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INTRODUCTION

Ocean Drilling Program Leg 208 Hole 1266C (28°32.55′S, 2°20.61′E)
is located along the northwestern flank of Walvis Ridge (South Atlantic
Ocean). The location of Site 1266, at 3.798 km water depth, corre-
sponds to a mid-depth site of the Leg 208 transect (Fig. F1). A strati-
graphically continuous and expanded sequence of upper Paleocene and
lower Eocene pelagic nannofossil ooze was recovered. Three holes were
cored at Site 1266, and from Hole 1266C, an expanded and continuous
Paleocene/Eocene (P/E) transition was recovered using the advanced
piston corer system. The successful recovery and well-preserved nanno-
fossil assemblages make Hole 1266C a reference section for improving
the knowledge of the Paleocene/Eocene Thermal Maximum. The P/E
transition is one of the most remarkable and intensively investigated
time intervals. Significant and dramatic changes in climate and ocean-
ography occurred at this transition. The P/E boundary is linked with an
important turnover in benthic foraminifers and planktonic marine
communities (Thomas and Shackleton, 1996; Kelly et al., 1998; Mone-
chi et al., 2000; Bralower, 2002). This report documents the calcareous
nannofossil assemblage fluctuations at the P/E boundary in Hole 1266C
based on semiquantitative and quantitative investigations.
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MATERIAL AND METHODS

The P/E boundary is marked by an abrupt contact between upper Pa-
leocene nannofossil ooze and lower Eocene dusky red zeolite- and nan-
nofossil-bearing clay that grades upward into nannofossil ooze (Zachos,
Kroon, Blum, et al., 2004). The P/E boundary layer was recovered in Sec-
tion 208-1266C-17H-3 at 306.8 meters composite depth (mcd). A 2.5-
m-thick interval from Sections 208-1266C-17H-3 through 17H-2 was
investigated for calcareous nannofossils. Semiquantitative investiga-
tions were carried out every centimeter across the P/E clay layer (from
Sample 208-1266C-17H-3, 115–116 cm, to 17H-3, 84–85 cm), every 2
cm from Samples 17H-3, 149–150 cm, to 17H-3, 54–55 cm, and from
this level upward from 3 to 20 cm.

Smear slides were prepared from unprocessed samples according to
standard technical preparation methodology. Each smear slide was ex-
amined with a light microscope under 1250× magnification. Two
traverses of each smear slide were checked for common and very rare
species (Table T1). The relative abundance of each nannofossil taxon is
defined as follows:

A = abundant (>30% of the total assemblages),
C = common (>10%–30% of the total assemblages),
F = few (>3%–10% of the total assemblages),
R = rare (1%–3% of the total assemblages), and
RR = very rare (<1% of the total assemblages).

The total abundance of nannofossils in each sample as estimated as
follows:

V = very abundant (>30 specimens per field of view [FOV]),
A = abundant (>20–30 specimens per FOV),
C = common (>10–20 specimens per FOV),
F = few (>5–10 specimens per FOV),
R = rare (1–5 specimens per FOV),
RR = very rare (<1 specimen per FOV), and
B = barren of nannofossils.

Preservation of nannofossils was recorded using the criteria of Stein-
metz (1979) as good (G), moderate (M), and poor (P). Depths of samples
in the range chart are reported in meters composite depth (Zachos,
Kroon, Blum, et al., 2004).

RESULTS

The biostratigraphic zonation used to divide the Paleocene–Eocene
interval is based on the calcareous nannofossil events defined by Mar-
tini (1971). In order to define the base of Zone NP10, characterized by
the first occurrence (FO) of Rhomboaster bramlettei, we followed the def-
inition of Bybell and Self-Trail (1995), who included Rhomboaster cuspis
of many authors with R. bramlettei. In addition, we adopted the taxo-
nomic remarks of Angori and Monechi (1996), who differentiated three
morphotypes of R. bramlettei (R. bramlettei “short arms,” R. bramlettei
“long arms,” and R. bramlettei var. T). The studied interval spans from
Zones NP9 to NP10. The upper Paleocene nannofossil assemblages are
mainly composed of Coccolithus pelagicus, Toweius pertusus, Fasciculithus

T1. Calcareous nannofossils, p. 7.
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tympaniformis, Sphenolithus, and Discoaster multiradiatus. At the P/E
boundary, the base of the clay interval, the total nannofloral abun-
dance sharply decreases and an enhancement of dissolution occurs
from Sample 208-1266C-17H-3, 112–113 cm, to 17H-3, 98–99 cm.
Within this interval the FO of R. bramlettei s.a. was detected in Sample
208-1266C-17H-3, 107–108 cm, where the base of Zone NP10 was rec-
ognized. Long rays, asymmetrical, and prominent-stem discoaster spe-
cies such as Discoaster anartios, Discoaster araneus, Discoaster cf.
Discoaster lodoensis, Discoaster salisburgensis, and Discoaster diastypus also
have FOs in this interval, as previously documented by Monechi et al.
(2000), Kahn and Aubry (2004), and Angori et al. (submitted [N1]). The
FO of Fasciculithus thomasii has been recorded at the carbon isotope ex-
cursion onset. The genus Rhomboaster is not very common, but several
morphotypes of the Rhomboaster-Tribrachiatus lineage were recognized
(Table T1). Furthermore, significant changes in the calcareous nanno-
fossil assemblages were observed: (1) an increase in the relative abun-
dance of dissolution-resistant forms such as Discoaster multiradiatus,
Sphenolithus primus, and Fasciculithus tympaniformis; (2) a decrease in
the relative abundance of C. pelagicus and T. pertusus; and (3) the ab-
sence of Zygrhablithus bijugatus. From Sample 208-1266C-17H-3, 101–
102 cm, upward, an opposite trend between D. multiradiatus and F. tym-
paniformis was noted. D. multiradiatus decreases from abundant to few,
whereas F. tympaniformis increases from common to abundant up to
Sample 208-1266C-17H-3, 57–58 cm, where Fasciculithus decreases.
Above this level, only F. tympaniformis is always present throughout the
studied interval but in very low abundances. At approximately the
same level (Sample 208-1266C-17H-3, 63–64 cm) as the decrease of Fas-
ciculithus, the holococcolith species Z. bijugatus exhibits a significant
abundance increase, as observed in several tethyan sections and at high
latitudes (Monechi et al., 2000; Bralower, 2002; Orue-Etxebarria et al.,
2004; Tremolada and Bralower 2004). The Fasciculithus/Zyghrablithus
crossover (N3 event of Zachos et al., 2005) has been placed at 306.28
mcd. Z. bijugatus increases considerably, becoming one of the most
abundant taxa together with C. pelagicus, S. primus, and T. pertusus. The
genus Toweius above the P/E boundary does not reach the same abun-
dances as in the preboundary interval. See Plate P1 for examples of nan-
nofossils found at Site 1266.
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Figure F1. Three-dimensional diagram of Site 1266 location.
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Plate P1. Calcareous nannofossils at Site 1266. XP = cross-polarized light, PL = plain transmitted light. Scale
bar = 5 mm. (1) Discoaster mohleri, Sample 208-1266C-17H-3, 111–112 cm; PL. (2) Discoaster multiradiatus,
Sample 208-1266C-17H-3, 111–112 cm; PL. (3) Discoaster nobilis, Sample 208-1266C-17H-3, 99–100 cm; PL.
(4) Discoaster araneus, Sample 208-1266C-17H-3, 85–86 cm; PL. (5) Discoaster anartios, Sample 208-1266C-
17H-3, 99–100 cm; PL. (6) Fasciculithus tympaniformis, Sample 208-1266C-17H-3, 95–96 cm; XP. (7) Fasci-
culithus alanii, Sample 208-1266C-17H-3, 98–99 cm; XP. (8) Fasciculithus clinatus, Sample 208-1266C-17H-
3, 98–99 cm; XP. (9) Sphenolithus primus, Sample 208-1266C-17H-3, 96–97 cm; XP. (10) Rhomboaster bram-
lettei l.a., Sample 208-1266C-17H-3, 83–84 cm; PL. (11) R. bramlettei s.a., Sample 208-1266C-17H-3, 104–
105 cm; PL. (12) R. bramlettei l.a., Sample 208-1266C-17H-3, 91–92 cm; PL. (13) R. bramlettei var. T, Sample
208-1266C-17H-3, 78–79 cm; PL. (14) Rhomboaster cf. Rhomboaster contortus, Sample 208-1266C-17H-3, 71–
72 cm; PL. (15) Thoracosphaera saxea, Sample 208-1266C-17H-3, 89–90 cm; XP. (16) Biscutum sp., Sample
208-1266C-17H-3, 89–90 cm; XP. (17) Coccolithus pelagicus, Sample 208-1266C-17H-3, 96–97 cm; XP.
(18) Toweius pertusus, Sample 208-1266C-17H-3, 83–84 cm; XP.
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Notes: Na re. Shaded area = dissolution interval.
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