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ABSTRACT

Bulk density, porosity, and matrix density were measured on 88 ba-
salt core plugs from Ocean Drilling Program Site 1256. Shipboard mea-
surements using the multisensor track were reprocessed and edited to
minimize the effects of core segmentation and calibration problems
and are presented in this data report.

INTRODUCTION

This study presents new physical property measurements for the ba-
salts from Ocean Drilling Program (ODP) Site 1256, which obtained a
502-m section of upper oceanic crust. Geophysical properties of these
basalts can be determined in three ways: (1) downhole logging, (2)
whole-core measurements, or (3) laboratory measurements on core
plugs. All three were undertaken on board the ship during ODP Leg
206. Downhole measurements were reported by the Shipboard Scien-
tific Party (2003b). Whole-core sections were measured on the multi-
sensor track (MST). MST measurements, consisting of gamma ray
attenuation bulk density, natural gamma ray activity, and magnetic sus-
ceptibility, were presented in the Leg 206 Initial Reports volume (Ship-
board Scientific Party, 2003b), but they were not interpreted because of
excessive noise from the broken core segments. Moisture and density
(MAD) properties of 167 discrete samples were measured shipboard us-
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ing a pycnometer (Shipboard Scientific Party, 2003a) and interpreted by
Shipboard Scientific Party (2003b).

This study provides two complementary data sets: laboratory mea-
surements of bulk density, porosity, and matrix (or grain) density for 88
additional core plugs, and reprocessed shipboard MST data.

METHODS

MAD Measurements

On board the ship, 88 cylindrical samples were drilled from the
working halves of the Site 1256 basement cores. Sample diameters were
2.5 cm, and volumes of most samples were ~13 cm3. Porosity, bulk den-
sity, and matrix density of the core plugs (Table T1) were determined
postcruise using a simple weight-and-volume technique, as described
by Brink and Jarrard (1998) and Brink (1999), with salt correction
(Hamilton, 1971). Samples were evacuated for about 3 days to remove
pore water, with a final vacuum pressure of 70–80 mTorr, then dry
weight was measured twice. Samples were evacuated again at 70–80
mTorr for 1 day, then flooded with seawater while still under vacuum.
Next, external pressure was changed to atmospheric, permitting the
high vacuum within each sample’s pores to suck water into its pores.
Wet volume (four replicates) and wet weight (three replicates) of each
sample were then measured. Accuracy of this technique was confirmed
by measuring a suite of standard samples. These standards are Ferron
sandstones that had previously been measured by Amoco using a he-
lium porosimeter and mercury immersion, as described by Sondergeld
and Rai (1993).

The crossplots of Figure F1 compare shipboard to shore-based MAD
measurements. The two data sets have generally very similar bulk densi-
ties, but they exhibit different apparent dependencies of bulk density
and matrix density on porosity. We attribute this difference to incom-
plete drying by the shipboard method (oven drying), which results in a
subtle underestimation of both matrix density and porosity. Similar off-
sets have been noted in some previous basalt cores (e.g., Sites 768, 770
[Jarrard and Schaar, 1991], and 801 [Jarrard et al., 2003]). The inverse
correlation between matrix density and porosity is attributable to alter-
ation-induced lowering of matrix density in high-porosity, high-perme-
ability samples (e.g., Christensen et al., 1980; Busch et al., 1992; Jarrard
et al., 2003).

Continuous logs of bulk density as a function of depth are available
from both whole-core MST measurements and well-logging (Shipboard
Scientific Party, 2003b). These density logs can be converted to porosity
by assuming a constant matrix density. The mean matrix density for
these basalts is 2.92 g/cm3 based on shipboard MAD measurements and
2.96 g/cm3 based on shore-based MAD measurements.

Multisensor Track Measurements

All basalt whole cores from Site 1256 were measured on the MST.
Measurement spacing was 2.5 cm for density and magnetic susceptibil-
ity and 5 cm (with a 20 s count time) for natural gamma measurements.
Figure F2 shows these raw data. All three records exhibit spuriously
high dispersion, resulting from the discontinuous nature of the hard
rock core (empty space, plastic spacers, and rubble zones). Values for all

T1. New MAD measurements for 
minicores from Site 1256, p. 11.
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three measurements are also biased to lower values because the core di-
ameter is less than that of the core liner. Because of these problems,
which are characteristic of all ODP basalt MST measurements, some
ODP legs do not undertake MST logging of basalts. Our approach, in
contrast, was to take more closely spaced MST measurements than are
typical, so that the effects of discontinuous core can be successfully re-
moved postcruise.

The first step in our MST editing was to remove some depth overlaps
of adjacent cores, associated with cores that had an apparent recovery
of >100%. This excessive recovery results from loss of one or more core
segments from the base of the overlying core, so core depths were
slightly revised upward accordingly.

Our initial processing of the MST density data includes two recalibra-
tion steps. Raw gamma counts had been converted to bulk density dur-
ing Leg 206, based on a regression fit of counts to density for a set of
five standards. This conversion was satisfactory for Hole 1256D, but the
Hole 1256C calibration led to systematic underestimation of densities
by ~0.1 g/cm3. The origin of this calibration problem is unknown, but it
can be avoided by using the Hole 1256D calibration for both holes. Sec-
ond, the density calculation assumes that the core liner is entirely filled
with rock. This assumption is appropriate for most sediment cores, but
basalt cores are mostly 58.5 mm in diameter or less, much narrower
than the 66-mm internal diameter of the plastic core liner. Further-
more, this reduced diameter causes the gamma ray beam to penetrate
the core 3.5 mm above its center, further reducing the effective “diame-
ter” of core seen to 58 mm. These biases can be removed by multiplying
all densities by 66/58 = 1.138.

This recalibrated density log is not yet a reliable indicator of in situ
bulk densities, but it does indicate the mass of basalt seen by the mag-
netic susceptibility and natural gamma MST tools. Thus, we can mini-
mize the effects of variations in core segment volume on magnetic
susceptibility and natural gamma by converting these records to a mass
basis.

Raw magnetic susceptibility data are in instrument units, but they
can be converted to SI volume susceptibilities by multiplying by 10–5

times the volume correction factor of ~0.7 (Blum, 1997). We corrected
for variations in core volume as follows. First, the susceptibility loop
has a response function with an approximately 5-cm half-width, so we
estimated this response function by noting the shape of the magnetic
susceptibility responses at numerous examples of single-point density
spikes: 0.05, 0.2, 0.5, 0.2, 0.05 for the five magnetic susceptibility mea-
surements centered at the density spike. We therefore smoothed the ed-
ited MST density log with this 5-point operator. We then converted the
volume susceptibility measurements to mass susceptibilities by dividing
each susceptibility value by its MST density. Finally, we smoothed the
resulting record with a weighted 7-point average; the weighting was 0
for raw density <0.5 g/cm3, 1 for raw density = 0.5–2.0 g/cm3, and 2 for
raw density = >2 g/cm3, and only depths with a total weight of at least 2
were retained.

The natural gamma instrument used on the ship records counts per
second (cps), which depends on the rock volume seen by the detector
crystal, the device setup, and background counts (Blum et al., 1997;
Blum, 1997). A zero background spectrum is removed from each mea-
surement, based on measurement of a liner containing water. A typical
shipboard background is 8–9 cps according to Blum (1997), but the
background during Leg 206 was slightly higher: the minimum raw



R.D. JARRARD AND M.J. KERNEKLIAN
DATA REPORT: PHYSICAL PROPERTIES OF ODP SITE 1256 4
value was 9.75 cps. On board Leg 206, however, all data were corrected
using a background of 13.99, which is too high: most corrected counts
are zero. The appropriate background correction for Leg 206 is not reli-
ably known, but it is probably ~10 cps, slightly higher than the mini-
mum reading because of statistical fluctuations in radioactivity
measurements. We therefore removed a background count of 10 cps
from all measurements. If the actual background is somewhat higher or
lower, the character of the final log (Figs. F3, F4) is minimally affected
but the entire log is biased by a few percent.

The next step in reprocessing of the natural gamma was to delete the
last four points of each section, which exhibit huge but unpredictable
biases. We do not know the origin of these clearly core-edge effects;
they are not tray contamination because they affect the last 3–4 points
of each section regardless of its length. The natural gamma detector
crystal is 7.6 cm in diameter with a spatial resolution of ~12 cm, so we
smoothed the density record with a natural gamma response function
consisting of a 10-cm-wide plateau and tapered flanks. We then calcu-
lated natural gamma counts per gram by dividing the natural gamma
record by both measured volume and smoothed density. We applied a
7-point weighted average to the resulting record, with weighting based
on density (as above) and with a minimum weight of 4 (at least two
good density points) for retention of data from any depth.

Much of the MST density record exhibits density dropouts due to
gaps between core pieces and the edges of core pieces. These dropouts
should be retained when correcting magnetic susceptibility and natural
gamma from a volume basis to weight basis, as described above. They
should be deleted, however, when attempting to estimate true basalt
densities. These dropouts were minimized by deleting all values <2.48
g/cm3, based on the observation that the lowest of our 147 MAD den-
sity measurements was 2.482 g/cm3. Note, however, that this procedure
also removes potentially reliable but low density measurements for rare
hyaloclastites and breccias, not sampled by MAD. We also deleted core
segment-edge measurements, based on the criterion that such measure-
ments are flanked by an adjacent blank reading and one at least 0.1 g/cm3

higher than it. A second core segment-edge exclusion criterion was to
delete dropouts of >0.15 g/cm3 compared to its adjacent reading. These
MST densities then were smoothed with a 5-point median, except
across data gaps.

Finally, all three MST logs were resampled at 0.25 m spacing.
Figures F3 and F4 show the reprocessed density, magnetic susceptibil-

ity, and natural gamma records for Holes 1256C and 1256D. Also
shown in these figures are the MAD measurements (new and ship-
board) of bulk density. These minicore measurements are generally con-
sistent with the reprocessed densities, whereas they were much higher
than the raw MST densities shown in the Leg 206 Initial Reports volume
and in Figure F1. Hole 1256D was logged with the lithodensity well-log-
ging tool, but this log exhibits too many washout-induced artifacts for
direct comparison. Both density and resistivity depend mainly on po-
rosity, but resistivity logs are much less sensitive to washouts. We there-
fore overlay a 10-m averaged resistivity log on the MST densities of
Figure F4, confirming that the broad patterns of the two are consistent.
Unlike the resistivity log, however, MST densities fail to sample
macroporosity such as large fractures and interflow voids (e.g., Jarrard
et al., 2003).

The reprocessed natural gamma record exhibits abundant spikes to
high gamma counts. These are unlikely to be artifacts due to underesti-
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mation of density, because the magnetic susceptibility record lacks
analogous spikes. More likely, they result from local potassium enrich-
ment due to basalt alteration or magmatic fractionation. The downhole
spectral gamma log (Shipboard Scientific Party, 2003b) also shows
abundant spikes to high natural gamma counts, though it averages a
much longer depth interval. Figure F4, which overlays a 10-m averaged
downhole natural gamma log on the edited MST log for Hole 1256D,
shows the impact of alteration on core recovery. In intervals with high
core recovery and therefore densely sampled MST readings (e.g., above
350 meters below seafloor [mbsf] and at ~410, 450, and 480 mbsf), both
MST and logging natural gamma counts exhibit minimum values. In
intervals with very high natural gamma counts on the well log, core re-
covery and MST data are sparse. The downhole log indicates that total
natural gamma counts are primarily associated with potassium varia-
tions, with consistently very low contributions to total counts from
uranium and thorium.
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Figure F1. Comparison of shipboard and shore-based (this study) measurements of MAD properties for the
basalts of Site 1256. The slightly lower trends for shipboard measurements (red dots) are attributed to in-
complete drying.
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Figure F2. Shipboard results of multisensor track (MST) measurements of the basalts of Hole 1256D. Note
the consistently much lower bulk densities recorded by the MST (red dots) than by shipboard (blue dots)
and shore-based (green dots) index measurements on discrete samples. cps = counts per second.
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Figure F3. Multisensor track (MST) measurements of the basalts of Hole 1256C after the reprocessing of this
study. Note the general agreement of MST data (red dots) with shipboard (blue dots) and shore-based (green
dots) index measurements on discrete samples. cps = counts per second.
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Figure F4. Multisensor track (MST) measurements of the basalts of Hole 1256D after the reprocessing of this
study. Note the general agreement of MST data (red dots) with shipboard (blue dots) and shore-based (green
dots) index measurements on discrete samples. Resistivity and natural gamma well logs (green lines) are
overlain on the MST data to show the broad patterns of expected MST variations. cps = counts per second.
API = American Petroleum Institute units.
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Table T1. New MAD measurements for minicores from Site 1256.
Core, section,
interval (cm)

Depth
(mbsf)

Bulk 
density 
(g/cm3)

Porosity
(%)

Matrix 
density 
(g/cm3)

206-1256C-
4R-1, 49–51 245.49 2.93 3.8 3.01
5R-2, 121–133 255.10 2.90 4.6 2.99
6R-4, 74–76 261.81 2.75 8.2 2.90
7R-5, 17–19 271.08 2.92 3.6 2.99
8R-6, 107–109 282.53 2.93 3.3 2.99
9R-7, 77–79 293.85 2.95 3.7 3.02
10R-2, 10–12 295.45 2.95 3.5 3.02
11R-5, 105–107 310.27 2.92 4.2 3.00
11R-7, 5–7 312.09 2.92 4.5 3.01
12R-2, 36–38 314.60 2.90 4.3 2.98

206-1256D-
2R-1, 14–16 276.24 2.90 4.8 3.00
3R-3, 92–74 281.44 2.94 4.5 3.03
4R-3, 47–49 288.17 2.94 4.6 3.04
5R-4, 49–51 294.29 2.93 3.8 3.01
6R-3, 81–83 298.02 2.92 3.7 3.00
7R-3, 110–112 307.78 2.93 4.0 3.01
8R-6, 30–32 319.41 2.93 3.8 3.01
9R-4, 89–91 327.26 2.94 3.9 3.02
10R-4, 112–114 332.15 2.92 4.8 3.02
11R-4, 48–50 336.12 2.92 3.9 3.00
12R-8, 83–85 351.33 2.93 3.1 2.99
13R-1, 141–143 351.71 2.76 9.6 2.94
13R-3, 38–40 353.62 2.66 12.4 2.89
13R-3, 66–68 353.90 2.74 11.1 2.95
15R-2, 113–115 366.83 2.67 11.6 2.88
16R-1, 96–98 369.86 2.74 9.1 2.91
18R-2, 81–83 380.07 2.81 7.8 2.96
19R-1, 7–9 382.77 2.60 13.9 2.86
20R-1, 21–23 387.61 2.70 11.5 2.92
21R-1, 64–66 397.44 2.81 8.1 2.97
22R-3, 6–8 408.61 2.89 4.0 2.97
23R-1, 13–15 410.43 2.71 8.8 2.87
24R-2, 87–89 421.83 2.87 4.5 2.96
25R-1, 78–80 429.58 2.89 3.8 2.96
26R-1, 50–52 438.80 2.88 3.7 2.95
26R-3, 75–77 441.67 2.89 3.7 2.97
27R-1, 127–129 446.67 2.91 3.6 2.98
27R-2, 73–75 447.57 2.78 7.2 2.92
28R-1, 128–130 452.18 2.81 4.6 2.90
31R-1, 21–23 466.21 2.90 4.1 2.98
32R-1, 129–131 476.49 2.93 3.1 2.99
32R-2, 140–142 478.05 2.83 5.5 2.93
32R-4, 14–16 479.46 2.86 4.5 2.95

32R-2, 28–30 482.58 2.92 3.8 2.99
34R-1, 106–108 485.46 2.92 3.6 2.99
35R-2, 11–13 490.36 2.92 3.4 2.99
36R-2, 12–14 495.57 2.91 3.6 2.98
37R-1, 80–82 500.90 2.58 15.5 2.87
38R-1, 51–53 504.81 2.89 3.1 2.95
39R-1, 118–120 514.68 2.91 3.1 2.97
41R-2, 132–134 527.32 2.85 4.5 2.94
42R-1, 70–72 530.10 2.90 3.1 2.96
42R-1, 89–91 530.29 2.84 5.6 2.95
42R-1, 102–104 530.42 2.94 3.4 3.01
43R-1, 91–93 534.81 2.87 5.1 2.97
44R-2, 36–38 544.96 2.71 9.1 2.88
46R-2, 109–111 563.60 2.77 8.3 2.93
46R-3, 37–39 564.32 2.68 13.1 2.93
47R-2, 90–92 573.40 2.86 5.2 2.96
48R-2, 17–19 578.45 2.82 5.6 2.93
49R-2, 136–138 584.47 2.87 4.8 2.97
50R-1, 32–34 591.82 2.88 4.8 2.97
51R-1, 54–56 596.64 2.60 9.0 2.76
52R-1, 24–26 600.94 2.89 4.9 2.98
53R-3, 18–20 612.92 2.89 4.3 2.97
54R-2, 136–138 620.89 2.91 3.6 2.98
55R-1, 132–134 628.72 2.88 5.3 2.98
56R-3, 109–111 640.65 2.86 5.1 2.96
57R-2, 44–46 647.29 2.87 4.9 2.96
57R-2, 112–114 647.97 2.63 12.4 2.86
57R-3, 10–12 648.35 2.28 22.5 2.64
58R-2, 41–43 656.71 2.90 3.8 2.97
59R-2, 3–5 660.40 2.84 5.7 2.95
60R-1, 85–87 669.45 2.86 4.6 2.95
61R-1, 39–41 678.39 2.81 7.1 2.95
61R-1, 77–79 678.77 2.82 6.9 2.95
63R-1, 140–142 697.90 2.92 3.0 2.98
64R-2, 90–92 703.45 2.91 2.4 2.96
65R-3, 62–64 709.14 2.92 4.4 3.01
66R-1, 9–11 710.49 2.90 3.9 2.98
67R-2, 14–16 716.38 2.89 3.6 2.96
68R-1, 48–50 719.98 2.87 4.3 2.96
69R-1, 65–67 724.75 2.95 3.0 3.01
70R-1, 26–28 728.96 2.86 5.1 2.96
71R-1, 125–127 734.55 2.91 4.0 2.99
72R-2, 32–34 739.72 2.93 3.5 3.00
73R-1, 56–58 742.96 2.92 4.4 3.01
74R-1, 49–51 747.69 2.82 7.4 2.96

Core, section,
interval (cm)

Depth
(mbsf)

Bulk 
density 
(g/cm3)

Porosity
(%)

Matrix 
density 
(g/cm3)
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