INDEX TO VOLUME 172

This index covers both the Initial Reports and Scientific Results portions of Volume 172 of the Proceedings of the Ocean Drilling Program. References to page numbers in the Initial Reports are preceded by “A” with a colon (A:) and to those in the Scientific Results (this volume) by “B” followed by the chapter number with a colon (B1:).

The index was prepared by Earth Systems, under subcontract to the Ocean Drilling Program. The index contains two hierarchies of entries: (1) a main entry, defined as a keyword or concept followed by a reference to the page on which that word or concept appears, and (2) a subentry, defined as an elaboration on the main entry followed by a page reference.

The index covers volume text, figures, and tables but not core-description forms (“barrel sheets”), core photographs, smear-slide data, or thin-section descriptions. Also excluded from the index are bibliographic references, names of individuals, and routine front matter.

The Subject Index follows a standard format. Geographical, geologic, and other terms are referenced only if they are subjects of discussion. A site chapter in the Initial Reports is considered the principal reference for that site and is indicated on the first line of the site’s listing in the index. Such a reference to Sites 1054–1055, for example, is given as “Sites 1054–1055, A:33–76.”

The Taxonomic Index is an index relating to significant findings and/or substantive discussions, not of species names per se. This index covers three varieties of information: (1) individual genera and species that have been erected or emended formally, (2) biostratigraphic zones, and (3) fossils depicted in illustrations. A taxonomic entry consisting of both genus and species is listed alphabetically by genus and also by species. Biostratigraphic zones are listed alphabetically by genus; zones with letter prefixes are listed under “zones.”

SUBJECT INDEX

A
advection
 carbon dioxide, B3:3
 ground water, A:288
 sediment drifts, A:7–8
age
 oxygen isotopes, B5:19
 sediments, B5:19
 vs. oxygen isotopes, B9:10
age vs. depth
 sedimentation rates, A:54
 Site 1056, A:114
 Site 1057, A:118
 Site 1058, A:121
 Site 1059, A:125
 Site 1060, A:203–204
 Site 1061, A:206–207
 Site 1062, A:210–211
 Site 1063, A:277–278
 Sites 1054–1055, A:53
albite, X-ray diffraction data, B5:21
algal mats
 geochemistry, B Overview:4
 sediments, B1:2
alkalinity
 diagenesis, A:60–63, 123, 125, 218, 221, 223
 pore water, A:314, 316
 sediments, A:285–286
 vs. depth, A:62, 136, 226, 285, 316
alkanes. See n-alkanes
alkenes
 mass chromatograms, B1:4
 sediments, B1:2
aluminosilicates
 cyclic processes, B5:5–6
 sediments, B5:4
 stadials, B Overview:4
 vs. age, B5:19
 vs. depth, B5:13
aluminum oxide
 sediments, B5:4–5, 22
 vs. potassium oxide, B5:14
 vs. titanium oxide, B5:14
 See also potassium oxide/aluminum oxide ratio; silica/aluminum oxide ratio
aluminum oxide/titanium oxide ratio
 sediments, B5:4–5
 stadials/interstadials, B Overview:4
 vs. depth, B5:13
ammonium • calcite

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium</td>
<td>A:60, 123, 125</td>
</tr>
<tr>
<td>pore water</td>
<td>A:221, 311–313</td>
</tr>
<tr>
<td>sediments</td>
<td>A:285–286</td>
</tr>
<tr>
<td>vs. depth</td>
<td>A:62, 136, 226, 285</td>
</tr>
<tr>
<td>anisotropy</td>
<td></td>
</tr>
<tr>
<td>magnetic susceptibility</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Overview:4; B4:1–22</td>
</tr>
<tr>
<td>ankerite</td>
<td>A:226</td>
</tr>
<tr>
<td>anorthite</td>
<td></td>
</tr>
<tr>
<td>X-ray diffraction data</td>
<td>B5:21</td>
</tr>
<tr>
<td>Antarctic Bottom Water</td>
<td>A:7, 288; B Overview:6</td>
</tr>
<tr>
<td>Aragonite</td>
<td></td>
</tr>
<tr>
<td>lithologic units</td>
<td>A:84, 91, 172–174</td>
</tr>
<tr>
<td>Argentine Basin, mud waves</td>
<td>A:9</td>
</tr>
<tr>
<td>Atlantic Ocean N</td>
<td>A:7</td>
</tr>
<tr>
<td>Atlantic Ocean NW</td>
<td>Pliocene–Holocene B Overview:1–15</td>
</tr>
<tr>
<td>augite</td>
<td></td>
</tr>
<tr>
<td>lithologic units</td>
<td>A:88</td>
</tr>
<tr>
<td>authigenesis</td>
<td></td>
</tr>
<tr>
<td>diagenesis</td>
<td>A:125–126</td>
</tr>
<tr>
<td>oxidation</td>
<td>B2:4–6</td>
</tr>
<tr>
<td>pore water</td>
<td>A:63</td>
</tr>
<tr>
<td>precipitation</td>
<td>A:225–226, 228</td>
</tr>
<tr>
<td>sediments</td>
<td>A:286–288</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>bacteria</td>
<td></td>
</tr>
<tr>
<td>methane</td>
<td>A:55</td>
</tr>
<tr>
<td>sediments</td>
<td>A:210–211</td>
</tr>
<tr>
<td>Bacteriostrium hyalinum</td>
<td>scanning electron micrograph, B5:18</td>
</tr>
<tr>
<td>Bahama Outer Ridge</td>
<td></td>
</tr>
<tr>
<td>paleoceanography</td>
<td>B Overview:5–6</td>
</tr>
<tr>
<td>sedimentation</td>
<td>A:311</td>
</tr>
<tr>
<td>basal contact, photograph</td>
<td>A:166</td>
</tr>
<tr>
<td>bathymetric gradients</td>
<td></td>
</tr>
<tr>
<td>paleoceanography</td>
<td>B Overview:5–6</td>
</tr>
<tr>
<td>benzeneacetonitrile</td>
<td>mass chromatograms, B1:9</td>
</tr>
<tr>
<td>Bermuda Rise</td>
<td></td>
</tr>
<tr>
<td>composite depths</td>
<td>A:313</td>
</tr>
<tr>
<td>Dansgaard–Oeschger cycles</td>
<td>B5:1–24</td>
</tr>
<tr>
<td>magnetic excursions</td>
<td>B10:1–18</td>
</tr>
<tr>
<td>organic geochemistry</td>
<td>B1:1–9</td>
</tr>
<tr>
<td>paleoceanography</td>
<td>A:9</td>
</tr>
<tr>
<td>sedimentation</td>
<td>A:311</td>
</tr>
<tr>
<td>site description</td>
<td>A:251–308</td>
</tr>
<tr>
<td>Bermuda Rise NE</td>
<td></td>
</tr>
<tr>
<td>carbon dioxide</td>
<td>B3:1–16</td>
</tr>
<tr>
<td>sediment drifts</td>
<td>A:7–8</td>
</tr>
<tr>
<td>biocenoses, diatoms</td>
<td>B8:4</td>
</tr>
<tr>
<td>biogenic component</td>
<td></td>
</tr>
<tr>
<td>lithologic units</td>
<td>A:84–92</td>
</tr>
<tr>
<td>photograph</td>
<td>A:84; B7:18</td>
</tr>
<tr>
<td>biosiliceous content</td>
<td>lithologic units, A:164–165, 168, 170–174</td>
</tr>
<tr>
<td>biostratigraphy</td>
<td></td>
</tr>
<tr>
<td>correlation</td>
<td>A:176, 178, 313</td>
</tr>
<tr>
<td>diatoms</td>
<td>B8:1–49</td>
</tr>
<tr>
<td>general section</td>
<td>B Overview:12</td>
</tr>
<tr>
<td>Neogene</td>
<td>A:319–321</td>
</tr>
<tr>
<td>Pleistocene</td>
<td>A:319–321</td>
</tr>
<tr>
<td>bioturbation</td>
<td></td>
</tr>
<tr>
<td>lithologic units</td>
<td>A:90–92, 164–165, 168, 170–174</td>
</tr>
<tr>
<td>photograph</td>
<td>A:166–167, 175</td>
</tr>
<tr>
<td>sedimentary structures</td>
<td>B7:4–12</td>
</tr>
<tr>
<td>Blake Event</td>
<td></td>
</tr>
<tr>
<td>magnetic excursions</td>
<td>A:266</td>
</tr>
<tr>
<td>magnetic inclination</td>
<td>A:46</td>
</tr>
<tr>
<td>magnetostratigraphy</td>
<td>A:188</td>
</tr>
<tr>
<td>Blake Outer Ridge</td>
<td></td>
</tr>
<tr>
<td>magnetic excursions</td>
<td>B10:1–18</td>
</tr>
<tr>
<td>magnetic susceptibility</td>
<td>B4:1–22</td>
</tr>
<tr>
<td>paleoceanography</td>
<td>B Overview:5–6</td>
</tr>
<tr>
<td>Blake Outer Ridge, intermediate depth, site description, A:77–156</td>
<td></td>
</tr>
<tr>
<td>Blake-Bahama Outer Ridge</td>
<td></td>
</tr>
<tr>
<td>carbon dioxide</td>
<td>B3:1–16</td>
</tr>
<tr>
<td>composite depths</td>
<td>A:313</td>
</tr>
<tr>
<td>gas hydrates</td>
<td>A:321</td>
</tr>
<tr>
<td>geology</td>
<td>A:7–11</td>
</tr>
<tr>
<td>magnetic susceptibility</td>
<td>B4:1–22</td>
</tr>
<tr>
<td>sedimentary structures</td>
<td>B7:1–37</td>
</tr>
<tr>
<td>sedimentation</td>
<td>A:311</td>
</tr>
<tr>
<td>Blake-Bahama Outer Ridge, deep, site description, A:157–250</td>
<td></td>
</tr>
<tr>
<td>Brunhes Chron</td>
<td></td>
</tr>
<tr>
<td>magnetic excursions</td>
<td>A:266, 319–320; B Overview:6; B10:1–18</td>
</tr>
<tr>
<td>Brunhes/Matuyama boundary</td>
<td></td>
</tr>
<tr>
<td>magnetic inclination</td>
<td>A:268</td>
</tr>
<tr>
<td>magnetic polarity transition</td>
<td>A:320</td>
</tr>
<tr>
<td>sedimentation</td>
<td>A:311</td>
</tr>
<tr>
<td>Brunhes/Matuyama polarity transition comparison in Sites 1060 and 1063, A:319</td>
<td></td>
</tr>
<tr>
<td>magnetic polarity</td>
<td>A:318–319</td>
</tr>
<tr>
<td>magnetostratigraphy</td>
<td>A:263</td>
</tr>
<tr>
<td>bulk density logs, vs. depth</td>
<td>A:243, 300</td>
</tr>
<tr>
<td>burrows</td>
<td></td>
</tr>
<tr>
<td>lithologic units</td>
<td></td>
</tr>
<tr>
<td>photograph</td>
<td>A:89, 171</td>
</tr>
<tr>
<td>butane</td>
<td></td>
</tr>
<tr>
<td>See iso-butane</td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcite</td>
<td></td>
</tr>
<tr>
<td>cyclic processes</td>
<td>B5:5–6</td>
</tr>
<tr>
<td>interstadials, B</td>
<td>Overview:4</td>
</tr>
<tr>
<td>sediments</td>
<td>B5:4</td>
</tr>
<tr>
<td>vs. age</td>
<td>B5:19</td>
</tr>
<tr>
<td>vs. calcium oxide</td>
<td>B5:15</td>
</tr>
<tr>
<td>vs. depth</td>
<td>B5:13</td>
</tr>
<tr>
<td>X-ray diffraction data</td>
<td>B5:21</td>
</tr>
</tbody>
</table>
carbon isotopes
carbon dioxide, dissolved, carbon isotopes, B3:5

Calcium
- authigenesis, A:63, 125–126, 225–226, 228
- pore water, A:286–288, 311–313
- vs. depth, A:62, 137, 227–228, 286–287
Calcium carbonate
- mass accumulation rates, A:48–49, 55
- sedimentation rates, A:316
- vs. depth, A:132, 205, 208, 215, 284
Calcium carbonate accumulation rates
- vs. age, A:316
- vs. depth, A:56
Calcium oxide
- sediments, B5:4–5, 22
- vs. calcite, B5:15
Caliper logs, vs. depth, A:243–244, 300–301
Carbon
- cycling, B3:2
- organic matter, A:214, 216–217
Carbon, organic
- age and concentration and accumulation rates, A:116–117, 119, 123, 126, 206, 210, 216, 281
- mass accumulation rates, A:49, 55
- photograph, A:256
- vs. depth, A:132, 205, 208, 215
See also Organic carbon accumulation rates
Carbon, total organic
- vs. depth, A:133–134, 222, 284
Carbon/Nitrogen ratio
- carbonate content, A:278
- vs. depth, A:222, 284
Carbon dioxide
- advection, B3:3
- carbon isotopes, B3:1–16
- gas hydrates, A:9–11
- reduction, B Overview:2–5
Carbon dioxide, dissolved, carbon isotopes, B3:5
Carbon isotopes
- carbonate stratigraphy, B Overview:6
- methane, B3:1–16
- paleoceanography, B Overview:5
- upper Pleistocene, B9:1–14
- vs. depth, B3:11–16
Carbonate content
- cyclic processes, B5:5–6
- diffuse spectral reflectance, B6:1–12
- measured vs. predicted data, B6:8–12
- sediments, A:211–212, 214, 217, 219–221, 278; B4:9–13
- vs. depth, A:83, 87, 90, 92, 165, 170, 172, 222, 255, 258; B4:7, 8
Carbonates
- authigenesis, A:63
- diagenesis, A:286–288
- photograph, A:167, 175
- sedimentation, A:174, 176–178, 201–207
- sedimentation rates, A:311–313
Carolina Slope
- geology, A:7–11
- sedimentation, A:311
- site description, A:33–76
Caspian Sea, triternates, B1:5
Chloride
- gas hydrates, A:126, 128–129
- pore water, A:228–229
- vs. depth, A:63, 138, 228, 287, 321
Chlorite
- sediments, B5:4
- X-ray diffraction data, B5:21
Chondrites
- photograph, A:168
Chromaticity
- correlation, A:47–48, 102–104
- vs. oxygen isotopes, B9:7–8, 9
See also Color
Chronostratigraphy, vs. reflectors, A:317
Clasts, mud, lithologic units, A:39–40, 84
Clay
- photograph, A:84–85, 89, 92, 166, 175, 259; B7:18
- sediment drifts, A:7–8
- sedimentary structures, B7:4–12
Clay, nannofossil
- photograph, A:90
Clay, silty, lithologic units, A:38, 83–92, 258–259
Clay lithology, well logging, A:242
Clay minerals
- chemical and nuclear parameters, A:245
- lithologic units, A:84–88
Clays
- lithology, A:302
- scanning electron micrograph, B5:18
- sediments, B5:4
Cobb Mountain Subchron
- magnetic excursions, A:266
- magnetic reversals, B Overview:7
- magnetostratigraphy, A:46, 316–317
Color
- correlation, A:188–189, 194–201, 266–268
See also chromaticity

color bands, lithologic units, A:87
color change, photograph, A:259
composite depths
depth offsets, A:48, 105, 190, 269
Sites 1054–1055, A:47–48
Sites 1054–1064, A:313
Sites 1060–1062, A:188–201
Sites 1063–1064, A:266–268
vs. core-top depth, A:113–114, 202–203, 277
compressional wave velocity
 cyclic processes, B5:6–7
 Dansgaard-Oeschger cycles, B Overview:4
discrete measurements, A:133–134
millenial-scale variability, A:134
vs. age, B5:19
vs. depth, A:64–65, 138–140, 153, 229–231, 237, 289, 291; B5:10, 16
compressional wave velocity, longitudinal, vs. depth, A:237
compressional wave velocity, transverse, vs. depth, A:145, 295
concretions, clay, lithologic units, A:38–40
concretions, dolomitized clay, photograph, A:39
contourites
 lithologic units, A:93
 sedimentary structures, B7:1–37
convoluted beds
 lithologic units, A:88
photograph, A:89
cores, redox, B2:1–11
correlation
 biostratigraphy, A:176
depth dependence, A:311–314
depth-to-depth
 Sites 1055–1056, A:54
 Sites 1056–1057, A:120
 Sites 1058 and 1061, A:118
 Sites 1059 and 1061, A:125
 Sites 1060–1061, A:204
 Sites 1061–1062, A:212
magnetostratigraphy, A:313
reflectance, A:47
seismic reflection, A:72
stratigraphy, A:47–48, 188–201, 266–268
uranium logs, A:240
correlation coefficient, carbonate content measured vs. predicted data, B6:8–12
cross laminations. See ripple cross laminations
cyclic processes, sedimentation, A:118–125
dansgaard-oeschger cycles
compresional wave velocity, B Overview:4
sediments, B5:1–24
datums levels, calcareous nannofossils, A:41–42, 94–96, 179–183, 260–261
depth water, ocean circulation, A:7
Deep Western Boundary Current, glaciation, B Overview:3
demagnetization
 functions, A:103
 lithologic units, A:88
demagnetization, coring-induced, directional variation, A:100–101
degassing, lithologic units, A:84–92
density
 cyclic processes, B5:5–6
 porosity logs, A:299, 302
 vs. depth, A:153
 vs. diatom abundance, B Overview:4
density, bulk
cyclic processes, B5:6–7
Dansgaard-Oeschger cycles, B Overview:4
gamma rays, B8:3
millenial-scale variability, A:134
vs. age, B5:19
vs. depth, A:66–67, 229–231, 289–291; B5:10, 16; B8:18, 20
See also bulk density logs
density, grain
density, GRAPE
density logs. See bulk density logs
deposition, glaciation, A:8
depth offsets
 composite depths, A:48, 105, 190, 269
 vs. core-top depth, A:53
depth transects, paleoceanography, A:8–9
diagenesis
 lithologic units, A:87, 172, 255–258, 259
 oxidation, B2:4–6
 photograph, A:39, 89, 167, 171, 175
 pore water, A:286–288
See also authigenesis; recrystallization
diagenesis, early
 sediments, A:118
diatoms
 biostratigraphy, A:43–44, 97, 183–184, 262; B8:1–49
distribution, A:43, 97, 184, 262
 habitat, B8:35
 paleoecology, B8:3–6, 7–15, 19
 phosphate, B8:4
taxonomy and ecological preferences, B8:7–15
 vs. density, B Overview:4
 vs. depth, B8:18, 20–24
diffuse spectral reflectance, high-resolution methods,
 B6:1–12
dissolution
 carbonate content, A:278
 carbonates, A:214
diatoms, B8:5
 minerals, A:225–226, 228, 286–288
 sediments, A:121, 288
dolomite
 lithologic units, A:38–40, 84, 91, 258–259
 sediments, B5:4
 X-ray diffraction data, B5:21
downhole measurements
 Sites 1060–1062, A:235–245
 Sites 1063–1064, A:294–304
 See also well-logging
eccentricity, sediments, A:121
erosion contact, photograph, A:88
erosional surfaces
 sedimentary structures, B7:4–12, 20
 X-ray radiography, B7:17, 20, 29
ethane, vacutainer, vs. depth, A:218
fatty acids, geochemistry, B1:1–9
feldspars
 sediments, B5:4
 See also albite; anorthite; orthoclase; plagioclase
ferric/ferrous iron ratio, sediments, B Overview:3
foliation. See magnetic foliation
foraminifers
 biostratigraphy, A:319–321
 oxygen isotopes, B Overview:5
 photography, A:85, 87, 175
 stable isotopes, B9:1–14
foraminifers, benthic, biostratigraphy, A:43, 96–97, 181, 183, 261–262
formation microscanner logs
 lithology, A:242, 245, 302–304
 microresistivity, A:302
 vs. depth, A:246
gamma rays
 bulk density, B8:3
 sediments, A:129, 132
 vs. depth, A:64–65, 138, 139, 140, 229–231, 289
gamma-ray logs
 correlation, A:303–304
 vs. depth, A:244, 301, 303
gas expansion, remanent magnetization, A:263
gas hydrates
 carbon dioxide, B3:3
dissociation, A:126, 128–129, 228–229
 geographic extent, A:320–321
 maps, A:11
 pore water, A:9–11
 sediments, A:63, 288
gas voids, sediments, A:116, 118, 209–221
 gases, carbon isotopes, B3:1–16
 gases, headspace, sediments, A:57, 128, 217, 281
 gases, vacutainer, sediments, A:57, 129, 218, 282
 Gauss Chron, magnetostratigraphy, A:263, 316–317
 geochemistry, inorganic
 Sites 1054–1055, A:59–63
 Sites 1056–1059, A:122–129
 Sites 1060–1062, A:217–229
 Sites 1063–1064, A:281–288
 geochemistry, organic
 Site 1063, B1:1–9
 Sites 1056–1059, A:116–122
 Sites 1060–1062, A:207–217
 Sites 1063–1064, A:271–281
 geomagnetic poles, virtual
 Brunhes Chron, B10:4–5; B Overview:6
 magnetic excursions, B11:3
 geothermal gradient, sediments, A:288
 Gilsa Excursion, magnetic excursions, A:266
 glaciation
 cyclic processes, B5:6
 Deep Western Boundary Current, B Overview:3
 deposition, A:8
 lithologic units, A:39–40
 magnetic excursions, B11:4
 paleoclimatology, A:314, 317–318
 sediments, A:121, 288
 See also interstadials; last glacial maximum; stadials
 glauconite, lithologic units, A:91
 goethite, sediments, B2:4–6
 grain size
 lithologic units, A:84
 paleoceanography, A:8–9
 reproducibility, B5:12
 sediments, B5:5, 16
 volume vs. diameter, B5:11
 Greenland Ice Core Project, oxygen isotopes, B5:19
ground water, advection, A:288
Gulf Stream, ocean circulation, A:7

H
habitats, diatoms, B8:35
halite
 sediments, B5:4
 X-ray diffraction data, B5:21
heat flow
 sediments, A:235, 293
hematite, sediments, B2:4–6
high-resolution methods, diffuse spectral reflectance, B6:1–12
Holocene
 See also Pliocene–Holocene sequence
hornblende, X-ray diffraction data, B5:21
hydrocarbons
 carbon isotopes, B3:1–16
 mass chromatograms, B1:7–8
 See also alkenes; benzeneacetonitrile; ethane; fatty acids; gases; indene; indole; iso-butane; iso-pentane; lipids; methane/methane ratio; n-alkanes; propane; steranes; sulfate/methane boundary; triterpanes
hydrogen index
 organic matter, A:216, 278, 281, 284
 sediments, A:55, 60, 133, 223
 vs. oxygen index, A:60, 133–134, 223, 284, 317
hydrography, paleoceanography, A:9

I
illite
 cyclic processes, B5:6
 sediments, B5:4
 X-ray diffraction data, B5:21
illite-smectite mixture, X-ray diffraction data, B5:21
impedance, acoustic profiles, A:72–73
 vs. depth, A:75, 152–153
indene, mass chromatograms, B1:9
index properties
 average values and standard deviation, A:143, 232, 293
indole, mass chromatograms, B1:9
intermediate water, ocean circulation, A:7
interstials
 calcite, B Overview:4
 marine isotope Stage 3, B Overview:5
 See also stadal/interstials
iron
 authigenesis, A:225–226, 228
 oxidation, B:2:1–11
 pore water, A:286–288, 311–313
 valence, B:2:9
 vs. depth, A:227–228, 286–287
 See also ferric/ferrous iron ratio
iron oxides
 authigenesis, A:286–288
 lithologic units, A:38–40
photograph, A:89
iron, total, distribution, B2:11
iso-butane, sediments, A:116, 118, 209, 272–277
iso-butane, vacutainer, vs. depth, A:218
iso-pentane, sediments, A:272–277

J
Jaramillo Subchron
 magnetic excursions, A:266
 JV Armaan Well, triterpanes, B1:5–6
kaolinite
 sediments, B5:4
 X-ray diffraction data, B5:21
Kazakhstan
 hydrocarbons, B1:7–8
 triterpanes, B1:5–6
kerogen, lithologic units, A:256–258

L
laminations
 lithologic units, A:258–259
 mid-Pleistocene transition, A:314, 317–318
 photograph, A:166, 256; B:7:26
 silt, A:174, 176–178
 See also cross laminations
Laschamp Excursion
 magnetic excursions, A:266; B11:4, 19
 magnetostratigraphy, A:188
 split-core data, B Overview:7
last glacial maximum, oxygen isotopes, B Overview:6
lightness
 lithologic units, A:164–165, 168, 170–174
 sediments, A:63–65
spectral analysis, A:177
lipids, geochemistry, B1:1–9
lithologic units
Magnetic inclination
- Blake Event, A:46
- Brunhes/Matuyama boundary, A:268
- long-core measurements, vs. calculated deflected, A:104
- magnetic excursions 13α and 14α, B10:15
- magnetic excursions 15α and 15β, B10:16
- magnetic excursions 17α, B10:17
- magnetic excursions, B11:2–6
- sediments, A:44–47
- magnetic intensity
 - vs. depth, A:44–45, 98–101, 185, 264–265, 267; B11:15–18
- See also paleointensity
- magnetic lineation, vs. depth, B4:7–8
- magnetic overprinting, sediments, B2:6
- magnetic polarity
 - Brunhes/Matuyama polarity transition, A:318–319
- reversal boundaries, A:187
- magnetic reversals, magnetostratigraphy, A:46, 100, 187–188, 263, 266
- magnetic susceptibility
 - anisotropy, B Overview:4; B4:1–22
 - sedimentation, A:311
 - sediments, A:63–65, 129, 132
 - vs. age, A:115, 119, 122, 126, 204, 207, 212–213, 277, 314
 - vs. sedimentation rates, A:54
- magnetostratigraphy
 - correlation, A:313
 - general section, B Overview:12
 - magnetic excursions, A:263, 266, 316–317
 - magnetic polarity, A:99–100, 263
 - magnetic reversals, A:100, 102
 - major elements, sediments, B5:4–5
 - manganese
 - authigenesis, A:225–226, 228
 - pore water, A:311–313
 - vs. depth, A:227–228, 286–287
 - manganese oxide, sediments, B5:22
 - marine isotope Stage 2, oxygen isotopes, B Overview:5
 - marine isotope Stage 3
diatoms, B8:18
- magnetic excursions, B Overview:6
- oxygen isotopes, B Overview:5
- paleomagnetism, B11:1–20
- marine isotope Stage 3β, magnetic excursions, B Overview:7
- marine isotope Stage 4, diatoms, B8:6, 18
marine isotope Stage 5
 diatoms, B:18
 magnetic excursions, B Overview:6
marine isotope Stage 5e, paleoceanography, B Overview:5
marine isotope Stage 7a, magnetic excursions, B Overview:7
marine isotope Stage 8, magnetic excursions, A:188
marine isotope Stage 11, magnetic excursions, A:188
marine isotope Stage 17, magnetic excursions, B Overview:6
marine isotope Stages 1–4, bulk mass accumulation rates, B11:20
marine isotope Stages 5e–5d, paleoceanography, B Overview:5
marine isotope Stages 8–10, color reflectance, B7:16, 22, 32, 35
 magnetic susceptibility, B7:15, 21, 31, 34
marine isotope Stages 9–12, paleohydrography, B Overview:6
marine isotope Stages 10–12, red lutite, B Overview:6
mass accumulation rates
 calcium carbonate, A:49, 55
 organic carbon, A:49, 55, 116–117, 119, 123, 126, 205, 208, 213, 279
 Sites 1054–1055, A:48–49
 Sites 1056–1059, A:104–107, 113–116
 Sites 1060–1062, A:201–207
 Sites 1063–1064, A:268–271
 vs. depth, A:117, 120, 124, 127, 205, 208, 215, 279
 See also organic carbon accumulation rates; sedimentation rates
mass accumulation rates, bulk, marine isotope Stages 1–4, B11:20
mass flow deposits
 lithologic units, A:39–40, 93
 location, A:40
 photograph, A:40
Matuyama Chron
 magnetic excursions, A:266
 See also Brunhes/Matuyama boundary
methane
 carbon isotopes, B3:1–16
 oxidation, B Overview:2–5; B3:2
 pore water, A:311–313
 vs. depth, A:128, 216, 284, 317; B3:11
 vs. sulfate, A:222–223, 225
 See also sulfate/methane boundary
methane, headspace, vs. depth, A:57–58
methane/ethane ratio
 vs. depth, A:57–58, 219, 284, 317
methanogenesis
diagenesis, A:60, 118, 209–211, 223, 225, 228
sediments, A:286–288
sulfate, B3:2–3
See also sulfate reduction
microeustasy, Formation Microscanner logs, A:302
mid-Pleistocene transition, paleoclimatology, A:314, 317–318
minerals
 chemical composition, B5:23
 dissolution, A:225–226, 228
Moessbauer spectra, sediments, B2:8
Mono Lake Excursion
 Brunhes Chron, B10:4–5
 magnetic excursions, A:266
mottling, lithologic units, A:275
sediments, B5:4
vs. depth, B5:13
X-ray diffraction data, B5:21

N

n-alkanes
 mass chromatograms, B1:4, 7–8
 sediments, B1:2
nannofossils
 photograph, A:84, 175
 sedimentary structures, B7:4–12
nannofossils, calcareous
datums levels, A:41–42, 94–96, 179, 180–183, 260–261
Neogene
 biostratigraphy, A:319–321
 paleoceanography, A:9
neritic environment, diatoms, B8:5–6
nitrogen
 organic matter, A:214, 216–217
 See also carbon/nitrogen ratio
nitrogen compounds, mass chromatograms, B1:9
nodules
 lithologic units, A:88
 photograph, A:89
North Atlantic Deep Water
 ocean circulation, A:7, 93, 288
 paleoceanography, B Overview:5
temperature, B Overview:11
nutrient proxies, paleoceanography, A:8–9
nutrients, diatoms, B8:4
obliquity, sediments, A:121
ocean basins, sediment drifts, A:7–8
ocean circulation
 Atlantic Ocean N, A:7
mud waves, B Overview:4–5
Olduvai Subchron
 magnetic excursions, A:266
 magnetostratigraphy, A:187
ooze, clayey nannofossil
 photograph, A:256
ooze, nannofossil
 lithologic units, A:164–165, 168, 170–174
 photograph, A:90
opal, lithologic units, A:258
opal-A, sediments, A:288
organic carbon accumulation rates, vs. depth, A:56
organic matter
 carbon/nitrogen ratio, A:121–122
diagenesis, A:60–63, 123, 125
geochemistry, B1:1–9
 sources, A:214, 216–217, 278, 281
orthoclase, X-ray diffraction data, B5:21
oxidation
 iron, B2:1–11
 organic matter, A:278, 281
 sediments, A:121
See also redox
oxidation, anaerobic, methane, B3:6
oxides, comparison of X-ray diffraction data with X-ray fluorescence data, B5:23
oxygen index
 organic matter, A:216, 278, 281
 sediments, A:55, 60, 133, 223, 284
 vs. hydrogen index, A:60, 133–134, 223, 284, 317
oxygen isotope Stage 3. See marine isotope Stage 3
oxygen isotope stratigraphy
 correlation, A:318; B9:5–6
 vs. depth, A:303
oxygen isotopes
 foraminifers, B Overview:5
 Greenland Ice Core Project, B5:19
red lutite, B Overview:5–6
upper Pleistocene, B9:1–14
 vs. age, B9:10
 vs. chromaticity, B9:7–8, 9
 vs. reflectance, B9:7–8

P
paleoceanography
 bathymetric gradients, B Overview:5–6
biostratigraphy, A:319–321
millenial-scale variability, A:134
physical properties, B Overview:3–4
Pliocene–Pleistocene interval, A:7–11
paleoclimatology
 middle Pliocene–Pleistocene interval, A:7–11
millenial-scale variability, A:134
diastratigraphy, A:315, 317–318
paleoceanography
 carbonate stratigraphy, B Overview:6
 marine isotope Stages 9–12, B Overview:6
paleoceanography, B Overview:3
petroleum potential, sediments, A:60, 133, 223, 284
phosphate
 diagenesis, A:123, 125, 221–223
diatoms, B8:4
 sediments, A:285–286
 vs. depth, A:62, 136, 226, 285
phosphorus oxide, sediments, B5:22
photoelectric factor
 clay lithology, A:242
 vs. potassium, A:245, 302
photoelectric factor logs, vs. depth, A:300
physical properties
 paleoceanography, B Overview:3–4
 Sites 1054–1055, A:44–47
 Sites 1056–1059, A:97–104
 Sites 1060–1062, A:184–188
 Sites 1063–1064, A:262–266
 Stage 3, B11:1–20
plagioclase
 lithologic units, A:88
 pentane. See iso-pentane
polar ice, A:360
pore water
 carbon isotopes, B3:11–15
Q

quartz
 mixture with biogenic silica, B5:20
 sediments, B5:4
 X-ray diffraction data, B5:21

Quaternary
 magnetic susceptibility, B4:1–22
 See also Holocene; mid-Pleistocene transition; Pleistocene

R

radiolarians, lithologic units, A:38, 91, 255–258
recrystallization, sediments, A:288
red beds
 lithologic units, A:39–40, 84–92
 See also lutite, red

redox
 lithologic units, A:164–165, 168, 170–174
 sediments, B2:1–11
 See also oxidation

reduction
 carbon dioxide, B Overview:2–5
 sediments, B2:4–6
 See also sulfate reduction

reflectance
 correlation, A:47, 188–189, 194–201
 lithostratigraphy, A:38
 vs. depth, A:83, 87, 90, 92, 165, 170, 172, 235; B7:16, 22, 28, 32, 35
 vs. oxygen isotopes, B9:7–9
 vs. sediment chemistry, B Overview:3

reflectors, vs. chronostratigraphy, A:317

remanent magnetization, anhysteretic, magnetic excursions, B11:3–4

remanent magnetization, characteristic, discrete samples, A:186, 263

remanent magnetization, natural
deformation, A:100–101
discrete samples, A:45–46, 99–100
gas expansion, A:263
magnetic excursions, B11:5
magnetoostratigraphy, A:316–317
sediments, A:44–47, 98–99, 185–188
resistivity
 vs. depth, A:72, 152, 241, 299
 See also microresistivity

resistivity logs
 correlation, A:303–304
 vs. depth, A:243, 300

Reunion Event, magnetoostratigraphy, A:316–317

ripple cross laminations, sedimentary structures, B7:4–12

S

salinity
 sediments, A:288
 vs. potential temperature, A:9
 vs. temperature, B Overview:11

sand, photograph, B7:18

sand, foraminifer, lithologic units, A:39–40
sand, silty foraminifer, lithologic units, A:38

scoured contact
 photograph, A:40, 84–85, 87, 256
 sedimentary structures, B7:4–12
 X-ray radiography, B7:29

secular variations. See paleomagnetic secular variation
sediment drifts, paleoceanography, A:7–8
sediment volume, vs. depth, B5:17

sedimentary structures
 contourites and turbidites, B7:1–37
 photograph, B7:14, 18, 24, 26
X-ray radiography, B Overview:3

sedimentation
 cyclic processes, A:118–125
 lithologic units, A:174, 176–178
 uniformity, A:311
sedimentation, pelagic, lithologic units, A:39–40
sedimentation rates
 age vs. depth, A:54
 calcium carbonate, A:116–117, 119, 123, 126, 205, 208, 215, 279, 316
 comparison, A:213
 lithologic units, A:93
 magnetic excursions, B11:4
 Pleistocene, A:311–313
 Pliocene–Holocene, B Overview:1–15
 Sites 1054–1055, A:48–49
 Sites 1056–1059, A:104–107, 113–116
 Sites 1060–1062, A:201–207
 Sites 1063–1064, A:268–271
 vs. age, A:115, 119, 122, 126, 204, 207, 212–213, 277, 315
 vs. depth, A:117, 120, 124, 127, 205, 208, 215, 279
 vs. magnetic susceptibility, A:54
 See also mass accumulation rates
sedimentology, Pliocene–Holocene, B Overview:2–5
sediments
 age, B5:19
 chemical composition, B5:22
 Dansgaard-Oeschger cycles, B5:1–24
 ferric/ferrous iron ratio, B Overview:3
 iron oxidation, B Overview:3; B2:1–11
 magnetic susceptibility, B4:1–22
 mineral composition, B5:21
 Moessbauer spectra, B2:8
 Rock-Eval data, A:60, 133, 223, 284
 scanning electron micrograph, B5:18
 X-ray radiography, B7:17, 20, 23, 25, 29–30, 33, 36
 sediments, clayey mixed, lithologic units, A:37–38
 sediments, layered, photograph, A:40
 sediments, mixed, lithologic units, A:84–92
 sediments, red, sedimentation, A:174, 176–178
 sediments, silty mixed, lithologic units, A:37–38
 seismic lines, tracks, A:154, 246–247, 304
 seismic profiles
 Sites 1054–1055, A:71–74
 Sites 1056–1059, A:155–156
 Sites 1063–1064, A:305–306, 308
 tracks, A:249–250
 seismic reflectors
 mid-Pleistocene transition, A:314, 317–318
 vs. depth, A:317
 seismograms, synthetic
 profiles, A:74–75
 vs. two-way traveltime, A:75
 shear strength
 sediments, A:133–134, 235, 292
 vs. depth, A:147, 239

shear strength, normalized, vs. depth, A:147
shear strength, peak, vs. depth, A:297
shear strength, undrained
 sediments, A:69, 145–146, 238, 296–297
 vs. depth, A:70, 238
shear strength, vane, sediments, A:67–68
shell fragments
 lithologic units, A:84, 91
 photograph, A:87
siderite
 authigenesis, A:226
 lithologic units, A:91
 sediments, B2:4–6
silica
 authigenesis, A:63, 125–126, 225–226, 228
 pore water, A:286–288
 sediments, B5:4–5, 22
 vs. depth, A:62, 137, 227–228, 286–287
silica, amorphous, sediments, B5:4
silica, biogenic
 cyclic processes, B5:6
 lithologic units, A:255–258
 mixture with quartz, B5:20
 physical properties, B Overview:4
 scanning electron micrograph, B5:18
 sediments, A:288
 vs. age, B5:19
 vs. depth, B5:13, 17
 X-ray diffraction data, B5:21
silica/aluminum oxide ratio
 sediments, B5:4–5
 vs. depth, B5:13
silicates, oxidation, B2:4–6
siliciclastics
 lithologic units, A:84
 photograph, A:84; B7:18
 sedimentation, A:174, 176–178
silicoflagellates, lithologic units, A:38, 255–258
silt
 laminations, A:174, 176–178
 photograph, A:84–85, 89–90, 92, 166–167, 256;
 B7:14, 18, 26
 sediment drifts, A:7–8
 sedimentary structures, B7:4–12
silt, clayey, photograph, B7:14
silt, sandy, photograph, A:259
Site 997, chloride, A:321
Site 1054
 red sediments, B Overview:5–6
 stable isotopes, B9:11
Site 1055
 red sediments, B Overview:5–6
 stable isotopes, B9:12
Site 1057
 magnetic susceptibility, B4:1–22
 sediments, B Overview:4
Site 1059, stadials/interstadials, B Overview:4–5
Site 1060
 Brunhes Chron, B10:1–18
 Brunhes/Matuyama polarity transition, A:318–319
VOLUME 172 SUBJECT INDEX

Site 1061 • steranes

downhole measurements, A:235–245
inorganic geochemistry, A:217–229
lithostratigraphy, A:164–178
mass accumulation rates rates, A:201–207
operations, A:161–164
organic geochemistry, A:207–217
paleomagnetism, A:184–188
physical properties, A:229–235
sedimentation rates, A:201–207
site description, A:157–250
site geophysics, A:245–247

Sites 1063–1064, A:251–308
background and objectives, A:252
biostratigraphy, A:259–262
composite depths, A:266–268
coring, A:253
correlation, A:266–268
downhole measurements, A:294–304
inorganic geochemistry, A:281–288
lithostratigraphy, A:254–259
mass accumulation rates, A:268–271
operations, A:252–254
organic geochemistry, A:261–281
paleomagnetism, A:262–266
physical properties, A:288–294
sedimentation rates, A:268–271
site description, A:251–308
site geophysics, A:304–306

slump beds
lithologic units, A:84–92
photograph, A:89
smectite. See illite-smectite mixture
sodium oxide, sediments, B:5:22

Sohm Abyssal Plain
paleoceanography, A:9
pore water, A:311–313
sedimentary structures, B:7:1–37
site description, A:251–308

species diversity, diatoms, B:8:6
SPECMAP logs

correlation, A:318
vs. depth, A:303

splice tie points
Site 1063, A:270
Sites 1054–1055, A:49
Sites 1056–1059, A:106–107
Sites 1060–1062, A:191–192
spliced records, summary, A:52
sponge spicules, lithologic units, A:38, 91, 164–165, 168, 170–174

squalene derivatives, sediments, B:1:2
stable isotopes
upper Pleistocene, B:9:1–14
See also carbon isotopes; oxygen isotopes

stadials, aluminosilicates, B Overview:4

stadials/interstadials
aluminum oxide/titanium oxide ratio, B Overview:4
potassium oxide/aluminum oxide ratio, B Overview:4

steranes
mass chromatograms, B:1:5–6
sediments, B:1:2

Site 1061
Brunhes Chron, B:10:1–18
magnetic susceptibility, B:4:1–22
paleomagnetism, B:11:1–20
sediments, B Overview:4

Site 1062
Brunhes Chron, B:10:1–18
iron oxidation, B:2:1–11
mud waves, B Overview:4–5
paleomagnetism, B:11:1–20

Site 1063
biostratigraphy, B:8:1–49
Brunhes Chron, B:10:1–18
Brunhes/Matuyama polarity transition, A:318–319
Dansgaard-Oeschger cycles, B:5:1–24
organic geochemistry, B:1:1–9
paleomagnetism, B:11:1–20
site description, A:33

Site 1054–1055, A:33–76
background and objectives, A:35
biostratigraphy, A:40–44
composite depths, A:47–48
coring, A:36
inorganic geochemistry, A:59–63
lithostratigraphy, A:37–40
mass accumulation rates, A:48–49
operations, A:35–37
organic geochemistry, A:49, 51–59
paleomagnetism, A:44–47
physical properties, A:63–68
sedimentation rates, A:48–49
site description, A:33–76
site geophysics, A:68–75
stratigraphic correlation, A:47–48

Sites 1054–1062, salinity, A:9
Sites 1054–1064, carbonate content, B:6:1–12
Sites 1056–1059, A:77–156
background and objectives, A:81
biostratigraphy, A:93–97
coring, A:82–83
inorganic geochemistry, A:122–129
lithostratigraphy, A:83–93
mass accumulation rates, A:104–107, 113–116
operations, A:81–83
organic geochemistry, A:116–122
paleomagnetism, A:97–104
physical properties, A:129, 132–134
sedimentation rates, A:104–107, 113–116
site description, A:77–156
site geophysics, A:135, 138, 143, 146

Sites 1060–1062, A:157–250
background and objectives, A:161
biostratigraphy, A:178–184
composite depths, A:188–201
coring, A:162–163
stratification, inclined, photograph, A:174
stratigraphy, correlation, A:188–201
strontium
 authigenesis, A:225–226, 228
 pore water, A:286–288
 vs. depth, A:227–228, 286–287
sulfate
 diagenesis, A:60–63, 123, 125
 methanogenesis, B3:2–3
 pore water, A:228–229, 316
 vs. depth, A:62, 136, 226, 285, 316; B3:11
 vs. methane, A:222–223, 225
sulfate/methane boundary
 carbon cycling, B3:2
 diagenesis, A:123, 125, 222, 225–227
 pore water, A:311–313
sulfate reduction
 diagenesis, A:60–63, 123, 125, 218, 221, 223, 225
 pore water, A:286–288
 sediments, B Overview:2–5
sulfur, sediments, B5:22
surface water, ocean circulation, A:7

T
 temperature
 organic matter, A:278, 281
 vs. salinity, B Overview:11
 temperature, equilibrium, vs. depth, A:240
 temperature, potential, vs. salinity, A:9
 temperature logs
 gas hydrates, A:245
 vs. depth, A:246, 303
thanatocenoses, diatoms, B8:4
thermal conductivity
 sediments, A:68, 70, 133–134, 149–150, 235, 239, 293, 298
 vs. depth, A:71, 150, 240, 298
thermogenesis, fractures, A:274
thorium logs
 clay lithology, A:242
 vs. depth, A:244, 301, 303
thorium/potassium ratio logs, vs. depth, A:244, 301
titanium oxide
 sediments, B5:4–5, 22
 vs. aluminum oxide, B5:14
 See also aluminum oxide/titanium oxide ratio
transport, diatoms, B8:4
traveltime, two-way, synthetic seismograms, A:75

U
 u-channel records, magnetic excursions, B11:3–6
uranium logs
 correlation, A:240
 vs. depth, A:244, 301

V
 velocity logs, vs. depth, A:243, 300
vivianite, sediments, B2:4–6

W
 water content, vs. depth, A:66–67, 141–143, 233–234, 293–294
 well-log Unit 1, correlation, A:238, 298
 well-log Unit 2, correlation, A:238, 298–299
 well-log Unit 3, correlation, A:238, 299
 well-log Unit 4, correlation, A:240, 299
 well-logging
 graphic summary, A:242, 299
 Sites 1060–1062, A:235–245
 Sites 1063–1064, A:294–304
 See also downhole measurements

X
 X-ray diffraction data, sediments, A:37, 86, 91, 169–170, 173, 257
 X-ray radiography, sedimentary structures, B Overview:3; B7:4–12, 20–37

Y
 Younger Dryas, glaciation, A:8

Z
A

Achnanthus brevipes, Sites 1056–1059, A:97

Actinocyclus curvatus, Site 1063, B:8:7, 36

Actinocyclus ellipticus var. *elongatus*, Site 1063, B:8:7, 44

Actinocyclus ingens, Site 1063, B:8:7

Actinocyclus nodulifer, Site 1063, B:8:5–6

Actinocyclus octonarius, Site 1063, B:8:7, 36

Actinocyclus octonarius var. *tenella*, Site 1063, B:8:7, 36

Actinocyclus senarius, Site 1063, B:8:7, 21, 36

Actinocyclus splendens, Site 1063, B:8:7, 36

affinis, *Globobulimina*

Sites 1054–1055, A:43

Sites 1060–1062, A:183

affinis, *Globobulacuimina*, Sites 1056–1059, A:97

africana, *Azpeitia*, Site 1063, B:8:8, 39

aficanus, *Coscinodiscus*

Sites 1060–1062, A:184

Sites 1063–1064, A:262

aguste-lineata, *Thalassiosira*, Site 1063, B:8:14, 45

alternans, *Biddulphia*, Site 1063, B:8:9

altispira, *Dentoglobigerina*

Sites 1060–1062, A:180

Sites 1063–1064, A:254, 261

amphiceros, *Raphoneis*, Site 1063, B:8:2, 4, 12, 23, 43

arachne, *Asteromphalus*, Site 1063, B:8:7

Asterolampra grevillei, Site 1063, B:8:7, 37

Asterolampra marylandica

Site 1063, B:8:7, 21, 39

Sites 1063–1064, A:262

Asteromphalus arachne, Site 1063, B:8:7

Asteromphalus elegans, Site 1063, B:8:7–8, 39

Asteromphalus heptactis, Site 1063, B:8:8, 39

Asteromphalus sp. A?, Site 1063, B:8:8, 37–38

asymmetricus, *Discoaster*

Sites 1060–1062, A:178

Sites 1063–1064, A:261

Auliscus sculptus, Site 1063, B:8:8, 49

aurita, *Odontella*, Site 1063, B:8:12, 42

Azpeitia africana, Site 1063, B:8:8, 39

Azpeitia neoecrenulata, Site 1063, B:8:8, 21, 39

Azpeitia nodulifer, Site 1063, B:8:8–9, 40

B

Bacteriastrium hyalinum, Site 1063, B:5:18; B:8:5, 9, 21, 41

Bacteriastrium spp.

Site 1063, B:8:6

Sites 1063–1064, A:262

Biddulphia alternans, Site 1063, B:8:9

Bolivina paula, Sites 1056–1059, A:97

Bolivina spp., Sites 1054–1055, A:43

Bolivinita quadririlatera, Sites 1056–1059, A:97

bombus, *Diploneis*

Site 1063, B:8:10

Sites 1056–1059, A:97

bradyi, *Eggerella*, Sites 1063–1064, A:262

brevipes, *Achnanthes*, Sites 1056–1059, A:97

brightwellii, *Dityrum*, Site 1063, B:8:5–6, 11, 22, 42

brouweri, *Discoaster*

Sites 1054–1055, A:42–43

Sites 1063–1064, A:261

Bulimina costata

Sites 1054–1055, A:43

Sites 1056–1059, A:96–97

Bulimina marginita

Sites 1054–1055, A:43

Sites 1056–1059, A:96–97

bulloides, *Pullenia*, Sites 1063–1064, A:262

C

calc-aris, *Pseudosolenia*, Site 1063, B:8:12, 23, 42

Calcidiscus macintyreii

Sites 1054–1055, A:42

Sites 1060–1062, A:180

calida, *Globigerinita*, Sites 1054–1064, A:320

carinata, *Cassidulina*

Sites 1054–1055, A:43

Sites 1056–1059, A:96

Cassidulina carinata

Sites 1054–1055, A:43

Sites 1056–1059, A:96

Chaetoceros diadema, Site 1063, B:8:9, 41

Chaetoceros lacinosus, Site 1063, B:8:4–5, 9, 21, 41

Chaetoceros messanensis, Site 1063, B:8:9

Chaetoceros mitra, Site 1063, B:8:9, 41

Chilostomella oolina

Sites 1054–1055, A:43

Sites 1060–1062, A:183

Cibicides pachyderma, Sites 1054–1055, A:43; B:9:2, 5, 11–12

Cibicides wuellerstorfi

Site 1063, B:9:13–14

Sites 1054–1055, A:43; B:9:2, 5–6, 11–12

Sites 1056–1059, A:96–97

Sites 1060–1062, A:183

Sites 1063–1064, A:262

Cocconeis disculoides, Site 1063, B:8:2, 4, 9, 21, 43

convexa, *Thalassiosira*, Site 1063, B:8:24

convexa var. *aspinosa*, *Thalassiosira*, Site 1063, B:8:14

Coscinodiscus africans

Sites 1060–1062, A:184

Sites 1063–1064, A:262

Coscinodiscus cf. nodulus, Sites 1063–1064, A:262

Coscinodiscus marginatus, Site 1063, B:8:9–10

Coscinodiscus nitidus, Site 1063, B:8:10, 40

Coscinodiscus oculusrisidus, Site 1063, B:8:10

Coscinodiscus radiatus, Site 1063, B:8:6, 10, 21, 40

Coscinodiscus reniformis, Site 1063, B:8:10, 49

costata, *Bulimina*

Sites 1054–1055, A:43

Sites 1056–1059, A:96–97

crabro, *Diploneis*, Site 1063, B:8:10

crassaformis hessi, *Trancorotalia*

Sites 1054–1055, A:42

Sites 1054–1064, A:320
Dentoglobigerina altispira
Sites 1060–1062, A:255, 261

Diadema, Chaetoceros, Site 1063, B8:9, 41

Diapixon elongate, Site 1063, B8:10

Diasteria pentaradiatus
Sites 1054–1055, A:42–43
Sites 1063–1064, A:261

Diasteria crassifera, Site 1063, B8:10

Discoaster subovalis, Site 1063, B8:10

Discoaster asymmetrics
Sites 1060–1062, A:178
Sites 1063–1064, A:261

Discoaster brouweri
Sites 1054–1055, A:42–43
Sites 1063–1064, A:261

Discoaster pentaradiatus
Sites 1054–1055, A:43
Sites 1060–1062, A:177
Sites 1063–1064, A:261

Discoaster surculus
Sites 1054–1055, A:42
Sites 1063–1064, A:261

Discoaster tamalis
Sites 1060–1062, A:177–178
Sites 1063–1064, A:260–261

Discoaster triradiatus, Sites 1063–1064, A:261

discaloides, Cocconeis, Site 1063, B8:2, 4, 9, 21, 43

Ditylum brightwellii, Site 1063, B8:5–6, 11, 22, 42
doliolus, Fragilariaopsis, Site 1063, B8:4, 6, 11, 22, 43
doliolus, Pseudoemulina
Site 1063, B8:3

Eccentrica, Thalassiosira, Site 1063, B8:6, 14, 24, 46

Eggerella budryi, Sites 1063–1064, A:262

 Ehrenbergina trigona, Site 1063–1064, A:262
elegans, Asteromphalus, Site 1063, B8:7–8, 39
elegans, Hoeglundina
Sites 1054–1055, A:43
Sites 1056–1059, A:97

eppis var. elongatus, Actinocyclus, Site 1063, B8:7, 44

Emiliania huxleyi
Sites 1054–1055, A:41–42
Sites 1054–1064, A:319

Epistominella exigua
Sites 1054–1055, A:43
Sites 1063–1064, A:262

Epistominella spp., Sites 1056–1059, A:97

Ethmoglobus rex
Site 1063, B8:5, 11, 22
Sites 1060–1062, A:183

exigua, Epistominella
Sites 1054–1055, A:43
Sites 1063–1064, A:262

exilis, Menardella
Sites 1054–1055, A:43
Sites 1060–1062, A:180
Sites 1063–1064, A:261

Ferelineata, Thalassiosira, Site 1063, B8:14

Fistulosus, Globigerinoides, Sites 1054–1055, A:41

Fragilariaopsis doliolus, Site 1063, B8:4, 6, 11, 22, 43

Fursenkoina mexicana, Site 1054–1055, A:43

Gephyrocapsa omega, Sites 1054–1055, A:42

Gephyrocapsa spp.
Sites 1054–1055, A:41–42
Sites 1054–1064, A:314
Sites 1060–1062, A:180, 211, 214, 216–217
Sites 1063–1064, A:269, 278

Globigerinoides calida, Sites 1054–1064, A:320

Globigerinoides fistulosus, Sites 1054–1055, A:41

Globigerinoides obliquus
Sites 1054–1055, A:42
Sites 1056–1059, A:95
Sites 1060–1062, A:180
Sites 1063–1064, A:261

Globigerinoides ruber
Atlantic Ocean NW, B Overview:5
Site 1063, B9:3, 9–10, 13–14
Sites 1054–1055, A:42; B9:2–3, 5–8, 11–12

Globigerinoides sacculifer, Sites 1054–1055, B9:2–3, 5

Globobulimina affinis
Sites 1054–1055, A:43
Sites 1056–1059, A:97
Sites 1060–1062, A:183

Globobulimina spp., Sites 1056–1059, A:97

Globobulaculina affinis, Sites 1056–1059, A:97

Globocassidulinoida subglobosa
Sites 1054–1055, A:43
Sites 1060–1062, A:183
Sites 1063–1064, A:261–262

Globoconella inflata
Sites 1054–1055, A:43
Sites 1060–1062, A:180
Sites 1063–1064, A:261

Globoconella punculata, Sites 1063–1064, A:261
Globorotalia tumida flexuosa
Sites 1054–1055, A:42
Sites 1054–1064, A:320
Sites 1056–1059, A:95–96
Sites 1060–1062, A:180
Sites 1063–1064, A:261
Globorotalia tumida tumida, Sites 1054–1055, A:42
grevillei, Asterolampra, Site 1063, B8:7, 37
Gyroidinoides soldanii, Sites 1054–1055, A:43
Gyroidinoides spp.
Sites 1054–1055, A:43
Sites 1056–1059, A:96–97
Sites 1060–1062, A:183

H
hauckii, Hemiaulus, Site 1063, B8:4, 11, 42
Helicosphaera sellii, Sites 1054–1055, A:42
Hemiaulus hauckii, Site 1063, B8:4, 11, 42
Hemidiscus cuneiformis, Site 1063, B8:11, 22, 40
heptactis, Asteromphalus, Site 1063, B8:8, 39
hiruta, Hirsutella, Sites 1054–1064, A:320
Hirsutella hirsuta, Sites 1054–1064, A:320
Hoeoglindina elegans
Sites 1054–1055, A:43
Sites 1056–1059, A:97
humerosa, Navicula, Sites 1056–1059, A:97
huxleyi, Emiliania
Sites 1054–1055, A:41–42
Sites 1054–1064, A:319
Sites 1056–1059, A:93–95
Sites 1060–1062, A:178–179
Sites 1063–1064, A:260–261
hyalinum, Bacteriastrium, Site 1063, B5:18; B8:5, 9, 21, 41

I
inflata, Globocconella
Sites 1054–1055, A:43
Sites 1060–1062, A:180
Sites 1063–1064, A:261
ingens, Actinocyclus, Site 1063, B8:7

L
lacinosus, Chaetoceros, Site 1063, B8:4–5, 9, 21, 41
lacunosa, Pseudoemiliania
Sites 1054–1055, A:41–42, 54
Sites 1054–1064, A:317
Sites 1056–1059, A:94–95, 104, 114–115, 121
Sites 1063–1064, A:255, 261, 269
laevigata, Valvulinina, Sites 1054–1055, A:43
leptopus, Thalassiosira, Site 1063, B8:14, 24, 47
lineata, Thalassiosira, Site 1063, B8:6, 14–15, 24, 46
lorenziana, Cymatosira, Site 1063, B8:2, 4, 10, 21, 43
lyroides, Navicula, Site 1063, B8:11, 43

M
macintyre, Calcidiscus
Sites 1054–1055, A:42

N
Navicula humerosa, Sites 1056–1059, A:97
Navicula lyroides, Site 1063, B8:11, 43
neocrenulata, Azpeitia, Site 1063, B8:8, 21, 39
Neogloboquadrina pachyderma, Atlantic Ocean NW, B
Overview: S
nitidus, Coscinodiscus, Site 1063, B8:10, 40
Nitzschia marina
Site 1063, B8:5, 11–12, 22, 43
Sites 1060–1062, A:184
Sites 1063–1064, A:262
Nitzschia panduriformis, Site 1063, B8:12, 43
Nitzschia reinholdii
Site 1063, B8:12, 43
Sites 1054–1055, A:43
Sites 1056–1059, A:97
Sites 1060–1062, A:183
Sites 1063–1064, A:262
Nitzschia reinholdii Zone
Site 1063, B8:3
Sites 1054–1055, A:43
Nitzschia sicula var., Site 1063, B8:12, 22, 43
nitzschioides, Thalassionema
Site 1063, B8:4–5, 13–14, 23, 43
Sites 1063–1064, A:262
nitzschioides var. parva, Thalassionema, Sites 1063–1064, A:262
nodulifer, Actinocyclus, Site 1063, B8:5–6
nodulifer, Azpeitia, Site 1063, B8:8–9, 40
nodulus, Coscinodiscus cf., Sites 1063–1064, A:262
nordenskiöldii, Thalassiosira, Site 1063, B8:4, 15, 24, 47

O
obliquus, Globigerinoides
Sites 1054–1055, A:42
Sites 1056–1059, A:95
Sites 1060–1062, A:180
Sites 1063–1064, A:262
octonarius, Actinocyclus, Site 1063, B8:7, 36
octonarius var. tenella, Actinocyclus, Site 1063, B8:7, 36
oculusirdus, Coscinodiscus, Site 1063, B8:10
Odontella aurita, Site 1063, B8:12, 42
Odontella spp., Site 1063, B8:23
oestrupii, Thalassiosira
Site 1063, B8:6, 15, 24, 47
Sites 1060–1062, A:184
Sites 1063–1064, A:262
omega, Gephyrocapsa, Sites 1054–1055, A:42
oolina, Chilostomella
Sites 1054–1055, A:43
Sites 1060–1062, A:183
Oridorsalis umbonatus
Sites 1054–1055, A:43
Sites 1056–1059, A:97
Sites 1060–1062, A:183
Sites 1063–1064, A:261–262
Osangularia umbonifera
Sites 1060–1062, A:183
Sites 1063–1064, A:261–262
ovalis, Dipleoneis, Sites 1056–1059, A:97

P
pachyderma, Cibicidoides, Sites 1054–1055, A:43; B9:2, 5, 11–12
pachyderma, Neogloboquadrida, Atlantic Ocean NW, B
Overview:5
pacific, Thalassiosira, Site 1063, B8:15, 24, 48
panduriformis, Nitzschia, Site 1063, B8:12, 43
Paralia sulcata, Site 1063, B8:5, 12, 23, 44
paula, Bolivina, Sites 1056–1059, A:97
pentaradiatus, Discoaster
Sites 1054–1055, A:43
Sites 1060–1062, A:177
Sites 1063–1064, A:261
peregrina, Uvigerina
Sites 1056–1059, A:97
Sites 1060–1062, A:183
pertenuis, Menardella, Sites 1054–1055, A:43
Pinnularia spp., Sites 1056–1059, A:97
Pleurosigma spp., Sites 1056–1059, A:97

plicata, Thalassiosira, Site 1063, B8:15, 24, 48
Podosira denticulata, Site 1063, B8:12, 44
Podosira stelliger, Site 1063, B8:4, 12, 40
pompilioides, Melonis, Sites 1060–1062, A:183
Pseudoemiliania lacunosa
Sites 1054–1055, A:41–42, 54
Sites 1054–1064, A:317
Sites 1056–1059, A:94–95, 104, 114–115, 121
Sites 1063–1064, A:255, 261, 269
Pseudoemunotia doliolus
Site 1063, B8:3
Sites 1054–1055, A:43
Sites 1056–1059, A:97
Pseudoemunotia doliolus Zone
Site 1063, B8:3
Sites 1063–1064, A:262
Pseudoemunotia doliolus Zone
Site 1063, B8:3
Sites 1063–1064, A:262
Pseudosolenia calcar-avis, Site 1063, B8:12, 23, 42
pseudoumbilicus, Reticulofenestra, Sites 1060–1062, A:180
Pullenia bulloides, Sites 1063–1064, A:262
Pulleniatina spp., Sites 1054–1055, A:43
puncticulata, Globoconella, Sites 1063–1064, A:261

Q
quadrilatera, Bolivinita, Sites 1056–1059, A:97

R
radiatus, Coscinodiscus, Site 1063, B8:6, 10, 21, 40
Raphoneis amphiceros, Site 1063, B8:2, 4, 12, 23, 43
Raphoneis spp., Sites 1056–1059, A:97
reinholdii, Nitzschia
Site 1063, B8:12, 43
Sites 1054–1055, A:43
Sites 1056–1059, A:97
Sites 1060–1062, A:183
Sites 1063–1064, A:262
reniformis, Coscinodiscus, Site 1063, B8:10, 49
Reticulofenestra pseudoumbilicus, Sites 1060–1062, A:180
rex, Ethmodiscus
Site 1063, B8:5, 11, 22
Sites 1060–1062, A:183
Rhizosolenia curvirostris, Site 1063, B8:12, 42
Roperia tesselata, Site 1063, B8:12–13, 23, 44
rubra, Globigerinoides, Atlantic Ocean NW, B Overview:5
Site 1063, B9:3, 9–10, 13–14
Sites 1054–1055, A:42; B9:2–3, 5–8, 11–12

S
sacculifera, Globigerinoides, Sites 1054–1055, B9:2–3, 5
sculptus, Auliscus, Site 1063, B8:8, 49
sellii, Helicosphaera, Sites 1054–1055, A:42
senarius, Actinocyclus, Site 1063, B8:7, 21, 36
sicula var., Nitzschia, Site 1063, B8:12, 22, 43
soldanii, Gyroidinoides, Sites 1054–1055, A:43
splendens, Actinocyclus, Site 1063, B8:7, 36
Stellarina stellaris, Site 1063, B8:13
stellaris, Stellarina, Site 1063, B8:13
stelliger, Podosira, Site 1063, B8:4, 12, 40
Stephanopyxis turris, Site 1063 • zones (with letter prefixes)