REFERENCES

Arndt, S., Brumsack, H.-J., Hetzel, A., and Wirtz, K.W., 2006. Cretaceous black shales as active bioreactors: a biogeochemical model for the deep biosphere encountered during ODP Leg 207 (Demerara Rise). Geochim. Cosmochim. Acta, 70(2):408–425. doi:10.1016/j.gca.2005.09.010

Bernstein, R.E., and Byrne, R.H., 2004. Acantharians and marine barite. Mar. Chem., 86(1–2):45–50. doi:10.1016/j.marchem.2003.12.003

Bertram, M.A., and Cowen, J.P., 1997. Morphological and compositional evidence for biotic precipitation of marine barite. J. Mar. Res., 55(3):577–593. doi:10.1357/0022240973224292

Bishop, J.K.B., 1988. The barite-opal-organic carbon association in oceanic particulate matter. Nature (London, U. K.), 332:341–343. doi:10.1038/332341a0

Böttcher, P., Brumsack, H.-J., Bottcher, M.E., Schnetger, B., Kriete, C., Kallmeyer, J., and Borchers, S.L., 2004. Geochemistry of Peruvian near-surface sediments. Geochim. Cosmochim. Acta, 68(21):4429–4451. doi:10.1016/j.gca.2004.04.027

Bréhéret, J.G., and Brumsack, H.-J., 2000. Barite concretions as evidence of pauses in sedimentation in the Marnes Bleues Formation of the Vocontian Basin (SE France). Sediment. Geol., 130(3–4):205–228. doi:10.1016/S0037-0738(99)00112-8

Bruland, K.W., 1983. Trace elements in seawater. In Riley, J.P., and Chester, R. (Eds.), Chemical Oceanography (Vol. 8): London (Academic Press), 157–220.

Brumsack, H.-J., 1980. Geochemistry of Cretaceous black shales from the Atlantic Ocean (DSDP Legs 11, 14, 36 and 41). Chem. Geol., 31:1–25. doi:10.1016/0009-2541(80)90064-9

Brumsack, H.-J., 1989. Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geol. Rundsch., 78:851–882. doi:10.1007/BF01829327

Brumsack, H.-J., 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeogr., Palaeoclimatol., Palaeoecol., 232:344-361. doi:10.1016/j.palaeo.2005.05.011

Brumsack, H.-J., and Gieskes, J.M., 1983. Interstitial water trace-metal chemistry of laminated sediments from the Gulf of California, Mexico. Mar. Chem., 14:89–106. doi:10.1016/0304-4203(83)90072-5

Brumsack, H.-J., Heydemann, A., Kühn, V., Rachold, V., and Usdowski, E., 1995. Geochemistry and mineralogy of middle Aptian sediments from the Lower Saxony Basin, NW Germany. In Kemper, E., and Weiss, W. (Eds.), Dark-Coloured Interbeds of the Late Middle Aptian of Northwest Germany: A Contribution to the Analysis of Carbonate and Colour Cycles. N Geol. Palaeontol., Abh., 196(2):235–255.

Canfield, D.E., Raiswell, R., and Bottrell, S., 1992. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci., 292:659–683.

Church, T.M., and Wolgemuth, K., 1972. Marine barite saturation. Earth Planet. Sci. Lett., 15:35–44. doi:10.1016/0012-821X(72)90026-X

Dellwig, O., Hinrichs, J., Hild, A., and Brumsack, H.-J., 2000. Changing sedimentation in tidal flat sediments of the southern North Sea from the Holocene to the present: a geochemical approach. J. Sea Res. 44(3–4):195–208. doi:10.1016/S1385-1101(00)00051-4

Dymond, J., Suess, E., and Lyle, M., 1992. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography, 7:163–181.

Eagle, M., Paytan, A., Arrigo, K.R., van Dijken, G., and Murray, R.W., 2003. A comparison between excess barium and barite as indicators of carbon export. Paleoceanography, 18(1). doi:10.1029/2002PA000793

Erbacher, J., Mosher, D.C., Malone, M.J., et al., 2004. Proc. ODP, Init. Repts., 207: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.207.2004

Manheim, F.T., and Sayles, F.L., 1974. Composition and origin of interstitial waters of marine sediments, based on deep sea drill cores. In Goldberg, E.D. (Ed.), The Sea (Vol. 5): Marine Chemistry: The Sedimentary Cycle: New York (Wiley), 527–568.

McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In Lipin, B.R., and McKay, G.A. (Eds.), Geochemistry and Mineralogy of the Rare Earth Elements. Rev. Mineral., 21:169–200.

McManus, J., Berelson, W.M., Klinkhammer, G.P., Johnson, K.S., Coale, K.H., Anderson, R.F., Kumar, N., Burdige, D.J., Hammond, D.E., Brumsack, H.-J., McCorkle, D.C., and Rushdi, A., 1998. Geochemistry of barium in marine sediments: implications for its use as a paleoproxy. Geochim. Cosmochim. Acta, 62:3453–3473. doi:10.1016/S0016-7037(98)00248-8

Paytan, A., Kastner, M., and Chavez, F., 1996. Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science, 274:1355–1357. doi:10.1126/science.274.5291.1355

Potter, P.E., 1997. The Mesozoic and Cenozoic paleodrainage of South America: a natural history. J. South Am. Earth Sci., 10(5–6):331–344. doi:10.1016/S0895-9811(97)00031-X

Prakash Babu, C., Brumsack, H.-J., and Schnetger, B., 1999. Distribution of organic carbon in surface sediments along the eastern Arabian Sea: a revisit. Mar. Geol., 162:91–103. doi:10.1016/S0025-3227(99)00047-X

Quinby-Hunt, M.S., and Wilde, P., 1994. Thermodynamic zonation in the black shale facies based on iron-manganese-vanadium content. Chem. Geol., 113(3–4):297–317. doi:10.1016/0009-2541(94)90072-8

Schmitz, B., 1987. Barium, equatorial high productivity, and the northward wandering of the Indian continent. Paleoceanography, 2:63–77.

Taylor, S.R., and McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution: Oxford (Blackwell Scientific).

Thurow, J., Brumsack, H.-J., Rullkötter, J., Littke, R., and Meyers, P., 1992. The Cenomanian/Turonian boundary event in the Indian Ocean—a key to understanding the global picture. In Duncan, R.A., Rea, D.K., Kidd, R.B., von Rad, U., and Weissel, J.K. (Eds.), Synthesis of Results from Scientific Drilling in the Indian Ocean. Geophys. Monogr., 70:253–273.

Tissot, B.P., and Welte, D.H., 1984. Petroleum Formation and Occurrence (2nd ed.): Heidelberg (Springer-Verlag).

Torres, M.E., Brumsack, H.-J., Bohrmann, G., and Emeis, K.C., 1996. Barite fronts in continental margin sediments: a new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts. Chem. Geol., 127:125–139. doi:10.1016/0009-2541(95)00090-9

Wedepohl, K.H., 1971. Environmental influences on the chemical composition of shales and clays. In Ahrens, L.H., Press, F., Runcorn, S.K., and Urey, H.C. (Eds.), Physics and Chemistry of the Earth: Oxford (Pergamon), 8:305–333. doi:10.1016/0079-1946(71)90020-6

Wilde, P., Quinby-Hunt, M.S., and Erdtmann, B.-D., 1996. The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies. Sediment. Geol., 101(1–2):43–53. doi:10.1016/0037-0738(95)00020-8

NEXT