INDEX TO VOLUME 156

This index covers both the Initial Reports and Scientific Results portions of Volume 156 of the Proceedings of the Ocean Drilling Program. References to page numbers in the Initial Reports are preceded by “A” with a colon (A:) and to those in the Scientific Results (this book) by “B” with a colon (B:).

The index was prepared by Earth Systems, under subcontract to the Ocean Drilling Program. The index contains two hierarchies of entries: (1) a main entry, defined as a keyword or concept followed by a reference to the page on which that word or concept appears, and (2) a subentry, defined as an elaboration on the main entry followed by a page reference.

The index covers volume text, figures, and tables but not core-description forms (“barrel sheets”), core photographs, smear-slide descriptions, or CD-only tables. Also excluded from the index are bibliographic references, names of individuals, and routine front and back matter.

The Subject Index follows a standard format. Geographic, geologic, and other terms are referenced only if they are subjects of discussion. A site chapter in the Initial Reports is considered the principal reference for that site and is indicated on the first line of the site’s listing in the index. Such a reference to Site 947, for example, is given as “Site 947, A:71–86.”

The Taxonomic Index is an index relating to significant findings and/or substantive discussions, not of species names per se. This index covers three varieties of information: (1) individual genera and species that have been erected or emended formally, (2) biostratigraphic zones, and (3) fossils depicted in illustrations. A taxonomic entry consisting of both genus and species is listed alphabetically by genus and also by species. Biostratigraphic zones are listed alphabetically by genus; zones with letter prefixes are listed under “zones.”

For further information, including available electronic formats, contact the Chief Production Editor, Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845-9547, U.S.A., e-mail: pub_production@ODP.TAMU.EDU.
claystone (cont.)

demagnetization, vectors, A:134, 234
demagnetization, thermal, claystone, A:136–137
density
cation exchange capacity, B:139
core-log comparison, B:328
décollement zones, B:300–301
logging units, A:75–76
pore pressure, B:125–135
B:330
vs. depth, B:259, 299–301
density, bulk, vs. depth, A:244; B:154–158, 205, 231, 286
density, grain
cation exchange capacity, B:139
vs. depth, A:151, 244; B:142
density correction logs, vs. depth, A:86
density logs
logging-while-drilling, B:326–327
vs. depth, A:74; 86, 151, 162, 165;
B:259
detrital minerals, X-ray diffraction data, A:29–37
detrital provenance, clay minerals, B:15–17, 20–21
diagenesis
organic matter, B:168
reflectivity, B:134
sediments, B:25–27
See also alteration; authigenesis
dilatation
diagenesis, B:25–27
permeability, B:132–134
sediments, B:67, 69, 71
dolomite, carbonate veins, B:84–85, 92, 356
downhole logging, Barbados Ridge N, A:160–164
drilling, accretionary prisms, A:5, 11
duplexing, scaly reflection, A:22
elastic moduli, velocity, A:160
elastic rebound, sediments, B:230
electrical conductivity
cation exchange capacity, B:137–149
porosity, B:137–149
electron microscopy, scaly fabric, B:61–69
electron microscopy, scanning, clay mineralogy,
B:8–9
environment, deposition, A:100–101, 203
ethane
sediments, A:225
See also methane/ethane ratio
fabric
carbonate veins, B:96
magnetic anisotropy, B:97–105
scaly fabric, B:155–156
structural domains, A:114–127
fabric, magnetic, magnetic susceptibility,
B:103–104
fabric, scaly
découllement zones, B:281, 284
kinematic model, B:71–73
photograph, A:127–129, 218, 221
proportion in décollement zone, B:285
sheared clays, B:59–77
fault planes
reflections, B:125–127
seismic reflection, A:3–5, 22, 76
fault splay, décollement zones, B:300–301
fault zones
bulk permeability, B:215–217
diagenesis, B:25–27
sediments, B:67, 69, 71
structural domains, A:117, 173, 211, 213–215
faults, healed, scanning, B:155–156
faults, normal, photograph, A:221
ßeldspar
carbonate veins, B:84–85
veins, A:225
volcanic ash, B:344–345, 347–348
X-ray diffraction data, A:116
flattening, sediments, B:67, 69, 71–72
flow tests, pressure, B:205–214
flow velocity, vs. hydraulic conductivity,
B:112–113
fluid composition, carbonate veins, B:90–91
fluid flow
découllement zones, B:288–289
diagenesis, B:25–27
geochemical profiles, B:317, 353–356
pore fluid, B:168–169, 353–356
scaly fabric, B:73
tests, B:249–251
thermal resistance, B:243
fluid pressure
découllement zones, A:4, 76–77
geochemical profiles, B:317
packer experiments, B:203
sediments, B:229–238, 309
vertical seismic profiles, B:271–272
vs. depth, B:130, 232, 235–237
fluid regime
carbonate veins, B:88–90
découllement zones, B:311–319
fluid/rock interactions
geochemical profiles, B:317, 354–355
geochemistry, B:163–170
fluid samplers, geochemical gradient, A:235, 237
fluids, geochemistry, B:311–319, 353–356
folding
photograph, A:128
seismic profiles, lithostratigraphy, A:9, 22
foliation
photograph, A:127–128
scaly fabric, B:63–66, 72–75
foliation, scaly
photograph, A:117
structural domains, A:127–128
foliation, spaced
carbonate veins, B:80–81
scaly fabric, B:66–67
carbonates, lithologic units, A:98–99, 202
foraminifers, planktonic, biostratigraphy,
A:130–131, 218
formation factor
sediments, A:156, 240, 244
vs. depth, A:159, 246
vs. porosity, B:148
fracture networks, scaly fabric, B:66, 287
fractures
carbonate veins, B:81–82
scaly fabric, B:63–66, 287
structural domains, A:117
gamma ray–densities, logs, A:185–188
gamma ray–density–porosity logs, A:180–183
gamma-ray logs, vs. depth, A:74, 79–86, 115, 162, 165;
B:286
gamma ray–resistivity–rate of penetration logs,
A:176–179
gamma ray–tension–velocity logs, A:189–192
gamma rays, natural
sediment cores, A:183–195, 225
sediments, A:158, 244
vs. depth, A:250
geochemical logs, vs. depth, A:86
geochemistry
clay mineralogy, B:3–30
découllement zones, A:10
fluids, B:311–319, 353–356
neon, pore water, B:318

nitrogen, geochemistry, A:140–143
sediments, A:139, 225, 230–231
vs. organic carbon, A:139
normalization factors, X-ray diffraction data, A:29–30, 36–37
North American Shale Composites, geochemistry, B:173

ocean-bottom shots, seismic profiles, B:265–267
Oligocene
biostratigraphy, B:49–56
lithologic units, A:98, 202
organic matter, diageneis, B:168, 354–355
organic matter maturity, vs. depth, A:143
orientation, compressional wave velocity, B:121
overconsolidation, sediments, B:111–112
overpressure
diagnesis, B:25–27
fluid pressure, B:236–237
permeability, B:132–134
pore fluid, B:168–169
tests, B:250–251
oxidation, phytane, A:147
oxides. See major oxides
oxygen index, vs. hydrogen index, A:143, 238
oxygen isotopes
carbonate veins, B:85–87, 92, 356
interstitial waters, B:315–316
pore fluids, B:354
vs. depth, B:355
packer experiments
découloment zones, B:199–218
Site 948, A:169–171
Site 949, A:253–256
paleobathymetry, deposition, A:100–101
paleomagnetism
Site 948, A:131–137
Site 949, A:220–221
penetration rate logs, vs. depth, A:79–82
penetration rates, logging-while-drilling, B:323
permeability
accretionary prisms, A:4
découloment zones, B:132–134
sediments, B:109–114
tests, B:304–309
vs. depth, B:114
vs. effective stress, B:306–308
vs. porosity, B:308–309
vs. void ratio, B:308
permeability, bulk
vs. effective stress, B:215–216, 309
vs. modified pore pressure, B:216
permeability, in situ, packer experiments, B:199–218
phillipsite
veins, A:225
X-ray diffraction data, A:116
phillipsite veins, photograph, A:219
phosphorus, vs. depth, B:179, 181
photoelectric-effect logs, vs. depth, A:115
physical properties, seismic reflection, B:293–302
physical properties (core)
Site 948, A:150–160
Site 949, A:237–238, 240–244
phytane
maturation, A:147
sediments, A:144
plagioclase
mineralogy–porosity inversion, B:224–225
plagioclase
mineralogy–porosity inversion, B:224–225
plagioclase
mineralogy–porosity inversion, B:224–225
polarity
electrical conductivity, B:137–149
logging units, A:75–76
mineralogy–porosity inversion, B:224
scaly fabric, B:73
velocity, B:131–132
vertical seismic profiles, B:271–272
vs. depth, A:151, 158, 244; B:114, 154–158
vs. effective pressure, B:132
vs. formation factor, B:148
vs. permeability, B:308–309
vs. resistivity, B:147
vs. surface conductivity, B:149
See also void ratio
porosity
logging-while-drilling, B:324–329
vs. depth, A:163
porosity (neutron) logs, vs. depth, A:86
potassium
diagenesis, B:25–27
estimation errors, B:194
interlayer cation composition, B:140–141
interstitial waters, A:149–150
natural gamma-ray spectra, B:187, 225
reference concentrations, B:193
sediments, A:232–234
vs. depth, A:149, 240; B:166, 168, 179, 181, 188
potassium/chloride ratio, interlayer cation composition, B:140
potassium logs, vs. depth, A:86
potassium oxide
vs. depth, B:24, 188
vs. kaolinite, B:30
vs. silica, B:350
potassium oxide/aluminum oxide ratio, vs. depth, B:25
potassium/rubidium ratio, vs. depth, B:166, 168
precipitation, carbonate veins, B:84–85, 92
geochemistry, B:173, 356
photograph, A:117
veins, A:225
X-ray diffraction data, A:116
rock magnetism, sediments, A:134–136
rubidium
pore fluid, B:165, 167
vs. depth, B:166, 168
See also potassium/rubidium ratio
S–C bands
découloment zones, B:288–289
photograph, B:291–292
...
<table>
<thead>
<tr>
<th>VOLUME 156 TAXONOMIC INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lychnocanoma elongata</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Site 949, B:53</td>
</tr>
<tr>
<td>Gephyrocarpa oceanica Zone, Site 948, A:129</td>
</tr>
<tr>
<td>Glogibigerina ciperoensis angustialbitalica, Site 948, A:131</td>
</tr>
<tr>
<td>Glogibigerina ciperoensis ciperoensis, Site 948, A:131</td>
</tr>
<tr>
<td>Glogibigerina ciperoensis Zone, Site 948, A:131</td>
</tr>
<tr>
<td>Glogibigerina decoraperta, Site 948, A:131</td>
</tr>
<tr>
<td>Glogibigerina nepenthes, Site 948, A:131</td>
</tr>
<tr>
<td>Glogibigerina oceanitensis, Site 948, A:131</td>
</tr>
<tr>
<td>Glogibigerina praebulloides ocellata, Site 948, A:131</td>
</tr>
<tr>
<td>Glogibigerina praebulloides praebulloides, Site 948, A:131</td>
</tr>
<tr>
<td>Glogibigerina ruber, Site 949, A:218</td>
</tr>
<tr>
<td>Glogibigerinoides bulli, Site 949, A:131</td>
</tr>
<tr>
<td>Globorotalia acostaensis, Site 949, A:218</td>
</tr>
<tr>
<td>Globorotalia acostaensis Zone</td>
</tr>
<tr>
<td>Site 948, A:131</td>
</tr>
<tr>
<td>Site 949, A:218</td>
</tr>
<tr>
<td>Globorotalia menardii, Site 949, A:218</td>
</tr>
<tr>
<td>Globorotalia nepenthes, Site 949, A:218</td>
</tr>
<tr>
<td>Globorotalia opima opima, Site 949, A:131</td>
</tr>
<tr>
<td>Globorotalia opima Zone, Site 948, A:131</td>
</tr>
<tr>
<td>Globorotalia tosaensis, Site 949, A:218</td>
</tr>
<tr>
<td>Globorotalia truncatulinoides, Site 949, A:218</td>
</tr>
<tr>
<td>Globorotalia truncatulinoides Zone</td>
</tr>
<tr>
<td>Site 948, A:130</td>
</tr>
<tr>
<td>Site 949, A:218</td>
</tr>
<tr>
<td>gracilis, Artophormis, Barbados Ridge N, B:36</td>
</tr>
<tr>
<td>hamatii, Discoaster, Site 949, A:217; B:53–54</td>
</tr>
<tr>
<td>Helicosphaera carteri, Site 949, B:53</td>
</tr>
<tr>
<td>Helicosphaera carteri Subzone, Site 949, B:53</td>
</tr>
<tr>
<td>Helicosphaera sellii Zone</td>
</tr>
<tr>
<td>Site 948, B:53</td>
</tr>
<tr>
<td>Site 949, A:217; B:53–54</td>
</tr>
<tr>
<td>Heliodiscus astericus, Barbados Ridge N, B:41, 46</td>
</tr>
<tr>
<td>Lychnocanoma elongata, Lychnocanoma</td>
</tr>
</tbody>
</table>
VOLUME 156 TAXONOMIC INDEX

Lychnocanoma elongata Zone
Barbados Ridge N, B:34–36, 38–39
Site 949, A:131
Lychnocanoma sp., Barbados Ridge N, B:42
Lysoysris geniculosa, Barbados Ridge N, B:41
Lysoysris mutuaria, Barbados Ridge N, B:42
mammillaris, Tholosysris
Barbados Ridge N, B:43, 46
Site 949, A:218–220
menardii, Globorotalia, Site 949, A:129
Minylitha convallis, Site 948, A:129
mutuaria, Lysoysris, Barbados Ridge N, B:42

Neogloboquadrina hamerosa, Site 949, A:218
Neogloboquadrina hamerosa Zone, Site 949, A:218

nepenthes, Globorotalia, Site 948, A:131
nepenthes, Globigerina, Site 948, A:131

praeforcipata, Dorcadospyris, Barbados Ridge N, B:42
praecorona, Siphostichoartus, Barbados Ridge N, B:42
parkerae, Liriosysris
Barbados Ridge N, B:34, 42
Site 948, A:131
pegetrum, Cyclampterium, Site 949, A:218
pelagicus, Coccolithus, Site 949, B:54
pentagona, Lophoysris, Site 948, A:131
pentarradus, Discaster, Site 949, B:53
petrushevskvae, Centrobotrys, Barbados Ridge N, B:40
praebulloides oculata, Globigerina, Site 948, A:131
praebulloides praebulloides, Globigerina, Site 948, A:131
praecorpor, Siphostichoartus, Barbados Ridge N, B:42
praeforcipata, Dorcadospyris, Barbados Ridge N, B:41

primus, Amauroolithus, Site 949, A:217; B:54
prismatica, Didymocystris
Barbados Ridge N, B:34, 41, 48
Site 948, A:131
Site 949, A:218–219
productus, Zygoicyrus, Barbados Ridge N, B:43
profunda, Cornatella, Barbados Ridge N, B:40
profunda, Dictyocoryne, Site 948, A:131
Pseudomelaniina lacunosa
Site 948, A:129; B:50, 53
Site 949, B:53
Pseudomelaniina lacunosa Zone, Site 948, A:129; B:50, 53

psuedomelobika, Reticulofenestra, Site 949, B:54
quinteramurs, Discaster, Site 949, A:217; B:54
Reticulofenestra pseudomelobika, Site 949, B:54
robusta, Calocycletta, Site 949, A:218
rubec, Globigerina, Site 949, A:218
rugosus, Triquetrorhabdulus, Site 949, A:217; B:54
sellii, Helicosphaera
Site 948, B:53
Site 949, A:218; B:53
Sphenolithus ciperoensis, Site 949, A:218
Sphenolithus ciperoensis, Site 949, A:218
simulina, Sphaerodinellopsis, Site 948, A:218
serrata, Calocycletta
Barbados Ridge N, B:34, 40, 45
Site 949, A:218–219
Simulina, Sphaerodinellopsis, Site 948, A:131
Siphostichoartus corona, Barbados Ridge N, B:42
Siphostichoartus praecorona, Barbados Ridge N, B:42
Sphaerodinellopsis disjuncta, Site 949, A:218
Sphaerodinellopsis seminulina, Site 949, A:218
Sphaerodinellopsis simulina, Site 948, A:131
Sphenolithus ciperoensis
Site 949, A:131; B:53
Site 949, A:218; B:54
Spongaster pseudoumbilica, Reticulofenestra, Site 949, A:131
Spongaster virginius, Calocycletta
Site 949, A:131
Spontaster tetras, Spongaster, Site 949, A:218
Stichocorys delmontensis
Barbados Ridge N, B:42
Site 948, A:131
Stichocorys delmontensis Zone
Barbados Ridge N, B:36
Site 948, A:131
Stichocorys wolffii
Barbados Ridge N, B:34, 42–43, 47
Site 948, A:131
Stichocorys wolffii Zone
Barbados Ridge N, B:34–36, 38–39
Site 948, A:131
Site 949, A:218–219
Stichocorys wolffii Zone
Barbados Ridge N, B:34–36, 38–39
Site 948, A:131
Site 949, A:218–219
Stylatractus universus, Barbados Ridge N, B:43
Stylochtya aculeata, Barbados Ridge N, B:43
Stylochtya validispina, Site 948, A:131
surculus, Discaster, Site 949, A:217; B:54
tetrapera, Cyrtocapsella
Barbados Ridge N, B:34, 40, 47
Site 948, A:131
tetras, Spongaster, Site 948, A:131
tetrahedrallamus, Didymocystris, Site 948, A:131
Theocystis tuberosa, Site 949, A:218
Tholosysris anophora
Barbados Ridge N, B:43, 46
Site 949, A:219
Tholosysris kantiana, Barbados Ridge N, B:43, 46
Tholosysris mammillaris

Barbados Ridge N, B:43, 46
Site 949, A:218–220
Tholosysris spp., Site 948, A:131
tosaevis, Globorotalia, Site 949, A:218
Triquetrorhabdulus rugosus, Site 949, A:217; B:54
Triquetrorhabdulus rugosus Subzone, Site 949, B:53
truncatoids, Globorotalia, Site 949, A:218
truncatum, Didymocystris
Barbados Ridge N, B:41
Site 949, A:218
taberosa, Didymocystris
Barbados Ridge N, B:40, 45
Site 949, A:131
Site 949, A:218–219
Wolffiella, Stichocorys
Barbados Ridge N, B:34, 42–43, 47
Site 948, A:131
Site 949, A:218–219
zones (with letter prefixes)
CN7, Site 949, A:217; B:54
CN7a, Site 949, A:217; B:53
CN8a, Site 949, A:129; B:53
CN9a, A:129, 217; B:53–54
CN9b, Site 949, A:217; B:54
CN10a, Site 949, A:217; B:53
CN10b, Site 949, B:53
CF19, Site 949, A:218
NC16, A:131, 218
NC17, Site 949, A:218
N22–N23, A:130, 218
P21, Site 948, A:131
P22, Site 948, A:131
R9, A:131, 218
R10, Site 948, A:131
R11, Site 948, A:131
R12, A:131, 218–219
R13, A:131, 218–219
R14, Site 948, A:131
Zoophycos
lithologic units, A:203
structural domains, A:114, 118–119
Zygocircus productus, Barbados Ridge N, B:43