INDEX TO VOLUME 169

This index covers both the Initial Reports and Scientific Results portions of Volume 169 of the Proceedings of the Ocean Drilling Program. References to page numbers in the Initial Reports are preceded by “A” with a colon (A:) and to those in the Scientific Results (this volume) by “B” followed by the chapter number with a colon (B1:).

The index was prepared by Earth Systems, under subcontract to the Ocean Drilling Program. The index contains two hierarchies of entries: (1) a main entry, defined as a keyword or concept followed by a reference to the page on which that word or concept appears, and (2) a subentry, defined as an elaboration on the main entry followed by a page reference.

The index covers volume text, figures, and tables but not core-description forms (“barrel sheets”), core photographs, smear-slide data, or thin-section descriptions. Also excluded from the index are bibliographic references, names of individuals, and routine front matter.

The Subject Index follows a standard format. Geographical, geologic, and other terms are referenced only if they are subjects of discussion. A site chapter in the Initial Reports is considered the principal reference for that site and is indicated on the first line of the site’s listing in the index. Such a reference to Site 1035, for example, is given as “Site 1035, A:35–152.”

The Taxonomic Index is an index relating to significant findings and/or substantive discussions, not of species names per se. This index covers three varieties of information: (1) individual genera and species that have been erected or emended formally, (2) biostratigraphic zones, and (3) fossils depicted in illustrations. A taxonomic entry consisting of both genus and species is listed alphabetically by genus and also by species. Biostratigraphic zones are listed alphabetically by genus; zones with letter prefixes are listed under “zones.”

SUBJECT INDEX

A
acoustic images, side-scan, Bent Hill, A:39, 158, 161
actinolite
basalts, A:213
photograph, A:100, 218
photomicrograph, A:100
veins, A:216–217
albite, veins, A:216–217
alkali earths, pore water, A:115, 218, 278
alkali metals, pore water, A:116
alkalinity
bacterial cells, B2:5
pore water, A:218, 279
vs. depth, A:115, 176, 220, 280
vs. magnesium, A:172
alkalis, pore water, A:218, 278
alkanes
gas chromatographs, A:284
See also isoprenoid/alkane ratio
alteration
chlorite, A:81
facies, A:265
geology, A:13
lithologic units, A:52
pillow lava, A:93–94
alteration, carbonate, lithologic units, A:209
alteration, chemical, sediments, A:221
alteration facies, hydrothermal alteration, A:267–268
altered rocks, photograph, A:100
aluminum
immobility, A:99, 101
mass balance, A:98
aluminum oxide
basalts, A:95
vs. depth, A:97
vs. loss on ignition, A:98
See also iron oxide-magnesium oxide-aluminum oxide plot
aluminum oxide/titanium oxide ratio, vs. zirconium/titanium oxide ratio, A:102
ammonium
bacterial cells, B2:8
pore water, A:171–175, 218, 277–281
sediments, B10:19
vs. depth, A:115, 176, 220, 276–278, 280; B2:8, 18
vs. magnesium number, A:118, 172, 178
amphibole
basalts, A:213
lithologic units, A:267
photograph, A:100
photomicrograph, A:100
See also clinoamphibole; hornblende, basalts
amygdules, basalts, A:212–214
anatase, Deep Copper Zone, A:77
anhydrite
alteration zones, A:82–84; B9:5
disseminated sulfides, A:270
dissolution, A:117
hydrothermal alteration, A:84
hydrothermal circulation, A:7–8
lithologic units, A:164–168; B10:15
massive sulfides, A:270
photograph, A:61, 75, 80–81, 85, 108, 166
pore water, A:115
rubble, A:168
sulfide banded/impregnated sandstone, A:76
sulfide mineralization, A:271
photomicrograph, A:215
thermal conductivity, B8:8–10
transition to sediment, A:210–211
velocity, B7:7–8
whole-rock geochemistry, A:216
basalts, altered
enrichment/depletion diagram, A:99
isocons, A:99
mass balance, A:99–101
basalts, diabasic, photomicrograph, A:215
basalts, microcrystalline, photograph, A:272
basalts, microgabbroic, photomicrograph, A:215
basalts, olivine-phyric, photomicrograph, A:271
basalts, plagioclase-clinopyroxene-olivine
tetraplography, A:271
photomicrograph, A:271
basalts, plagioclase-clinopyroxene-phyric, petrology, A:212–214
basalts, plagioclase-phyric
petrology, A:272
photomicrograph, A:271
basalts, porphyritic, mass balance, A:96, 98–99
basalts, pyroxene-phyric, photograph, A:92
base metals, leaching, A:102
basement
interaction with sediments, A:221
mass balance, A:99
bathymetry
Central Hill, A:262
drill intersections, A:271
geology, A:13
Middle Valley, A:38, 157
Site 1037, A:206
bedding, structural data, A:107–112
Bent Hill
comparison with Dead Dog, A:160–162
diagenesis, B4:1–15
hydrothermal circulation, A:9–11; B10:31
lithologic units, A:46–55
massive sulfides, B10:7–12
permeability and electrical and thermal properties,
B8:1–42
site description, A:35–152; B10:3–4, 35
sulfide mineral chemistry and petrography, B5:1–34
vein networks, B9:1–25
Bent Hill Massive Sulfide, hydrothermal circulation,
benz[a]anthracene, gas chromatographs, A:286
benzene
sediments, A:282
vs. depth, A:285
See also ethane/benzene ratio
BHMS. See Bent Hill Massive Sulfide
biomass, microbial, sediments, B3:1–19
biostratigraphy
Site 1035, A:38–39, 57–58
Site 1036, A:169
Site 1037, A:211–212
Site 1038, A:268
upper Quaternary, A:38–39
biotite, basalts, A:213
bioturbation
Lithofacies A, A:54–56
photograph, A:61–62
sediment transition to basalt, A:210–211

bitumens
gas chromatographs, A:120, 179–182, 224, 284, 286
geochemistry, A:119–120

black soot
fluorescence, A:119
sediments, A:178–179, 222–223, 284

Blanco Fracture Zone, geology, A:11–13

blebs
chalcopyrite, B9:5
lithologic units, A:208
photograph, A:74, 77

boron
pore water, A:171–175, 218–219, 279
sediments, B10:19
vs. depth, A:116, 177, 220, 276–278, 280, 282
vs. magnesium, A:118, 172, 174, 178
vs. strontium, A:114

calcium oxide
basalts, A:95
clay minerals, B6:6, 23
vs. depth, A:97
vs. loss on ignition, A:98

caliper logs, vs. depth, A:132, 230

carbon
bacterial cells, B2:6, 8
sediments, A:181–182
weight percentages, A:122–123, 226, 288–289

carbon, total
sediments, A:120–121, 223, 287–288
vs. depth, A:124, 185, 227, 289–290
weight percentages, A:184, 226, 288–289

carbon, total inorganic
sediments, A:121, 181–182
vs. depth, A:124, 185, 227, 289–290
weight percentages, A:184, 226, 288–289

carbon/nitrogen ratio
sediments, A:181–182
vs. depth, A:185, 290
weight percentages, A:122–123, 184, 226

carbon/sulfur ratio, weight percentages, A:122–123, 184, 226

carbon dioxide
sediments, A:117, 119, 178, 222, 282
vs. depth, A:223, 284–285

carbon number maximum, bitumens, A:119–120, 179–181

carbon preference index
bitumens, A:119–120
vs. depth, A:121, 183, 225, 287

carbonate nodules, pitted, photograph, A:166

carbonates
alteration zones, A:82
See also calcimicrite; calcite; dolomicrite; dolomite

cementation
lithologic units, A:209
sediments, A:219, 221

cements, lithologic units, A:166–167

Central Hill
hydrothermal alteration, A:259; B10:5–6, 20–21, 34
hydrothermal deposits, A:257–258
hydrothermal fluids, A:258–259
hydrothermal site, B6:1–24
site description, A:253–298

sulfide mineralization, A:259

C
calcimicrite, lithologic units, A:164
calcite
alteration zones, A:82
basalts, A:213, 271
Deep Copper Zone, A:77
lithologic units, A:167
photograph, A:272
sediments, A:219, 221
veins, A:216–217
calcite, biogenic, lithologic units, A:164
calcite crystals, lithologic units, A:208
calcium
clay mineralogy, B6:7, 9
hydrothermal component, A:281

mass balance, A:98
sediments, B10:19
vs. chloride, A:279
vs. depth, A:112, 114–117, 176, 220, 276–278, 280, 282
vs. magnesium, A:118, 172, 174, 178
vs. strontium, A:114
tectonic activity, A:256–257
volcanic activity, A:257

cerium, mass balance, A:98
cesium, clay mineralogy, B6:7, 9
chalcopyrite
backscattered electron image, B9:5, 19
hydrothermal circulation, A:11
massive sulfides, A:64–67
photograph, A:73–76, 80–81, 93; B9:5, 20
photomicrograph, A:68, 79; B5:16–18
precipitation within sedimentary pore spaces, B9:6, 22
sulfide mineralization, A:71
veins, A:75–76; B9:4–9, 16, 20
vs. depth, B5:15
chalcopyrite, massive fine-grained, photograph, A:68
chalcopyrite disease, massive sulfides, B5:6
chilled margins
enrichment/depletion diagram, A:99
isocons, A:99
photograph, A:272
photomicrograph, A:95

chlorite
bacterial cells, B2:7
sediments, B10:19
vs. calcium, A:279
vs. depth, A:114–116, 176, 220, 276–278, 280; B1:7–9; B2:8, 18
vs. magnesium, A:118, 172, 178
vs. potassium, A:279
vs. sodium, A:279
See also bromide/chloride ratio; sodium/chloride ratio

chloride
alteration, A:81, 86
alteration zones, A:82–84
basalts, A:213, 272
Deep Copper Zone, A:77–78
disseminated sulfides, A:270
geochemistry, B6:5–6, 14, 17
iron oxide-magnesium oxide-aluminum oxide plot, B6:18
lithologic units, A:267
photograph, A:92–93, 106–107, 272
photomicrograph, A:94–95, 271
pillow lava, A:93–94
rare earths, B6:20
sulfide mineralization, A:69
trace elements, B6:19
veins, A:75–76, 216–217
vs. depth, B6:14–17
chlorite, fibrous, photograph, A:82
chlorite, fibrous magnesium-rich, photomicrograph, A:86
chlorite, magnesium-rich
hydrothermal alteration, A:259
photograph, A:80
chlorite/smectite mixed layer
geochemistry, B6:7
vs. depth, B6:15, 17

chloritization
alteration zones, A:82–84
clay mineralogy, B6:7
enrichment/depletion diagram, A:99
geochemistry, A:99
photograph, A:92–93, 272
photomicrograph, A:94–95
sills, A:91–93
sulfide banded/impregnated sandstone, A:76
veins, A:75–76

Chondrites
Lithofacies A, A:56
photograph, A:62

Chron C1n
alteration, A:137–139
sediments, A:201, 232
Circulation Obviation Retrofit Kit, hydrothermal circulation, A:13–14, 192–193
clasts
lithologic units, A:167–168
structures, A:169
sulfides, A:67–68
clasts, mud, photograph, A:60, 65
clasts, pyrrhotite
hydrothermal alteration, A:267–268
photograph, A:68
clasts, sulfide, photograph, A:67
clay
clastic sulfides, A:59
hydrothermal circulation, A:11
lithologic units, A:167–168, 208–209
clay, blue-green, alteration zones, A:81–82
clay, hemipelagic, lithologic units, A:263
clay, silty
Lithofacies A, A:54–56
lithologic units, A:52, 163–167
photograph, A:57, 60, 65–66, 211
clay mineralogy
sediments, B6:22
vs. electrical impedance, B8:6–7, 28
clay minerals
basalts, A:212–214
Lithofacies A, A:54–56
mineralogy and geochemistry, B6:1–24
photograph, A:70
pillow lava, A:94
See also chlorite; illite; smectite
claystone
clastic sulfides, A:59; B10:13
lithologic units, A:165, 265
claystone, calcareous silty, lithologic units, A:209–210, 266
claystone, hemipelagic, photograph, A:66
claystone, indurated, photograph, A:85
claystone, silty, photograph, A:80
climbing ripples, photograph, A:62
clinopyroxene, sulfide banded/impregnated sandstone, A:76
clinopyroxene
basalts, A:271
black crystals, A:212–214
mass balance, A:96, 98–99
photograph, A:92
sills, A:91–93
clinopyroxene, ophitic, photomicrograph, A:215
clinopyroxene, subophitic, photomicrograph, A:94, 271
Coiling Direction Zone 1, Site 1035, A:39
colloform banding, photomicrograph, A:72
Columbia River, sediments, A:219
compressional wave velocity
sediments, A:130, 227, 289–292
vs. depth, A:130, 133, 229; B7:10–12
See also velocity
concretions
alteration zones, A:82
See also anhydrite concretions; nodules
concretions, anhydrite
lithologic units, A:52
photograph, A:57
concretions, carbonate
hydrothermal alteration, A:84
lithologic units, A:52, 166–167
conductivity
relationship between sample and fluid conductivities,
B8:29
vs. formation factor, B8:6–7, 28
vs. permeability, B8:3–4, 23
vs. thermal conductivity, B8:8–9, 31
density
sediments, A:125, 187, 190, 229, 291–294
density, grain
sediments, A:127
vs. depth, A:128, 188, 228, 291–294; B7:10–13
vs. formation factor, B8:6–7, 28
vs. permeability, B8:3–4, 23
vs. thermal conductivity, B8:8–9, 31
density logs
vs. depth, A:132–133, 231
See also gamma ray-density-porosity logs
desiccation, exfoliative, photograph, A:61
diabase, hydrothermal circulation, A:10
diabase, ophitic, mass balance, A:96, 98–99
diagenesis
photograph, A:55
pore water, A:175
sediments, A:179–181, 219, 221
See also alteration; authigenesis; catagenesis; cementation; recrystallization
diatoms, lithologic units, A:208
dissolution
anhydrite, A:117
hydrothermal alteration, A:267–268
lithologic units, A:52
pore water, A:115
dolomicrite, photograph, A:55
dolomicrite, authigenic, lithologic units, A:164
dolomite
alteration zones, A:82
lithologic units, A:164, 209; B10:15
sulfide mineralization, A:70
downhole measurements
Site 1035, A:130–134
Site 1036, A:188–196
Site 1037, A:227–231
Site 1038, A:292–293

E

electrical impedance. See formation factor
epidote
alteration zones, A:85
Deep Copper Zone, A:77
geochemistry, A:100–101
photograph, A:100
photomicrograph, A:95
veins, A:76

D
Dead Dog Mound
epidote, pistasitic, photomicrograph, A:100
erosion, lithofacies, A:57
Escanaba Trough
 bathymetry, B10:3
 comparison with Middle Valley, B10:23–24
 geochemistry, B1:1–16
 hydrothermal circulation, A:7–16; B10:33
 hydrothermal site, B6:1–24
 physical properties, B7:1–19
 site description, A:205–251, 253–298; B10:1–39
ethane
 sediments, A:117, 119
 vs. depth, A:223, 284–285
 See also methane/ethane ratio
ethane/benzene ratio, vs. depth, A:285
Eubacteria, community composition, B3:9
exfoliative desiccation, basalts, A:213
exhalations, hydrothermal circulation, A:7–9
exsolution, photomicrograph, A:68
Facies a, hydrothermal alteration, A:267
Facies c, hydrothermal alteration, A:267
Facies d, hydrothermal alteration, A:267
fatty acids
 active sulfide flange, B3:16
 compared with other sediments, B3:17
 microbial biomass, B3:1–19
 mole percentages, B3:19
fault scarps, slumps, B10:21–22
fault zones, formation microscanner imagery, A:134
faults
 structural data, A:107–112
 tectonics, A:256–257
faults, normal, hydrothermal circulation, A:9–10
faults, reverse, photograph, A:81
feeder zones
 hydrothermal circulation, A:73–78
 massive sulfides, A:73–78, 270–271; B9:4–5; B10:7, 10–11, 36
feldspar
 geochemistry, B6:5–6, 14, 17
 vs. depth, B6:14–17
fluid channels
 photograph, A:72
 sulfide mineralization, A:71
fluid chemistry, pore water, B1:1–16
fluid flow
 alteration zones, A:87
 permeability, B8:10–12
 structural data, A:111
 structures, B9:6–9
fluid inclusions, hydrothermal alteration, A:39
fluorescence, black soot, A:119
fluoride, vs. depth, B1:10
foraminifers
 lithologic units, A:208
 preservation, A:268
 zoning, A:212
foraminifers, planktonic
geochemistry
 basalt, A:96
 clay minerals, B6:1–24
 igneous rocks, A:95–102
 pore water, B1:1–16
 sedimentary rocks, A:101
 sediments, B10:19–20
 Site 1037, A:215–216
 sulfides, A:87–89
geochemistry, inorganic
 Site 1035, A:112–117
 Site 1036, A:169–175
 Site 1037, A:217–221
stratigraphy, A:268
upper Quaternary, A:38–39
vs. depth, A:63
formation factor
 lithologic units, B8:5–8
 vs. conductivity, B8:42
 vs. frequency, B8:5–6, 27
 vs. grain density, B8:6–7, 28
 vs. permeability, B8:26
 vs. pressure, B8:5, 25, 36–39
formation microscanner imagery
 logs, B8:18–19
 vs. depth, A:133–136
fractionation, basalts, A:215–216
fractures
 basalts, A:213–214
 formation microscanner imagery, A:134–135
 photograph, A:61; B9:17
 photomicrograph, A:71
 sills, A:90–94
 structural data, A:272–273
 structures, A:216–217
 sulfide deposition, B9:6–9
 sulfides, A:39
frequency, vs. formation factor, B8:5–6, 27
G
galena
 mineralization, A:69
 photomicrograph, B5:19
 veins, A:75
gamma ray-density-porosity logs
 Site 1035, A:147–149
 Site 1037, A:244–247
gamma ray-resistivity-sonic logs
 Site 1035, A:144–146
 Site 1037, A:237–240
gamma rays
 correlation, A:128–130
 vs. depth, A:125, 127, 129, 187, 190, 229, 291–294
gangue minerals, massive sulfides, A:270
 gases, composition, A:118, 179, 222, 283–284
geochemistry
 basalt, A:96
 clay minerals, B6:1–24
 igneous rocks, A:95–102
 pore water, B1:1–16
 sedimentary rocks, A:101
 sediments, B10:19–20
 Site 1037, A:215–216
 sulfides, A:87–89
geochemistry, inorganic
 Site 1035, A:112–117
 Site 1036, A:169–175
 Site 1037, A:217–221
Site 1038, A:273–281
geochemistry, organic
Site 1035, A:117–123
Site 1036, A:175, 178–183
Site 1037, A:221–225
Site 1038, A:281–288
geochemistry, whole-rock, basalts, A:95–96, 216
geochemistry, whole-rock, basalts, A:95–96, 216
geochemistry, inorganic (continued) • ilmenite, bedding planes
geochemistry, inorganic (continued) • ilmenite, bedding planes
hydrocarbons, aliphatic, sediments, A:284–287
hydrocarbons, polynuclear aromatic, sediments, A:284–287
hydrocarbons, sediments, A:117, 119, 175, 178, 221–222, 281–282
hydrocarbons, thermogenic, sediments, A:287–289
hydrogen sulfide, sediments, A:117, 119, 178
hydrology, alteration zones, A:87
hydrothermal alteration
basalts, A:213–214
boundaries, B10:15
clay mineralogy, B6:7–9
fractures, A:39
lithofacies, A:267–268
magnesium metasomatism, A:259
minerals, A:83
photograph, A:70–75, 77–82, 85–86
pore water, A:279
sediments, A:78–87
sulfides, A:78–87
veins, A:75
zones, A:78–87
See also alteration; chimneys; feeder zones; metasomatism
hydrothermal alteration, anhydrite, zones, A:82
hydrothermal alteration, blue-green clay, zones, A:81–82
hydrothermal alteration, carbonate, zones, A:82
hydrothermal alteration, chlorite, zones, A:82–84
hydrothermal alteration, epidote, zones, A:85
hydrothermal alteration, pyrite, zones, A:85–86
hydrothermal circulation
Middle Valley, A:7–16
models, B9:8, 25
hydrothermal component
chemical composition, A:281
near sulfide outcrops, A:281
hydrothermal deposits, sulfides, A:257–258
hydrothermal fluids
composition, A:113, 173
dissolution, A:117
mineralization, A:258–259
pore water, A:175
hydrothermal systems, sulfides, A:41–42, 52–53
hyperthermophiles
bacterial cells, B2:5–6
vs. depth, B2:14

halides, pore water, B1:1–4
halite, rubble, A:168
halos, photograph, A:88, 92, 218
heat flow, geology, A:12, 14
helium isotopes, hydrothermal alteration, A:39
hematite
hydrothermal circulation, A:11
photomicrograph, A:79
sulfide mineralization, A:70
veins, A:75–76
vs. depth, B5:15
hemipelagites
lithologic units, A:166–168, 209, 265–266
photograph, A:211
hexane, sediments, A:179–181, 222–223, 225
Holocene
lithologic units, A:163–169, 207–208, 263, 265
sedimentation rates, A:268
Holocene/Pleistocene boundary
biostratigraphy, A:58
depth, A:63, 170
hornblende, basalts, A:213
hornblende crystals, structures, A:216–217
hyaloclastite
photograph, A:93
pillow lava, A:93–94
structural data, A:107–112
igneous activity, geology, A:12; B10:22
igneous petrology
Site 1035, A:89–102
Site 1037, A:212–214
Site 1038, A:271–272
igneous rocks
grain size, A:212
petrography, A:90–94
vs. depth, A:91
illite
geochemistry, B6:5–6, 14, 17
vs. depth, B6:14–17
ilmenite, bedding planes, A:90
impregnations, structural data, A:107–112
inclusions
massive sulfides, B5:6; 9:5
mineralization, A:69
photomicrograph, B5:19
indenopyrene, gas chromatographs, A:286
index properties
records, A:227
sediments, B7:1–19; B8:34–35
Site 1035, A:125–128
Site 1036, A:187
Site 1038, A:290
vs. depth, A:128, 187; B7:10
induration
structural data, A:112
structures, A:169
interglacials. See glacial/interglacial cycles; Stage 5e interglacial assemblage zone
iodide
pore water, B1:3
vs. depth, B1:7–9
iron. See copper-iron-zinc plots
iron monosulfide, lithologic units, A:209
iron oxide
basalts, A:95, 216
clay minerals, B6:6, 23
vs. depth, A:97
vs. loss on ignition, A:98
iron oxide-magnesium oxide-aluminum oxide plot, chlorite, B6:18
iron oxyhydroxides, hydrothermal circulation, A:10
isocubanite
clastic sulfides, A:59–61
hydrothermal circulation, A:11
massive sulfides, A:66, 269–270; B5:5–6
photograph, A:73–75, 88
photomicrograph, A:68, 79, 86; B5:16
veins, A:75–76; B9:4–9, 16
vs. depth, B5:15
isoprenoid/alkane ratio, bitumens, A:120
isoprenoids, sediments, A:223
isotopes, apparent age, B4:1–15

J
Juan de Fuca Ridge
bacterial cells, B2:1–18
microbial biomass, B3:1–19
permeability and electrical and thermal properties, B8:1–42
Juan de Fuca Ridge N, physical properties, B7:1–19

K
kerogen, sediments, A:178–179
Klamath Mountains, sediments, A:219

L
laccoliths, mounds, A:256
laminations
lithologic units, A:166–167, 208–210, 266
photograph, A:58, 211
structural data, A:107–112
See also convolute laminations; cross laminations
lanthanum, clay minerals, B6:6, 24
lava flows
basalts, A:212–214
lithologic units, A:44–53
mass balance, A:99
lava tubes, basalt pillows, A:257
leaching, base metals, A:102
lead
hydrothermal alteration, A:39
sulfides, A:88–89
vs. depth, A:89
See also copper-lead-zinc plots
lead isotopes, hydrothermal circulation, A:9
lithium
chemical alteration, A:221; B10:19
pore water, A:116, 171–175, 218, 274–281
vs. depth, A:116, 177, 220, 280, 282
vs. magnesium, A:118, 172, 178
lithofacies
alteration, A:265
distribution, A:59
hydrothermal alteration, A:267–268
massive sulfides, A:67
sulfides, A:67–71
turbidites, A:53
Lithofacies A
distribution, A:59
mudstone and siltstone, A:54–56
Lithofacies B
distribution, A:59
siltstone and sandstone, A:56
lithologic units
Central Hill, A:267
Site 1035, A:44–57
Site 1036, A:163–169
Site 1037, A:207–210
Site 1038, A:263–267
Unit I, A:44–53, 163–165, 207–208, 263
Unit II, A:44–53, 166–167, 208, 263, 265
Unit III, A:44–53, 59–61, 208, 265
Unit IV, A:167–168, 208–209, 265
Unit V, A:44–53, 61, 64, 66–72, 209, 265
Unit VI, A:44–53, 73–78, 209, 265, 266–267
Unit VII, A:209–210, 266
Unit VIII, A:210, 266–267
lithostratigraphy
Site 1035, A:44–51
Site 1036, A:163–169
Site 1037, A:207–211
Site 1038, A:263–268
lithostructural units, structural data, A:107–112
lobate structure, basalts, A:272
Logging Unit 1
sediments, A:131
well-logging, A:228
Logging Unit 2, sediments, A:131, 228, 230
Logging Unit 3, sediments, A:131, 230
Logging Unit 4, sediments, A:131–132, 230
Logging Unit 5, sediments, A:132–133, 230
Logging Unit 6, sediments, A:230–231
Logging Unit 7, sediments, A:231
logging units, sediments, A:131–133
loss on ignition
basalts, A:95–96, 215–216
vs. depth, A:97
vs. magnesium number, A:98
vs. major oxides, A:98

M

magnesium
chemical alteration, A:221
clay mineralogy, B6:9
hydrothermal circulation, A:9
hydrothermal component, A:281
mass balance, A:99
vs. depth, A:112, 114–116, 176, 220, 276–278, 280, 282; B2:8, 18
vs. elements, A:118
vs. elements and compounds, A:172–173, 178
magnesium number
basalts, A:95–96, 215–216
vs. depth, A:97
vs. loss on ignition, A:98
vs. titanium oxide, A:217
magnesium oxide
basalts, A:95, 216
clay minerals, B6:6, 23
vs. depth, A:97
vs. loss on ignition, A:98
See also iron oxide-magnesium oxide-aluminum oxide
plot
magnetic anomalies, hydrothermal circulation, A:10–11
magnetic declination, vs. depth, A:298
magnetic inclination, vs. depth, A:138–139, 200, 235, 298
magnetic intensity
sediments, A:294–295
vs. depth, A:138–139, 200, 235, 298
magnetic susceptibility
correlation, A:128–130
vs. depth, A:126, 129, 138, 189–190, 229, 291–294
magnetic susceptibility, low-field, sediments, A:136
magnetic susceptibility anisotropy, sediments, A:136
magnetic susceptibility logs, vs. depth, A:266
magnetite
hydrothermal circulation, A:11
massive sulfides, A:66; B5:5–6
photograph, A:73, 75
photomicrograph, A:271
veins, A:75–76
vs. depth, Site 856, B5:15
See also sphalerite-pyrrhotite-pyrite-magnetite
magnetite, heterogenous, sulfides, A:68–69
magnetostatigraphy, alteration, A:137–139
major elements
basalts, A:95–96
clay mineralogy, B6:23
Mancos Shale, fatty acids, B3:17
manganese
mass balance, A:98
pore water, B1:2, 4
vs. depth, B1:13
manganese oxide
basalts, A:95
vs. depth, A:97
maps, hydrothermal circulation, A:16
marcasite
clastic sulfides, A:59–61
hydrothermal circulation, A:11
massive sulfides, A:269–270
mineralization, A:69
photomicrograph, A:72
veins, A:75
vs. depth, B5:15
See also pyrite-marcasite
marker horizons, photograph, A:165
mass balance, alteration, A:96, 98–101
maturation
bitumens, A:119–120
sediments, A:222–223, 225
Mendocino Fracture Zone, geology, A:11–13
mesophiles
bacterial cells, B2:5–6
vs. depth, B2:14
mesostasis
basalts, A:213–214, 271
photomicrograph, A:94, 271
metals
mineralization, A:88
sources, A:89
zoning, A:89
See also alkali metals; base metals
metasomatism. See hydrothermal alteration
metasomatism, magnesium, hydrothermal alteration, A:259
methane
bacterial cells, B2:8
vs. depth, A:119, 223, 284–285
methane/ethane ratio
sediments, A:178, 221–222, 281–282
vs. depth, A:223, 284–285
methyl cyclopentane, gas chromatographs, A:284
methylnaphthalene, gas chromatographs, A:286
methylphenanthrene, gas chromatographs, A:286
mica, lithologic units, A:267
microbes, sediments, B3:1–19
microbiology
Site 1035, A:123–125
Site 1036, A:183–184, 186
Site 1037, A:225
Site 1038, A:288–289
microlites, sills, A:92
microorganisms
 community composition, B3:9–12
 microbial biomass, B3:1–19
 sediments, A:123–125, 183–184, 186, 225, 288–289
 See also bacterial cells; Eubacteria
microphenocrysts, photomicrograph, A:94
Middle Valley
 bacterial profiles, B2:1–18
 bathymetry, B10:3, 30
 comparison with Escanaba Trough, A:7–16; B10:23–24
 hydrothermal field, B10:3, 39
 massive sulfides, B10:7–17
 microbial biomass, B3:1–19
 site description, A:35–203; B10:1–39
mineral chemistry, massive sulfides, B5:1–34
mineralization
 stratigraphy, A:46–51
 sulfides, A:58–89, 259; B10:10–11
mineralogy
 clay minerals, B6:1–24
 hydrothermal alteration, A:83
 massive sulfides, A:269–270
molds
 alteration zones, A:82
 lithologic units, A:52
 photograph, A:80
mounds, hydrothermal circulation, A:8–9
mud
 lithologic units, A:208–209
 photograph, A:57
mud, hemipelagic, lithologic units, A:208–209, 263, 265
mud clasts
 clastic sulfides, A:59
 photograph, A:60
mudstone
 Lithofacies A, A:54–56
 lithologic units, A:265
 photograph, A:61, 77, 100
 sills, A:90–93
muscovite, Deep Copper Zone, A:77

N
n-alkanes
 bitumens, A:119–120
 gas chromatographs, A:120, 179–182, 224, 286
 sediments, A:178–181, 222–223, 225
n-alkanoic acids, bitumens, A:181
n-alkanols, bitumens, A:181
naphthalane, gas chromatographs, A:286
neodymium/yttrium ratio, clay minerals, B6:6, 24
nickel, mass balance, A:98
niobium
 immobility, A:99
 mass balance, A:98
 niobium-zirconium-yttrium plots, basalts, A:216
nitrogen
 sediments, A:117, 119
 weight percentages, A:122–123

See also carbon/nitrogen ratio
nitrten, total
 vs. depth, A:124, 185, 227, 289–290
 weight percentages, A:184, 226, 288–289
nODULES
 alteration zones, A:82; B10:9
 lithologic units, A:166–167
 See also anhydrite nodules; carbonate nodules; concretions
 nodules, anhydrite
 lithologic units, A:164–165
 photograph, A:57
 nodules, carbonate
 lithologic units, A:164
 photograph, A:166
 nutrient elements, pore water, A:115, 218, 278–279

O
ODP Mound
 hydrothermal circulation, A:11
 massive sulfides, A:61, 64; B10:12–14
 sulfate mineral chemistry and petrography, B5:1–34
olivine
 basalts, A:213–214, 271
 photomicrograph, A:215, 271
Ore Drilling Program Mound. See ODP Mound
organic matter
 lithologic units, A:208
 sediments, A:121, 183, 225, 287; B10:19–20, 23
overgrowths, photomicrograph, A:79
oxygen, mass balance, A:98
oxygen isotopes, clay minerals, B6:6, 8–9

P
Pacific Ocean NE, spreading centers, A:7–16
paleomagnetism
 Site 1035, A:134–139
 Site 1036, A:200–201
 Site 1037, A:231–233
 Site 1038, A:293–295
paleoveins, photograph, A:72
Paquate Sandstone, fatty acids, B3:17
paragenesis, photomicrograph, B5:18
permeability
 anisotropy, B8:4, 24
 fluid flow, B8:10–12
 lithologic units, B8:3–5
 vs. depth, B8:33
 vs. formation factor, B8:26
 vs. grain density, B8:3–4, 23
 vs. porosity, B8:3–4, 22
 vs. pressure, B8:3–4, 21, 25, 36–39
petrography
 composition, A:94–95
 igneous rocks, A:90–94
 massive sulfides, B5:1–34
petroleum, hydrothermal, sediments, A:179–181, 284–287
pH
 bacterial cells, B2:8
 vs. depth, A:176; B2:8, 18
 vs. magnesium, A:172
phenanthrene, gas chromatographs, A:286
phenocrysts
 photograph, A:92, 107
 photomicrograph, A:271
 pillow lava, A:94
 sills, A:92
 See also microphenocrysts
phosphate
 pore water, B1:2, 4
 vs. depth, B1:11
phospholipids, microbial biomass, B3:1–19
phosphorus
 immobility, A:99
 mass balance, A:98
phosphorus oxide
 basalts, A:95
 clay minerals, B6:6, 23
 vs. depth, A:97
phylosilicates, hydrothermal circulation, A:7–8
physical properties
 sediments, B7:1–19
 shore-based experiments, B7:14
 Site 1035, A:125–130
 Site 1036, A:186–188
 Site 1037, A:225–227
 Site 1038, A:289–292
phytane
 gas chromatographs, A:120, 179–182, 224, 286
 See also pristane/phytane ratio
Piceance Basin, fatty acids, B3:16
pillow basalts
 formation microscanner imagery, A:136
 isocons, A:99
 petrology, A:93–94
 structure, A:272
plagioclase
 basalts, A:271
 geochemistry, A:100–101
 mass balance, A:96, 98–99
 phenocrysts, A:212–214
 photograph, A:92, 100
 photomicrograph, A:94
 pillow lava, A:93–94
 sills, A:92
plagioclase, acicular, photomicrograph, A:271
plagioclase, glomerocrystic, photomicrograph, A:215
plagioclase, zoned, photomicrograph, A:271
Pleistocene
 geology, A:12
 lithologic units, A:208–210, 265–267
 See also Holocene/Pleistocene boundary
Pleistocene, upper, lithologic units, A:163–167
pore pressure
 Site 1036, A:196–200; B10:16–17
 venting, A:198–199
pore water
 basalts, A:279, 281
 hydrothermal alteration, A:279
 sand, A:279
porosity
 sediments, A:126; B7:4–6
 vs. depth, A:128, 187, 228, 291, 293–294; B7:10–13
 vs. permeability, B8:3–4, 22
 vs. thermal conductivity, B8:31
porosity logs
 vs. depth, A:132–133, 231
 See also gamma ray-density-porosity logs
potassium
 basalts, A:215–216
 clay mineralogy, B6:7, 9
 hydrothermal component, A:281
 mass balance, A:98
 pore water, A:116, 171–175, 218, 274–281
 sediments, B10:19
 vs. chloride, A:279
 vs. depth, A:116, 177, 220, 276–278, 280
 vs. magnesium, A:118, 172–173, 178
 potassium logs, vs. depth, A:132, 231
potassium oxide
 basalts, A:95
 vs. depth, A:97
 preservation, foraminifers, A:268
pressure
 fluid flow, B8:10–12
 vs. formation factor, B8:5, 25, 36–39
 vs. permeability, B8:3–4, 21, 25, 36–39
 vs. resistivity, B8:36–39
pristane, gas chromatographs, A:120, 180, 224, 286
pristane/phytane ratio
 vs. depth, A:183, 225
propane, sediments, A:117, 119
protactinium-231/uranium-235 ratio
 geochronology, B4:1–15
 massive sulfides, B4:14–15
 vs. thorium-230/uranium-234 ratio, B4:10, 12
protoliths, photomicrograph, A:100
pseudomorphs
 geochemistry, A:100–101
 photograph, A:92, 100
 photomicrograph, A:79
 sills, A:92
pyrene, gas chromatographs, A:286
pyrite
 alteration zones, A:85–86; B10:13–14
 basalts, A:272
 clastic sulfides, A:59–61
 Deep Copper Zone, A:77
 disseminated sulfides, A:270
 hydrothermal circulation, A:11
 lithologic units, A:165–168
 massive sulfides, A:64–67, 269–270; B5:5–6
 photograph, A:69, 73, 80–81, 166, 272
 photomicrograph, A:71–72; B5:18
 sulfide banded/impregnated sandstone, A:76
 sulfide banding, B9:6
pyrite (continued) • sea-level changes, geology

veins, A:75–76

vs. depth, B:5:15

See also pyrrhotite-pyrite; sphalerite-pyrrhotite-pyrite-magnetite

pyrite, framoidal, lithologic units, A:166–167

pyrite, heterogenous, sulfides, A:68–69

pyrite, neoblastic

photograph, A:70

sulfide mineralization, A:70

pyrite, poikiloblastic, sulfide mineralization, A:70

pyrite, vuggy, photograph, A:71, 270

pyrite-marcasite, sulfide mineralization, A:71

pyrite veins, photograph, A:68, 105

pyroxene

geochemistry, B:6:5–6, 14, 17

photograph, A:92, 107

vs. depth, B:6:14–17

See also clinopyroxene

pyrrhotite

backscattered electron image, B:9:5, 17

basalts, A:272

clastic sulfides, A:59–61

Deep Copper Zone, A:77

hydrothermal alteration, A:267–268

hydrothermal circulation, A:11

lithologic units, A:165, 168

massive sulfides, A:64–67, 269–270; B:5:5–6; B:10:13–14

photograph, A:69, 73–76, 80–81, 100, 110

photomicrograph, A:71, 79; B:5:18–19

replacement along pyrite grain boundaries, B:9:6, 23

sulfide banded/impregnated sandstone, A:76

veins, A:75–76; B:9:4–9, 16

vs. depth, B:5:15

See also sphalerite-pyrrhotite-pyrite-magnetite

pyrrhotite, banded, photograph, A:68

pyrrhotite, fibrous, photograph, A:270

pyrrhotite, fine-grained homogeneous massive, sulfides, A:67–68

pyrrhotite, heterogenous, sulfides, A:68–69

pyrrhotite, hexagonal, photomicrograph, A:66

pyrrhotite, massive fine-grained, photograph, A:68, 105

pyrrhotite-pyrite, mineralization, A:68–69

pyrrhotite veins, photograph, A:109

Q

quartz

Deep Copper Zone, A:77–78

geochemistry, B:6:5–6, 14, 17

lithologic units, A:267

massive sulfides, A:270

photograph, A:82

photomicrograph, A:79, 95

sulfide mineralization, A:70

veins, A:75; B:10:9

vs. depth, B:6:14–17

quartz, euhedral, alteration zones, B:9:5

Quaternary, lithologic units, A:51–53

Quaternary, upper, biostratigraphy, A:38–39

quench textures, photomicrograph, A:94

R

radiolarians, lithologic units, A:208

rare earths

chlorite, B:6:20

clay minerals, B:6:6, 8–9, 24

recrystallization

photograph, A:100

photomicrograph, A:100

sediment transition to basalt, A:210–211

sulfide mineralization, A:71; B:10:8

remanent magnetization, isothermal acquisition curves, A:139

sediments, A:136–137

vs. depth, A:138

remanent magnetization, natural, sediments, A:136, 201, 232

remanent magnetization, natural/isothermal remanent magnetization ratio, vs. depth, A:138

resistivity

measurement, B:8:7–8, 30

pressure, B:8:36–39

vs. sample and fluid conductivity, B:8:42

See also conductivity; electrical impedance

resistivity logs

vs. depth, A:132, 230–231

See also gamma ray-resistivity-sonic logs

Rhizocorallium?

Lithofacies B, A:56

photograph, A:62

rifts, geology, A:12

ripple marks. See climbing ripples

rock magnetism

records, A:138

sediments, A:134–139

rubble

basalts, A:272

lithologic units, A:164, 168

photograph, A:168

sediments transition to basalt, A:210–211

rubidium

basalts, A:95, 215–216

clay mineralogy, B:6:8

rutile

Deep Copper Zone, A:77

veins, A:75

S

sand

lithologic units, A:166–167, 208–210

photograph, A:60, 62, 65

sand, turbiditic, lithologic units, A:52

sandstone

Lithofacies B, A:56

lithologic units, A:210

photograph, A:58, 61, 73–74, 77, 80, 82, 111; B:9:5–6, 20–21; B:10:11, 38

sandstone, silicified, disseminated sulfides, A:270

sandstone, sulfide banded/impregnated, sulfides, A:76

sea-level changes, geology, A:12
sedimentary rocks
geochemistry, A:101
vs. depth, A:91
sedimentary sources, pore water, A:219
sedimentary structures
sediment transition to basalt, A:210–211
sills, A:90–93
sedimentation rates
Holocene, A:268
lithologic units, A:164, 209, 212
sedimentology
lithologic units, A:51–53
Site 1035, A:51–57
Site 1037, A:207–211; B10:18–22
Site 1038, A:263–268; B10:21–22
sediments
bacterial profiles, B2:1–18
clay mineralogy, B6:22
density and porosity, B7:5–6
geochemistry, A:164
hydrothermal alteration, A:78–87
hydrothermal circulation, A:10
hydrothermal alteration, A:81
laccoliths, A:256
microbial biomass, B3:1–19
permeability, B8:3–5
physical properties, B7:1–19
transition to basalt, A:210–211
velocity, B7:6–7
sediments, collapsed chimney-derived, photograph, A:168
sediments, feeder zone, density and porosity, B7:5
sediments, hemipelagic
density and porosity, B7:5
hydrothermal alteration, A:259
Lithofacies A, A:54–56
lithologic units, A:44–53, 163–167
sediments, hydrothermally recrystallized, mass balance, A:99–101
sediments, sulfide-veined, facies, A:74–75
sediments, turbiditic, density and porosity, B7:5
seismic profiles
hydrothermal circulation, A:10
location, A:160
Site 858, A:159
Site 1035, A:40
seismic surveys, geology, A:12
selfsages
alteration zones, A:82–84; B9:5
photograph, A:92, 107
silica
basalts, A:95
clay minerals, B6:6, 23
hydrothermal circulation, A:11
pore water, A:171–175, 218–219, 279
vs. depth, A:97, 116, 177, 220, 280
vs. loss on ignition, A:98
vs. magnesium, A:172
silicification
alteration zones, A:84, 87; B10:12
Deep Copper Zone, A:77
lithologic units, A:52
photograph, A:88
veins, A:76
silicon
immobility, A:99
mass balance, A:98
sills, basaltic
composition, A:212–214; B10:8
density and porosity, B7:5–6
hydrothermal alteration, A:10
inclusion, A:101
laccoliths, A:256
mass balance, A:96, 98–99
petrography, A:90–93
photograph, A:106
velocity, B7:7
silt
clastic sulfides, A:59
lithologic units, A:164–167
photograph, A:211
silt, clayey, Lithofacies A, A:54–56
silt, turbiditic, lithologic units, A:52
siltstone
Lithofacies A, A:54–56
Lithofacies B, A:56
lithologic units, A:210, 265; B9:5, 20
photograph, A:58, 61, 73–74, 76, 80–81, 88, 109
photomicrograph, A:79
Site 856
depth of Stage 5e interglacial zone, A:170
gEOCHRONOLOGY, B4:1–15
lithologic units, A:46
physical properties, B7:1–19
pore water, A:112
structural data, A:102–103, 106
sulfide mineral chemistry and petrography, B5:1–34
vein networks, B9:1–25
Site 857
depth of Stage 5e interglacial zone, A:170
temperature, A:195–196
volatile gases, A:175, 178
well-logging, A:193–195
Site 858
bacterial profiles, B2:1–18
bitumens, A:178
inorganic geochemistry, A:169, 171
temperature, A:195
volatile gases, A:178
well-logging, A:192
Site 1035, A:35–152
bacterial profiles, B2:4–6
biostratigraphic, A:38–39, 57–58
coring, A:43
downhole measurements, A:130–134
gEOCHRONOLOGY, B4:1–15
geological setting, A:37–38
igneous petrology and geochemistry, A:89–102
inorganic geochemistry, A:112–117
lithostratigraphy and sedimentology, A:45–57
microbiology, A:123–125
objectives, A:40–41
spreading centers, massive sulfides

Site 1036, A:153–203

- bacterial profiles, B2:6–8
- biostratigraphy, A:169
- comparison with Bent Hill, A:160–162
coring, A:163
depth of Stage 5e interglacial zone, A:170
downhole measurements, A:188–196
geological setting, A:155–157
-inorganic geochemistry, A:169–175
lithostratigraphy, A:163–169
microbial biomass, B3:1–19
microbiology, A:183–184, 186
operations, A:162–163
organic geochemistry, A:175, 178–183
paleomagnetism, A:200–201
physical properties, A:186–188
pore pressure, A:196–200
principal results, A:157–160
site description, A:153–203
structural geology, A:169

Site 1037, A:205–251

-biostratigraphy, A:211–212
clay minerals, B6:1–24
coring, A:207
downhole measurements, A:227–231
geochemistry, B1:1–16
geological setting, A:206
igneous petrology and geochemistry, A:212–216
inorganic geochemistry, A:217–221
lithostratigraphy and sedimentology, A:207–211
microbiology, A:225
operations, A:206–207
organic geochemistry, A:221–225
paleomagnetism, A:231–233
physical properties, A:225–227; B7:1–19
pore water, A:281
scientific objectives, A:206
site description, A:205–251
structural geology, A:216–217

Site 1038, A:253–298

-biostratigraphy, A:268
clay minerals, B6:1–24
coring, A:260–261
downhole measurements, A:292–293
geochemistry, B1:1–16
geological setting, A:255–259
igneous petrology, A:271–272
inorganic geochemistry, A:273–281
lithostratigraphy and sedimentology, A:263–268
microbiology, A:288–289
operations, A:259–263
-organic geochemistry, A:281–288
-paleomagnetism, A:293–295
-physical properties, A:289–292; B7:1–19
-site description, A:253–298
-structural geology, A:272–273
-sulfide petrology, A:268–271

slumps
-fault scarps, B10:21–22
-photograph, A:60

-schistite
alteration zones, A:81–82
basalts, A:213, 271
geochemistry, B6:5–6, 14, 17
lithologic units, A:167–168
photomicrograph, A:271
sulfide banded/impregnated sandstone, A:76
sulfide mineralization, A:71
veins, A:216–217
vs. depth, B6:14–17
See also chlorite/schistite mixed layer
-schistite, magnesium-rich
hydrothermal alteration, A:259
massive sulfides, A:270

-sodium
clay mineralogy, B6:7, 9
hydrothermal component, A:281
mass balance, A:98
sediments, B10:19
vs. chloride, A:279
vs. depth, A:116–117, 177, 220, 276–278, 280, 282
sodium/chloride ratio
-pore water, A:218, 278
vs. depth, A:115, 117, 177, 220, 280, 282

-soil oxide
basalts, A:95
clay minerals, B6:6, 23
vs. depth, A:97
vs. loss on ignition, A:98

soft sediment deformation
-massive sulfides, A:64
photograph, A:58, 62

sonar images, side-scan, Central Hill, A:257
-sonic logs. See gamma ray-resistivity-sonic logs
Sovan Fracture Zone, spreading centers, A:7

-sphalerite
clastic sulfides, A:59–61
geochemistry, A:100–101
hydrothermal circulation, A:11
lithologic units, A:167–168
massive sulfides, A:64–67; B5:5–6
photograph, A:69–70, 72, 76, 81, 100
photomicrograph, B5:17–19
sulfide banded/impregnated sandstone, A:76
sulfide mineralization, A:71; B9:4–9, 16; B10:13–14
veins, A:76
vs. depth, B5:15

-sphalerite, heterogenous
sulfides, A:68–69
sphalerite-pyrrhotite-pyrite-magnetite, mineralization, A:69–71

spreading centers, massive sulfides, A:7–16; B10:3–29
Stage 5e interglacial assemblage zone, depth, A:170
stilpnomelane, basalts, A:213
strontium
basalts, A:95
chemical alteration, A:221
clay mineralogy, B6:7, 9
mass balance, A:98
sediments, B10:19
vs. calcium, A:114
vs. depth, A:115–117, 176, 220, 276–278, 280
vs. magnesium, A:172
strontium isotopes, hydrothermal alteration, A:39
structural data
Site 1035, A:103
Site 1036, A:171
Site 1037, A:217
Site 1038, A:273
structural geology
Site 1035, A:102–103, 106–112
Site 1036, A:169
Site 1037, A:216–217
Site 1038, A:272–273
structures
fluid flow, B9:6–9
vein networks, B9:1–25
See also lobate structure
sulfate
bacterial cells, B2:5–6, 8
hydrothermal circulation, A:9
hydrothermal component, A:281
sediments, A:123–125
vs. depth, A:112, 114–115, 117, 176, 220, 276–278, 280; B1:12; B2:8, 18
vs. magnesium, A:172–173
sulfate reduction, sediments, A:219, 221
sulfide bands
cubic pyrite crystals, B9:6; B10:11
photograph, A:80–82, B10:11, 38
photomicrograph, A:86
sulfide breccia, photograph, A:67
sulfide clasts, photograph, A:67
sulfide impregnations, photograph, A:111
sulfide mounds
geometry, B10:8
models, A:258
sulfide veins
formation microscanner imagery, A:133–136
photograph, B10:36–37
sulfides
backscattered electron image, B9:5, 18
Central Hill, A:269
deposition, B9:6–9
electrical impedance, B8:5–8
feeder zones, A:76
fractures, A:39
geochemistry, A:87–89
hydrothermal alteration, A:78–87
hydrothermal systems, A:41–42, 52–53
mineral composition, B5:20–21, 22–34
mineralization, A:58–89, 259
permeability, B8:3–5
petrology, A:268–271
photograph, A:66–82, 85, 88
pillow lava, A:94
stratigraphy, A:46–51
thermal conductivity, B8:8–10
velocity, B7:8
sulfides, chimney residue, lithologic units, A:44–53
sulfides, clastic
lithologic units, A:44–53
Site 1035, A:58–61
stratigraphy, A:64
sulfides, colloform, sulfide mineralization, A:71
sulfides, copper-iron
clastic sulfides, A:59–61
Deep Copper Zone, A:76–78
mineralization, A:68–69
sulfides, copper-rich, photograph, A:80; B9:6, 21
sulfides, disseminated, sediments, A:270
sulfides, feeder zone
lithologic units, A:44–53
Site 1035, A:73–78
sulfides, massive
geochronology, B4:1–15
hydrothermal circulation, A:7–16
lithofacies, A:38, 67; B10:9
lithologic units, A:44–53
mineralogy and textures, A:269–270
petrology, A:269–270
Site 1035, A:61–73
sulfide mineral chemistry and petrography, B5:1–34
vein networks, B9:1–25
sulfides, massive clastic, photomicrograph, A:66
sulfides, massive pyrite-pyrrhotite, photograph, A:69
sulfides, massive vuggy, sulfide mineralization, A:71
sulfides, massive-semimassive, porosity and density, B7:6
sulfur
mineralization, A:88
vs. depth, A:89
weight percentages, A:122–123
See also carbon/sulfur ratio
sulfur, total
vs. depth, A:124, 185, 227, 289
weight percentages, A:184, 226, 288–289
sulfur isotopes
histogram, A:259
hydrothermal alteration, A:40

talc
hydrothermal alteration, A:259
lithologic units, A:167–168
massive sulfides, A:270
rubble, A:168
talc, fibrous, sulfide mineralization, A:70
tantalum, clay mineralogy, B6:7, 9
tectonics, faults, A:256–257
temperature
Bent Hill comparison with Dead Dog Mound, A:160
geochemistry, A:12–13
records, A:137, 194–195, 232, 295; B10:16
sediments, A:133–134, 186–188, 196, 231
sill intrusion, A:101–102
vs. time after penetration, A:232
vs. time since penetration, A:195, 295
textures
massive sulfides, A:269–270
vein networks, B9:1–25
textures, crack-seal, veins, A:75
textures, subophitic, photomicrograph, A:215
thermal conductivity
divided-bar vs. half-space needle-probe method, B8:9, 32
lithologic units, B8:8–10
sediments and sulfides, B8:34–35, 40–41
Site 1035, A:127
Site 1036, A:188
Site 1037, A:227
Site 1038, A:290
vs. depth, A:128, 188, 228, 291, 294
vs. grain density, B8:8–9, 31
vs. porosity, B8:31
thermal data, sill intrusion, A:101
thermal flow, structural data, A:111
thermal models, sulfides, B9:6–9
thermophiles
bacterial cells, B2:5–6
vs. depth, B2:14
thin sections, composition, A:94–95
thorium logs, vs. depth, A:132, 231
thorium-230/uranium-234 ratio
goecchronology, B4:1–15
massive sulfides, B4:14–15
vs. protactinium-231/uranium-235 ratio, B4:10, 12
tin, hydrothermal alteration, A:39
titanite
Deep Copper Zone, A:77
photomicrograph, A:95
veins, A:75
titanium
clay mineralogy, B6:7, 9
immobility, A:99, 101
mass balance, A:98
pillow lava, A:94
titanium oxide
basalts, A:95, 215–216
clay minerals, B6:6, 23
vs. depth, A:97
vs. loss on ignition, A:98
vs. magnesium number, A:217
See also aluminum oxide/titanium oxide ratio; zirconium/titanium oxide ratio
toluene, sediments, A:282
tourmaline, lithologic units, A:267
trace elements
chlorite, B6:19
clay minerals, B6:6, 24
pore water, B1:1–16
Trans-Atlantic Geotraverse
permeability and electrical and thermal properties, B8:1–42
sulfide mineral chemistry and petrography, B5:1–34
tremolite
photograph, A:100
photomicrograph, A:100
triple junctions, spreading centers, A:7
turbidites
formation microscanner imagery, A:135
geochemistry, A:11–13
Lithofacies A, A:54–56
lithologic units, A:44–53, 163–168; B10:10
photograph, A:55, 73, 77, 85, 211
turbidites, calcareous fine-grained sand to silt, lithologic units, A:210, 266–267
turbidites, carbonate altered silt to clay, lithologic units, A:265–266
turbidites, fine-grained sand, lithologic units, A:265
turbidites, interbedded fine-grained, lithologic units, A:208, 263, 265
turbidites, mud, lithologic units, A:208
turbidites, sand-rich, lithologic units, A:208–209, 265
turbidites, silt to clay, lithologic units, A:209
turbidites, siltys, lithologic units, A:209, 266
Two Wells Sandstone, fatty acids, B3:17

U

Unit III, clastic sulfides, A:58–61
Unit V, massive sulfides, A:61–73
Unit VI, sulfide feeder zone, A:73–78
uranium, massive sulfides, B4:3–5
uranium logs, vs. depth, A:132, 231
uranium-234. See thorium-230/uranium-234 ratio
uranium-235. See protactinium-231/uranium-235 ratio
uranium-238, vs. depth, B4:13

V

vanadium, mass balance, A:98
variolites
mass balance, A:96, 98–99
pillow lava, A:94
vein density
correlation, A:111
vs. depth, A:104; B9:8, 24; B10:10
vein dip
distribution, A:104
vs. depth, A:105
vein networks, massive sulfides, B9:1–25
vein width, distribution, A:104
veinlets, anhydrite
photograph, A:108
structures, A:169
veinlets, chlorite, photograph, A:106
veinlets, sulfide, photograph, A:105–106
veinlets, sulfide mineralization, A:71
veins
basalts, A:213, 271
Deep Copper Zone, A:76–78
 geometry, A:74–76
 hydrothermal circulation, A:11, 73–87; B10:9–10, 37
 photograph, A:73–75, 77–79, 100, 218; B10:36–37
 pillow lava, A:94
 sills, A:93
 See also actinolite; albite; paleoveins; pyrite veins; sulfide veins
veins, anhydrite, photograph, A:85
veins, chlorite, photograph, A:92
veins, crack-seal, structural data, A:111; B10:10, 37
veins, en echelon, structural data, A:107–112; B9:4–9
veins, pyrite, photograph, A:68, 105
veins, pyrrhotite, photograph, A:109
veins, quartz + chalcopyrite, photograph, A:92–93, 107
veins, quartz + sulfide, photograph, A:93
veins, quartz, photomicrograph, A:95
veins, stockwork, photograph, A:77
veins, sulfide
 formation microscanner imagery, A:133–136
 photograph, A:106
 with sediments, A:75–76
velocity
 sediments, B7:6–8, 17–19
 See also compressional wave velocity
velocity logs, vs. depth, A:132, 231
vents
 bacterial profiles, B2:1–18
 flow, B10:13–14
 hydrothermal circulation, A:7–9
vents, active, location, A:197
vesicles
 basalts, A:271–272
 sills, A:92
volcanic glass
 basalts, A:272
 enrichment/depletion diagram, A:99
 isocon, A:99
 photograph, A:93
 photomicrograph, A:94–95
 pillow lava, A:93–94
volcanic rocks, geology, A:12
volcanism, basalt pillows, A:257
vuggy textures, massive sulfides, A:270
vugs, sulfide mineralization, A:71

W
weathering, hydrothermal circulation, A:10

well-logging
 shore-based log processing, A:236
 shore-based processing, A:143
 Site 1035, A:130–134
 Site 1036, A:188–196
 Site 1037, A:227–231
 Site 1038, A:292–293
Whitewater Shale, fatty acids, B3:17
wood, lithologic units, A:208
wurtzite, hydrothermal circulation, A:11

X
X-ray diffraction data, minerals, A:168–169, 213, 270

Y
yttrium
 mass balance, A:99
 See also neodymium/yttrium ratio; niobium-zirconium-yttrium plots
zeolites, basalts, A:212–214, 271
zinc
 clay minerals, B6:6, 24
 depletion, A:99
 enrichment, A:99
 leaching, A:102
 mass balance, A:98
 massive sulfides, B5:5–6
 sulfides, A:88–89
 vs. depth, A:89, 97
 See also copper-iron-zinc plots; copper-lead-zinc plots
zirconium
 immobility, A:101
 mass balance, A:98
 See also niobium-zirconium-yttrium plots
zirconium/titanium oxide ratio, vs. aluminum oxide/titanium oxide ratio, A:102
zolosite, photomicrograph, A:100
zonation, alteration zones, A:81–87
zoning
 foraminifers, A:212
 metals, A:89
Zoophycus
 Lithofacies B, A:56
 lithologic units, A:163–165
 photograph, A:165
Zoophycus marker horizon, lithologic units, A:163–165
TAXONOMIC INDEX

A
Arachnoidiscus, Site 1037, A:211

G
Globobulimina pacifica, Site 1038, A:268
Globorotaloides hexagonus, Site 1035, A:39

H
hexagonus, Globorotaloides, Site 1035, A:39

I
Isthmia, Site 1037, A:211

N
Neogloboquadrina pachyderma (dextral)
Site 1035, A:39, 58, 63
Site 1036, A:169
Site 1037, A:211

P
pachyderma (dextral), Neogloboquadrina
Site 1035, A:39, 58, 63
Site 1036, A:169
Site 1037, A:211
pacifica, Globobulimina, Site 1038, A:268

Q
quinqueloba, Turborotalita, Site 1035, A:39

T
Turborotalita quinqueloba, Site 1035, A:39

Z
zones (with letter prefix)
CD3, A:39, 212, 268
CD4, Site 1037, A:212
CD5, Site 1035, A:39