REFERENCES

Aizenshtat, Z., Krein, E., Vairavamurthy, M., and Goldstein, T., 1995. Role of sulfur in the transformation of sedimentary organic matter: a mechanistic overview. ACS Symp. Ser., 612:378–396.

Aizenshtat, Z., Stoler, A., Cohen, Y., and Nielsen, H., 1983. The geochemical sulphur enrichment of recent organic matter by polysulfides in the Solar Lake. In Bjorøy, M., Albrecht, C., Cornford, C., de Groot, K., Eglinton, G., et al. (Eds.), Advances in Organic Geochemistry, 1981. Proc. Int. Meet. Org. Geochem., 10:279–288.

Anderson, T.F., and Raiswell, R., 2004. Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments. Amer. J. Sci., 304:203–233.

Arndt, S., Brumsack, H.-J., Hetzel, A., and Wirtz, K., 2006. Cretaceous black shales as active bioreactors: a biogeochemical model for the deep biosphere encountered during ODP Leg 207 (Demerara Rise). Geochim. Cosmochim. Acta, 70 (2): 480–425. doi:10.1016/j.gca.2005.09.010

Arthur, M.A., and Dean, W.E., 1998. Organic-matter production and preservation and evolution of anoxia in the Holocene Black Sea. Paleoceanography, 13:395–411. doi:10.1029/98PA01161

Arthur, M.A., Dean, W.E., and Pratt, L.M., 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature (London, U. K.), 335:714–717. doi:10.1038/335714a0

Arthur, M.A., and Sageman, B.B., 1994. Marine black shales: depositional mechanisms and environments of ancient deposits. Annu. Rev. Earth Planet. Sci., 22:499–551. doi:10.1146/annurev.ea.22.050194.002435

Babu, C.P., Brumsack, H.-J., and Schnetger, B., 1999. Distribution of organic carbon in surface sediments along the eastern Arabian Sea: a revisit. Mar. Geol., 162:91–103. doi:10.1016/S0025-3227(99)00047-X

Bein, A., Almogi-Labin, A., and Sass, E., 1990. Sulfur sinks and organic carbon relationships in Cretaceous organic-rich carbonates: implications for evaluation of oxygen-poor depositional environments. Am. J. Sci., 290:882–911.

Berner, R.A., and Raiswell, R., 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochim. Cosmochim. Acta, 47:855–862.

Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., and Pfannkuche, O., 2000. A marine microbial consortium apparently mediating the anaerobic oxidation of methane. Nature (London, U. K.), 407:623–626. doi:10.1038/35036572

Böttcher, M.E., Brumsack, H.-J., and de Lange, G.J., 1998. Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters from the Eastern Mediterranean. In Robertson, A.H.F., Emeis, K.-C., Richter, C., and Camerlenghi, A. (Eds.), Proc. ODP, Sci. Results, 160: College Station, TX (Ocean Drilling Program), 365–373. doi:10.2973/odp.proc.sr.160.002.1998

Böttcher, M.E., and Lepland, A., 2000. Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea: evidence from stable isotopes and pyrite textures. J. Mar. Sys., 25:299–312.

Böttcher, M.E., Rinna, J., Warning, B., Wehausen, R., Howell, M.W., Schnetger, B., Stein, R., Brumsack, H.-J., and Rullkötter, J., 2003. Geochemistry of sediments from the connection between the western and eastern Mediterranean Sea (Strait of Sicily, ODP Site 963). Palaeogeogr., Palaeoclimatol., Palaeoecol., 190:165–194. doi:10.1016/S0031-0182(02)00604-1

Böttcher, M.E., and Schnetger, B., 2004. Direct measurement of the content and isotopic composition of sulfur in black shales by means of combustion-isotope-ratio-monitoring mass spectrometry (C-irmMS). In de Groot, P. (Ed.), Handbook of Stable Isotope Analytical Techniques: Amsterdam (Elsevier), 597–603.

Brumsack, H.-J., 1980. Geochemistry of Cretaceous black shales from the Atlantic Ocean (DSDP Legs 11, 14, 36, and 41). Chem. Geol., 31:1–25. doi:10.1016/0009-2541(80)90064-9

Brumsack, H.-J., 1986. The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments from the Gulf of California. In Summerhayes, C.P., and Shackleton, N.J. (Eds.), North Atlantic Palaeoceanography. Spec. Publ.—Geol. Soc. London, 21:447–462.

Brumsack, H.-J., 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeogr., Palaeoclimatol., Palaeoecol. doi:10.1016/j.palaeo.2005.05.011

Brumsack, H.-J., and Wehausen, R., 1999. A geochemical record of precession-induced cyclic eastern Mediterranean sedimentation: implications for northern Sahara humidity during the Pliocene. Naturwissenschaften, 86:281–286. doi:10.1007/s001140050615

Calvert, S.E., Thode, H.G., Yeung, D., and Karlin, R.E., 1996. A stable isotope study of pyrite formation in the Late Pleistocene and Holocene sediments of the Black Sea. Geochim. Cosmochim. Acta, 60:1261–1270. doi:10.1016/0016-7037(96)00020-8

Canfield, D.E., 1989. Reactive iron in marine sediments. Geochim. Cosmochim. Acta, 53:619–632. doi:10.1016/0016-7037(89)90005-7

Canfield, D.E., Lyons, T.W., and Raiswell, R., 1996. A model for iron deposition to euxinic Black Sea sediments. Am. J. Sci., 296:818–834.

Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., and Berner, R.A., 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shale. Chem. Geol., 54:149–155. doi:10.1016/0009-2541(86)90078-1

Cline, J.D., 1969. Sectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr., 14:454–458.

Dean, W.E., and Arthur, M.A., 1989. Iron-sulfur relationships in organic-carbon-rich sequences, I. Cretaceous western interior seaway. Am. J. Sci., 289:708–743.

Emeis, K.-C., Sakamoto, T., Wehausen, R., and Brumsack, H.-J., 2000. The sapropel record of the Eastern Mediterranean Sea—results of Ocean Drilling Program Leg 160. Palaeogeogr., Palaeoclimatol., Palaeoecol., 158:371–395. doi:10.1016/S0031-0182(00)00059-6

Erbacher, J., Friedrich, O., Wilson, P.A., Birch, H., and Mutterlose, J., 2005. Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic. Geochem., Geophys., Geosyst., 6(6):Q06010. doi:10.1029/2004GC000850

Erbacher, J., Mosher, D.C., Malone, M.J., et al., 2004. Proc. ODP, Init. Repts., 207: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.207.2004

Francois, R., 1987. A study of sulfur enrichment in the humic fraction of marine sediments during early diagenesis. Geochim. Cosmochim. Acta, 51:17–27. doi:10.1016/0016-7037(87)90003-2

Gauthier, D.L., 1987. Isotopic composition of pyrite: relationship to organic matter type and iron availability in some North American Cretaceous shales. Chem. Geol., 65:293–303.

Grice, K., Cao, C., Love, G.D., Böttcher, M.E., Twitchett, R.J., Grosjean, E., Summons, R.E., Turgeon, S.C., Dunning, W., and Jin, Y., 2005. Photic zone euxinia during the Permian–Triassic superanoxic event. Science, 307:706–709. doi:10.1126/science.1104323

Haese, R.R., 2000. The reactivity of iron. In Schulz, H.D., and Zabel, M. (Eds.) Marine Geochemistry: Berlin (Springer), 233–261.

Hinrichs, K.-U., Hayes, J.M., Sylva, S.P., Brewer, P.G., and DeLong, E.F., 1999. Methane consuming archaebacteria in marine sediments. Nature (London, U. K.), 398:802–805. doi:10.1038/19751

Hoehler, T.M., Alperin, M.J., Albert, D.B., and Martens, C.S., 1994. Field and laboratory studies of methane oxidation in an anoxic sediment—evidence for methanogen-sulfate reducer consortium. Global Biogeochem. Cycles, 8:451–464. doi:10.1029/94GB01800

Hofmann, P., Ricken, W., Schwark, L., and Leythäuser, D., 2000. Carbon-sulfur-iron relationships and 13C of organic matter for late Albian sedimentary rocks from the North Atlantic Ocean: paleoceanographic implications. Palaeogeogr., Palaeoclimatol., Palaeoecol., 163:97–113. doi:10.1016/S0031-0182(00)00147-4

Jenkyns, H.C., 1980. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. (London, U. K.), 137:171–188.

Jørgensen, B.B., Böttcher, M.E., Lüschen, H., Neretin, L.N., and Volkov, I.I., 2004. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim. Cosmochim. Acta, 68:2095–2118. doi:10.1016/j.gca.2003.07.017

Lepland, A., and Stevens, R.L., 1998. Manganese authigenesis in the Landsort Deep, Baltic Sea. Mar. Geol., 151:1–25. doi:10.1016/S0025-3227(98)00046-2

Leventhal, J.S., 1983. An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition. Geochim. Cosmochim. Acta, 47:133–137. doi:10.1016/0016-7037(83)90097-2

Lourens, L.J., Wehausen, R., and Brumsack, H.-J., 2001. Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years. Nature (London, U. K.), 409:1029–1033. doi:10.1038/35059062

Lyons, T.W., 1997. Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea. Geochim. Cosmochim. Acta, 61:3367–3382. doi:10.1016/S0016-7037(97)00174-9

Lyons, T.W., Luepke, J.J., Schreiber, M.E., and Zieg, G.A., 2000. Sulfur geochemical constraints on Mesoproterozoic restricted marine deposition: lower Belt Supergroup, northwestern United States. Geochim. Cosmochim. Acta, 64:427–437. doi:10.1016/S0016-7037(99)00323-3

Manheim, F.T., and Sayles, F.L., 1974. Composition and origin of interstitial waters of marine sediments, based on deep sea drill cores. In Goldberg, E.D. (Ed.), The Sea (Vol. 5): Marine Chemistry: The Sedimentary Cycle: New York (Wiley), 527–568.

Middelburg, J.J., 1991. Organic carbon, sulphur, and iron in recent semi-euxinic sediments of Kau Bay, Indonesia. Geochim. Cosmochim. Acta, 55 (3):815–828. doi:10.1016/0016-7037(91)90344-5

Mossmann, J.R., Aplin, A.C., Curtis, C.D., and Coleman, M.L., 1991. Geochemistry of inorganic and organic sulphur in organic-rich sediments from the Peru margin. Geochim. Cosmochim. Acta, 55:3581–3595. doi:10.1016/0016-7037(91)90057-C

Passier, H.F., Böttcher, M.E., and de Lange, G.J., 1999. Sulphur enrichment in organic matter of Eastern Mediterranean sapropels; a study of sulphur isotope partitioning. Aquat. Geochem., 5:99–118. doi:10.1023/A:1009676107330

Passier, H.F., and de Lange, G.J., 1998. Sedimentary sulfur and iron chemistry in relation to the formation of Eastern Mediterranean sapropels. In Robertson, A.H.F., Emeis, K.-C., Richter, C., and Camerlenghi, A. (Eds.), Proc. ODP, Sci. Results, 160: College Station, TX (Ocean Drilling Program), 249–259. doi:10.2973/odp.proc.sr.160.020.1998

Passier, H.F., Middelburg, J.J., de Lange, G.J., and Böttcher, M.E., 1997. Pyrite contents, microtextures and sulphur isotopes in relation to formation of the youngest Eastern Mediterranean sapropel. Geology, 25:519–522. doi:10.1130/0091-7613(1997)025<0519:PCMASI>2.3.CO;2

Passier, H.F., Middelburg, J.J., Van Os, B.J.H., and de Lange, G.J., 1996. Diagenetic pyritization under Eastern Mediterranean sapropels caused by downward sulphide diffusion. Geochim. Cosmochim. Acta, 60:751–763. doi:10.1016/0016-7037(95)00419-X

Petsch, S.T. Berner, R.A., and Eglinton, T.I., 2000. A field study of the chemical weathering of ancient sedimentary organic matter. Org. Geochem., 31:475–487. doi:10.1016/S0146-6380(00)00014-0

Petsch, S.T., Edwards, K.J., and Eglinton, T.I., 2005. Microbial transformations of organic matter in black shales and implications for global biogeochemical cycles. Palaeogeogr., Palaeoclimatol., Palaeoecol., 219:157–170. doi:10.1016/j.palaeo.2004.10.019

Petsch, S.T., Eglinton, T.I., and Edwards, K.J., 2001. 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering. Science, 292:1127–1131. doi:10.1126/science.1058332

Raiswell, R., and Berner, R.A., 1985. Pyrite formation in euxinic and semi-euxinic sediments. Am. J. Sci., 285:710–724.

Raiswell, R., Bottrell, S.H., Al-Biatty, H.J., and Tan, M.Md., 1993. The influence of bottom water oxygenation and reactive iron content on sulfur incorporation into bitumens from Jurassic marine shales. Am. J. Sci., 293:569–596.

Raiswell, R., and Canfield, D.E., 1998. Sources of iron for pyrite formation in marine sediments. Am. J. Sci., 298:219–245.

Raiswell, R., Newton R., and Wignall, P.B., 2001. An indicator of water-column anoxia: resolution of biofacies variations in the Kimmeridge Clay (Upper Jurassic, UK). J. Sediment. Res., 71:286–294.

Rinna, J., Warning, B., Meyers, P.A., Brumsack, H.J., and Rullkötter, J., 2002. Combined organic and inorganic geochemical reconstruction of paleodepositional conditions of a Pliocene sapropel from the eastern Mediterranean Sea. Geochim. Cosmochim. Acta, 66:1969–1986. doi:10.1016/S0016-7037(02)00826-8

Rullkötter, J., 2000. Organic matter: the driving force for early diagenesis. In Schulz, H.D., and Zabel, M. (Eds.), Marine Geochemistry: Berlin (Springer), 129–172.

Schlanger, S.O., and Jenkyns, H.C., 1976. Cretaceous oceanic anoxic events: causes and consequences. Geol. Mijnbouw, 55:179–184.

Schnetger, B., Brumsack, H.-J., Schale, H., Hinrichs, J., and Dittert, L., 2000. Geochemical characterization of deep-sea sediments from the Arabian Sea: a high-resolution study. Deep-Sea Res., Part II, 47:2735–2768. doi:10.1016/S0967-0645(00)00047-3

Shen, Y., Knoll, A.H., and Walter, M.R., 2003. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature (London, U. K.), 423:632–635. doi:10.1038/nature01651

Sinninghe Damstae, J.S., and Koester, J., 1998. A euxinic southern North Atlantic Ocean during the Cenomanian/Turonian oceanic anoxic event. Earth Planet. Sci. Lett., 158:165–173. doi:10.1016/S0012-821X(98)00052-1

Sinninghe Damsté, J.S., and De Leeuw, J.W., 1990. Analysis, structure and geochemical significance of organically-bound sulfur in the geosphere: state of the art and future research. Org. Geochem., 16:1077–1101. doi:10.1016/0146-6380(90)90145-P

Stookey, L.L., 1970. Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem., 42:779–781. doi:10.1021/ac60289a016

Wang, Q., and Morse, J.W., 1996. Pyrite formation under conditions approximating those in anoxic sediments, I. Pathways and morphology. Mar. Chem., 52:99–121. doi:10.1016/0304-4203(95)00082-8

Werne, J.P., Hollander, D.J., Lyons, T.W., and Sinninghe Damsté, J.S., 2004. Organic sulfur biogeochemistry: recent advances and future research directions. Spec. Pap.—Geol. Soc. Am., 379:135–205.

Wilkin, R.T., Barnes, H.L., and Brantley, S.L., 1996. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim. Cosmochim. Acta, 60:3897–3912. doi:10.1016/0016-7037(96)00209-8

Wijsman, J.W.M., Middelburg, J.J., and Heip, C.H.R., 2001. Reactive iron in Black Sea sediments: implications for iron cycling. Mar. Geol., 172:167–180. doi:10.1016/S0025-3227(00)00122-5

Zhabina, N.N., and Volkov, I.I., 1978. A method of determination of various sulfur compounds in sea sediments and rocks. In Krumbein, W.E. (Ed.), Environmental Biogeochemistry and Geomicrobiology (Vol. 3): Ann Arbor (Ann Arbor Sci. Publ.), 735–746.