INDEX TO VOLUME 158

This index covers both the Initial Reports and Scientific Results portions of Volume 158 of the Proceedings of the Ocean Drilling Program. References to page numbers in the Initial Reports are preceded by “A” with a colon (A:) and to those in the Scientific Results (this book) by “B” with a colon (B:).

The index was prepared by Earth Systems, under subcontract to the Ocean Drilling Program. The index contains two hierarchies of entries: (1) a main entry, defined as a keyword or concept followed by a reference to the page on which that word or concept appears, and (2) a subentry, defined as an elaboration on the main entry followed by a page reference.

The index follows a standard format. Geographic, geologic, and other terms are referenced only if they are subjects of discussion. The index covers volume text, figures, and tables but not core-description forms (“barrel sheets”), core photographs, thin-section data, or CD-only tables. Also excluded from the index are bibliographic references, names of individuals, and routine front and back matter.

For further information, including available electronic formats, contact the Chief Production Editor, Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845-9547, U.S.A., e-mail: pub_production@ODP.TAMU.EDU.
VOLUME 158 SUBJECT INDEX

vs. depth, A:135, 138, 166, 206, 220
density, wet-bulk, vs. depth, A:136, 138, 165, 172
diginite, petrology, B:9–11, 14
dip, vs. depth, A:113

dissolution

clasts, B:243–244
textures, B:195
dissolution cavities, photograph, A:92, 115
DNA extraction, subsurface biosphere, B:356

East Pacific Rise, geochronological comparison with
Trans-Atlantic Geotraverse, B:380–381
electron microscopy, subsurface biosphere, B:356–359
element correlations
hydrothermal mounds, B:52, 63–65
See also element correlations; partition coefficient; principal component analysis; statistical analysis
enrichment, subsurface biosphere, B:356–359

erosion, gossan, B:409–410
euromycol

anhydrite, B:150–159
vs. depth, B:156
gasdolomium, B:158
vs. lanthanum/ytterbium ratio, B:158
extension, active mounds, A:19–20

fault systems
hydrothermal fields, A:6, 12–13
neovolcanic zones, A:18–21
faults, listric, active mounds, A:19–20

fluid–rock interactions, hydrothermal systems, B:97–99, 195

fluid evolution
anhydrite precipitation, B:123–124
oxygen isotopes, B:292–293

fluid flow
geochemistry, B:88–89
hydrothermal mounds, B:124
porosity, B:324, 326
spreading centers, A:5–14

See also Kuster–Tokoz theory; permeability; porosity

fluid inclusions
anhydrite, B:123
geochemistry, B:88–89
photograph, B:178, 182, 252
temperature, B:163–190, 395

See also microthermometry; temperature
fluid mixing
anhydrite, B:119–127, 187–189
chlorite and smectite, B:283
oxygen isotopes, B:137–138, 306–308
formational factor, breccia, A:136
fractional crystallization, basalts, B:220–225, 228–229
fractures
photograph, A:85, 93, 183, 185; B:197
textures, B:195

fracturing
clasts, B:243–244
See also hydrofracturing
frost heave, clasts, B:243–244

gadolinium, vs. europium, B:158
gallium
mineral separates, B:32
vs. depth, B:54, 58, 60, 62
gamma rays, vs. depth, A:136, 138, 165, 172, 222
geochemical section, Trans-Atlantic Geotraverse,

B:363–387
geochemistry
basalts, B:213–229
basement, B:255–276
hydrothermal clays, B:215, 217–220
hydrothermal mounds, B:47–70
igneous rocks, A:163, 199–200
massive sulfides and sediments, B:41–46
shipboard samples, B:27–39
statistical analysis, B:376–381
geochemistry, bulk, hydrothermal mounds, B:367, 370–376, 395–397
geochemistry, bulk, hydrothermal mounds, B:367, 370–376, 395–397

geochemistry, bulk, hydrothermal mounds, B:367, 370–376, 395–397

gEOCHRONOLOGY

hydrothermal fields, A:9
sulfides, B:111–117

See also time scales

gEOLOGY

hydrothermal fields, A:16–18
Trans-Atlantic Geotraverse, A:6–8
geomagnetic excursions, magnetism, B:349
germanium, mineral separates, B:370–373
glass shards, photograph, A:132
glasses
petrology, A:199–200
photograph, A:196, 201; B:248
glasses, banded, photograph, A:150
glasses, chloritized, strontium and oxygen isotopes, B:302
goethite
hydrothermal fields, A:8

nucleotides, B:357, 359
gold

element correlations, B:65, 395
mineral separates, B:33, 36, 39
sulfides, A:158–159
sulfides and sediments, B:46
vs. depth, B:54–55, 58, 60, 62
zonation, B:397
gold, native, hydrothermal fields, B:14

gossan
development, B:409–410
hydrothermal fields, A:7
graben
See rift valleys
graben, axial, active zones, B:380–381
grade
zonation, B:397–398, 409
See also tonnage
growth bands, photograph, B:197–199
growth models, hydrothermal mounds, B:405–406, 408
growth rate, mineralization, B:411

hafnium, mineral separates, B:32
heat flow
active mounds, A:19–20, 23–29; B:307
correlation, A:23–29
See also thermal conductivity

heat transfer, massive sulfides, B:332–334

hematite
hydrothermal alteration, A:161
hydrothermal fields, A:8; B:9–11, 14, 368–369
photograph, A:101, 156, B:246
holohyline textures
petrology, A:199–200
photograph, A:200
hyaloclastite
hydrothermal alteration, A:161
photograph, A:132, 161, 193
hybridization, subsurface biosphere, B:356–359
hydrofracturing
hydrofracturing (cont.)
hydrogeology, active mounds, A:19–21
hydrothermal alteration
basement, B:255–276
distribution, B:407–409
sequence, B:241–243, 266, 268, 307
sulfides, A:103–109, 113–114
TAG-2 area, A:160–163
TAG-4 area, 193–199
TAG-5 area, A:219–220
See also alteration fronts; alteration halos;
basalts, altered; breccia, silicified
wallrock; chalcopyritization, breccia;
chloritization, pyritization;
silicification; wallrock alteration
hydrothermal circulation, spreading centers,
A:5–14
hydrothermal fields
lead isotope, B:105–108
tectonics, A:6–8
hydrothermal fluids
fluid inclusions, B:187–188
geochemistry, B:88–89
osmium isotopes, B:97–98
rare earths in anhydrite, B:152–155
hydrothermal mound–stockwork complexes,
hydrothermal fluids
inclusions, illite(?), hydrothermal alteration, A:108
igneous rocks
iddingsite, photograph, A:162
geochemistry, A:163, 199–200
petrology, A:163, 199–200
See also basalts; glasses; olivine basalts;
pillow basalts
iillite(?), hydrothermal alteration, A:108
inclusions
photograph, A:74, 115, 131, 153, 183–184,
190
pyrite, B:195
index properties
breccia, A:163–165, 205, 220–221
mineralization, B:313–315
silicified iron oxides, A:173
sulfides, A:115–120, 135, 220
indium
VOLUME 158 SUBJECT INDEX
mineral separates, B:31, 370–373
vs. depth, B:54, 58, 60, 62
interstitial waters, geochemistry, A:173
iridium, mineral separates, B:33
iron
basalts, B:217
clay minerals, B:281–282
element correlations, B:378–381
hydrothermal clays, B:217
mineral separates, B:33, 36, 38, 94, 370–376
spileralte, B:13
sulfides and sediments, B:44
vs. depth, A:129, 160, 195; B:53, 57, 59, 61,
374–376
vs. silica, B:263
See also copper–iron–sulfur system;
copper/iron ratio; zinc/iron ratio
iron/(iron+magnesium) ratio, vs. silicon, B:242
iron oxides
clay minerals, B:280–282
deposits, A:145, 156, 158
geochemistry, B:52
hydrothermal fields, A:7
metal basaltic clasts, B:217
mineral separates, B:29
osmium and rhenum, B:95–100
petrology, A:184, 190
photograph, A:147–151, 157, 180, 186–187,
195
sulfides and sediments, B:43
vs. magnesium oxide, B:283
vs. water content, B:264
See also hematite; magnetite
iron oxides, silicified, petrology, A:172
iron oxyhydroxides
geochemical section, B:366–367
hydrothermal fields, A:7
A:7–11, 14, 236–239, 368–369
photograph, A:157, 2:46
iron sulfides
hydrothermal fields, A:8, B:9
See also copper–iron sulfides
isotope equilibrium, geochemistry, B:88–89
isotopes. See stable isotopes
Juan de Fuca Ridge, thermal properties
comparison with Trans-Atlantic Geotraverse,
B:329–335
Kane Fracture Zone, basalts, B:106
Koenigsberger ratio
breccia, B:221–222; B:342
sulfides, A:167
See also demagnetization; magnetic properties
Kremlin white smoker field
geochemical section, B:366
geochemistry, B:52
hydrothermal fields, A:8
lead isotopes, B:104–109
major and trace elements, B:52, 57–59
stratigraphy, A:142–144; B:232–236
sulfur isotopes, B:76–77
See also white smokers
Kuster–Tokoz theory
fluid flow, B:324, 326
See also fluid flow
lanthanum, sulfides and sediments, B:45
lanthanum/samarium ratio
basalts, B:218
hydrothermal clays, B:218
metabasaltic clasts, B:218
vs. latitude, B:221
lanthanum/ytterbium ratio
anhydrite, B:154
vs. europium, B:158
lead
element correlations, B:378–381, 384
mineral separates, B:31, 370–376
sulfides, petrology, A:93–94, 97–98, 156,
158–160, 189–191; B:106–107
sulfides and sediments, B:44
vs. depth, A:129, 160, 195; B:53, 57, 59, 61,
374–376
lead isotopes
comparison of Trans-Atlantic Geotraverse
with North Atlantic MORB,
B:104–107
mineralization, B:101–109
lead–210, sulfides, B:111–117
lepidocrocite, photograph, B:246
Iherzolite. See spinel Iherzolite
lithology
B:232–236, 286–288, 298–301
sulfides, A:210–211
vs. depth, A:70–71
loss on ignition
basalts, B:215, 217–218
hydrothermal clays, B:217–218
metabasaltic clasts, B:217–218
mineral separates, B:29
sulfides and sediments, B:43
magnesium
anhydrite, B:121–124, 133–135
clay minerals, B:281–283
fluid geochemistry, A:126, 140, 173
See also iron/(iron+magnesium) ratio
magnesium/calcium ratio
anhydrite, B:121–124, 133–135
vs. depth, B:125, 135
magnesium number, basalts, B:215
magnesium oxide
clay minerals, B:280–282
mineral separates, B:29, 94
sulfides and sediments, B:43
vs. calcium oxide/aluminum oxide ratio, B:224
vs. iron oxide, B:283
vs. sodium oxide, B:224
vs. water content, B:264
magnetic anisotropy, minerals, B:349
magnetic inclination, vs. depth, A:139, 167;
B:342–345
magnetic intensity
sulfides, A:121–122
vs. depth, A:139, 167; B:342
magnetic properties
cores, A:207
TAG-5 area, A:223; B:337–351
See also Curie temperature; hysteresis;
Koenigsberger ratio; remanent magnetization
magnetic susceptibility
breccia, B:340
silicified iron oxides, A:173
sulfides, A:122, 167–168
vs. temperature, B:347
magnetic susceptibility, anisotropy, sulfides,
A:168
magnetic susceptibility, low-field, breccia,
B:342–343
magnetic susceptibility, volume vs. depth, A:136,
138, 140, 165, 169, 172, 222
magnetite, magnetic properties, B:349–350
major elements
basalts, B:215–216, 218, 222, 224
basalts and clasts, B:259
clay minerals, B:279–284
hydrothermal alteration, B:27–39, 49–63, 94–96
hydrothermal mounds, B:367, 370–376
manganese
hydrothermal mounds, B:370–373
sulfides and sediments, B:44
See also nodules, manganese
manganese oxide
hydrothermal fields, A:7
mineral separates, B:29
sulfides and sediments, B:43
mantine, geochemistry, B:225
marcasite
hydrothermal fields, A:10; B:9–11, 13, 194, 368–369
photograph, A:149, 181–183, 189, 217; B:198
sulfur isotopes, B:17–19
marcasite, colloform, photograph, A:152, 184, 187–188
marcasite, massive, colloform, photograph, A:181
mass wasting
hydrothermal fields, A:8
neovolcanic zones, A:18–21
massive deposits
stratigraphy, A:67–68
See also sulfides, massive melting
mantle, B:225
See also partial melting
mercury, mineral separates, B:33
metabasalts, geochemistry, B:217–218, 221
metals
hydrothermal fields, A:93–94, 97–98; B:395, 397, 412
See also base metals; precious metals, and individual metals
microbial cells, nucleotides, B:357–359
microlites
petrology, A:163, 200; B:236
photograph, A:132, 162, 246
microorganisms, subsurface biosphere, B:356–359
microphenocrysts
photograph, B:246
See also phenocrysts
microthermometry
anhydrite precipitation, B:122–123
fluid inclusions, B:166–170, 182–183
See also fluid inclusions; temperature
Mid-Atlantic Ridge
basalts, B:104–107, 213–229
hydrothermal systems, A:5–14
sulfides, B:193–210
mid-ocean ridges, hydrothermal fields, A:5–14
mid-ocean ridges, slow-spreading, subsurface biosphere, B:355–360
mineral abundance, tomography, B:201–210
mineral separates, major elements, B:27–39
mineralization
hydrothermal fields, A:9–10; B:6–7, 21–22, 195, 201–210
lead isotopes, B:101–109
pyrite, A:178, 211
remnant magnetization, B:337–351
stratigraphy, A:68
sulfides, A:144
See also ores; precious metals; sulfides
mineralization, hydrothermal lateral variations, B:17
petrology, B:25–26, 307
mineralogy
geochemical section, B:366–367, 394–395
sulfides, A:72
Mir hydrothermal zone, hydrothermal fields, A:7–8; B:391
mixed-layer minerals
petrology, B:240–241
See also clorite–smectite mixture; clay minerals
molybdenum
element correlations, B:384
mineral separates, B:31, 33, 37, 39, 370–376
sulfides and sediments, B:44
vs. depth, B:54, 56, 58, 60, 62, 374–376
morphology, neovolcanic zones, A:18–21
Mossbauer spectra
magnetism, B:345
velocity vs. absorption, B:348
mud
hydrothermal fields, A:9–10
stratigraphy, A:142–144
neodymium, anhydrite, B:150–152
neodymium/ytterbium ratio
anhydrite, B:153
vs. depth, B:156
neovolcanic zones
hydrothermal fields, A:16–18
See also numbered zones
Newfoundland, massive sulfides, B:79
nickel
distribution in massive sulfides, B:405
mineral separates, B:30, 37, 39
sulfides and sediments, B:44
vs. water content, B:265
niobium
mineral separates, B:32
sulfides and sediments, B:45
nodules, manganese, lead isotopes, B:105
nontronite, hydrothermal fields, A:7
Northern Hemisphere Reference Line, sulfides, B:105
Notre Dame Bay, massive sulfides, B:79
nucleotides
goethite, B:357, 359
See also polynucleotides
olivine
basalts, B:214–215
fractional crystallization, B:220–225
petrology, A:200
photograph, A:120, 130, 162, 199; B:246
olivine basalts, lithology, B:202–205
olivine–clinopyroxene–quartz system, pseudoternary projections, B:221
Oman
comparison of massive sulfides with Trans-Atlantic Geotraverse, B:390, 404, 407
massive sulfides, B:79
ooze, hydrothermal fields, A:7
opal
chimneys, B:381–382
See also quartz; silica
ophiolite, comparison of Cyprian-type massive sulfides with Trans-Atlantic Geotraverse, B:399–404
ores
distribution, B:400–403
tonnage, B:397–398
See also mineralization
osmium isotopes, hydrothermal mounds, B:91–100
oxidation. See redox
oxides, magnetism, B:345
oxygen isotopes
anhydrite and sulfides, B:85–90
buffering by hydrothermal circulation, B:138–139
chloritization, B:293
fluid mixing, B:137–138, 306–308
paragenitization, B:292
vs. chlorite volume percent, B:290
depth, B:86, 135
vs. strontium/87Sr/86Sr ratio, B:138, 305
vs. sulfur isotopes, B:87
oxygen isotopes, quartz, vs. depth, B:291
paleomagnetism
hydrothermal fields, A:10–11; B:337–351
TAG-1 area, A:120–123
TAG-2 area, A:166–168
TAG-4 area, A:201–203
TAG-5 area, A:221–223
See also remnant magnetization
palladium, sulfides and sediments, B:46
paragenesis
hydrothermal alteration, B:241–243, 266, 268
pyrite–chalcopyrite, B:194–195
paragonite
photograph, B:248–253
vertical distribution, B:14–17, 237–241
paragenitization
basalts and clasts, B:257, 263–264
geochemistry, B:270–273, 291–293
oxygen isotopes, B:292
photograph, B:249–254
partial melting
basalts, B:220–225, 228–229
See also melting
partition coefficient
anhydrite, B:122–124
strontium/calcium ratio, B:136–137
vs. precipitation temperature, B:139
vs. strontium/87Sr/86Sr ratio, B:139
See also correlation coefficients; element correlations
partition coefficient, magnesium, vs. depth, B:126
partition coefficient, strontium, vs. depth, B:126
partition, strontium, B:122–123
permeability
fluid flow, B:324, 326
See also fluid flow; porosity
petrography
breccia, A:68–93
hydrothermal alteration, B:9–10, 42, 236–239
magnetism, B:345
tomography, B:203–204
petrology
hydrothermal mineralization, B:5–26
igneous rocks, A:163, 199–200
phase relationships
textures, B:195
vs. pressure, B:174
phenocrysts
petrology, A:200
photograph, A:120, 199
See also microphenocrysts
phosphate, fluid geochemistry, A:168–169
phosphorus oxide
mineral separates, B:29, 94
sulfides and sediments, B:43
phylosilicates
hydrothermal alteration, A:193; B:239–241
sulfides (cont.)
sphalerite; zinc sulfides
sulfides, massive
comparison between Cyprus-type and
Trans-Atlantic Geotraverse deposits, A:145–146, 148–149, 151
goical section, B:366–367, 379–385
geochemistry, B:41–46
hydrothermal fields, A:12; B:9, 11; osum and rhenium, B:95–100
photograph, B:84; stratigraphy, A:142–144
tomography, B:206–207
See also massive deposits; pyrite, massive
sulfides, porous, geochemical section, B:366–367
sulfides, seafloor, comparison of sulfur isotopes, B:77–79
sulfur
element correlations, B:378–381
mineral separates, B:29, 94, 370–376
sources in sulfides, B:86–87
sphalerite, B:13
sulfides and sediments, B:43
vs. depth, A:129, 160, 195; B:53, 57, 59, 61, 374–376
See also copper–iron–sulfur system
sulfur isotopes
anhydrite and sulfides, B:85–90
histograms in sulfides and sulfates, B:75
hydrothermal mounds, B:71–84, 404, 406 models, B:79–82
spatial distributions, B:76–77
sulfides, B:17–21, 47–70
vs. depth, B:69, 86
vs. oxygen isotopes, B:87
vs. textures, B:76, 81
TAG. See Trans-Atlantic Geotraverse
TAG-1 area
altered basalt clasts, B:264–265
fluid geochemistry, A:123–124, 126–127
goical section, B:365–374
hydrothermal fields, A:9
major and trace elements, B:51–56
paleomagnetism, A:120–123
physical properties, A:114–120
rare earths, B:84
site description, A:65–140
stratigraphy, A:67–68
sulfide geochemistry, A:93–94, 97–98
sulfide petrology, A:68–93, 95–96, 98–114
sulfur isotopes, B:76
TAG-2 area
altered basalt clasts, B:265
fluid geochemistry, A:168–169
goical section, B:366, 370–375
hydrothermal alteration, A:160–163
hydrothermal fields, A:9–10
igneous petrology and geochemistry, A:163
major and trace elements, B:52, 57–59
paleomagnetism, A:166–168
physical properties, A:163–166
rare earths in anhydrite, B:145–150, 153, 157–158
site description, A:141–169
stratigraphy, A:142–144
sulfide geochemistry, A:155–159
sulfide petrology, A:144–155, 157, 159–160
sulfur isotopes, B:76–77
TAG-3 area
fluid geochemistry, A:173–174
geochemical section, B:366
hydrothermal fields, A:10
physical properties, A:172–173
site description, A:171–174
sulfide geochemistry, A:172
sulfide petrology, A:171–172
TAG-4 area
altered basalt clasts, B:265–266
goical section, B:366, 370–376
hydrothermal alteration, A:193–199
hydrothermal fields, A:10
igneous petrology and geochemistry, A:199–200
major and trace elements, B:52, 59–60
paleomagnetism, A:201–203
physical properties, A:200–201
site description, A:175–207
stratigraphy, A:177–178
sulfide geochemistry, A:189–191
sulfur isotopes, B:77
TAG-5 area
goical section, B:366, 370–374, 376
hydrothermal fields, A:10
major and trace elements, B:52, 61–62
paleomagnetism, A:221–223
physical properties, A:220–221
rare earths in anhydrite, B:145–150, 154
site description, A:209–223
stratigraphy, A:210–212
sulfide geochemistry, A:216–219
sulfide petrology, A:212–216, 219
sulfur isotopes, B:77
talc, hydrothermal alteration, B:241
tantalum, mineral separates, B:32
tectonic dips, lava extrusion, B:348
tectonics
hydrothermal mounds, A:15–21
Trans-Atlantic Geotraverse, A:6–8
temperature
anhydrite precipitation, B:122–123
fluid inclusions, B:163–190
mineralization, B:307–308
sulfides, B:116
vs. depth, A:28, B:185, 291
vs. salinity, B:185
vs. time, A:28
See also fluid inclusions; microthermometry
temperature, homogenization, vs. depth, B:172, 184
temperature, precipitation, vs. partition
coefficients for anhydrite, B:139–140
temperature, trapping
black smokers, B:395
vs. depth, B:171–172, 185
See also fluid inclusions; microthermometry
terraces, neovolcanic zones, A:18–21
textures
sulfides, B:193–210
X-ray computed tomography, B:201–210
See also cauliflower textures; colloform
textures; holohyaline textures; subvariolitic
textures; variolitic textures
thallium
mineral separates, B:31
vs. depth, B:54, 58, 60, 62
thermal conductivity
breccia, A:117, 137, 164–167, 221; B:208–209
massive sulfides, tomography, B:205, 208–209
precipitates, B:329–334
vs. depth, A:138
vs. physical properties, B:332
vs. porosity, B:333
See also conduction; convection; heat flow
thermal properties, precipitates, B:329–335
thin sections, sulfides, B:203–204
thorium
mineral separates, B:32
sulfides and sediments, B:44
thorium-230/uranium-234, sulfides, B:111–117
thorium-232, sulfides, B:112
time scales
hydrothermal mounds, B:124
See also geochronology
tin
mineral separates, B:33, 370–373
sulfides and sediments, B:45
thorium
hydrothermal mounds, B:370–380
mantle, B:225
sulfides and sediments, B:43, 45
thorium oxide
mineral separates, B:28–29, 94
sulfides and sediments, B:43
vs. aluminum oxide, B:263
titanomagnetite, petrology, A:200
tomography, textures, B:201–210
tonne
ores, B:397–398, 410
See also grade
trace elements
anhydrite, B:121–124, 143–159
basalts, B:215–216, 219–220, 222–223, 225
basalts and clasts, B:260
clay minerals, B:280–284
element correlations, B:65
hydrothermal alteration, B:27–39, 49–63
sulfides, B:21–22, 46–70, 396
Trans-Atlantic Geotraverse
age of sulfides, B:111–117
basalts, B:213–229
biosphere, B:355–360
clay minerals, B:277–284
comparison with Cyprus-type massive
sulfides, B:389–415
fluid inclusions, B:163–190
fluid mixing, B:119–127
goical section, B:363–387
gochemistry, B:41–70, 255–276
geology, A:6–8
heat flow, A:23–29
hydrothermal mounds, A:15–21; B:231–254
hydrothermal systems, A:5–14
lead isotopes, B:101–109
magnetic properties of cores, B:337–351
osmium isotopes, B:91–100
oxygen isotopes, B:285–295
petrology, B:5–26
rare earths, B:143–159
seismic velocity–porosity relationship,
B:313–327
stable isotopes, B:85–90
strontium and oxygen isotopes, B:129–141,
297–309
sulfides, B:193–210
sulfur isotopes, B:71–84
tectonics, A:6–8
thermal properties comparison with middle
valley of Juan de Fuca Ridge, B:329–335
thermal properties of precipitates, B:329–335
See also Black Smoker Complex; black
smokers; Kremlin white smoker field;
TAG-1 area; TAG-2 area; TAG-3 area;
TAG-4 area; TAG-5 area
Troodos Massif, comparison of massive sulfides
with Trans-Atlantic Geotraverse, B:390,
398–404
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tungsten, mineral separates</td>
<td>B:33</td>
</tr>
<tr>
<td>ultrasonic data</td>
<td>B:314–315</td>
</tr>
<tr>
<td>See also seismic velocity</td>
<td></td>
</tr>
<tr>
<td>upflow, hydrothermal, localization</td>
<td>A:19–20</td>
</tr>
<tr>
<td>uranium</td>
<td></td>
</tr>
<tr>
<td>mineral separates</td>
<td>B:32–33, 37, 39</td>
</tr>
<tr>
<td>sulfides and sediments</td>
<td>B:44</td>
</tr>
<tr>
<td>See also radium-226/uranium-234</td>
<td></td>
</tr>
<tr>
<td>thorium-230/uranium-234</td>
<td></td>
</tr>
<tr>
<td>uranium-238, sulfides</td>
<td>B:112</td>
</tr>
<tr>
<td>vanadium</td>
<td></td>
</tr>
<tr>
<td>mineral separates</td>
<td>B:30</td>
</tr>
<tr>
<td>sulfides and sediments</td>
<td>B:45</td>
</tr>
<tr>
<td>See also subvariolitic textures</td>
<td></td>
</tr>
<tr>
<td>veining</td>
<td>A:181</td>
</tr>
<tr>
<td>hydrothermal alteration</td>
<td>A:196–199, 108–109, 161</td>
</tr>
<tr>
<td>quartz</td>
<td>A:144</td>
</tr>
<tr>
<td>rare earths in anhydrite</td>
<td>B:155–159</td>
</tr>
<tr>
<td>sulfides</td>
<td>A:211</td>
</tr>
<tr>
<td>sulfur isotopes</td>
<td>B:19–21, 76</td>
</tr>
<tr>
<td>textures</td>
<td>B:195</td>
</tr>
<tr>
<td>thermal conductivity</td>
<td>B:332</td>
</tr>
<tr>
<td>variations with depth</td>
<td>A:81–83, 89</td>
</tr>
<tr>
<td>See also breccia; clasts</td>
<td></td>
</tr>
<tr>
<td>veins, anhydrite</td>
<td></td>
</tr>
<tr>
<td>petrology</td>
<td>A:68, 81–83, 211; B:22, 392</td>
</tr>
<tr>
<td>photograph</td>
<td>A:75–76, 86, 91, 98–109, 120; B:84, 147–149</td>
</tr>
<tr>
<td>veins, chlorite, photograph</td>
<td>A:118</td>
</tr>
<tr>
<td>veins, crustiform–banded, photograph</td>
<td>A:98–103</td>
</tr>
<tr>
<td>veins, pyrite–anhydrite, photograph</td>
<td>A:93</td>
</tr>
<tr>
<td>veins, pyrite–quartz</td>
<td></td>
</tr>
<tr>
<td>lithology</td>
<td>A:178</td>
</tr>
<tr>
<td>photograph</td>
<td>A:118–120, 122, 130</td>
</tr>
<tr>
<td>velocity</td>
<td></td>
</tr>
<tr>
<td>vs. absorption</td>
<td>B:348</td>
</tr>
<tr>
<td>See also compressional wave velocity</td>
<td></td>
</tr>
<tr>
<td>shear wave velocity</td>
<td></td>
</tr>
<tr>
<td>vents, hydrothermal fields</td>
<td>A:8</td>
</tr>
<tr>
<td>vesicles, photograph</td>
<td>A:116, 200</td>
</tr>
<tr>
<td>volcanic domes, hydrothermal fields</td>
<td>A:7</td>
</tr>
<tr>
<td>vugs</td>
<td></td>
</tr>
<tr>
<td>hydrothermal alteration</td>
<td>A:108</td>
</tr>
<tr>
<td>photograph</td>
<td>A:92, 100, 121, 158, 192</td>
</tr>
<tr>
<td>wallrock alteration</td>
<td></td>
</tr>
<tr>
<td>hydrothermal fields</td>
<td>A:9–10, 12</td>
</tr>
<tr>
<td>stratigraphy</td>
<td>A:67–68</td>
</tr>
<tr>
<td>water content</td>
<td></td>
</tr>
<tr>
<td>vs. major oxides</td>
<td>B:264</td>
</tr>
<tr>
<td>vs. trace elements</td>
<td>B:265</td>
</tr>
<tr>
<td>weathering, gossan</td>
<td>B:409–410</td>
</tr>
<tr>
<td>white smokers</td>
<td></td>
</tr>
<tr>
<td>geochemical section</td>
<td>B:366</td>
</tr>
<tr>
<td>hydrothermal fields</td>
<td>A:8–10; B:307</td>
</tr>
<tr>
<td>lead isotopes</td>
<td>B:104–109</td>
</tr>
<tr>
<td>major and trace elements</td>
<td>B:52, 57–59</td>
</tr>
<tr>
<td>rare earths in anhydrite</td>
<td>B:152, 158</td>
</tr>
<tr>
<td>sulfur isotopes</td>
<td>B:76–77</td>
</tr>
<tr>
<td>See also black smokers, Kremlin white smoker</td>
<td></td>
</tr>
<tr>
<td>X-ray computed tomography, textures</td>
<td>B:201–210</td>
</tr>
<tr>
<td>X-ray diffraction data</td>
<td></td>
</tr>
<tr>
<td>hydrothermal alteration</td>
<td>A:133–134</td>
</tr>
<tr>
<td>X-ray fluorescence data</td>
<td></td>
</tr>
<tr>
<td>basalts</td>
<td>A:204</td>
</tr>
<tr>
<td>mud</td>
<td>A:163–164</td>
</tr>
<tr>
<td>ytterbium. See lanthanum/ytterbium ratio</td>
<td></td>
</tr>
<tr>
<td>neodymium/ytterbium ratio</td>
<td></td>
</tr>
<tr>
<td>yttrium, vs. zirconium</td>
<td>B:263</td>
</tr>
<tr>
<td>zinc</td>
<td></td>
</tr>
<tr>
<td>basalt</td>
<td>B:215, 217</td>
</tr>
<tr>
<td>clay minerals</td>
<td>B:280, 283</td>
</tr>
<tr>
<td>distribution in massive sulfides</td>
<td>B:405</td>
</tr>
<tr>
<td>element correlations</td>
<td>B:65, 382–384</td>
</tr>
<tr>
<td>enrichment, geochemistry</td>
<td>B:377</td>
</tr>
<tr>
<td>hydrothermal clays</td>
<td>B:217</td>
</tr>
<tr>
<td>hydrothermal fields</td>
<td>A:9–13; B:367, 370–379, 395, 397</td>
</tr>
<tr>
<td>metabasaltic clasts</td>
<td>B:217</td>
</tr>
<tr>
<td>mineral separates</td>
<td>B:30, 33, 36–37, 39, 94</td>
</tr>
<tr>
<td>pyrite</td>
<td>B:12</td>
</tr>
<tr>
<td>sphalerite</td>
<td>B:13</td>
</tr>
<tr>
<td>sulfides and sediments</td>
<td>B:44</td>
</tr>
<tr>
<td>vs. copper</td>
<td>B:398</td>
</tr>
<tr>
<td>vs. depth</td>
<td>A:129, 160, 195; B:53, 57, 59, 61, 374–376</td>
</tr>
<tr>
<td>vs. water content</td>
<td>B:265</td>
</tr>
<tr>
<td>zonation</td>
<td>B:397</td>
</tr>
<tr>
<td>zinc/copper ratio</td>
<td>A:97–98, 158</td>
</tr>
<tr>
<td>vs. depth</td>
<td>A:129</td>
</tr>
<tr>
<td>zinc/iron ratio</td>
<td></td>
</tr>
<tr>
<td>sulfides</td>
<td>A:97–98, 158</td>
</tr>
<tr>
<td>vs. depth</td>
<td>A:129</td>
</tr>
<tr>
<td>zinc sulfides, hydrothermal fields</td>
<td>A:8</td>
</tr>
<tr>
<td>zirconium</td>
<td></td>
</tr>
<tr>
<td>basalts</td>
<td>B:218</td>
</tr>
<tr>
<td>hydrothermal clays</td>
<td>B:218</td>
</tr>
<tr>
<td>mantle</td>
<td>B:225</td>
</tr>
<tr>
<td>metabasaltic clasts</td>
<td>B:218</td>
</tr>
<tr>
<td>mineral separates</td>
<td>B:32</td>
</tr>
<tr>
<td>sulfides and sediments</td>
<td>B:43</td>
</tr>
<tr>
<td>vs. yttrium</td>
<td>B:263</td>
</tr>
<tr>
<td>zonation, hydrothermal alteration</td>
<td>B:11, 395, 397, 412</td>
</tr>
<tr>
<td>Zone 1, neovolcanic zones</td>
<td>A:16–18</td>
</tr>
<tr>
<td>Zone 2, neovolcanic zones</td>
<td>A:16–18</td>
</tr>
<tr>
<td>Zone 3, neovolcanic zones</td>
<td>A:16–18</td>
</tr>
<tr>
<td>Zone 4, neovolcanic zones</td>
<td>A:16–18</td>
</tr>
</tbody>
</table>