Adams, C.G., Lee, D.E., and Rosen, B.R., 1990. Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary. Palaeogeogr., Palaeoclimatol., Palaeoecol., 77:289–313.

Arthur, M.A., Brumsack, H.-J., Jenkyns, H.C., and Schlanger, S.O., 1990. Stratigraphy, geochemistry, and paleoceanography of organic carbon–rich Cretaceous sequences. In Ginsburg, R.N., and Beaudoin, B. (Eds.), Cretaceous Resources, Events and Rhythms: Dordrecht (Kluwer), 75–119.

Arthur, M.A., Dean, W.E., and Pratt, L.M., 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature, 335:714–717.

Arthur, M.A., Dean, W.E., and Schlanger, S.O., 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. In Sundquist, E.T., and Broecker, W.S. (Eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Geophys. Monogr., Am. Geophys. Union, 32:504–529.

Arthur, M.A., and Natland, J.H., 1979. Carbonaceous sediments in the North and South Atlantic: the role of salinity in stable stratification of Early Cretaceous basins. In Talwani, M., Hay, W., and Ryan, W.B.F. (Eds.), Deep Drilling Results in the Atlantic Ocean: Continental Margins and Paleoenvironment. Geophys. Monogr., Maurice Ewing Ser., Am. Geophys. Union, 3:375–401.

Aubry, M.-P., 1998. Early Palaeogene calcareous nannoplankton evolution: a tale of climatic amelioration. In Aubry, M.P., Lucas, S., and Berggren, W.A. (Eds.), Late Paleocene–Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records: New York (Columbia Univ. Press), 158–203.

Bains, S., Corfield, R.M., and Norris, R.D., 1999. Mechanisms of climate warming at the end of the Paleocene. Science, 285:724–727.

Barrera, E., 1994. Global environmental changes preceding the Cretaceous–Tertiary boundary: early–late Maastrichtian transition. Geology, 22:877–880.

Barrera, E., and Savin, S.M., 1999. Evolution of Campanian–Maastrichtian marine climates and oceans. In Barrera, E., and Johnson, C.C. (Eds.), Evolution of the Cretaceous Ocean-Climate System, Geol. Soc. Amer. Special Paper, 332:245–282.

Barron, E.J., 1995. Tropical climate stability and implications for the distribution of life. In Stanley, S.M. (Ed.), Effects of Past Global Change on Life: Washington, D.C. (National Academy Press), 108–117.

Benkhelil, J., Mascle, J., and Tricart, P., 1995. The Guinea continental margin: an example of a structurally complex transform margin. Tectonophysics, 248:117–137.

Berner, R.A., 1994. GEOCARB II: a revised model of atms. CO2 over Phanerozoic time. Am. J. Sci., 294:56–91.

Bice, K.L., Huber, B.T., and Norris, R.D., 2003. Extreme polar warmth during the Cretaceous greenhouse? The paradox of the late Turonian record at DSDP Site 511. Paleoceanography, 18:10.1029/2002 PA000848.

Bice, K.L., and Marotzke, J., 2001. Numerical evidence against reversed thermohaline circulation in the warm Paleocene/Eocene ocean. J. Geophys. Res., 106:11529–11542.

Bralower, T.J., Arthur, M.A., Leckie, R.M., Sliter, W.V., Allard, D.J., and Schlanger, S.O., 1994. Timing and paleoceanography of oceanic dysoxia/anoxia in the late Barremian to early Aptian. Palaios, 9:335–369.

Bralower, T.J., Fullagar, P.D., Paull, C.K., Dwyer, G.S., and Leckie, R.M., 1997. Mid-Cretaceous strontium-isotope stratigraphy of deep-sea sections. Geol. Soc. Am. Bull., 109:1421–1442.

Brassell, S.C., Wardroper, A.M.K., Thomson, I.D., Maxwell, J.R., and Eglinton, G., 1981. Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments. Nature, 290:693–696.

Brumsack, H.-J., 1980. Geochemistry of Cretaceous black shales from the Atlantic Ocean (DSDP Legs 11, 14, 36 and 41). Chem. Geol., 31:1–25.

Brumsack, H.-J., and Lew, M., 1982. Inorganic geochemistry of Atlantic Ocean sediments with special reference to Cretaceous black shales. In von Rad, U., Hinz, K., Sarnthein, M., and Seibold, E. (Eds.), Geology of the Northwest African Continental Margin: Berlin (Springer-Verlag), 661–685.

Bush, A.B.G., and Philander, S.G.H., 1997. The Late Cretaceous: simulation with a coupled atmosphere-ocean general circulation model. Paleoceanography, 12:495–516.

Caron, M., and Homewood, P., 1983. Evolution of early planktic foraminifers. Mar. Micropaleontol., 7:453–462.

Clarke, L.J., and Jenkyns, H.C., 1999. New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology, 27:699–702.

Crowley, T., 1991. Past CO2 changes and tropical sea surface temperatures. Paleoceanography, 6:387–394.

Crowley, T.J., and North, G.R., 1991. Paleoclimatology: Oxford Monographs on Geology and Geophysics: New York (Oxford Univ. Press).

D'Hondt, S., and Arthur, M.A., 1996. Late Cretaceous oceans and the cool tropic paradox. Science, 271:1838–1841.

D'Hondt, S., Donaghay, P., Zachos, J.C., Luttenberg, D., and Lindinger, M., 1998. Organic carbon fluxes and ecological recovery from the Cretaceous–Tertiary mass extinction. Science, 282:276–279.

Dickens, G.R., O'Neil, J.R., Rea, D.K., and Owen, R.M., 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10:965–971.

Douglas, R.G., and Savin, S.M., 1975. Oxygen and carbon isotope analyses of Tertiary and Cretaceous microfossils from Shatsky Rise and other sites in the North Pacific Ocean. In Larson, R.L., Moberly, R., et al., Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office), 509–520.

Erba, E., 1994. Nannofossils and superplumes: the early Aptian "nannoconids crisis." Paleoceanography, 9:483–501.

Erba, E., Bartolini, A.C., Channel, J.E.T., Larson, R.L., Opdyke, B.N., Premoli Silva, I., Salvini, G., and Torricelli, S., 1999. An integrated stratigraphy of the Cismon APTICORE (Southern Alps, Italy): a reference section for the Hauterivian–Aptian interval at low latitudes. European Union of Geosciences 10: 28th March–1st April 1999, Strasbourg, France: Cambridge (Cambridge Publications), 221. (Abstract).

Erbacher, J., Huber, B.T., Norris, R.D., and Markey, M., 2001. Intensified thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period. Nature, 409:325–327.

Erbacher, J., and Thurow, J., 1997. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Mar. Micropalaeontol., 30:139–158.

Erbacher, J., Thurow, J., and Littke, R., 1996. Evolution patterns of radiolaria and organic matter variations: a new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology, 24:499–502.

Förster, R., 1978. Evidence for an open seaway between northern and southern proto-Atlantic in Albian times. Nature, 272:158–159.

Fox, P.J., Schreiber, E., and Peterson, J., 1972. Compressional wave velocities in basalt. In Hayes, D.E., Pimm, A.C., et al., Init. Repts. DSDP, 14: Washington (U.S. Govt. Printing Office), 773–776.

Frank, T.D., and Arthur, M.A., 1999. Tectonic forcings of Maastrichtian ocean-climate evolution. Paleoceanography, 14:103–117.

Gale, A.S., Hardenbol, J., Hathaway, B., Kennedy, W.J., Young, J.R., and Phansalkar, V., 2002. Global correlation of Cenomanian (Upper Cretaceous) sequences: evidence for Milankovitch control on sea level. Geology, 30:291–294.

Gouyet, S., Unternehr, P., and Mascle, A., 1994. The French Guyana margin and the Demerara Plateau: geologic history and petroleum plays. In Mascle, A. (Ed.), Hydrocarbon and Petroleum Geology of France. Spec. Publ.—Eur. Assoc. Pet. Geosci., 4:411–422.

Handoh, I.C., Bigg, G.R., Jones, E.J.W., and Inoue, M., 1999. An ocean modeling study of the Cenomanian Atlantic: equatorial paleo-upwelling, organic-rich sediments and the consequences for a connection between the proto-North and South Atlantic. Geophys. Res. Lett., 26:223–226.

Hart, M.B., 1980. A water depth model for the evolution of the planktonic Foraminiferida. Nature, 286:252–254.

Hayes, J.M., Popp, B.N., Takigiku, R., and Johnson, M.W., 1989. An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation. Geochim. Cosmochim. Acta, 11:2961–2972.

Herbert, T.D., and Fischer, A.G., 1986. Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. Nature, 321:739–743.

Herbert, T.D., and D'Hondt, S.L., 1990. Precessional climate cyclicity in Late Cretaceous–early Tertiary marine sediments: a high resolution chronometer of Cretaceous–Tertiary boundary events. Earth Planet. Sci. Lett., 99:263–275.

Huber, B.T., Hodell, D.A., and Hamilton, C.P., 1995. Mid- to Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol. Soc. Am. Bull., 107:1164–1191.

Jahren, A.H., Arens, N.C., Sarmiento, G., Guerrero, J., and Amundson, R., 2001. Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology, 29:159–162.

Jenkyns, H.C., 1980. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. London, 137:171–188.

Jenkyns, H.C., Gale, A.S., and Corfield, R.M., 1994. Carbon- and oxygen-isotope stratigraphy of the English chalk and Italian Scaglia and its palaeoclimatic significance. Geol. Mag., 131:1–34.

Jenkyns, H.C., and Wilson, P.A., 1999. Stratigraphy, palaeoceanography and evolution of Cretaceous Pacific guyots: relics from a greenhouse Earth. Am. J. Sci., 299:341–392.

Jones, C.E., and Jenkyns, H.C., 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Amer. J. Sci., 301:112–149.

Jones, C.E., Jenkyns, H.C., Coe, A.L., and Hesselbo, S.P., 1994. Strontium isotopic variations in Jurassic and Cretaceous seawater. Geochim. Cosmochim. Acta., 58:3063–3074.

Kaiho, K., and Hasegawa, T., 1994. End-Cenomanian benthic foraminiferal extinctions and oceanic dysoxic events in the northwestern Pacific Ocean. Palaeogeogr., Palaeoclimatol., Palaeoecol., 111:29–43.

Kelly, D.C., Bralower, T.J., Zachos, J.C., Premoli Silva, I., and Thomas, E., 1996. Rapid diversification of planktonic foraminifera in the tropical Pacific (ODP Site 865) during the Late Paleocene Thermal Maximum. Geology, 24:423–426.

Kemper, E., 1986. Das Klima der Kreidezeit. Geologisches Jahrbuch., Reihe A: Allgemeine und Regionale Geologie BR Deutschland und Nachbargebiete, Tektonik, Stratigraphie, Palaeontologie, 96:5–185.

Kerr, A.C., 1998. Oceanic plateau formation: a cause of mass extinction and black shale deposition around the Cenomanian–Turonian boundary? J. Geol. Soc. London, 155:619–626.

Killingley, J.S., 1983. Effects of diagenetic recrystallization on 18O/16O values of deep-sea sediments. Nature, 301:594–597.

Koch, P.L., Zachos, J.C., and Dettman, D.L., 1995. Stable isotope stratigraphy and palaeoclimatology of the Palaeogene Bighorn Basin. Palaeogeogr., Palaeoclimatol., Palaeoecol., 115:61–89.

Kuhnt, W., Chellai, E.H., Holbourn, A., Luderer, F., Thurow, J., Wagner, T., El Albani, A., Beckmann, B., Herbin, J.-P., Kawamura, H., Kolonic, S., Nederbraght, S., Street, C., and Ravilious, K., 2001. Morocco Basin's sedimentary record may provide correlations for Cretaceous paleoceanographic events worldwide. Eos, Trans., Am. Geophys. Union, 82:361–364.

Kuhnt, W., Herbin, J.P., Thurow, J., and Wiedmann, J., 1990. Distribution of Cenomanian–Turonian organic facies in the western Mediterranean and along the adjacent Atlantic margin. In Huc, A.Y. (Ed.), Deposition of Organic Facies. AAPG Stud. Geol., 30:133–160.

Kump, L.R., 2002. Reducing uncertainty about carbon dioxide as a climate driver. Nature, 419:188–190.

Kump, L.R., and Arthur, M.A., 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geo., 161:181–198.

Kuypers, M.M.M., Pancost, R.D., Nijenhuis, I.A., and Sinninghe Damsté, J.S., 2002. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic Basin during the late Cenomanian oceanic anoxic event. Paleoceanography, 17:10.1029/222PA000569.

Kuypers, M.M.M., Pancost, R.D., and Sinninghe Damsté, J.S.S., 1999. A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times. Nature, 399:342–345.

Larson, R.L., 1991. The latest pulse of Earth: evidence for a mid-Cretaceous superplume. Geology, 19:547–550.

Larson, R.L., and Erba, E., 1999. Onset of the mid-Cretaceous greenhouse in the Barremian–Aptian: igneous events and the biological, sedimentary and geochemical responses. Paleoceanography, 14:663–678.

Lear, C.H., Wilson, P.A., and Elderfield, H., 2000. Palaeotemperature and ocean chemistry records for the early Palaeogene from Mg/Ca and Sr/Ca in benthic foraminiferal calcite. GFF, 122:93.

Leckie, R.M., 1987. Paleoecology of mid-Cretaceous planktonic foraminifera: a comparison of open ocean and epicontinental sea assemblages. Micropaleontology, 33:164–176.

————, 1989. A paleoceanographic model for the early evolutionary history of planktonic foraminifera. Palaeogeogr., Palaeoclimatol., Palaeoecol., 73:107–138.

Leckie, R.M., Bralower, T.J., and Cashman, R., 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17:10.1029/2001PA000623.

MacLeod, K.G., and Huber, B.T., 2001. The Maastrichtian record at Blake Nose (western North Atlantic) and implications for global palaeoceanographic and biotic changes. In Kroon, D., Norris, R.D., and Klaus, A. (Eds.), Western North Atlantic Paleogene and Cretaceous Paleoceanography. Spec. Publ.—Geol. Soc. London, 183:111–130.

Manabe, S., and Bryan, K., 1985. CO2-induced change in a coupled ocean-atmosphere model and its paleoclimatic implications. J. Geophys. Res., 90:11689–11708.

Menegatti, A.P., Weissert, H., Brown, R.S., Tyson, R.V., Farrimond, P., Strasser, A., and Caron, M., 1998. High resolution 13C stratigraphy through the early Aptian "Livello Selli" of the Alpine Tethys. Paleoceanography, 13:530–545.

Meyers, P.A., 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem., 27:213–250.

Moullade, M., and Guérin, S., 1982. Le problème des relations de l'Atlantique Sud et de l'Atlantique Central au Crétacé moyen: nouvelles données microfauniques d'après les forages D.S.D.P. Bull. Soc. Geol. Fr., 24:511–517.

Moullade, M., Mascle, J., Benkhelil, J., Cousin, M., and Tricart, P., 1993. Occurrence of marine mid-Cretaceous sediments along the Guinean slope (Equamarge II cruise): their significance for the evolution of the central Atlantic African margin. Mar. Geol., 110:63–72.

Norris, R.D., Bice, K.L., Magno, E.A., and Wilson, P.A., 2002. Jiggling the tropical thermostat in the Cretaceous hothouse. Geology, 30:299–302.

Norris, R.D., and Röhl, U., 1999. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature, 401:775–778.

Norris, R.D., and Wilson, P.A., 1998. Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera. Geology, 26:823–826.

Ohkouchi, N., Kawamura, K., Kajiwara, Y., Wada, E., Okada, M., Kanamatsu, T., and Taira, A., 1999. Sulfur isotope records around Livello Bonarelli (northern Apennines, Italy) black shale at the Cenomanian–Turnonian boundary. Geology, 27:535–538.

Otto-Bliesner, B.L., Brady, E.C., and Shields, C., 2002. Late Cretaceous ocean: coupled simulations with the National Center for Atmospheric Research climate system model art. J. Geophys. Res., 107:4019.

Pearson, P.N., Ditchfield, P.W., Singano, J., Harcourt-Brown, K.G., Nicholas, C.J., Olsson, R.K., Shackleton, N.J., and Hall, M.A., 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413:481–487.

Pearson, P.N., and Palmer, M.R., 1999. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science, 284:1824–1826.

Poulsen, C.J., Barron, E.J., and Wilson, P.A., 1999. A re-interpretation of mid-Cretaceous shallow-marine temperatures through model-data comparison. Paleoceanography, 14:679–697.

Premoli Silva, I., Erba, E., and Salvini, G., 1999. Biotic changes in Cretaceous oceanic anoxic events. European Union of Geosciences 10: 28th March–1st April 1999, Strasbourg, France: Cambridge (Cambridge Publications), 220. (Abstract).

Schlanger, S.O., Arthur, M.A., Jenkyns, H.C., and Scholle, P.A., 1987. The Cenomanian–Turonian oceanic anoxic event, I. Stratigraphy and distribution of organic carbon–rich beds and the marine 13C excursion. In Brooks, J., and Fleet, A.J. (Eds.), Marine Petroleum Source Rocks. Spec. Publ.—Geol. Soc. London, 26:371–399.

Schlanger, S.O., and Jenkyns, H.C., 1976. Cretaceous oceanic anoxic events: causes and consequences. Geol. Mijnbouw, 55:179–184.

Schlanger, S.O., Jenkyns, H.C., and Premoli-Silva, I., 1981. Volcanism and vertical tectonics in the Pacific Basin related to global Cretaceous transgressions. Earth Planet. Sci. Lett., 52:435–449.

Scholle, P.A., and Arthur, M.A., 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. AAPG Bull., 64:67–87.

Schrag, D.P., DePaolo, D.J., and Richter, F.M., 1995. Reconstructing past sea surface temperatures: correcting for diagenesis of bulk marine carbonate. Geochim. Cosmochim. Acta, 59:2265–2278.

Sepkoski, J.J., 1986. Phanerozoic overview of mass extinction. In Raup, D., and Jablonski, D. (Eds.), Patterns and Processes in the History of Life: Berlin (Springer-Verlag), 277–295.

Shackleton, N.J., 1984. Oxygen isotope evidence for Cenozoic climatic cooling. In Brenchley, P.J. (Ed.), Fossils and Climate: Chichester (Wiley), 27–34.

Shouten, S., Hopmans, E.C., Schefuss, E., and Sinninghe Damsté, J.S., 2002. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci. Lett., 204:265–274.

Sinninghe Damsté, J.S., and Koester, J., 1998. A euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event. Earth Planet. Sci. Lett., 158:165–173.

Sinton, C.W., and Duncan, R.A., 1997. Potential links between ocean plateau volcanism and global ocean anoxia at the Cen/Tur boundary. Econ. Geol., 92:836–842.

Stanley, S.M., 1984. Temperature and biotic crises in the marine realm. Geology, 12:205–208.

Stoll, H., and Schrag, D.P., 2000. High resolution stable isotope records from the Upper Cretaceous of Italy and Spain: glacial episodes in a greenhouse planet? Geol. Soc. Am. Bull., 112:308–319.

Thomas, E., 1998. Biogeography of the late Paleocene benthic foraminiferal extinction. In Aubry, M.-P., Lucas, S.G., and Berggren, W.A. (Eds.), Late Paleocene–Early Eocene: Climatic and Biotic Events in the Marine and Terrestrial Records: New York (Columbia Univ. Press), 214–235.

Thomas, E., and Zachos, J.C., 1999. Was the LPTM a unique event? In Schmitz, B., Sundquist, B., and Andreasson, F.P. (Eds.), Early Paleogene Warm Climates and Biosphere Dynamics. Geol. Soc. Sweden, 122:169–170.

Thurow, J., Brumsack, H.-J., Rullkötter, J., Littke, R., and Meyers, P., 1992. The Cenomanian/Turonian boundary event in the Indian Ocean—a key to understand the global picture. In Duncan, R.A., Rea, D.K., Kidd, R.B., von Rad, U., and Weissel, J.K. (Eds.), Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophys. Monogr., Am. Geophys. Union, 70:253–273.

Twichell, S.C., Meyers, P.A., and Diester-Haass, L., 2002. Significance of high C/N ratios in organic-carbon–rich Neogene sediments under the Benguela Current upwelling system. Org. Geochem., 33:715–722.

Wagner, T., and Pletsch, T., 1999. Tectono-sedimentary controls on Cretaceous black shale deposition along the opening Equatorial Atlantic Gateway (ODP Leg 159). In Cameron, N., Bate, R., and Clure, V. (Eds.), The Oil and Gas Habitat of the South Atlantic. Spec. Publ.—Geol. Soc. London, 153:241–265.

Weissert, H., Lini, A., Föllmi, K.B., and Kuhn, O., 1998. Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link? Palaeogeogr., Palaeoclimatol., Palaeoecol., 137:189–203.

Wiedmann, J., and Neugebauer, J., 1978. Lower Cretaceous ammonites from the South Atlantic Leg 40 (DSDP), their stratigraphic value and sedimentologic properties. In Bolli, H.M., Ryan, W.B.F., et al., Init. Repts. DSDP, 40: Washington (U.S. Govt. Printing Office), 709–734.

Wilson, P.A., Jenkyns, H.C., Elderfield, H., and Larson, R.L., 1998. The paradox of drowned carbonate platforms and the origin of Cretaceous guyots. Nature, 392:889–894.

Wilson, P.A., and Norris, R.D., 2001. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature, 412:425–429.

Wilson, P.A., Norris, R.D., and Cooper, M.J., 2002. Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of Turonian tropics on Demerara Rise. Geology, 30:607–610.

Wilson, P.A., and Opdyke, B.N., 1996. Equatorial sea-surface temperatures for the Maastrichtian revealed through remarkable preservation of metastable carbonate. Geology, 24:555–558.

Zachos, J.C., Lohmann, K.C., Walker, J.C.G., and Wise, S.W., Jr., 1993. Abrupt climate changes and transient climates during the Paleogene: a marine perspective. J. Geol., 101:191–213.

Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292:686–693.