REFERENCES

Achenbach, K.L., Faul, U., Cheadle, M., and Swapp, S., 2005. Testing models of mantle upwelling: microstructure, crystallography, and seismic anisotropy of peridotites from 15 degrees N, Mid-Atlantic Ridge. Eos, Trans. Am. Geophys. Union, 86(52)(Suppl.):T41D-1327. (Abstract)

Agar, S.M., and Lloyd, G.E., 1997. Deformation of Fe-Ti oxides in gabbroic shear zones from the MARK area. In Karson, J.A., Cannat, M., Miller, D.J., and Elthon, D. (Eds.), Proc. ODP, Sci. Results, 153: College Station, TX (Ocean Drilling Program), 123–141. doi:10.2973/odp.proc.sr.153.009.1997

Allègre, C.J., 1969. Comportement des systèmes U-Th-Pb dans le manteau supérieur et modèle d’evolution de ce dernier au cours des temps géologiques. Earth. Planet. Sci. Lett., 5:261–269. doi:10.1016/S0012-821X(68)80050-0

Andersen, D.J., Lindsley, D.H., and Davidson, P.M., 1993. QUILF: a Pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Comp. Geosci., 19(9):1333–1350. doi:10.1016/0098-3004(93)90033-2

Bach, W., Garrido, C.J., Paulick, H., Harvey, J., and Rosner, M., 2004. Seawater-peridotite interactions: first insights from ODP Leg 209, MAR 15°N. Geochem., Geophys., Geosyst., 5(9):Q09F26. doi:10.1029/2004GC000744

Bach, W., Paulick, H., Garrido, C.J., Ildefonse, B., Meurer, W.P., and Humphris, S.E., 2006. Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys. Res. Lett., 33(13):L13306. doi:10.1029/2006GL025681

Boschi, C., Früh-Green, G.L., Delacour, A., Karson, J.A., and Kelley, D.S., 2006. Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°N). Geochem., Geophys., Geosyst., 7(1):Q01004. doi:10.1029/2005GC001074

Braun, M.G., Hirth, G., and Parmentier, E.M., 2000. The effects of deep damp melting on mantle flow and melt generation beneath mid-ocean ridges. Earth Planet. Sci. Lett., 176(3–4):339–356. doi:10.1016/S0012-821X(00)00015-7

Cannat, M., 1996. How thick is the magmatic crust at slow spreading oceanic ridges? J. Geophys. Res., 101(B2):2847–2858. doi:10.1029/95JB03116

Cannat, M., Chatin, F., Whitechurch, H., and Ceuleneer, G., 1997. Gabbroic rocks trapped in the upper mantle at the Mid-Atlantic Ridge. In Karson, J.A., Cannat, M., Miller, D.J., and Elthon, D. (Eds.), Proc. ODP, Sci. Results, 153: College Station, TX (Ocean Drilling Program), 243–264. doi:10.2973/odp.proc.sr.153.013.1997

Cannat, M., and Casey, J.F., 1995. An ultramafic lift at the Mid-Atlantic Ridge: successive stages of magmatism in serpentinized peridotites from the 15N region. In Vissers, R.L.M., and Nicolas, A. (Eds.), Mantle and Lower Crust Exposed in Oceanic Ridges and Ophiolites: Dordrecht (Kluwer), 5–34.

Casey, J.F., 1997. Comparison of major- and trace-element geochemistry of abyssal peridotites and mafic plutonic rocks with basalts from the MARK region of the Mid-Atlantic Ridge. In Karson, J.A., Cannat, M., Miller, D.J., and Elthon, D. (Eds.), Proc. ODP, Sci. Results, 153: College Station, TX (Ocean Drilling Program), 181–241. doi:10.2973/odp.proc.sr.153.012.1997

Collier, M.L., and Kelemen, P.B., 2005. Are ultramafic 'assimilants' modifying MORB? Eos, Trans. Am. Geophys. Union, 86(52)(Suppl.):T41E-1355. (Abstract)

Collier, M.L., and Kelemen, P.B., 2006. Reactive crystal fractionation and MORB chemical variability: observations, theory, models, implications. Eos, Trans. Am. Geophys. Union, 87(52)(Suppl.):V23E-0693. (Abstract)

Coogan, L.A., and Hinton, R.W., 2006. Do the trace element compositions of detrital zircons require Hadean continental crust? Geology, 34(8):633–636. doi:10.1130/G22737.1

Dick, H.J.B., 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In Saunders, A.D., and Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geol. Soc. Spec. Publ., 42:71–105.

Dick, H.J.B., Ozawa, K., Meyer, P.S., Niu, Y., Robinson, P.T., Constantin, M., Hebert, R., Natland, J.H., Hirth, G., and Mackie, S.M., 2002. Primary silicate mineral chemistry of a 1.5-km section of very slow spreading lower ocean crust: ODP Hole 735B, Southwest Indian Ridge. In Natland, J.H., Dick, H.J.B, Miller, D.J., and Von Herzen, R.P. (Eds.), Proc. ODP, Sci. Results, 176: College Station, TX (Ocean Drilling Program), 1–60. doi:10.2973/odp.proc.sr.176.001.2002

Dijkstra, A.H., Drury, M.R., and Frijhoff, R.M., 2002. Microstructures and lattice fabrics in the Hilti mantle section (Oman ophiolite): evidence for shear localization and melt weakening in the crust–mantle transition zone? J. Geophys. Res., 107(B11):2270. doi:10.1029/2001JB000458

Elthon, D., 1987. Petrology of gabbroic rocks from the Mid-Cayman Rise spreading center. J. Geophys. Res., 92:658–682.

Elthon, D., 1993. Crystallization of mid-ocean ridge basalts at moderate to high pressures. Eur. J. Mineral., 5:1025–1037.

Escartín, J., Mével, C., MacLeod, C.J., and McCaig, A.M., 2003. Constraints on deformation conditions and the origin of oceanic detachments, the Mid-Atlantic Ridge core complex at 15°45'N. Geochem., Geophys., Geosyst., 4(8):1067. doi:10.1029/2002GC000472

Frost, B.R., 1976. Limits to the assemblage forsterite-anorthite as inferred from peridotite hornfelses, Icicle Creek, Washington. Am. Mineral., 61:732–750.

Gaherty, J.B., Lizarralde, D., Collins, J.A., Hirth, G., and Kim, S., 2004. Mantle deformation during slow seafloor spreading constrained by observations of seismic anisotropy in the western Atlantic. Earth Planet. Sci. Lett., 228(3–4):255–265. doi:10.1016/j.epsl.2004.10.026

Garcés, M., and Gee, J.S., 2007. Paleomagnetic evidence of large footwall rotations associated with low-angle faults at the Mid-Atlantic Ridge. Geology, 35(3):279–282, doi:10.1130/G23165A.1

Garrido, C. J., Kelemen, P.B., and Hirth, G., 2001. Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: plagioclase crystal size distributions in gabbros from the Oman ophiolite. Geochem., Geophys., Geosyst., 2(10). doi:10.1029/2000GC000136

Godard, M., Kelemen, P., Hart, S., Jackson, M., and Hanghøj, K., 2005. High Pb/Ce reservoir in depleted, altered mantle peridotites. Eos, Trans. Am. Geophys. Union,86(52)(Suppl.):V32D-07. (Abstract)

Green, D.H., and Hibberson, W., 1970. The instability of plagioclase in peridotite at high pressure. Lithos, 3(3):209–221. doi:10.1016/0024-4937(70)90074-5

Griffin, D.W., Westphal, D.L., and Gray, M.A., 2006. Airborne microorganisms in the African desert dust corridor over the Mid-Atlantic Ridge, Ocean Drilling Program, Leg 209. Aerobiologia, 22(3):211–226. doi:10.1007/s10453-006-9033-z

Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hanghoj, K., and Schwartz, J.J., in press. The trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology.

Grove, T.L., Kinzler, R.J., and Bryan, W.B., 1992. Fractionation of mid-ocean ridge basalt (MORB). In Morgan, J.P., Blackman, D.K., and Sinton, J.M. (Eds.), Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophys. Monogr., 71:281–310.

Harvey, J., Gannoun, A., Burton, K.W., Rogers, N.W., Alard, O., and Parkinson, I.J., 2006. Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes in abyssal peridotites from the Mid-Atlantic Ridge. Earth Planet. Sci. Lett., 244(3–4):606–621. doi:10.1016/j.epsl.2006.02.031

Hirschmann, M.M., 2000. Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem., Geophys., Geosyst., 1(10). doi:10.1029/2000GC000070

Hofmann, A.W., 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90(3):297–314. doi:10.1016/0012-821X(88)90132-X

Holland, T.J.B., and Powell, R., 1998. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol., 16:309–343.

Jaroslow, G.E., Hirth, G., and Dick, H.J.B., 1996. Abyssal peridotite mylonites: implications for grain-size sensitive flow and strain localization in the oceanic lithosphere. Tectonophysics, 256(1–4):17–37. doi:10.1016/0040-1951(95)00163-8

Kelemen, P.B., 1986. Assimilation of ultramafic rocks in subduction-related magmatic arcs. J. Geol., 94:829–843.

Kelemen, P.B., Braun, M.G., and Hirth, G., 2000. Spatial distribution of melt conduits in the mantle beneath oceanic spreading ridges: observations from the Ingalls and Oman ophiolites. Geochem., Geophys., Geosyst., 1(7). doi:10.1029/1999GC000012

Kelemen, P.B., and Dick, H.J.B., 1995. Focused melt flow and localized deformation in the upper mantle: juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon. J. Geophys. Res., 100(B1):423–438. doi:10.1029/94JB02063

Kelemen, P.B., Kikawa, E., Miller, D.J., et al., 2004. Proc. ODP, Init. Repts., 209: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.ir.209.2004

Kelemen, P.B., Koga, K., and Shimizu, N., 1997. Geochemistry of gabbro sills in the crust–mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth Planet. Sci. Lett., 146(3–4):475–488. doi:10.1016/S0012-821X(96)00235-X

Kinzler, R.J., and Grove, T.L., 1992. Primary magmas of mid-ocean ridge basalts, 2. Applications. J. Geophys. Res., 97:6907–6926.

Koga, K.T., Kelemen, P.B., and Shimizu, N., 2001. Petrogenesis of the crust–mantle transition zone and the origin of lower crustal wehrlite in the Oman ophiolite. Geochem., Geophys., Geosyst., 2(9). doi:10.1029/2000GC000132

Korenaga, J., and Kelemen, P.B., 1997. Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: implications for magma transport in the oceanic lower crust. J. Geophys. Res., 102(B12):27729–27749. doi:10.1029/97JB02604

Korenaga, J., and Kelemen, P.B., 1998. Melt migration through the oceanic lower crust: a constraint from melt percolation modeling with finite solid diffusion. Earth Planet. Sci. Lett., 156(1–2):1–11. doi:10.1016/S0012-821X(98)00004-1

Lindsley, D.H., and Andersen, D.J., 1983. A two-pyroxene thermometer. J. Geophys. Res., 88(B1):A887–A906.

Lizarralde, D., Gaherty, J.B., Collins, J.A., Hirth, G., and Kim, S.D., 2004. Spreading-rate dependence of melt extraction at mid-ocean ridges from mantle seismic refraction data. Nature (London, U. K.), 432(7018):744–747. doi:10.1038/nature03140

McCallum, I.S., and Schwartz, J.M., 2001. Lunar Mg suite: thermobarometry and petrogenesis of parental magmas. J. Geophys. Res., 106(E11):27969–27984. doi:10.1029/2000JE001397

Meurer, W.P., Sturm, M.A., Klein, E.M., and Karson, J.A., 2001. Basalt compositions from the Mid-Atlantic Ridge at the SMARK area (22°30´N to 22°50´N)—implications for parental liquid variability at isotopically homogeneous spreading centers. Earth Planet. Sci. Lett., 186(3–4):451–469. doi:10.1016/S0012-821X(01)00260-6

Mével, C., Gillis, K.M., Allan, J.F., and Meyer, P.S., 1996. Proc. ODP, Sci. Results, 147: College Station, TX (Ocean Drilling Program). doi:10.2973/odp.proc.sr.147.1996

Meyer, P.S., Dick, H.J.B., and Thompson, G., 1989. Cumulate gabbros from the Southwest Indian Ridge, 54°S–7°16´E: implications for magmatic processes at a slow spreading ridge. Contrib. Mineral. Petrol., 103(1):44–63. doi:10.1007/BF00371364

Michael, P.J., and Chase, R.L., 1987. The influence of primary magma composition, H2O and pressure on mid-ocean ridge basalt differentiation. Contrib. Mineral. Petrol., 96(2):245–263. doi:10.1007/BF00375237

Natland, J.H., and Dick, H.J.B., 1996. Melt migration through high-level gabbroic cumulates of the East Pacific Rise at Hess Deep: the origin of magma lenses and the deep crustal structure of fast-spreading ridges. In Mével, C., Gillis, K.M., Allan, J.F., and Meyer, P.S. (Eds.), Proc. ODP, Sci. Results, 147: College Station, TX (Ocean Drilling Program), 21–58. doi:10.2973/odp.proc.sr.147.002.1996

Natland, J.H., and Dick, H.J.B., 2002. Stratigraphy and composition of gabbros drilled in Ocean Drilling Program Hole 735B, Southwest Indian Ridge: a synthesis of geochemical data. In Natland, J.H., Dick, H.J.B., Miller, D.J., and Von Herzen, R.P. (Eds.), Proc. ODP, Sci. Results, 176: College Station, TX (Ocean Drilling Program), 1–69. doi:10.2973/odp.proc.sr.176.002.2002

Newman, J., Lamb, W.M., Drury, M.R., and Vissers, R.L.M., 1999. Deformation processes in a peridotite shear zone: reaction-softening by an H2O-deficient, continuous net transfer reaction. Tectonophysics, 303(1–4):193–222. doi:10.1016/S0040-1951(98)00259-5

Nicolas, A., Bouchez, J.L., and Boudier, F., 1972. Interpretation cinematique des deformations plastiques dans le massif de lherzolite de lanzo (Alpes piemontaises)—comparaison avec d'autres massifs. Tectonophysics, 14(2):143–171. doi:10.1016/0040-1951(72)90107-2

Nicolas, A., Boudier, F., Ildefonse, B., and Ball, E., 2000. Accretion of Oman and United Arab Emirates ophiolite—discussion of a new structural map. Mar. Geophys. Res., 21(3–4):147–180. doi:10.1023/A:1026769727917

Nicolas, A., and Violette, J.F., 1982. Mantle flow at oceanic spreading centers: models derived from ophiolites. Tectonophysics, 81(3–4)319–339. doi:10.1016/0040-1951(82)90136-6

Niu, Y., 1997. Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J. Petrol., 38(8):1047–1074. doi:10.1093/petrology/38.8.1047

Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J. Petrol., 45(12):2423–2458. doi:10.1093/petrology/egh068

Pallister, J.S., and Hopson, C.A., 1981. Samail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. J. Geophys. Res., 86:2593–2644.

Paulick, H., Bach, W., Godard, M., De Hoog, J.C.M., Suhr, G., and Harvey, J., 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20´N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chem. Geol., 234(3–4):179–210. doi:10.1016/j.chemgeo.2006.04.011

Reid, I., and Jackson, H.R., 1981. Oceanic spreading rate and crustal thickness. Mar. Geophys. Res., 5:165–172.

Sack, R.O., and Ghiorso, M.S., 1991. Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications. Am. Mineral., 76:827–847.

Seyler, M., Lorand, J.-P., Dick, H.J.B., and Drouin, M., 2007. Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15°20´N: ODP Hole 1274A. Contrib. Mineral. Petrol, 153(3):303–319. doi:10.1007/s00410-006-0148-6

Sharma, M., Wasserburg, G.J., Hofmann, A.W., and Butterfield, D.A., 2000. Osmium isotopes in hydrothermal fluids from the Juan de Fuca Ridge. Earth Planet. Sci. Lett., 179(1):139–152. doi:10.1016/S0012-821X(00)00099-6

Shen, Y., and Forsyth, D.W., 1995. Geochemical constraints on initial and final depths of melting beneath mid-ocean ridges. J. Geophys. Res., 100(B2):2211–2238. doi:10.1029/94JB02768

Shipboard Scientific Party, 2004a. Leg 209 summary. In Kelemen, P.B., Kikawa, E., Miller, D.J., et al., Proc. ODP, Init. Repts., 209: College Station TX (Ocean Drilling Program), 1–139. doi:10.2973/odp.proc.ir.209.101.2004

Shipboard Scientific Party, 2004b. Site 1268. In Kelemen, P.B., Kikawa, E., Miller, D.J., et al., Proc. ODP, Init. Repts., 209: College Station, TX (Ocean Drilling Program), 1–171. doi:10.2973/odp.proc.ir.209.103.2004

Shipboard Scientific Party, 2004c. Site 1270. In Kelemen, P.B., Kikawa, E., Miller, D.J., et al., Proc. ODP, Init. Repts., 209: College Station, TX (Ocean Drilling Program), 1–188. doi:10.2973/odp.proc.ir.209.105.2004

Shipboard Scientific Party, 2004d. Site 1271. In Kelemen, P.B., Kikawa, E., Miller, D.J., et al., Proc. ODP, Init. Repts., 209: College Station, TX (Ocean Drilling Program), 1–129. doi:10.2973/odp.proc.ir.209.106.2004

Shipboard Scientific Party, 2004e. Site 1272. In Kelemen, P.B., Kikawa, E., Miller, D.J., et al., Proc. ODP, Init. Repts., 209: College Station, TX (Ocean Drilling Program), 1–134. doi:10.2973/odp.proc.ir.209.107.2004

Shipboard Scientific Party, 2004f. Site 1274. In Kelemen, P.B., Kikawa, E., Miller, D.J., et al., Proc. ODP, Init. Repts., 209: College Station, TX (Ocean Drilling Program), 1–116. doi:10.2973/odp.proc.ir.209.109.2004

Shipboard Scientific Party, 2004. Site 1275g. In Kelemen, P.B., Kikawa, E., Miller, D.J., et al., Proc. ODP, Init. Repts., 209: College Station, TX (Ocean Drilling Program), 1–167. doi:10.2973/odp.proc.ir.209.110.2004

Sleep, N.H., 1975. Formation of oceanic crust: some thermal constraints. J. Geophys. Res., 80:4037–4042.

Snow, J.E., and Dick, H.J.B., 1995. Pervasive magnesium loss by marine weathering of peridotite. Geochim. Cosmochim. Acta, 59(20):4219–4235. doi:10.1016/0016-7037(95)00239-V

Standish, J.J., Hart, S.R., Blusztajn, J., Dick, H.J.B., and Lee, K.L., 2002. Abyssal peridotite osmium isotopic compositions from Cr-spinel. Geochem., Geophys., Geosyst., 3(1):1004. doi:10.1029/2001GC000161

Tartarotti, P., Susini, S., Nimis, P., and Ottolini, L., 2002. Melt migration in the upper mantle along the Romanche Fracture Zone (equatorial Atlantic). Lithos, 63(3–4):125–149. doi:10.1016/S0024-4937(02)00116-0

Tucholke, B.E., and Lin, J., 1994. A geological model for structure of ridge segments in slow spreading ocean crust. J. Geophys. Res., 99(B6):11937–11958. doi:10.1029/94JB00338

Vissers, R.L.M., Drury, M.R., Hoogerduijn Strating, E.H., and van der Wal, D., 1991. Shear zones in the upper mantle: a case study in an Alpine lherzolite massif. Geology, 19(10):990–993. doi:10.1130/0091-7613(1991)019<0990:SZITUM>2.3.CO;2

Winchester, J.A., and Floyd, P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol., 20:325–343. doi:10.1016/0009-2541(77)90057-2

NEXT