 V 5		349.47	349.31		5		29						
	12R-5 (Piece 1D, 114.5–116.0)	V6		349.88	349.89		167		82						
	12R-5 (Piece 1D, 106.0–114.0)	V7		349.79	349.87		27		66						
	12R-5 (Piece 1D, 114.0-117.0)	V8		349.87	349.90		33		47						
	12R-5 (Piece 1D, 100.0–131.0)	V9		349.73	350.04		40		70						
	12R-5 (Piece 1D, 130.5–133.0)	V10		350.04	350.06		135		33						
	12R-5 (Piece 1D, 122.0–131.3)	V11		349.93	350.03		15		76 74						
	12R-5 (Piece 1F, 141.5–142.5)	V13		350.15	350.16		238		19						
	12R-5 (Piece 1F, 140.0–142.0)	V14		350.13	350.15		33		68						
			350.18												
	12R-6 (Piece 1A, 0.0–1.5)	V1		350.18	350.20		353		14						
	12R-6 (Piece 1A, 1.5–3.0)	VZ V3		350.20	350.21		248		15						
	12R-6 (Piece 1A, 13.5–15.5)	V4		350.32	350.34		313		21						
	12R-6 (Piece 1B, 68.5–71.0)	V5		350.87	350.89		233		49						
	12R-6 (Piece 1B, 93.0–93.5)	V6		351.11	351.12		344		7						
	12R-6 (Piece 1B, 101.5–105.0)	V7		351.20	351.23		215		55						
÷	12R-6 (Piece 1B, 112.5–127.0)	V8	251 46	351.31	351.45		172		65						
1	12R-7 (Piece 14 5 5-7 0)	V1	351.46	351 52	351 53		87		65						
	12R-7 (Piece 1A, 47.0–51.0)	V2		351.92	351.97		65		47						
	12R-7 (Piece 1B, 81.5–82.0)	V3		352.28	352.28		76		12						
	12R-7 (Piece 1C, 107.5–108.5)	V4		352.54	352.55		267		75						
	12R-7 (Piece 1C, 102.0–114.0)	V5		352.48	352.60		175		60						
	12K-/ (Piece TC, 100.0–125.0)	V6 V8		352.46	352.71		195		84 25						
	12R-7 (FIECE 1D, 108.0-109.0)	v o V9		352.34	352.33		549 46		∠5 35						
	12R-7 (Piece 1D, 119.0–122.0)	V10		352.65	352.68		34		24						
	12R-7 (Piece 1E, 122.5–125.0)	V11		352.69	352.71		57		18						
	12R-7 (Piece 1F, 133.0–134.0)	V12		352.79	352.80		220		25						
	12R-7 (Piece 1C, 91.0–98.0)	V13		352.37	352.44		90		85						
į,	12K-7 (Piece 1F, 133.5–134.0)	V14	353.05	352.80	352.80		70		40						
	12R-8 (Piece 1A, 0.0-3.0)	V1	-332.03	352.85	352.88		187		45						
	12R-8 (Piece 1A, 1.0–2.5)	V12		352.86	352.88		126		60						

Table T1 (continued).

		1	2	3	4	5	6	7	8	9	10	11	12	13
		Core data												
		Depth				_								
		of section top (mbsf)	ructure (mbsf)	of structure (mbsf)	re (m)	Real and calculated			FMS/UBI data			n angle (∆°)	ation (₀₀) udle (⊽₀)	- Reoriented structures
Core, section, piece, interval (cm)	ldentifier*	Corrected depth	Depth of top of si	Depth of bottom	Depth error of co	Strike (°)	Dip direction (°)	Dip angle (°)	Depth (m)	Dip direction (°)	Dip angle (°)	Calculated rotatic	Utilized rotation a	Average depth (m
12R-8 (Piece 1A, 20.5–22.5)	V3		353.06	353.08		164		21						
12R-8 (Piece 1A, 23.0–23.5)	V4		353.08	353.09		90		47						
12R-8 (Piece 1B, 24.0–26.0)	V5		353.09	353.11		198		19						
12R-8 (Piece 1B, 28.0–32.0)	V6		353.13	353.17		194		49						
12R-8 (Piece 1B, 28.0–28.0)	V16 V7		353.13	333.13		90 190		54 10						
12R-8 (Piece 1C, $33.3-30.0$)	V7 \/8		252 26	252 27		210		10						
12R-8 (Piece 1D, $51.0-52.0$)	V0 V10		353.30	353.57		210		40						
12R-8 (Piece 1E, 51 0–65 0)	V9		353.45	353 50		172		64						
12R-8 (Piece 1E, 66.0–66.0)	V11		353.51	353.51		90		42						
12R-8 (Piece 1F, 71.0–71.0)	V12		353.56	353.56		90		10						
12R-8 (Piece 1F, 80.0–83.0)	V13		353.65	353.68		180		35						
12R-8 (Piece 1G, 81.0–90.0)	V14		353.66	353.75		341		71						
12R-8 (Piece 1G, 87.0–93.5)	V15		353.72	353.79		20		64						
12R-8 (Piece 1D, 64.0–66.0)	V16		353.49	353.51		312		35						

Notes: * = the measured structural feature; V = vein, SV = shear vein, J = joint, F = microfault. Column 1 = depth (mbsf) of core section top corrected according to the procedure described in the text (see "**Results**," p. 5). Column 2 = depth (mbsf) of the top of the measured structure, obtained by adding the distance (cm) from top of section to top of the feature to the corrected top section depth (column 1). Column 3 = depth (mbsf) of the bottom of the measured structure, obtained by adding the distance (cm) from top of section to bottom of the feature to the corrected top section depth (column 1). Column 4 = error (m) of the core depth when compared with curated depth and obtained with the procedure described in the text (see "**Results**," p. 5). Column 5 = real and calculated (from two apparent values) strike of measured structure. Column 6 = real and calculated (from two apparent values) dip direction of measured structure. Column 7 = real and calculated (from two apparent values) dip angle of measured structure. Column 9 = dip direction of the structural feature recognized on Formation MicroScanner (FMS) and Ultrasonic Borehole Imager (UBI) images. Column 9 = dip direction of the structural feature recognized on FMS and UBI images. Column 10 = dip angle of the structure in the core and in the oriented log images). Column 12 = correction angle (difference between dip direction of the structure with the highest dip angle in a core piece, or to the mean between two correction angles if dip angles of structures are comparable. Column 13 = average depth of the reoriented structures. Column headers are also defined in the text (see "**Results**," p. 5). Bold = core data to be reoriented first because quite comparable with FMS and UBI data. \setminus = not defined in horizontal planar structures.