INDEX TO VOLUME 178

This index covers both the Initial Reports and Scientific Results portions of Volume 178 of the Proceedings of the Ocean Drilling Program. References to page numbers in the Initial Reports are preceded by “A” followed by the chapter number with a colon (A1:) and to those in the Scientific Results (this volume) by “B” followed by the chapter number with a colon (B1:).

The index was prepared by Earth Systems, under subcontract to the Ocean Drilling Program. The index contains two hierarchies of entries: (1) a main entry, defined as a keyword or concept followed by a reference to the page on which that word or concept appears, and (2) a subentry, defined as an elaboration on the main entry followed by a page reference.

The index covers volume text, figures, and tables but not core-description forms (“barrel sheets”), core photographs, smear slide data, or thin section descriptions. Also excluded from the index are bibliographic references, names of individuals, and routine front matter.

The Subject Index follows a standard format. Geographical, geologic, and other terms are referenced only if they are subjects of discussion. A site chapter in the Initial Reports is considered the principal reference for that site and is indicated on the first line of the site’s listing in the index. Such a reference to Site 1095, for example, is given as “Site 1095, A4:1–173.”

The Taxonomic Index is an index relating to significant findings and/or substantive discussions, not of species names per se. This index covers three varieties of information: (1) individual genera and species that have been erected or emended formally, (2) biostratigraphic zones, and (3) fossils depicted in illustrations. A taxonomic entry consisting of both genus and species is listed alphabetically by genus and also by species. Biostratigraphic zones are listed alphabetically by genus; zones with letter prefixes are listed under “zones.”

SUBJECT INDEX

A

acoustic properties
 density/velocity models, A9:22–23
 vs. two-way traveltime, A7:70–71
acoustic stratigraphy
 seismic units, A4:37–38
 See also Antarctic Offshore Acoustic Stratigraphy
age
 argon isotopes, B22:6–10
 barnacle fragments, B27:1–8
 glaciation, A1:4
 histograms, B22:22
 lower Pliocene, A6:28
 ocean floors, A2:35
 sediments, B7:4–5
 vs. strontium isotopes, B27:5
 See also chronology; geochronology; radioactive dating
age models, physical properties, B32:6
age release
 calcium/potassium ratio, B22:19–20
 chlorine/potassium ratio, B22:18
age vs. depth
 Site 1095, A1:35; A4:63, 100; B(synthesis):36; B36:25
 Site 1096, A1:38; A5:30; 92; B36:26
 Site 1101, A1:40; A8:59; B36:27

albite, potassium logs vs. photoelectric effect logs, A5:85
Alexander Island
 chlorite-illite province, B8:9
 clay mineralogy, B8:14
 geology, B8:5
alkalinity
 pore water, A4:21; A5:18; A6:14; A7:16; A8:13; A9:15
 vs. depth, A4:77; A5:70; A6:49; A7:52–53; A8:47
alkalis, vs. silica, B22:17
aluminum/titanium ratio
 climate optimum, B34:6
 neoglacial, B34:7
ammonium
 pore water, A4:21; A5:18; A6:14; A7:16; A8:13; A9:15
 vs. depth, A4:77; A5:70; A6:49; A7:52–53; A8:47
amorphous material, vs. depth, B13:12
amphibole, drift deposits, B8:7
Andean Orogeny, geology, B8:4–5
angiosperms, continental rise, B2:1–10
anisotropy, magnetic minerals, B14:3
anorhite, potassium logs vs. photoelectric effect logs, A5:85
anoxia, sea ice, B25:9
anoxic environment, Holocene, B7:10–14
Antarctic Circumpolar Current
 currents, A2:7; B10:8
 neoglacial, B34:7–8
Antarctic Ice Sheet
- geology, A1:1–60
- glaciation, A2:1–44

Antarctic Ocean, biostratigraphy, B13:1–22

Antarctic Offshore Acoustic Stratigraphy, drilling, A1:2

Antarctic Peninsula
- dinoflagellates, B2:1–10
- geochemistry, B4:1–12
- geology, A1:4–5; A2:7–9
- glacial history, B(synthesis):1–40
- ice-rafted debris, B11:1–23
- seismic velocity, B16:1–25
- upper Pliocene impact, B9:1–6

Antarctic Peninsula Batholith, geology, B8:5

Antarctic Peninsula Margin, stable isotopes, B20:1–10

Antarctic Peninsula Pacific Margin, diatoms, B29:1–25

Antarctic Peninsula W
- magnetobiochronology, B36:1–40
- magnetostratigraphy, B31:1–23; B37:1–61
- spectral reflectance data, B21:1–22

Antarctic Surface Water, currents, B7:2

Antarctic Zone, physiography, B8:4

Antarctissa, photograph, B13:16

ANTOSTRAT, drilling, A1:2; A2:3

Anvers Island
- clay mineralogy, B8:13
- seismic profiles, A2:41

apatite
- authigenesis, A8:13
- sediments, A5:19

argon isotopes
- milligram-sized fractions, B22:24
- multi-grain fractions, B22:25–26
- sediments, B(synthesis):9
- volcanic clasts, B22:1–26

barium, sediments, A4:23–24; A5:21; A6:15; B4:1–12

barium, biogenic
- vs. core depth, B23:27

biofacies
- coarse fraction, B15:10
- flux, B3:4–7
- lithologic units, A7:35, 39; A8:3–9
- vs. depth, A4:49; A5:76–77; A8:30, 54

biogenic mixing, physical properties, B30:4–7

biodiluvian content, biogenic opal, B23:8–9

biostratigraphic datums, diatoms, B35:1–57

biostratigraphic events, diatoms, B29:3–24

biostratigraphic facies, diatoms, B23:12–16

biostratigraphy
- calcareous nannofossils, B26:1–21; B28:1–22
- Cenozoic, A1:14–15
- diatoms, B29:1–25; B35:1–57
- dinoflagellates, B2:1–10
- Miocene–Pleistocene, A5:58; A6:42

bioturbation
- color, B3:4–5
- deposition, A4:12–13
- lithologic units, A4:4–13; A5:5–12; A7:7; A8:3–9;
 B25:4–6, 8
- mud, A2:15; A4:4–13
- photograph; A5:50, 55; A6:38
- porosity, B30:4–7
- postglacial sediments, B18:5
VOLUME 178 SUBJECT INDEX
bioturbation (continued) • chlorine, neutron capture cross section

sediments, B7:10–14
vs. depth, B32:20, 33
wavenumber, B32:27
X-ray radiography, B10:21

Bismarck Strait
deglaciation, B34:4
neoglacial, B34:7
blocks, seabed observations, A9:9–10
blooms, Coccolithus pelagicus, B26:5–6
Bolboforma, biostratigraphy, A5:14–15
bottom currents
clay minerals, B8:10
deposition, B25:9
opal accumulation rates, B23:10–11
Brabant Island, clay mineralogy, B8:13
Bransfield Strait
chlorite-illite province, B8:9
glaciation, A2:6, 19
breccia. See clast breccia
Brunhes/Matuyama boundary
magnetostratigraphy, A1:11; A4:18; A5:16; A8:11;
B36:9; B37:13
oxygen isotope Stage 19, A8:12
Brunhes Chron, magnetostratigraphy, B36:7; B37:15
Bulimina aculeata, carbon and oxygen isotopes, B7:22
bulk density logs
comparison with velocity logs, B19:29
vs. depth, A4:88; A5:82; A9:66
bulk sediments, parameters, B15:1–19
buried channels, deposition, A5:11–12
Burrowed Facies, photograph, A4:59
burrows
lithologic units, A4:4–5, 10–11; A5:5; A7:4–7; A8:3, 5
photograph, A4:52; A5:46, 55; A7:40; A8:37

C
calcareous nannofossils, lithologic units, A5:5
calcite
chemical and nuclear parameters, A5:137
diamict, A6:17–18
potassium logs vs. photoelectric effect logs, A5:85
X-ray diffraction data, A8:15, 65
calcium
pore water, A4:22; A5:19; A6:14; A8:14; A9:15
vs. depth, A4:77; A5:70; A6:49; A7:52–53; A8:47
calcium/potassium ratio
spectra and age release, B22:5–6, 18
vs. chlorine/potassium ratio, B22:21
calcium carbonate
sediments, A4:20–21; A5:128–130; A7:106–107; A8:12
vs. depth, A4:78; A6:48
caliper logs, vs. depth, A4:88; A9:66; B17:15; B32:19
calving, pebbles, B11:4
carbon, sediments, A7:106–107
carbon, inorganic
sediments, A4:20–21; A5:17, 128–130; A6:13–14;
A7:13, 106–107; A8:12, 76–77
vs. depth, A5:68; A7:50–51
carbon, organic
neoglacial, B34:6–8

carbon, total, sediments, A4:158–160; A5:128–130
carbon, total organic
color, B3:6–7
porosity, B30:5
Rock-Eval pyrolysis, A5:17–18
sediments, A5:17–18; A6:14; A7:13, 106–107; A8:13,
76–77; B15:1–19
vs. age, A4:7–8; B15:9
vs. core depth, B23:27
vs. depth, A5:69; A7:50–51; A8:46
See also total organic carbon accumulation rates
carbon-14, climate optimum, B34:5–6
carbon dioxide
productivity, B23:13
sediments, B4:3
carbon isotopes
Buliminia aculeata, B7:22
neoglacial, B34:7
Neogloboquadrina pachyderma sinistral, B20:1–10
sediments, B7:5–11
vs. depth, B20:6
vs. oxygen isotopes, B20:8
carbonate compensation depth
foraminifers, B7:9–14
deposition, B28:5
carbonate content
pore water, A4:22–23; A5:19
sediments, A8:76–77; B(synthesis):14; B15:1–19
vs. age, A4:7; A4:8; B15:9
vs. core depth, B23:27
vs. depth, A8:33, 45
X-ray diffraction data, A8:65
carbonate content accumulation rates, vs. age, B23:28
carbonates
diagenesis, A7:16
dissolution, A6:13–14; A8:14
oxygen isotope Stage 19, A8:12
Cariaco Basin
neoglacial, B34:7
Quaternary, A2:16–17
Cenozoic
calcareous nannofossils and palynomorphs, B28:1–22
ice sheets, A2:1–44
stratigraphy, A1:1–2
cesium, sediments, A4:23; B4:1–12
Chaetoceros spp. spores
abundance, A7:42
backscattered electron photomicrograph, B18:13–14
percentage in cores, B7:25–26
photograph, A7:36, 40
channels. See buried channels
Chaotically Stratified Facies
diamictite, A9:7
See also diamict, chaotically bedded; diamict, stratified
charcoal, vs. depth, B28:13
chloride
pore water, A4:21; A7:13, 16; A8:13
vs. depth, A4:77; A5:70; A6:49; A7:52–53; A8:47
chlorine, neutron capture cross section, A5:28
chlorine/potassium ratio
spectra and age release, B22:5–6, 8–9, 18
vs. age, B22:21
vs. calcium/potassium ratio, B22:21
chlorite
chemical and nuclear parameters, A5:137
continental shelf, B8:9
Core PS1565, B8:15
drift deposits, B8:7–16
potassium logs vs. photoelectric effect logs, A5:85
sediments, A1:50; A8:49
vs. age, B8:27
vs. depth, B(synthesis):38; B8:23–24, 26
X-ray diffraction data, A4:79–80; A5:20, 71; A6:15, 50;
A8:15, 65, 79
See also illite-smectite–chlorite
chlorite/illite ratio, X-ray diffraction data, A4:23; A5:71;
A6:50; A8:48
chlorite/mixed-layer clays ratio, X-ray diffraction data,
A4:23; A5:71; A6:50; A8:48
chlorite-illite province
continental shelf, B8:9
deposition, B8:10–12
Chondrites, lithologic units, A4:6; A5:6–7, 11–12
chromaticity
lithologic units, A5:45; A7:35, 39; B6:3
sediments, B(synthesis):13
vs. composite depth, A7:62, 64–65, 68–69
vs. depth, A4:49–51, 98–99; A5:88–89; A8:33
See also color; lightness; reflectance
cromium, sediments, A4:23; A5:21; A6:15; B4:1–12
Chron C1r, magnetostratigraphy, B37:14
Chron C1r.1n
Neogene, B28:4
sediments, B36:8; B37:8, 10
Chron C1r.1r, magnetostratigraphy, B37:13
Chron C1r.2r–1n, sediments, B36:11, 16
Chron C2A, magnetostratigraphy, A1:11
Chron C2An, magnetostratigraphy, A4:18; B37:10
Chron C2An.1n, magnetostratigraphy, A1:11; A5:16;
A8:11–12; B36:9–10; B37:13, 15–16
Chron C2An.1r, magnetostratigraphy, B37:15
Chron C2An.1r–C2An.2n reversal boundary, magneto-
stratigraphy, A8:12
Chron C2An.2n, sediments, B36:10; B37:8, 10, 13, 15
Chron C2An.2r, sediments, B37:8
Chron C2An.3n, magnetostratigraphy, B37:15
Chron C2Ar, magnetostratigraphy, B37:10
Chron C2Ar.2r, sediments, B37:12
Chron C2n, sediments, B36:8–9; B37:10, 13–14, 16
Chron C2r, sediments, B37:14
Chron C2r.1n
impacts, A2:18
sediments, B9:2; B36:8–9; B37:10–11, 13, 16
Chron C3An.1n, magnetostratigraphy, B37:11
Chron C3An.2n, magnetostratigraphy, B37:12
Chron C3Bn, magnetostratigraphy, B37:12
Chron C3Br, magnetostratigraphy, B37:12
Chron C3n.1n, magnetostratigraphy, B37:11, 15
Chron C3n.1r, magnetostratigraphy, B37:11
Chron C3n.2n, magnetostratigraphy, A1:9; A5:16; B36:9
Chron C3n.3n, magnetostratigraphy, B37:15
Chron C3n.4n, magnetostratigraphy, B37:11
Chron C3r, magnetostratigraphy, B37:11
Chron C4An, magnetostratigraphy, A4:70
Chron C4Ar.1n, magnetostratigraphy, A4:18; B36:8;
B37:12
Chron C4Ar.1r, sediments, B37:12
Chron C4Ar.2n, magnetostratigraphy, A4:19; B36:7–8
Chron C4n.2n, magnetostratigraphy, B37:12
Chron C4r, magnetostratigraphy, B37:12
Chron C4r.1n, magnetostratigraphy, B37:12
Chron C4r.2r, magnetostratigraphy, A4:19, 70; B36:8
Chron C5n.2n, magnetostratigraphy, B36:8; B37:12
chronology
Holocene, A7:12
See also age; geochronology
chronostratigraphy, Neogene, B36:21
Circumpolar Deep Water
currents, A2:7
paleoenvironment, A1:17; B7:2–4, 9–10
productivity, B23:13–17
See also Upper Circumpolar Deep Water
clast breccia, lithology, A9:7
clasts
diamictite, A9:6–7
dip, A9:47
ice-rafted debris, B25:9
lithologic units, A8:7
lithology, A6:4–5
photograph, A8:39
See also intraclasts; silt clasts; volcanic clasts
clasts, elongate
dip, A6:35
downhole lithology, A6:36
clasts, floating, mudstone, A9:8
clasts, ice-rafted, photograph, A6:40
clasts, mud, lithology, A9:7
clasts, mudstone, lithology, A9:7
clasts, rip-up
diamictite, A9:7
photograph, A6:37; A7:41
clasts, rounded, photograph, A6:37
clasts, silt, photograph, A9:45
clasts, volcanic
argon isotopes, B22:1–26
pebbles, B11:3
clay
backscattered electron photomicrograph, B18:11–12
core photograph, B18:10
diagenesis, A8:14
lithologic units, A4:4–5, 10–11; A5:5; A7:35, 39; B25:4
photograph, A4:53
photomicrograph, A9:64
vs. depth, A4:49; A5:56; A8:30; B(synthesis):38;
B8:23–24, 26; B25:19–25
X-ray diffraction data, A4:79
See also silt/clay ratio
clay, bioturbated silty, lithologic units, A5:7–8, 11–12
clay, diatom-bearing silty
lithologic units, A4:4–5, 10–11; A5:5; A9:5–6; B25:4
<table>
<thead>
<tr>
<th>Term</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>photograph, A5:46</td>
<td></td>
</tr>
<tr>
<td>clay, laminated silty, lithologic units, A4:7; A5:7, 11–12</td>
<td></td>
</tr>
<tr>
<td>clay, sandy silty, lithologic units, A4:7</td>
<td></td>
</tr>
<tr>
<td>clay, silty</td>
<td></td>
</tr>
<tr>
<td>lithologic units, A4:4–13; A5:6–7, 11–12; A7:5–6; A8:3–9; B25:4–6</td>
<td></td>
</tr>
<tr>
<td>lithology, A6:4–5</td>
<td></td>
</tr>
<tr>
<td>magnetic polarity, B31:8–9</td>
<td></td>
</tr>
<tr>
<td>photograph, A4:52; A5:52, 55; A6:39–40; A8:31</td>
<td></td>
</tr>
<tr>
<td>vs. depth, A4:51</td>
<td></td>
</tr>
<tr>
<td>clay/silt ratio, models, B24:4–8</td>
<td></td>
</tr>
<tr>
<td>clay laminae, postglacial sediments, B18:5</td>
<td></td>
</tr>
<tr>
<td>clay mineralogy</td>
<td></td>
</tr>
<tr>
<td>drift sediments, B8:1–29</td>
<td></td>
</tr>
<tr>
<td>long-term variations, B8:13–14</td>
<td></td>
</tr>
<tr>
<td>sediments, B(synthesis):13</td>
<td></td>
</tr>
<tr>
<td>short-term variations, B8:12–13</td>
<td></td>
</tr>
<tr>
<td>clay minerals</td>
<td></td>
</tr>
<tr>
<td>chemical and nuclear parameters, A5:137</td>
<td></td>
</tr>
<tr>
<td>glacial/interglacial cycles, B8:10–12</td>
<td></td>
</tr>
<tr>
<td>provenance, B8:8–10</td>
<td></td>
</tr>
<tr>
<td>X-ray diffraction data, A4:23, 163; A5:134; A6:50</td>
<td></td>
</tr>
<tr>
<td>See also chlorite; chlorite-illite province; chlorite/illite ratio; chlorite/mixed-layer clays ratio; illite; illite-smectite-chlorite; kaolinite; montmorillonite; smectite; smectite province</td>
<td></td>
</tr>
<tr>
<td>climate</td>
<td></td>
</tr>
<tr>
<td>Holocene, B7:1–45</td>
<td></td>
</tr>
<tr>
<td>sedimentation, B(synthesis):3–5</td>
<td></td>
</tr>
<tr>
<td>tectonics, A1:4</td>
<td></td>
</tr>
<tr>
<td>climate cycles, deposition, A5:11–12</td>
<td></td>
</tr>
<tr>
<td>climate forcing, deposition, B25:10–11</td>
<td></td>
</tr>
<tr>
<td>climate optimum. See Holocene Climate Optimum</td>
<td></td>
</tr>
<tr>
<td>climate reversals</td>
<td></td>
</tr>
<tr>
<td>diatomaceous sandy mud, B34:4</td>
<td></td>
</tr>
<tr>
<td>mass accumulation rates, B34:4–5</td>
<td></td>
</tr>
<tr>
<td>climate signals, foraminifers, A8:8</td>
<td></td>
</tr>
<tr>
<td>clinoxyroxene, backscattered electron photomicrograph, B22:16</td>
<td></td>
</tr>
<tr>
<td>coal chips, vs. depth, B28:13</td>
<td></td>
</tr>
<tr>
<td>coarse fraction</td>
<td></td>
</tr>
<tr>
<td>biogenic component, B15:10</td>
<td></td>
</tr>
<tr>
<td>data, B13:17–19</td>
<td></td>
</tr>
<tr>
<td>particle counts ages and sedimentation rates, B15:19</td>
<td></td>
</tr>
<tr>
<td>terrigenous component, B15:11</td>
<td></td>
</tr>
<tr>
<td>vs. age, A4:7–8; B15:9, 11</td>
<td></td>
</tr>
<tr>
<td>See also fine fraction; grain size</td>
<td></td>
</tr>
<tr>
<td>coastal environment, radiolarians, B33:1–4</td>
<td></td>
</tr>
<tr>
<td>Cobb Mountain Event, magnetostratigraphy, A4:18; A8:12; B36:8, 11; B37:10, 16</td>
<td></td>
</tr>
<tr>
<td>Coccolithus pelagicus, blooms, B26:5–6</td>
<td></td>
</tr>
<tr>
<td>coercivity</td>
<td></td>
</tr>
<tr>
<td>magnetic minerals, B14:3, 8</td>
<td></td>
</tr>
<tr>
<td>overprinting, A4:16–17</td>
<td></td>
</tr>
<tr>
<td>collisions, tectonics, A2:7–9, 19</td>
<td></td>
</tr>
<tr>
<td>collisions, ridge crest–trench, ocean floors, A2:35</td>
<td></td>
</tr>
<tr>
<td>color</td>
<td></td>
</tr>
<tr>
<td>bioturbation, B3:4–5</td>
<td></td>
</tr>
<tr>
<td>diatoms, B3:6–7</td>
<td></td>
</tr>
<tr>
<td>organic carbon, B3:6–7</td>
<td></td>
</tr>
<tr>
<td>sediments, B3:1–20</td>
<td></td>
</tr>
<tr>
<td>spectral analysis, B25:19–20</td>
<td></td>
</tr>
<tr>
<td>vs. depth, B3:12; B25:19–25</td>
<td></td>
</tr>
<tr>
<td>See also chromaticity; reflectance</td>
<td></td>
</tr>
<tr>
<td>color bands, lithologic units, A5:5</td>
<td></td>
</tr>
<tr>
<td>composite depth scales, Antarctic Peninsula, B5:5–10</td>
<td></td>
</tr>
<tr>
<td>composite depths</td>
<td></td>
</tr>
<tr>
<td>depth offsets, A4:96</td>
<td></td>
</tr>
<tr>
<td>Site 1095, A4:31–32; B6:1–15</td>
<td></td>
</tr>
<tr>
<td>Site 1096, A5:29–30; B6:1–15</td>
<td></td>
</tr>
<tr>
<td>Site 1098, A7:20–21</td>
<td></td>
</tr>
<tr>
<td>Site 1099, A7:20–21</td>
<td></td>
</tr>
<tr>
<td>compression, composite depths, B6:3–5</td>
<td></td>
</tr>
<tr>
<td>compressional wave velocity</td>
<td></td>
</tr>
<tr>
<td>sediments, A4:25; A5:22; A7:18; A9:16; A8:17</td>
<td></td>
</tr>
<tr>
<td>vs. depth, A4:81, 86, 98; A5:72, 95; A7:54, 59; A8:50–52, 55–56; A9:58, 63</td>
<td></td>
</tr>
<tr>
<td>compressional wave velocity, discrete</td>
<td></td>
</tr>
<tr>
<td>sediments, A5:24; A6:17; A7:19</td>
<td></td>
</tr>
<tr>
<td>split cores, A4:26–27; A8:18; A9:17–18</td>
<td></td>
</tr>
<tr>
<td>consolidation</td>
<td></td>
</tr>
<tr>
<td>anomalies, B17:9</td>
<td></td>
</tr>
<tr>
<td>porosity, B30:4–7</td>
<td></td>
</tr>
<tr>
<td>continental margin</td>
<td></td>
</tr>
<tr>
<td>glacial history, B(synthesis):1–40</td>
<td></td>
</tr>
<tr>
<td>tectonics, A1:4; A2:7–9, 39</td>
<td></td>
</tr>
<tr>
<td>continental rise</td>
<td></td>
</tr>
<tr>
<td>calcareous nannofossils and palynomorphs, B28:1–22</td>
<td></td>
</tr>
<tr>
<td>clay minerals, B8:10</td>
<td></td>
</tr>
<tr>
<td>diatoms, B29:1–25</td>
<td></td>
</tr>
<tr>
<td>dinoflagellates, B2:1–10</td>
<td></td>
</tr>
<tr>
<td>drift deposits, A1:5–11; A2:20–21; B(synthesis):9–14</td>
<td></td>
</tr>
<tr>
<td>glacial signal, B10:1–22</td>
<td></td>
</tr>
<tr>
<td>grain size, B12:1–34</td>
<td></td>
</tr>
<tr>
<td>ice sheets, B(synthesis):16–17</td>
<td></td>
</tr>
<tr>
<td>insolation, B(synthesis):16–17</td>
<td></td>
</tr>
<tr>
<td>magnetostratigraphy, B37:1–61</td>
<td></td>
</tr>
<tr>
<td>marine-glacial environment, A2:9–13</td>
<td></td>
</tr>
<tr>
<td>Neogene glaciation, B25:1–25</td>
<td></td>
</tr>
<tr>
<td>opal, B23:1–33</td>
<td></td>
</tr>
<tr>
<td>pebbles, B11:1–23</td>
<td></td>
</tr>
<tr>
<td>salinity and temperature vs. water depth, A2:34</td>
<td></td>
</tr>
<tr>
<td>sedimentation, B(synthesis):16–17</td>
<td></td>
</tr>
<tr>
<td>seismic stratigraphy, B17:1–36</td>
<td></td>
</tr>
<tr>
<td>spectral reflectance data, B21:1–22</td>
<td></td>
</tr>
<tr>
<td>continental shelf</td>
<td></td>
</tr>
<tr>
<td>calcareous nannofossils and palynomorphs, B28:1–22</td>
<td></td>
</tr>
<tr>
<td>clay minerals, B8:8–9</td>
<td></td>
</tr>
<tr>
<td>core recovery, B(synthesis):15–16</td>
<td></td>
</tr>
<tr>
<td>deposition, A1:3, 11–15; A2:5; A9:9</td>
<td></td>
</tr>
<tr>
<td>glaciation, A9:9</td>
<td></td>
</tr>
<tr>
<td>marine-glacial environment, A2:9–13, 20–22</td>
<td></td>
</tr>
<tr>
<td>paleoenvironment, B(synthesis):5–9</td>
<td></td>
</tr>
<tr>
<td>Seismic Sequence Group S1, A9:25</td>
<td></td>
</tr>
<tr>
<td>velocity, B16:1–25</td>
<td></td>
</tr>
<tr>
<td>See also inner shelf; mid-shelf high; middle shelf; outer shelf; saline shelf water; shelf topsets; shelf transects; shelf water</td>
<td></td>
</tr>
<tr>
<td>continental slope</td>
<td></td>
</tr>
<tr>
<td>deposition, A4:11; A9:9</td>
<td></td>
</tr>
<tr>
<td>paleoenvironment, B(synthesis):5–9; B8:3–4</td>
<td></td>
</tr>
<tr>
<td>sediments, A2:12–13; B8:3–4</td>
<td></td>
</tr>
</tbody>
</table>
See also slope foresets
contour currents
 ice-rafted debris, B10:6
 sedimentation, A1:6
contour plots
 fine fraction vs. age, B24:17
 fine fraction vs. depth, B24:16
contourite
 lithologic units, A5:5–6
 photograph, A8:32
Contourite Facies, structure, A5:51
 convolute bedding, lithology, A9:7
 core offsets, vs. depth, B6:4–5, 10, 12–13
 core recovery, continental shelf, B(synthesis):15–16
 core-log correlation, magnetic polarity, B31:6–8
Corethron criophilum
 backscattered electron photomicrograph, B18:15–16
 photograph, A7:36
coring, summary, A1:54–58

correlation
 biostratigraphy, A1:41; B(synthesis):35, 37
 composite depth scales, B5:1–35
 composite depths, A4:31–32; B6:3–5
 physical properties, B6:3–5
 postglacial sediments, B18:17
 seismic models, A7:22–23
 seismic units, A4:36–38
 synthetic seismograms, A5:32
 time-depth, B16:24
correlation analysis logs, vs. depth, B31:18–19
 couplets, deglaciation, B34:4
cross laminations
 lithologic units, A4:5–8, 11–13; B25:5–6
 photograph, A8:36
Cryptochron C1r.2r-1n, sediments, B36:8, 10
Cryptochron C2r.2r-1, magnetic polarity, B36:8
Cryptochron C4r.2r-1, magnetic polarity, A4:19–20, 71–74; B37:12
Cryptochron C4r.2r-1n, sediments, A4:70–71, 73–75
current winnowing, lithologic units, A4:5; B25:4

currents, oceanography, A2:6–7
cyclic processes
 clay/silt ratio, B24:4–8
 deposition, A4:11–13; A5:8–9, 11–12; B25:10–12
 lithologic units, A1:6–7; B32:1–43
 sedimentation, B(synthesis):16–17
 See also glacial cycles; glacial half-cycles; glacial-interglacial cycles
cyclic processes, first-order, vs. depth, A4:49; B25:16
cyclic processes, short-term, sediments, B25:7–8

d
data reduction, velocity logs, B19:25
datums. See diatom datums; radiolarian datums
debrites
 deposition, A5:8–9, 11–12; A9:9
 lithofacies, A6:6–7
Deception Island, smectite, B8:8–9
deep-sea environment, lithologic units, B25:4–6
deepwater signal, climate optimum, B34:5–6
deformation, style, A7:37
deformation till, deposition, A6:8; A9:9
deglaciation, diamicton, B34:4
degradation, organic matter, A4:21; A5:18–19; A7:15–16;
 A8:13; A9:15
demagnetization
 discrete samples, A4:17–18, 146–150; A5:119–122;
 A7:103
 split cores, A4:16–17, 125–145; A5:106–118; A7:11–12,
 83–102; A8:67–71
 vectors, A5:60–61
demagnetization, alternating-field
 discrete samples, A5:15–16; A8:72; A9:13–14
 overprinting, A4:65–66
 remanence vectors, A4:71–74
 split cores, A5:15
 U-channel samples, B37:21–25
 vectors, A6:45–47; A7:47; A9:52–53, 55
demagnetization, low-temperature, discrete samples, A9:13–14
demagnetization, single-step, split cores, B37:26
demagnetization, thermal
 Cryptochron 4r.2r-1, A4:19–20
 saturation isothermal remanence, B14:6
density
 core and downhole logs, B17:29–35
 summary, B17:5–7
 vs. depth, A4:103; A5:94, 97; A9:72; B17:15, 17, 20
 vs. two-way traveltime, A7:70–71
density, bulk
 composite depth scales, B5:7–8, 33
 porosity, B30:4–7
 sediments, A4:24–25; A5:22; A6:16; A7:18; A9:16
 split cores, A9:17
 vs. depth, A4:84; A5:72–74; A6:52, 54; A7:54–58;
 A8:50–53; A9:58–59, 61–62; B3:12; B5:20–23
 vs. gamma-ray attenuation density, B30:14
 vs. porosity, B30:14
 See also bulk density logs
density, gamma-ray attenuation
 porosity, B30:4–7
 vs. bulk density, B30:14
 vs. depth, B30:11–12
 vs. magnetic susceptibility, B30:15
density, grain
 split cores, A8:17–18
 vs. depth, A4:85; A5:75; A6:52; A7:57–58; A8:53;
 A9:61–62
density, GRAPE
 sediments, A4:24–25; A5:22; A6:16; A7:18; A8:16;
 A9:16
 vs. composite depth, A7:62–65, 68
 vs. depth, A4:81–84, 97–98; A5:72–74, 88, 91; A6:51;
 A7:54–56; A8:50–53; A9:58–59
density/velocity models, seismic models, A4:33–34; A7:22; A9:22–23
density logs. See bulk density logs; lithodensity logs; variable-density stack sections
deposition
 bottom currents, B25:9
cycles, A4:11–13; A5:11–12
environment, A6:7–8; A7:9–10; B24:6–8; B25:11
 glacial cycles, A1:32; A2:4–5
opal, B23:1–33
paleoenvironment, A4:10–13; B(synthesis):5–9
sediment traps, A7:8–10
turbidite facies, A4:61
turbidity currents, A9:8–9
See also paleoenvironment; deposition energy, reflectance, B21:1–22
depth. See traveltime/depth function
depth scales, magnetobioclimatology, B36:5
depth sections, vs. time sections, B19:30
depth-shifted resistivity logs, vs. depth, B19:27
depth shifts, absolute, velocity logs, B19:33
diagenesis
 biogenic opal, B23:9
carbonates, A7:16
climatic optimum, B34:5–6
geochemistry, A8:14
pore water, A8:13
sediments, A4:22–23
sulfate reduction, A5:19–20
See also authigenesis; hydrothermal alteration
diamict
 gamma rays vs. magnetic susceptibility, A9:16
Koenigsberger ratio, B31:8
lithologic units, A4:5–8, 11–13; A7:8; B25:4–6
micromorphology, A6:17–18; A9:18–19
photomicrograph, A9:64
porosity, B30:5–7
sediments, B(synthesis):14–15
Sequence S2, A1:12
smear slides, A9:16–17
See also Massive Diamict Facies; Stratified Diamict Facies
diamict, chaotically bedded
 photograph, A9:46
See also Chaotically Stratified Facies
diamict, graded
lithofacies, A6:5
photograph, A6:37–38
diamict, laminated, photomicrograph, A6:55
diamict, massive
 lithology, A6:4–5; A9:5–6
photograph, A6:31–34; A9:45
See also Massive Diamict Facies
diamict, stratified
lithofacies, A6:5
photograph, A6:39; A9:46
See also Chaotically Stratified Facies; Stratified Diamict Facies
Diamict Facies
 lithologic units, A8:7
photograph, A8:39
diamicrite
 argon isotopes, B22:1–26
backscattered electron photomicrograph, B22:16
clasts, A9:47
lithofacies, A1:14–15
lithology, A9:6–7
diamicton
deglaciation, B34:4
X-ray radiography, B10:21
diamicton, glacial, upper Pleistocene, B34:3–4
diatom-ooze laminae, postglacial sediments, B18:4–5
diatom datums
 biostratigraphy, A4:123–124; A8:66
 depths, A5:142
 sedimentation rates, A4:172
diatom Gen. et sp. indet., Site 1095, B35:14, 29, 32
diatom Gen. et sp. indet. B, Site 1095, B35:14, 30
Diatomaceous Facies, vs. depth, A4:50
diatoms
 abundance, A7:42; B7:25–26; B25:6–7
backscattered electron photomicrograph, B18:15–16
biostratigraphy, A4:13–15; A5:12–13; A6:8–9, 43; A7:10; A8:9, 41; A9:11, 51; B35:1–57
climate optimum, B34:5–6
color, B3:6–7
cyclic processes, B25:7
data, B7:35
first and last occurrences, A5:104–105
lithologic units, A5:5; A7:4–10
magnetobioclimatology, B36:3–4
Neogene, B29:1–25
paleoclimatology, B7:3–4, 6; B25:9
paleoenvironment, A7:9, 82
percentage, B12:16, 23, 29
photomicrographs, B35:25–57
preservation, A7:5, 7; B30:4
productivity, A7:10
Quaternary, A2:14
sedimentation, A1:15–17
sediments, B15:4–5
taxonomy, B35:1–57
vs. age, B2:7; B12:7, 12; B15:10; B25:17
vs. depth, A4:62; A5:58; A6:42; B13:12; B25:19–25
zonation, B29:5–9
digital coherency mapping, velocity profiles, B19:23
dikes, downward-penetrating, mudstone, A9:8
dinoflagellates
 continental rise, B2:1–10
vs. age, B2:7–8
dip
clasts, A9:47
elongate clasts, A6:35
discontinuities, cyclic processes, B32:14–15
dissolution
 biogenic opal, B23:8–9
calcareous nannofossils, B26:6–7
carbonate, A5:19–20; A6:13–14; A8:14
foraminifers, B7:8–14
manganese oxide, A9:15
opal, A9:15
silica, A7:16
water column, B23:9
distal environment, lithologic units, A4:11–13
dolomite
potassium logs vs. photoelectric effect logs, A5:85
sediments, A4:22
downhole measurements
Site 1095, A4:27–30, 87
Site 1096, A5:26–29
Site 1103, A9:19–22
Drift D1, sediments, A2:13–15
Drift D2, sediments, A2:13–15
Drift D3, sediments, A2:13–15
Drift D4, sediments, A2:13–15
Drift D5, sediments, A2:13–15
Drift D6, sediments, A2:13–15; A4:43; A5:38
Drift D7
clay mineralogy, B8:14
cyclical processes, B25:7
illite, B8:16
sediments, A2:13–15; A4:43; A5:38
seismic profiles, A2:42; B24:12
Drift D8, sediments, A2:13–15
drift deposits
biogenic opal, B23:8–17
bistratigraphy, B13:1–22
clay mineralogy, B8:1–29
clay mineralogy, B8:1–29
glacial signal, B10:1–22
magnetostratigraphy, B37:1–61
pebbles, B11:1–23
physiography, B8:3–4
rock magnetics, B14:1–12
sedimentation, B(synthesis):16–17
See also hemipelagic drifts
dropstone
pebbles, B11:4–5
photograph, A8:40
X-ray radiography, B10:21

E

eccentricity, physical properties, B32:8–15
eccentricity forcing, deposition, B25:10–11
El Nino Southern Oscillation, neoglacial, B34:7–8
Eltanin impact, sediments, B(synthesis):14; B9:3–4
Eltanin piston cores, impacts, A2:17–18
environment
calcareous nannofossils, B28:1–22
deposition, A1:3; A6:7–8; B24:6–8; B25:11
reflectance, B21:6–7
See also anoxic environment; bathyal environment;
coastal environment; deep-sea environment;
distal environment; glaciomarine environment;
hemipelagic environment; low-energy environment;
marine-glacial environment; paleoenvironment;
subglacial environment
Eocene, paleoclimatology, A1:5

erosion. See glacial erosion
ethane
sediments, A4:20; A5:16–17; A6:13; A8:12; A9:15
See also methane/ethane ratio
Eucampia, ratio of symmetric to asymmetric forms, B7:36

F

fabric
diamict, A9:18–19
See also grain fabric; microfabric
fabric, laminated, postglacial sediments, B18:4
Facies C
lithologic units, A5:7, 9, 11–12; A8:6
photograph, A5:50; A8:34, 37
structure, A5:51
Facies Dmm, photograph, A9:45
Facies Dms
deposition, A9:8–9
diamictite, A9:7
photograph, A9:46
Facies F1, photograph, A9:50
Facies Fm, photograph, A9:49
Facies Fmd, diamictite, A9:7
Facies L
lithologic units, A5:5
photograph, A5:47
Facies L1
lithologic units, A4:5–8, 11–13; B25:4–6
photograph, A4:54–56, 58; A8:32, 36, 38
structure, A4:57
Facies L2
lithologic units, A4:5–8, 11–13; A5:8, 11–12; A8:6;
B25:4–6
photograph, A4:54, 58–59; A8:32, 35
structure, A4:57; A5:48
Facies L3
lithologic units, A4:5–8, 11–13; A5:7, 9, 11–12; B25:4–6
photograph, A4:56, 60; A5:54
structure, A4:57; A5:48, 51
Facies M
lithologic units, A4:5–8, 11–13; A5:7–9, 11–12; B25:4–6
photograph, A4:55–56; A5:52, 55
structure, A5:51
Facies Mb, lithologic units, A5:5; A8:5
Facies Md
lithologic units, A5:5
photograph, A5:46
Facies Mf
lithologic units, A8:5
photograph, A8:33
Facies Sd, photograph, A9:48
fan lobes, deposition, A4:11
faults
photograph, A4:54
See also microfaults; normal faults
fecal pellets, micrograph, B18:13–14
feldspar
chemical and nuclear parameters, A5:137
VOLUME 178 SUBJECT INDEX

feldspar (continued) • glacial half-cycles, deposition

diagenesis, A8:14

diamict, A6:4–5, 14–15

impacts, B9:4

lithologic units, A4:9, 23

vs. age, B15:11

X-ray diffraction data, A8:15

field anomaly logs, vs. depth, B31:15

field cooled curves, granulometry, B14:7

filters. See low-pass filters

fine fraction

grain size, B24:1–27

sediments, B25:7

vs. age, B24:18

See also coarse fraction; grain size; granulometry

fissility, photograph, A6:34

fluoride

pore water, A4:21; A5:19; A6:14; A8:13; A9:15

vs. depth, A4:77; A5:70; A6:49; A7:52–53; A8:47

foraminifers

biostratigraphy, A4:16; A5:14–15; A6:10–11; A7:11; A8:11, 41; A9:10, 12

climate signals, A8:8

core data, B7:45

dissolution, B7:8–9

lithologic units, A5:5

magnetobioclinology, B36:4

neoglacial, B34:6–8

paleoclimatology, B7:3–5, 7–10

photograph, A4:52

productivity, B23:13

size and number, B7:43

stable isotopes, B20:1–10

vs. depth, A7:43; B7:30–31

foraminifers, agglutinated

dissolution, B7:9–10

sediments, B15:4–5

vs. age, B15:10

foraminifers, benthic

data, B7:32–34

data in intervals, B7:44

Interval A, B7:37

Interval B, B7:38

Interval C, B7:39

Interval D, B7:40

oxygen isotopes, B(synthesis):40

percentage in cores, B7:27–28

reference list and taxonomy, B7:19–21

vs. age, B15:10

foraminifers, calcareous, dissolution, B7:42

foraminifers, planktonic

biostratigraphy, A9:51

vs. age, B15:10

vs. depth, A4:62; A5:58; A6:42

Formation Microscanner imaging logs

lithology, A9:21

vs. depth, A9:69

Formation Microscanner imaging sonic tool string, Antarctic Peninsula, B19:19

Frangilariosis

backsctattered electron photomicrograph, B18:15–16

percentage in cores, B7:25–26

frequency vs. attenuation, low-pass filters, B19:26

G

gamma-ray logs

vs. depth, A4:89; A5:82–83, 88; A9:66–67; B32:19

vs. lithology, A4:91

wavenumber, B32:30

gamma rays

sediments, A4:25–26; A5:22; A6:16; A7:18; A8:17; A9:16

vs. composite depth, A7:64–65

vs. depth, A4:81–83; A5:72–74; A6:51; A7:54–55; A8:50–52; A9:58–59; B32:20, 33

vs. magnetic susceptibility, A6:53; A9:60

wavenumber, B32:34

gas hydrates, reflectors, A2:19–20

gases. See headspace gases; hydrocarbons

geochronology, sediments, B4:1–12

gleochronology, inorganic

climate optimum, B34:5–6

Site 1095, A4:21–24

Site 1096, A5:18–21

Site 1097, A6:14–15

Site 1098, A7:13–15

Site 1099, A7:15–16

Site 1100, A9:15

Site 1101, A8:13–15

geochemistry, organic

climate optimum, B34:5–6

Site 1095, A4:20–21

Site 1096, A5:16–18

Site 1097, A6:13–14

Site 1098, A7:12–13

Site 1099, A7:12–13

Site 1101, A8:12–13

Site 1103, A9:15

gleochronology

barnacle fragments, B27:1–8

sediments, B(synthesis):9; B7:4–5

See also age; chronology; radioactive dating

teological high-resolution magnetic tool, magnetic polarity, B31:1–23

geochemistry, sediments, B(synthesis):3–5

gmagnetic reversals

depths, A4:156; A5:125; A8:74

See also magnetic reversals

Gerlache Strait

deglaciation, B34:4

neoglacial, B34:7

Glacial–Interglacial Facies, climate signals, A8:8

Glacial/Interglacial cycles

clay minerals, B8:10–12

ice-rafted debris, B10:6–8

lithologic units, A1:6–7; A5:11–12

pebbles, B11:6

stable isotopes, B20:3–4

glacial cycles, deposition, A1:32; A2:30

Glacial erosion

argon isotopes, B22:9

sediments, A2:11–13

Glacial half-cycles, deposition, A1:33; A2:31
VOLUME 178 SUBJECT INDEX

glacial history, continental margin • Holocene

glacial history, continental margin, B(synthesis):1–40

glacial meltwater, lithologic units, A5:9, 11–12

Glacial sediments, drift deposits, B(synthesis):9–14

Glacial Sequence S1, sediments, A2:11–13, 21, 40; B(synthesis):5–9, 21

Glacial Sequence S2

diamicts, A1:12, 18–19; A2:40

sediments, A2:11–13, 21; B(synthesis):5–9, 21

Glacial Sequence S2/S1 boundary, sediments, A2:11; B(synthesis):5–9

Glacial Sequence S3

biofacies, A1:12, 19

sediments, A2:11–13, 21, 40; B(synthesis):5–9, 21

Glacial Sequence S3/S1 unconformity, sediments, B(synthesis):5–9

Glacial Sequence S3/S2 boundary, sediments, A2:11, 21; B(synthesis):5–9

Glacial Sequence S4, sediments, A2:40

Glacial signal, drift deposits, B10:1–22

Glacial Stage 6, cyclic processes, B25:7

Glacial Stages 2–4, cyclic processes, B25:7

Glacials, sea ice, B25:9

Glaciation

age, A1:4

clay mineralogy, B8:14–15

continental shelf, A9:9

deposition, A4:10–11; A6:7–8

history, A2:1–44; B(synthesis):18–24

Neogene, B25:1–25

neoglacial, B34:7

pebbles, B11:3–6

sedimentation, A2:4–5, 39

See also tidewater glaciers

Glaciomarine, continental, ice-rafted debris, B25:9–12

Glaciomarine environment

biostratigraphy, B13:1–22

deposition, A6:7–8; A9:9

seismic units, A9:25

glaucic, potassium logs vs. photoelectric effect logs, A5:85

Graded Diamict Facies, lithofacies, A6:6

Graham Land N, geology, B8:5

Grain diameter

histograms, B12:15

vs. age, B12:10, 14

Grain fabric, diamict, A9:18–19

Grain mode

histograms, B12:15

vs. age, B12:10, 14

Grain size

bivariate discrimination, B24:23

classes, B24:27

clay mineralogy, B8:12–14

Climate optimum, B34:5–6

continental rise, B12:1–34

fine fraction, B12:17–20, 24–26, 30–32; B24:1–27

histograms, B12:15

mean vs. skewness, B24:23

mean vs. standard deviation skewness, B24:23

method of moments for all fine fraction, B24:19–20

method of moments for sortable silt fraction, B24:21–22

populations, B24:6–8, 24; B25:8

sediments, B15:1–19

standard deviation vs. skewness, B24:23

statistical filters, B24:18–22

vs. age, B12:9, 13; B25:18

vs. depth, B25:19–25

See also coarse fraction; fine fraction; mode; roundness; sorting; sphericity; standard deviation; zero field cooled curves

Granite pebbles, deposition, B25:6

granules

lithologic units, A4:9–10, 122; A5:5, 10; B25:4–6

photograph, A5:46; A8:34

vs. depth, A4:49

gravel, abundance vs. calibrated age, B34:14

gavel clasts, ice-rafted debris, B25:9–10

gravity core PD92-30, dissolution, B7:8–9

gravity core PS1565

biogenic opal, B23:9

clay mineralogy, B8:12, 25

Gravity flows

deposition, A9:8–9; B25:4–6

lithofacies, A6:6–7

lithologic units, A4:8

See also debris flows; turbidity currents

gravity surveys, maps, A2:36

greigite

anisotropy, B14:4

oxidation, B14:3

grounding of glacial ice, climate reversals, B34:5

H

headscape gases, hydrocarbons, A4:157

Heat flow, geothermal

sediments, A5:25–26; A7:20

split cores, A8:18–19

heat flow, reflectors, A2:19–20

hemipelagic drifts

deposition, A1:3; A2:4–5

magnetic minerals, B14:1–12

hemipelagic environment, lithologic units, A5:5–6; A8:3–4, 6

Hemipelagic Facies

deposition, A5:11–12

sediments, A1:8–9

hemipelagics

calcareous nannofossils, B26:6–7

lithologic units, B25:4–6

hatures

grain size, B24:4

magnetostratigraphy, A4:18; B37:8, 10

seismic models, A4:34–35

See also unconformities

Holocene

biostratigraphy, A4:13–16

chronology, A7:12

climate optimum, B34:4
Volume 178 Subject Index

Holocene (continued) • Koenigsberger ratio

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithologic units</td>
<td>A4:4–5, 10–11; A5:4–6, 11–12; A7:4–10; A8:3–4</td>
</tr>
<tr>
<td>Mass accumulation rates</td>
<td>B3:1–20</td>
</tr>
<tr>
<td>Paleoclimatology</td>
<td>B7:1–45</td>
</tr>
<tr>
<td>Holocene Climate Optimum, sedimentation</td>
<td>B34:4–6</td>
</tr>
<tr>
<td>Hydrates</td>
<td>See gas hydrates</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td>Headspace gases, A4:157; A5:126–127; A6:13; A7:12; A8:12; A9:15</td>
</tr>
<tr>
<td>Hydrothermal alteration, clay mineralogy</td>
<td>B8:8–9</td>
</tr>
<tr>
<td>Hysteresis, saturation remanence</td>
<td>B14:8, 10–11</td>
</tr>
<tr>
<td>Ice, sediment transport</td>
<td>A1:2–3</td>
</tr>
<tr>
<td>Ice-rafted debris</td>
<td>Continental glaciation, B25:9–10</td>
</tr>
<tr>
<td>Glacial signal</td>
<td>A10:1–22</td>
</tr>
<tr>
<td>Lithologic units</td>
<td>A1:6–8; A4:6, 9–10, 122; A5:10–11; A8:6–8; B25:6</td>
</tr>
<tr>
<td>Magnetostratigraphy</td>
<td>B37:7–17</td>
</tr>
<tr>
<td>Pebbles</td>
<td>B11:1–23</td>
</tr>
<tr>
<td>Photograph</td>
<td>A4:60; A5:52; A6:40; A8:34</td>
</tr>
<tr>
<td>Structure</td>
<td>A4:57</td>
</tr>
<tr>
<td>Ice catchment, paleoclimatology</td>
<td>A1:5</td>
</tr>
<tr>
<td>Ice rafting, sedimentation</td>
<td>B15:4–5</td>
</tr>
<tr>
<td>Ice sheets</td>
<td>Continental rise, B(synthesis):16–17, 32</td>
</tr>
<tr>
<td>Deposition</td>
<td>B25:10–11</td>
</tr>
<tr>
<td>History</td>
<td>A2:1–44</td>
</tr>
<tr>
<td>Maps</td>
<td>A1:31; A2:29</td>
</tr>
<tr>
<td>Seismic Sequence Group S1</td>
<td>A9:25</td>
</tr>
<tr>
<td>Ice streaming, tectonics</td>
<td>A1:4</td>
</tr>
<tr>
<td>Ice streams</td>
<td>Deposition, B8:10–12</td>
</tr>
<tr>
<td>Drift deposits, B8:3–4</td>
<td></td>
</tr>
<tr>
<td>Ice volume, orbital obliquity</td>
<td>B8:12</td>
</tr>
<tr>
<td>Iceberg plowing, deposition</td>
<td>A9:6</td>
</tr>
<tr>
<td>Icebergs</td>
<td>Location, A6:27</td>
</tr>
<tr>
<td>Pebbles, B11:3–6</td>
<td></td>
</tr>
<tr>
<td>Ichnofacies, lithologic units</td>
<td>A4:6</td>
</tr>
<tr>
<td>Igneous pebbles, deposition</td>
<td>A8:8</td>
</tr>
<tr>
<td>Illite</td>
<td>Continental shelf, B8:9</td>
</tr>
<tr>
<td>Drift deposits, B8:7–16</td>
<td></td>
</tr>
<tr>
<td>Potassium logs vs. photoelectric effect logs</td>
<td>A5:85</td>
</tr>
<tr>
<td>Sediments, A1:50; A8:49</td>
<td></td>
</tr>
<tr>
<td>vs. age, B8:27</td>
<td></td>
</tr>
<tr>
<td>vs. depth, B(synthesis):38; B8:23–24, 26</td>
<td></td>
</tr>
<tr>
<td>X-ray diffraction data</td>
<td>A4:79–80; A5:20, 71; A6:15, 50; A8:15, 79</td>
</tr>
<tr>
<td>See also Chlorite/illite ratio; chlorite-illite province; mixed-layer clays/illite ratio</td>
<td></td>
</tr>
<tr>
<td>Illite-smectite–chlorite, ternary diagram</td>
<td>B8:28</td>
</tr>
<tr>
<td>Impacts, upper Pliocene</td>
<td>B9:1–6</td>
</tr>
<tr>
<td>Impedance</td>
<td>Reflectors, A2:19–20</td>
</tr>
<tr>
<td>vs. depth, A5:97</td>
<td></td>
</tr>
<tr>
<td>vs. two-way traveltime, A7:70–71</td>
<td></td>
</tr>
<tr>
<td>Index properties</td>
<td>Split cores, A4:26; A5:22–23; A6:16–17; A7:19; A8:17–18; A9:17</td>
</tr>
<tr>
<td>vs. depth, A5:94</td>
<td></td>
</tr>
<tr>
<td>Induced anomaly logs</td>
<td>vs. depth, B31:15–16</td>
</tr>
<tr>
<td>vs. remanent anomaly logs, B31:17</td>
<td></td>
</tr>
<tr>
<td>Insolation</td>
<td>Continental rise, B(synthesis):16–17</td>
</tr>
<tr>
<td>Frequency vs. age, B32:31–32</td>
<td></td>
</tr>
<tr>
<td>Neoglacial, B34:7</td>
<td></td>
</tr>
<tr>
<td>Sediments, B(synthesis):13</td>
<td></td>
</tr>
<tr>
<td>Insolation, truncated, wavenumber, B32:28, 36</td>
<td></td>
</tr>
<tr>
<td>Insolation signal</td>
<td>Physical properties, B32:5, 9–15</td>
</tr>
<tr>
<td>vs. age, B32:21</td>
<td></td>
</tr>
<tr>
<td>Wavenumber, B32:25–26, 28, 36</td>
<td></td>
</tr>
<tr>
<td>Integrated resistivity logs, vs. depth, B19:27</td>
<td></td>
</tr>
<tr>
<td>Inter-Tropical Convergence Zone, neoglacial, B34:7</td>
<td></td>
</tr>
<tr>
<td>Interglacials, sea ice, B25:9</td>
<td></td>
</tr>
<tr>
<td>Interval A</td>
<td>Benthic foraminifers, B7:37</td>
</tr>
<tr>
<td>Climate, B7:11–12</td>
<td></td>
</tr>
<tr>
<td>Interval B</td>
<td>Benthic foraminifers, B7:38</td>
</tr>
<tr>
<td>Climate, B7:11–12</td>
<td></td>
</tr>
<tr>
<td>Interval C</td>
<td>Benthic foraminifers, B7:39</td>
</tr>
<tr>
<td>Climate, B7:12–13</td>
<td></td>
</tr>
<tr>
<td>Interval D</td>
<td>Benthic foraminifers, B7:40</td>
</tr>
<tr>
<td>Climate, B7:13</td>
<td></td>
</tr>
<tr>
<td>Intraclasts, diamict, A9:18–19</td>
<td></td>
</tr>
<tr>
<td>Iridium, impacts, B9:3–4, 6</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Pore water, A5:19; A6:14; A7:15</td>
</tr>
<tr>
<td>vs. depth, A7:52–53</td>
<td></td>
</tr>
<tr>
<td>Iron–titanium oxide, backscattered electron photomicrograph, B22:16</td>
<td></td>
</tr>
<tr>
<td>Iron oxide, sediments, B4:3</td>
<td></td>
</tr>
<tr>
<td>Isobutane, sediments, A5:17</td>
<td></td>
</tr>
<tr>
<td>Isopentane, sediments, A5:17</td>
<td></td>
</tr>
<tr>
<td>Jaramillo Subchron, magnetostratigraphy</td>
<td>A4:18; A5:16; A8:11; B36:7–8; B37:8, 10, 13–14</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>Drift deposits, B8:7</td>
</tr>
<tr>
<td>Potassium logs vs. photoelectric effect logs, A5:85</td>
<td></td>
</tr>
<tr>
<td>Koenigsberger ratio</td>
<td>Magnetic polarity, B31:8, 21, 23</td>
</tr>
<tr>
<td>vs. depth, B31:20</td>
<td></td>
</tr>
</tbody>
</table>
lag deposits, continental shelf, A9:10
Lallemand Fjord, photograph, A2:32
laminae
 core photograph, B18:10
 lateral continuity, B3:4–5
 micrograph, B18:11–16
 vs. depth, B3:12
 See also clay laminae; diatom-ooze laminae; silt laminae
laminae, diatom-bearing terrigenous, postglacial sediments, B18:5
Laminated Facies
 lithologic units, A5:5, 10–12; A8:3–7; B25:4–6, 8
 photograph, A8:32, 35
 reflectance, B21:3–22
 laminations
 deglaciation, B34:4
 deposition, A7:8–10
 ice-rafted debris, B10:5–8
 lithologic units, A4:4–13; A5:6–7, 11–12; A7:4–6; A8:3–9; B7:11–14; B25:4–6
 neoglacial, B34:6–8
 photograph, A5:47, 50, 54; A6:37
 postglacial sediments, B18:4–6
 sedimentation, A1:15–17
 sediments, B3:1–20
 vs. depth, A4:51; A5:47, 50, 54
 X-ray radiography, B10:20
 See also clay laminae; cross laminations; laminae; silt laminae
laser diffraction analysis, grain size, B24:3, 14
Last Glacial Maximum, currents, A2:7
lightness, vs. depth, B3:11–13; B32:20
lithic fragments
 lithologic units, A4:9
 vs. depth, B13:12
lithodensity logs, vs. depth, A5:84
lithofacies
 deposition, A9:6
 ice-rafted debris, B10:5–8, 19
 lithologic units, A4:4–13; A5:4–12; A8:3–9
 lower Pliocene, A6:28
 reflectance, B21:1–22
 sedimentary record, A1:14–15
 sediments, A9:6–9
 seismic Unit S3, B22:15
 structure, A4:57; A5:48
 summary, A1:43; A6:41
 See also biofacies; Bioturbated Facies; Burrowed Facies; Chaotically Stratified Facies; Contourite Facies; Diatomaceous Facies; Facies C; Facies Dmm; Facies Dms; Facies F1; Facies Fm; Facies Fmd; Facies I; Facies L1; Facies L2; Facies L3; Facies M; Facies Mb; Facies Md; Facies Mf; Facies Sd; Glacial–Interglacial Facies; Graded Diamict Facies; Hemipelagic Facies; ichnofacies; Laminated Fa-
cies; Massive Diamict Facies; Stratified Diamict Facies; Terrigenous Facies; Turbidite Facies
lithologic units
 Site 1095, A4:4–13
 Site 1096, A5:4–12
 Site 1098, A7:3–6
 Site 1099, A7:6–10
 Site 1100, A8:3–9
 summary, A4:121; A5:103
 Unit I, A4:4–5, 10–11; A5:4–6, 11–12; A7:4–10; A8:3–4; B25:4
 Unit II, A4:5–8, 11–13; A5:6–9, 11–12; A8:4–6; B25:4–6
 Unit III, A4:8–9, 11; A5:9–12; A8:6–7
 See also log–lithology correlation
lithostratigraphy
 Site 1095, A4:4–13, 47–48; B25:16
 Site 1096, A5:4–12, 43–45
 Site 1097, A6:3–8
 Site 1098, A7:3–6, 8–10, 34
 Site 1099, A7:6–10, 38
 Site 1100, A9:5–6, 33
 Site 1101, A8:2–9, 29
 Site 1102, A9:9–10
 Site 1103, A9:6–9, 34–44
 summary, A1:36, 45, 49; A7:80
log–lithology correlation, logging units, A4:29
logging units
 lithology, A4:28–29; A9:20–21
 Unit 1, A4:28; A9:20
 Unit 2, A4:29; A9:20
 Unit 3, A9:20
 Unit 4, A9:20
 Unit 5, A9:21
 Unit 6, A9:21
 See also log–lithologic units; petrophysical units; seismic units
loss on ignition, sediments, B4:1–12
low-energy environment, lithologic units, A4:5; A8:6; B25:4
low-pass filters, frequency vs. attenuation, B19:26
magnesium
pore water, A4:22; A5:19–20; A6:14; A7:16; A8:14; A9:15
vs. depth, A4:77; A5:70; A6:49; A7:52–53; A8:47
magnesium/potassium ratio, pore water, A7:16
magnesium chlorite, potassium logs vs. photoelectric effect logs • mass accumulation rates

vs. calibrated age, B34:14
vs. carbon-14 age of marine sediments, A2:44
vs. composite depth, A7:63–65, 69
vs. depth, A4:50, 75, 81–83, 88, 90–92, 97–99; A5:65, 72–74, 82–83, 88–89, 91; A6:51; A7:45–49, 54–56; A8:33, 50–52; A9:58–59, 66–67; B5:16–19; B6:8–9, 11; B7:24; B14:9; B25:19–25; B30:11–12, 33; B31:20; B32:20; B37:27, 30–31
vs. gamma-ray attenuation density, B30:15
vs. gamma rays, A6:53; A9:60
vs. lithology, A5:45
wavenumber, B32:25–26
magnetic susceptibility logs
comparison with velocity logs, B19:29
magnetic polarity, B31:7
vs. depth, A4:88, 90–92, 97–99; A5:82, 84, 88–89, 91; A9:66–67; B31:13, 15–16; B32:19
vs. lithology, A4:91
magnetite
climate optimum, B34:6
granulometry, B14:7
Verwey transition, B14:2–4
magnetization, vs. depth, B31:20
magnetobiochronology, B36:1–40
magnetostratigraphy
biostratigraphy, B37:9
Cenozoic, A1:9, 53
diamicts, A6:12–13
drift deposits, B37:1–61
magnetic inclination, split core, vs. depth, B37:34
magnetic inclination, U-channel and split core, vs. depth, B37:32–33
magnetic inclination, U-channel and split core and discrete, vs. depth, B37:38
magnetic intensity
composite depth scales, B5:8–9
demagnetization, A4:17–18
histogram, A5:59; A8:42
magnetostatigraphy, A4:18–20
overprinting, A4:64
split cores, A8:11
vs. depth, A4:67–68, 70, 75; A5:62–63, 65; A6:44; A7:44, 46; A8:43; A9:54, 56–57; B37:27
See also paleomagnetic inclination logs
magnetic inclination, split core, vs. depth, B37:34
magnetic inclination, U-channel and split core, vs. depth, B37:32–33
magnetic inclination, U-channel and split core and discrete, vs. depth, B37:38
magnetic intensity
composite depth scales, B5:8, 34
demagnetization, A4:17–18
vs. depth, A4:67, 69, 75; A5:62, 64–65; A6:44; A7:45–46, 48; A8:43; A9:54, 57; B5:24–25; B37:27
See also paleointensity
magnetic logs. See paleomagnetic inclination logs; total magnetic field logs
magnetic minerals, hemipelagic drifts, B14:1–12
magnetic polarity
correlation analysis, B31:5–6
magnetic field, A4:29
magnetostatigraphy, A4:18–20, 92; A5:28, 86; B31:1–23
sedimentation rates, A5:143
transition depths, A5:142
vs. depth, B37:28–31, 37, 40
magnetic polarity, normal, Cryptochron 4r.2r-1, A4:73–74
magnetic polarity, reversed, Cryptochron 4r.2r-1, A4:71–72
magnetic reversals
magnetostatigraphy, B37:7–15
sedimentation rates, B37:12, 15
See also geomagnetic reversals
magnetic susceptibility
composite depth scales, B5:6–7, 32
cycle length, B25:19–25
neoglacial, B34:7
paleoclimatology, B7:3–4
porosity, B30:4–7
sediments, A4:24; A5:21–22; A6:15–16; A7:17–18; A8:16; A9:16; B(synthesis):12–13; B6:3–5; B7:10–14
mass accumulation rates (continued) • nannofossils, calcareous

See also opal accumulation rate; sedimentation rates; total organic carbon accumulation rates

mass flows, lithologic units, A7:5–6
Massive Diamict Facies, lithofacies, A6:5–6
Massive Facies, lithologic units, A5:5, 10–12; A8:3–6; B25:4–5

Matuyama Chron
magnetostratigraphy, B37:13
See also Brunhes/Matuyama boundary
maximum angular deviation, vs. depth, A4:67; A5:62;
A6:44; A7:48

megatsunamis, impacts, A2:18
meltwater
deposition, A8:7
See also glacial meltwater

metamorphic rocks, composition, B15:4–5
methane
headspace gases, A7:105
precipitation, A5:20
sediments, A4:20; A5:16–17; A6:13; A7:12; A8:12;
A9:15
vs. depth, A4:76; A5:66; A8:44
methane/ethane ratio, sediments, A5:17

microfabric
micrograph, B18:11–14
postglacial sediments, B18:1–17
See also fabric

microfaults
photograph, A4:53
See also faults

micromorphology, diamict, A6:17–18; A9:18–19
micronodules, photograph, A8:31
mid-basin reflector, synthetic seismograms, A7:76
mid-Pleistocene Climate Transition, pebbles, B11:6
mid-shelf high
sedimentation, A2:10–11
tectonics, A2:8, 10
middle shelf, topography, A2:10
Milankovitch cycles, physical properties, B32:8–15

Miocene
biostratigraphy, A4:62
cyclic processes, B32:14–15
diatoms, B25:6–7
dinoflagellate cysts, B2:2–4
 glaciation, B(synthesis):20–21
lithologic units, A4:5–13
sediments, B(synthesis):9
stratigraphy, B36:11–12

Miocene, upper
biostratigraphy, B13:1–22
clay mineralogy, B8:1–29
cyclic processes, B25:8, 25
productivity, B23:13–14
mixed-layer clays
sediments, A1:50; A8:49
X-ray diffraction data, A4:23, 79–80; A5:20, 71; A6:15, 50; A8:15, 79
See also chlorite/mixed-layer clays ratio
mixed-layer clays/ililito ratio, X-ray diffraction data,
A4:23; A5:71; A6:50; A8:48
mode, vs. age, B25:18

Model A
filters, A4:111
input and output frequency spectra, A4:110
synthetic seismograms, A4:108
synthetic traces and digital data, A4:112–113

Model B
synthetic seismograms, A4:109
synthetic traces and digital data, A4:114–115
montmorillonite, potassium logs vs. photoelectric effect logs, A5:85
Morelet wavelet, waveform analysis, B32:23

mouting
lithologic units, A4:4–5, 10–11; A5:5
photograph, A4:52; A5:46, 55
mounds, sediments, A2:13–15

mud
bioturbation, A2:15
diamicite, A9:6–7
ice-rafted debris, B10:5–8
impacts, B9:2
lithofacies, A6:5–7
lithologic units, A1:6–7; A2:16–17; A5:6–9, 11–12;
B25:4–6
structure, A4:57
X-ray radiography, B10:21
See also ooze/mud couplets

mud, bioturbated diatom sandy, neoglacial, B34:4
mud, bioturbated marine, photograph, A6:38
mud, diatomaceous, Holocene climate optimum, B34:4
mud, diatomaceous sandy
cclimate reversals, B34:4
deglaciation, B34:3–4
mud, diatomaceous turbidite, climate reversals, B34:4
mud, foraminifer-bearing, X-ray radiography, B10:21
mud, hemipelagic, photograph, A5:49
mud, laminated, X-ray radiography, B10:20
mud, laminated marine, photograph, A6:37
mud, parallel silt-laminated, lithologic units, A5:7–8,
11–12; B25:4–6
mud, silty
lithologic units, B25:4–6
lithology, A6:4–5
photograph, A7:41

mudstone
lithologic units, A4:9, 11
lithology, A9:7–8
reworking, A9:7
mudstone, laminated, photograph, A9:49–50

mudstone, massive, photograph, A9:49
muscovite, vs. age, B15:11

N
nannofossils, calcareous
biostratigraphy, A1:14–15; A5:14; A8:10, 14, 41;
B28:1–22
magnetobiochronology, B36:4
Pliocene–Pleistocene, B26:1–21
taxonomy, B28:6
vs. depth, A5:58
zonation, B28:15
Neogene biostratigraphy, B13:10
chronostratigraphy, B36:21
diatoms, B29:1–25; B35:1–57
 glaciation, B25:1–25
opal, B23:1–33
radiolarians, B33:1–14

neoglacial
Antarctic Circumpolar Current, B34:7
bioturbated diatom sandy mud, B34:4
paleoenvironment, B34:6–8
Neogloboquadrina pachyderma sinistral occurrence, B7:41
stable isotopes, B20:1–10

Nereites, lithologic units, A4:6, 9; A5:6–7
neutron capture cross section, chlorine, A5:28
neutron porosity logs, comparison with velocity logs, B19:29
nickel, sediments, A4:23
niobium, sediments, A4:23
nitrogen, total, sediments, A7:106–107
nODULES. See micronodules
normal faults
mudstone, A9:8
X-ray radiography, B10:20

Northern Component Water
evolution of properties, B23:31
sea ice, B23:13–17

O

obliquity. See orbital obliquity
ocean circulation, currents, A2:6–7; B8:4
ocean floors, age, A2:35
oceanography
 currents, A2:6–7; A9:32; B7:2
 seabed mooring, A4:30–31, 94–96
Olduvai Subchron, magnetostratigraphy, A4:18; A5:16; A8:11
Oligocene
 glaciation, B(synthesis):20–21
paleoclimatology, A1:5
onlapping fill, Seismic Unit II, A7:24–26
ooze
 core photograph, B18:10
 lithologic units, A4:4–5, 10–11
 sedimentation, A1:15–17; A2:16–17
 ooze, diatom
 deglaciation, B34:4
postglacial sediments, B18:4–6
ooze, interbedded laminated diatom, neoglacial, B34:4
ooze, laminated, porosity, B30:6
ooze, laminated diatom
 deglaciation, B34:3–4
 photograph, A7:36
ooze, laminated diatomaceous, Holocene climate optimum, B34:4
ooze, laminated mud-bearing diatom, lithologic units, A7:4–6
ooze, massive bioturbated muddy diatom, lithologic units, A7:4–10

ooze, massive diatom, photograph, A7:40
ooze/mud couplets, deglaciation, B34:4
opal
 continental rise, B23:1–33
dissolution, A1:11
statistical data, B23:33
vs.opal accumulation rates, B23:9–10
opal, biogenic
 deposition, B23:1–33
dissolution, A5:19; A9:15
late Miocene, B23:6
Pliocene, B23:7
 sediments, A4:23; B(synthesis):13; B1:1–7
 upper Pliocene, B23:7
 vs. age, B23:25
 vs. core depth, B23:27
 vs. depth, B(synthesis):39; B23:24
See also silica, biogenic opal
opal-A, solubility, A8:14
opal accumulation rate
 lateral sediment supply, B23:10–11
 vs. age, B23:26, 28
 vs.opal content, B23:9–10
opal preservation efficiency, vs. original deposition rate, B23:29
opal sedimentation rate, vs. age, B23:30–31
orbital obliquity, deposition, B8:12; B25:10–11
order–disorder transitions, magnetic minerals, B14:2
organic matter
 climate optimum, B34:5–6
degradation, A4:21; A5:18–19; A7:15–16; A8:13; A9:15
 sediments, A5:17–18
outer shelf, topography, A2:10
overburden stress, porosity, B30:5–7
overprinting
 coercivity, A4:16–17
magnetostratigraphy, A9:14
oxides, sediments, B4:1–12
oxygen isotope Stage 1, clay minerals, B8:10–12
oxygen isotope Stage 2, clay minerals, B8:10–12
oxygen isotope Stage 5
 clay minerals, B8:10–12
 deposition, A4:10
lithofacies, B25:19–20
oxygen isotope Stage 6, clay minerals, B8:10–12
oxygen isotope Stage 7
dinoflagellate cysts, B2:2
lithofacies, B25:19–20
oxygen isotope Stage 9, lithofacies, B25:19–20
oxygen isotope Stage 11, lithologic units, A4:4
oxygen isotope Stage 19, Brunhes/Matuyama boundary, A8:12
oxygen isotope Stage 82, impacts, A2:18
oxygen isotope Stages 1–11, cyclic processes, B25:7
oxygen isotope stages
 benthic foraminifers, B(synthesis):40
 Bulimina aculeata, B7:22
Neogloboquadrina pachyderma sinistral, B20:1–10
sediments, B7:5–11
vs. age, B20:7
vs. carbon isotopes, B20:8
vs. depth, B7:30–31; B20:6

P
Pacific Ocean
currents, A2:6–7
tectonics, A2:7–9
Pacific Ocean S, glacial history, B(synthesis):1–40
paleoceanography
Holocene, B7:10–14
paleoproductivity, B23:12–16
sedimentation, B34:1–14
sedimentation rates, B18:6
stable isotopes, B20:1–10
paleoclimatology
Cenozoic, A8:8
clay mineralogy, B8:2–3
diatoms, B25:9
evolution, B23:31
Holocene, B7:1–45
ice catchment, A1:5; B(synthesis):20–22
ice sheets, A2:1–44
neoglacial, B34:7
paleoproductivity, B23:12–16
sedimentation, B34:1–14
sedimentation rates, B18:6
See also mid-Pleistocene Climate Transition
paleocurrents, models, B24:6–8
paleoenvironment
basins, A7:9–10
biostratigraphy, A4:13–16
deposition, A4:10–13, B(synthesis):5–9
diatoms, A7:9, 82
Holocene, B7:10–14
lower Pliocene, A6:28, 41
neoglacial, B34:6–8
radiolarians, B33:1–14
sedimentation rates, A7:9
See also environment
paleointensity
magnetic polarity, B31:8–9
See also magnetic intensity
paleointensity, relative, vs. depth, A4:75; A7:49
paleomagnetic inclination logs, vs. depth, B31:18–19
paleomagnetism
Antarctic Peninsula, B37:3–6
discrete samples, A4:17–18; A5:15–16; A6:12; A7:12; A9:13–14
principal component analysis, A4:151–155; A5:123–124; A7:104; A8:73
principal component analysis of U-channel samples, B37:55–60
Site 1095, A4:16–20
Site 1096, A5:15–16
Site 1097, A6:11–13
Site 1098, A7:11–12
Site 1099, A7:11–12

Phormacantha hystrix, cumulative percentage vs. depth

Site 1100, A9:12–15
Site 1101, A8:11–12
Site 1102, A9:12–15
Site 1103, A9:12–15
split cores, A4:16–17, 125–145; A5:15, 106–118; A6:11; A7:11–12, 83–102; A8:11, 67–71; A9:12
U-channel samples, B37:49–54
paleopathways, clay mineralogy, B8:14
paleoproductivity
color, B3:6–7
mud, A2:16–17
paleoceanography, B23:12–16
See also productivity
paleoproductivity proxies, biogenic opal, B23:9
Palmer Deep, A7:1–110
bathymetry, B34:13
biogenic opal, B1:1–7
composite depth scales, B5:1–35
Holocene climate, B7:1–45
mass accumulation rates, B3:1–20
microfabric, B18:1–17
petrophyical units, B30:1–17
radiolarians, B33:1–14
SeaBeam swath map, B34:12
sedimentation, B34:1–14
sedimentary record, A1:15–17; A2:16–17, 22
site description, A7:1–110
spectral reflectance data, B21:1–22
Palmer Land
chlorite-illite province, B8:9
clay mineralogy, B8:14
palynomorphs
taxa, B26:1–21; B28:1–22
continental rise, B2:1–10
See also pollen; spores
pebbles
deposition, A8:7–8
distribution, A9:47
ice-rafted debris, B11:1–23
lithologic units, A4:9–10, 122; A5:10–12; A7:5–6, 8, 35, 39; B25:6
lithology by percentage by unit, B11:10
percentage of shape by unit, B11:11
photograph, B11:15
roundness, B11:13
sediments, A7:81
shape vs. lithology, B11:12
sperecity, B11:14
vs. depth, A4:49; A5:57; A8:30; B11:9
X-ray radiography, B10:20
See also basalt pebbles
petrophyical Unit B, porosity, B30:6
petrophyical Unit C, porosity, B30:6
petrophyical Unit E, porosity, B30:6
petrophyical units
Antarctic Peninsula, B30:1–17
vs. depth, B30:11–12
See also lithologic units; logging units; seismic units
Phoenix–Antarctic ridge, tectonics, A2:8
Phormacantha hystrix, cumulative percentage vs. depth, B33:11
phosphate
 pore water, A4:21; A5:18–19; A6:14; A7:16; A8:13; A9:15
 vs. depth, A4:77; A5:70; A6:49; A7:52–53; A8:47
photoelectric effect logs
 vs. depth, A5:84; A9:67
 vs. potassium logs, A5:85; A9:68

Phycosiphon
 lithologic units, A4:6; A7:7
 photograph, A7:40

physical properties
 age models, B32:6
 core measurements, B32:4–5
 downhole measurements, B32:3–4
 insolation signal, B32:5
 Site 1095, A4:24–27; B17:5–6
 Site 1096, A5:21–26; B17:6–7
 Site 1097, A6:15–18
 Site 1098, A6:17–20
 Site 1099, A7:16–19; B17:6
 Site 1100, A7:19–19; B17:6
 Site 1102, A7:19–19
 split cores, A4:26–27
 time-frequency analysis, B32:7–15
 variation with depth, B30:3–4
 wavelet analysis, B32:1–43

physiography, drift deposits, B8:3–4
plagioclase
 drift deposits, B8:7
 X-ray diffraction data, A6:15; A8:65
plagioclase laths, backscattered electron photomicrograph, B22:16

Planolites
 lithologic units, A4:6; A5:6–7; A7:4–7; A8:3, 5
 photograph, A5:85

Plectacantha oiksikos, cumulative percentage vs. depth, B33:11

Pleistocene
 biostratigraphy, A4:13–16, 62; A5:58; A6:42
 calcareous nannofossils, B26:1–21
 calcareous nannofossils and palynomorphs, B28:1–22
 cyclic processes, B32:14–15
 dinoflagellate cysts, B2:2–4
 glaciation, B(synthesis):1–40
 lithologic units, A4:4–5, 10–11; A5:4–9, 11–12; A8:3–6
 productivity, B25:11
 stratigraphy, B36:11–12
 See also mid-Pleistocene Climate Transition

Pleistocene, upper
 glacial diamicton, B34:3–4
 stable isotopes, B20:3–4

Pliocene
 biostratigraphy, A4:13–16; A5:58
 clay mineralogy, B8:1–29
 cyclic processes, B32:14–15
 diatoms, B25:6–7
 dinoflagellate cysts, B2:2–4
 glaciation, B(synthesis):1–40
 lithologic units, A1:6–7; A4:4–13; A5:6–12; A8:4–9
 stratigraphy, B36:11–12

Pliocene, lower
 biostratigraphy, A6:42; B13:1–22
 cyclic processes, B25:8, 23–24
 paleoenvironment, A6:28
 productivity, B23:14–15

Pliocene, upper
 biostratigraphy, A4:62
 calcareous nannofossils, B26:1–21
 cyclic processes, B25:7–8, 21–22
 impacts, B9:1–6
 productivity, B23:15–16

plutonic rocks, calc-alkaline, geology, B8:4–5
Polar Front, climate signals, A8:8
pollen
 Neogene, B28:1–22
 photomicrograph, B28:21–22
 taxonomy, B28:7–8
 vs. depth, B28:13
polynyas, sea ice, B25:9
pore water, geochemistry, A4:21, 161; A5:18–20, 132;
 A6:14; A7:13, 108; A8:13, 78; A9:15, 82
porosity
 bioturbation, B30:4–7
 core and downhole logs, B17:29–35
 diatoms, B30:4–7
 logging units, A4:29–30
 prediction, B30:3
 sediments, A7:19; B(synthesis):14
 split cores, A6:16–17; A9:17
 summary, B17:5–7
 vs. bulk density, B30:14
 vs. depth, A4:85; A5:76–77; A6:52; A7:57–58; A8:53–54; A9:61–62; B17:15, 17, 20; B30:11–12
 wavenumber, B32:34, 37
porosity logs
 vs. depth, A4:88; A5:82; A9:66; B32:19
 See also neutron porosity logs

postglacial sediments
 correlation, B18:17
 microfabric, B18:1–17

potassium
 pore water, A5:19; A6:14; A7:16; A8:14; A9:15
 vs. depth, A4:77; A5:70; A6:49; A7:52–53; A8:47
 See also chlorine/potassium ratio; magnesium/potassium ratio; thorium/potassium ratio; thorium/potassium ratio logs

potassium feldspar
 drift deposits, B8:7

potassium logs vs. photoelectric effect logs, A5:85
potassium logs
 vs. depth, A4:89; A5:84
 vs. photoelectric effect logs, A5:85; A9:68
potassium oxide+sodium oxide, vs. silica, B22:17
preservation, physical properties, B32:8–15
precipitation, carbonates, A5:20

preservation
 barnacle fragments, B27:3
 biogenic opal, B23:8–12
 diatoms, A7:5, 7; B29:5; B30:4
 See also opal preservation efficiency
principal component analysis
 discrete paleomagnetic samples, A4:151–155
 paleomagnetism, A5:123–124; A7:104; A8:73
principal displacement zone, diamict, A9:19
productivity
 biogenic opal, B23:8–12
 carbonates, A6:13–14
 climate optimum, B34:5–6
 climate reversals, B34:4–5
 diatoms, A7:10
 Pliocene–Pleistocene, B26:1–21
 sea ice, B25:11
 sediments, B7:10–14
See also paleoproductivity
progradation
 drift deposits, B8:3–4
 sediment transport, A1:3; A2:11–13
propane, sediments, A5:17
proposed Site APSHE-01A, seismic units, B16:4
proposed Site APSHE-02A, seismic units, B16:4–5
proposed Site APSHE-03A, seismic units, B16:5
proposed Site APSHE-04A, seismic units, B16:5
proposed Site APSHE-10A, seismic units, B16:5–6
provenance
 argon isotopes, B22:10
 clay minerals, B8:8–10
Prydz Bay, velocity vs. depth, B19:18
pseudo-single domains, climate optimum, B34:6
Psilate–type spore 1, Site 1100, B28:7, 18–20
Psilate–type spore 2, Site 1103, B28:7, 18–20
pyrite
 impacts, B9:4
 photograph, A8:37
 vs. age, B15:12
pyrolysis, Rock-Eval, sediments, A5:131
pyroxene. See clinopyroxene

Q
quartz
 chemical and nuclear parameters, A5:137
 diamict, A6:4–5, 14
 drift deposits, B8:7
 impacts, B9:4
 lithologic units, A4:9, 23
 potassium logs vs. photoelectric effect logs, A5:85
 X-ray diffraction data, A8:14–15, 65
quartz, angular, vs. age, B15:11
quartz, rounded, vs. age, B15:11
Quaternary
 clay mineralogy, B8:1–29
 diatoms, A2:14; B25:6–7
 lithologic units, A1:6–7; A2:16–17
 opal, B23:1–33
 productivity, B23:16
 sedimentation, B34:1–14
See also Holocene; Pleistocene
Quaternary, upper
 clay minerals, B8:10–12
 cyclic processes, B25:7, 19–20
R
radioactive dating, sediments, B7:4–5
radiolarian datums
 depths, A5:142
 sedimentation rates, A4:33, 171; A5:92
radiolarians
 abundance, A7:43; B13:4
 abundance in scrae samples, B33:13–14
 assemblages, B13:4–5
 biostratigraphic events, B13:15
 biostratigraphy, A1:12–13; A4:15–16; A5:13–14; A6:9;
 A7:10–11; A8:10, 41; A9:12, 51; B13:1–22
 cumulative percentage vs. depth, B33:11
 cyclic processes, B25:7
 diversity vs. depth, B33:12
 lithologic units, A5:5
 magnetobiocchronology, B36:4
 range chart, B13:13–14
 sediments, B15:4–5; B33:1–14
 vs. age, B15:10
 vs. depth, A4:62–63; A5:58; A6:42; B13:12
 zonation, B13:10
rainout, deposition, A8:7
reduction
 suboxic diagenesis, A8:13
See also sulfate reduction
reflectance
 composite depth scales, B5:8, 35
 sediments, B21:8–22; B25:20
 spectrum, B21:6
 vs. composite depth, A7:62, 68–69
 vs. depth, B5:26
 wavenumber, B32:29
See also chromaticity; color; lightness
reflectance, spectral, continental rise, B21:1–22
reflection coefficient
 vs. depth, A5:97
 vs. two-way traveltime, A7:70–71
reflections, two-way traveltime, B16:14–16
reflector
 onlapping fill, A7:24–26
 sediments, A2:12–13
 Seismic Unit I, A7:24
 seismic units, B16:1–7
 source signals, A4:105
 tomographic inversion, B17:14
 traveltime, B16:12
See also mid-basin reflector
reflectors, bottom-simulating, seismic surveys, A2:18–20
remanent anomaly logs
 vs. depth, B31:15–16, 18–19
 vs. induced anomaly logs, B31:17
remanent magnetization
 magnetic polarity, B31:7–8
 B31:14
remanent magnetization, characteristic
demagnetization, A4:18
discrete samples, A5:16
remanent magnetization, natural
coercivity, A4:16–17
discrete samples, A4:146–150; A5:119–122; A7:103; A8:72; A9:13–14
split cores, A5:15; A7:11–12; A8:11
vs. depth, A7:49
remanent magnetization, saturation, magnetic minerals, B14:3
remanent magnetization, saturation isothermal, demagnetization, B14:6
resistivity logs
carbon with velocity logs, B19:29
vs. depth, A4:88; A9:66, 69; B19:27; B32:19
See also integrated resistivity logs; self focusing resistivity logs
resting spores
backscattering electron photomicrograph, B18:13–14
lithologic units, A4:152–153
Reticulate–type spore 1, Site 1097, B28:7, 18–20
Reticulate–type spore 2, Site 1103, B28:7, 18–20
Reunion Event
impacts, A2:18
magnetostratigraphy, A8:12; B36:8, 10; B37:10, 16
sediments, B9:2; B36:8, 11; B37:10, 16
reworking
microfauna, A9:6
opal, B23:10–11
ridge crest–trench collision
Cenozoic, B(synthesis):4–5
clay mineralogy, B8:16
ridge crests, tectonics, A2:8, 19
Riedel shears, diamict, A9:19
rock fragments, igneous, vs. age, B15:12
rock fragments, metamorphic, vs. age, B15:12
rock fragments, sedimentary, vs. age, B15:12
rock magnetics
hemipelagics, B14:1–12
sediments, B37:6
vs. depth, B14:9
Ross Sea, velocity vs. depth, B19:18
Rouen Mountains, chlorite-illite province, B8:9
roundness, pebbles, B11:5, 13
rubidium, sediments, A4:23; A5:21; A6:15; B4:1–12
S
Saanich Inlet, Quaternary, A2:16–17
saline shelf water, deglaciation, B34:4
salinity, vs. water depth, A2:34
sand
abundance, B25:6–7
diamictite, A9:6–7
lithologic units, A4:122; A5:8; A7:35, 39; B25:4–6
photograph, A7:41
vs. age, B12:1, 11; B25:17
vs. depth, A4:49, 51; A5:56; A8:30; B10:18; B25:19–25
sand, laminated, lithologic units, A4:5–8, 11–13; B25:4–5
sand, massive, photograph, A5:53
sand grains
lithologic units, A4:9–10; A5:5, 10; B25:4–6
photograph, A4:52; A5:46
sandstone
lithofacies, A1:14–15
lithology, A9:6–7
sandstone, chaotically bedded, photograph, A9:48
sandstone, muddy, lithology, A9:7
Santa Barbara Basin, Quaternary, A2:16–17
sea ice
Antarctic Zone, B23:17
climate reversals, B34:5
deposition, A4:10–11
productivity, B25:11
temperature, B25:9
sea surface, temperature, B25:9
sea-level changes
clay mineralogy, B8:13–14
deposition, A4:12–13; A8:15
history, A1:1–2; A2:5
seabed observations, lithostratigraphy, A9:9–10
sediment-water interface, biogenic opal, B23:8–9
sediment thickness, light/dark couplets, B3:17
sediment transport
barnacle fragments, B27:3
ice-rafted debris, A1:2–3; B10:6–8
paleoenvironment, A8:8
pebbles, B11:3–6
See also subglacial transport
sediment traps, deposition, A7:8–10
sedimentation
climate, B(synthesis):3–5
continental rise, B(synthesis):16–17
contour currents, A1:6
 glaciation, A2:4–5
ice-rafted debris, B10:6–8
marine-glacial environment, A2:9–15
Neogene, B34:1–14
porosity, B30:5–7
sorting, A9:9
tectonics, A2:8–9
See also glacial sedimentation
sedimentation rates
calcareous nannofossil datums, A5:30; A8:19, 82
Cenozoic, A1:6–20; B(synthesis):24
cyclic processes, B32:14–15
diatom datums, A4:172; A8:20–21, 81
g geomagnetic polarity transition data, A4:32–33, 169–170; A5:30, 143; A8:19, 80
g magnetic reversals, B37:12, 15
g magnetostratigraphy, B37:16
opal, B23:11–12
paleoceanography, A7:9
paleomagnetism, A5:30
physical properties, B32:6
radiolarian datums, A4:16, 33, 171
Site 1095, A4:32–33; B6:3–5
Site 1096, A5:30; B6:3–5
Site 1101, A8:19–20
vs. age, A4:102; A5:93; A8:60; B23:30; B37:36, 39, 41
vs. depth, A4:101; A5:93; A8:60; B23:22, 33; B37:36, 39, 41
See also mass accumulation rates; opal sedimentation rate
sedimentation rates, linear
bulk sediment properties, B15:13
vs. age, B23:28
vs. depth, A4:49; A8:30
sediments
biogenic opal, B1:1–7
diagenesis, A4:22–23
geochemistry, B4:1–12
grain size, B12:1–34
image data, B3:14, 16, 18–20
impacts, B9:1–6
mass accumulation rates, B3:1–20
radiolarians, B33:1–14
reflectance, B21:1–22
seabed observations, A9:9–10
X-ray diffraction data, A4:162; A5:133; A8:14–15
See also bulk sediments; postglacial sediments
seismic models
correlation, A7:22–23
density/velocity models, A4:33–34; A9:22–23
source signals, A4:34
synthetic seismograms, A7:23
time–depth model, A4:34–35
seismic profiles
correlation between onsite multichannel seismic and vertical seismic profiles, B17:22
Drift D7, A2:42
outer continental shelf, A2:41
Palmer Deep, A7:30–33
seismostratigraphy and lithostratigraphy, A5:100
Site 1095, A1:34; A4:44–46, 116–118; B24:12
Site 1096, A1:37; A5:39–40, 42, 100
Site 1097, A1:42; A6:23, 25–26; B(synthesis):34
Site 1098, A7:30–31, 74, 77
Site 1099, A7:32–33, 75–76, 78
Site 1100, A1:44; A9:29–31, 77
Site 1101, A1:39; A8:26–28, 61, 63
Site 1102, A1:44; A9:29–31, 76
Site 1103, A1:44; A8:29–31, 75, 78; B19:16–17; B22:14
superimposed synthetic trace, B17:24
time sections and depth sections, B19:30
vs. synthetic seismograms, A7:23
seismic profiles, composite, data sets, B17:28
seismic profiles, digital reflection, comparison with synthetic seismograms, A4:35–36
seismic profiles, multichannel, acquisition parameters, B16:23
seismic profiles, vertical
seismostratigraphic units, A4:36–38
tie to two-way traveltime between units, B17:23
seismic sections, analog, seismostratigraphic units, A4:36–38
seismic sections, digital, seismic stratigraphy, A9:23
Seismic Sequence Group S1, seismic units, A9:24; B(synthesis):6–9, 23; B16:4–6, 13
Seismic Sequence Group S2, seismic units, A9:24; B(synthesis):6–9, 23; B16:4–6, 12–13
Seismic Sequence Group S2/S1 boundary, seismic units, B(synthesis):8; B22:14
Seismic Sequence Group S3, seismic units, A9:24; B(synthesis):6–9, 23; B16:4–6; B22:14–15
Seismic Sequence Group S3/S1 unconformity, seismic units, B(synthesis):7; B19:9
Seismic Sequence Group S3/S2 boundary, seismic units, B(synthesis):7
Seismic Sequence Group S4, seismic units, B22:14
Seismic Sequence Group S5/S4 boundary, seismic units, B16:13
Seismic Sequence M1
sediments, A2:14–15
vertical seismic profiles, B17:23
Seismic Sequence M2, sediments, A2:14–15
Seismic Sequence M2/M1 boundary, vertical seismic profiles, B17:23
Seismic Sequence M3, sediments, A2:14–15
Seismic Sequence M3/M2 boundary, vertical seismic profiles, B17:23
Seismic Sequence M4, sediments, A2:14–15
Seismic Sequence M4/M3 boundary
dead water, A7:30–33
source signals, A5:31
synthetic seismograms, A5:32
time–depth functions, A5:31–32
Seismic Sequence M5, sediments, A2:14–15
Seismic Sequence M5/M4 boundary, vertical seismic profiles, B17:23
Seismic Sequence M6, sediments, A2:14–15
Seismic Sequence M6/M5 boundary
dead water, A7:30–33
source signals, A5:31
synthetic seismograms, A5:32
time–depth functions, A5:31–32
seismic surveys, basins, A1:47
Seismic Sequence M1, lithology, A4:36; A5:33–34; A6:19; A7:24–26; A8:21
Seismic Sequence M2, lithology, A4:36–37; A5:33–34; A6:19; A7:24–26; A8:21
Seismic Sequence M3, lithology, A4:36–37; A5:33–34; A6:19; A7:24–26; A8:21
Seismic Sequence M4, lithology, A4:36; A5:33–34; A6:19; A7:24–26; A8:21
Seismic Sequence M5, lithology, A4:36–37; A5:33–34; A6:19; A7:24–26; A8:21
Seismic Sequence M6, lithology, A4:36–37; A5:33–34; A6:19; A7:24–26; A8:21
sediments, A2:14–15
vertical seismic profiles, B17:23
Seismic Sequence stratigraphy
continental rise, B17:1–36
reflections, A4:106
seismic profiles, A5:100
Site 1095, A4:33–38; B17:5–7
Site 1096, A5:31–34; B17:5–7
Site 1097, A6:18–20
Site 1098, A7:22–26
Site 1099, A7:22–26
Site 2000, A9:22–25
Site 1101, A8:20–22; B17:5–7
Site 1102, A9:22–25
Site 1103, A9:22–25
source signals, A5:31
synthetic seismograms, A5:32
time–depth functions, A5:31–32
seismic surveys, basins, A1:47
Seismic Sequence Unit I, lithology, A4:36; A5:33–34; A6:19; A7:24–26; A8:21
Seismic Sequence Unit II, lithology, A4:36–37; A5:33–34; A6:19; A7:24–26; A8:21
Seismic Sequence Unit III, lithology, A4:37; A6:19–20; A8:21
Site 272, velocity vs. depth, B19:18
Site 739, velocity vs. depth, B19:18
Site 1095, A4:1–173
background and objectives, A4:1–2
biostratigraphy, A4:13–16; B13:1–22; B36:6–7, 22, 32–34
bulk sediment parameters, B15:1–19
calcareous nanofossils and palynomorphs, B28:1–22
clay mineralogy, B8:1–29
composite depths, A4:31–32; B6:1–15
coring summary, A4:119–120
diatoms, B29:3–4, 13–15
dinoflagellates, B2:1–10
downhole measurements, A4:27–30
geochemistry, B4:1–12
grain size, B12:1–34; B24:1–27
ice-rafted debris, B11:1–23
inorganic geochemistry, A4:21–24
lithologic units, A1:6–8; A4:121
lithostratigraphy, A4:4–13
magnetobiocronology, B36:1–40
magnetostratigraphy, B31:1–23; B36:7–8, 22, 28, 37–39; B37:1–61
Miocene, B36:11–12
Neogene glaciation, B25:1–25
objectives, A2:20–21
oceanography, A4:30–31
opal, B23:1–33
operations, A4:2–3
organic geochemistry, A4:20–21
paleomagnetism, A4:16–20
physical properties, A4:24–27; B17:5–6; B32:1–43
Pleistocene, B36:12–13
sedimentation rates, A4:32–33
seismic stratigraphy, A4:33–38
site description, A4:1–173
spectral reflectance data, B21:1–22
Site 1096, A5:1–144
background and scientific objectives, A5:1–2
biostratigraphy, A5:12–15; B36:9, 23, 32–36
bulk sediment parameters, B15:1–19
calcareous nanofossils, B26:1–21
clay mineralogy, B8:1–29
composite depths, A5:29–30; B6:1–15
coring summary, A5:101–102
diatoms, B29:4–5, 16–21
dinoflagellates, B2:1–10
downhole measurements, A5:26–29
geochemistry, B4:1–12
grain size, B12:1–34
ice-rafted debris, B11:1–23
inorganic geochemistry, A5:18–21
lithologic units, A1:8–9
lithostratigraphy, A5:4–12
magnetic minerals, B14:1–12
magnetobiocronology, B36:1–40
magnetostratigraphy, B31:1–23; B36:7–8, 22, 28, 37–39; B37:1–61
Miocene, B36:11–12
Neogene glaciation, B25:1–25
objectives, A2:20–21
opal, B23:1–33
operations, A5:2–4
organic geochemistry, A5:16–18
paleomagnetism, A5:15–16
physical properties, A5:21–26; B17:6–7; B32:1–43
sedimentation rates, A5:30
seismic stratigraphy, A5:31–34
site description, A5:1–144
spectral reflectance data, B21:1–22
stable isotopes, B20:1–10
upper Pliocene impact, B9:1–6
Site 1097, A6:1–55
 background and objectives, A6:1–2
 biostratigraphy, A6:8–11
calcareous nannofossils and palynomorphs, B28:1–22
clay mineralogy, B8:8
geochemistry, B4:1–12
inorganic geochemistry, A6:14–15
lithostratigraphy, A6:3–8
objectives, A2:21
operations, A6:2–3
organic geochemistry, A6:13–14
paleomagnetism, A6:11–13
physical properties, A6:15–18
sedimentary record, A1:11–13
seismic stratigraphy, A6:18–20
site description, A6:1–55
volcanic clasts, B22:1–26
Site 1098, A7:1–110
 background and objectives, A7:1–2
biogenic opal, B1:1–7
biostratigraphy, A7:10–11
calcareous nannofossils, B26:4
composite depth scales, B5:1–35
composite depths, A7:20–21
coring summary, A7:79
inorganic geochemistry, A7:13–15
lithostratigraphy, A7:3–6, 8–10
mass accumulation rates, B3:1–20
microfabric, B18:1–17
objectives, A2:22
operations, A7:2–3
organic geochemistry, A7:12–13
paleoclimatology, B7:1–45
paleomagnetism, A7:11–12
petrophysical units, B30:1–17
physical properties, A7:17–20
radiolarians, B33:1–14
sedimentation, B34:1–14
sedimentary record, A1:15–17; A2:16–17
seismic stratigraphy, A7:22–26
site description, A7:1–110
spectral reflectance data, B21:1–22
Site 1099, A7:1–110
 background and objectives, A7:1–2
biostratigraphy, A7:10–11
composite depth scales, B5:1–35
composite depths, A7:20–21
coring summary, A7:79
inorganic geochemistry, A7:15–16
lithostratigraphy, A7:6–10
objectives, A2:22
operations, A7:2–3
organic geochemistry, A7:12–13
paleomagnetism, A7:11–12
petrophysical units, B30:1–17
physical properties, A7:17–20
sedimentation, B34:1–14
sedimentary record, A1:15–17; A2:16–17
seismic stratigraphy, A7:22–26
site description, A7:1–110
spectral reflectance data, B21:1–22
Site 1100, A9:1–83
 background and scientific objectives, A9:1–3
biostratigraphy, A9:11–12
calcareous nannofossils and palynomorphs, B28:1–22
coring summary, A9:79–80
inorganic geochemistry, A9:15
lithostratigraphy, A9:5–6
objectives, A2:21
operations, A9:3–4
paleomagnetism, A9:12–15
physical properties, A9:15–19
sedimentary record, A1:13–14
seismic stratigraphy, A9:22–25
seismic units, B16:5
site description, A9:1–83
Site 1101, A8:1–83
 background and scientific objectives, A8:1–2
coring summary, A8:64
diatoms, B29:5, 22–24
geochemistry, B4:1–12
glacial signal, B10:1–22
grain size, B12:1–34
ice-rafted debris, B11:1–23
inorganic geochemistry, A8:13–15
lithologic units, A1:9–11
lithostratigraphy, A8:2–9
magnetobiochronology, B36:1–40
magnetostratigraphy, B36:10–11, 24, 38–39; B37:1–61
objectives, A2:20–21
opal, B23:1–33
operations, A8:2
organic geochemistry, A8:12–13
paleomagnetism, A8:11–12
physical properties, A8:15–19; B17:7
sedimentation rates, A8:19–20
seismic stratigraphy, A8:20–22
site description, A8:1–83
spectral reflectance data, B21:1–22
stable isotopes, B20:1–10
Site 1102, A9:1–83
 background and scientific objectives, A9:1–3
coring summary, A9:79–80
lithostratigraphy, A9:9–10
objectives, A2:21
operations, A9:4–5
paleomagnetism, A9:12–15
physical properties, A9:15–19
sedimentary record, A1:14
seismic stratigraphy, A9:22–25
seismic units, B16:4
site description, A9:1–83

Site 1103, A9:1–83
background and scientific objectives, A9:1–3
biostratigraphy, A9:11–12
calcareous nannofossils and palynomorphs, B28:1–22
composite velocity profile, B19:1–34
coring summary, A9:79–80
downhole measurements, A9:19–22
geochronology, B27:1–8
lithostratigraphy, A9:6–9
objectives, A2:21
operations, A9:5
organic geochemistry, A9:15
paleomagnetism, A9:12–15
physical properties, A9:15–19
sedimentary record, A1:14–15
seismic stratigraphy, A9:22–25
seismic units, B16:5–6
site description, A9:1–83
volcanic clasts, B22:1–26

skewness
grain size, B24:23
vs. age, B12:10, 14; B25:18
slope foresets, deposition, A1:3; A2:4–5
slowness, vs. depth, B19:23
slumps, lithologic units, A7:5–6
smear slides
diamict, A9:16–17
lithologic units, A4:9

smectite
drift deposits, B8:7–16
glacial/interglacial cycles, B8:10–12
sediments, A4:22
vs. age, B8:27
vs. depth, B(synthesis):38; B8:23–24, 26
See also illite–smectite–chlorite
smectite province, continental shelf, B8:8–9
sodium oxide. See potassium oxide+sodium oxide
soft sediment deformation
deposition, A9:8–9
lithology, A9:7
solubility,opal-A, A8:14
sonic velocity tool
schematic diagram, B19:19
transmitter/receiver spacing, B19:31

sorting
mudstone, A9:7_8
reflectance, B21:3
sedimentation, A9:9
vs. age, B12:10, 14; B25:18
source signals, seismic models, A7:22
South Shetland Islands
glaciation, A2:9
smectite, B8:8–9
South Shetland margin, currents, B8:4
South Shetland Trench
geology, B8:5
tectonics, A2:8

Southern Ocean
magnetobiochronology, B36:1–40
sediments, A1:2; B34:7–8
spectra plots, grain size, B24:15
spectral analyses, physical properties, B32:6
sphericity, pebbles, B11:5, 14
splice tie points, composite depth scales, B5:30
spliced cores
composite depth scales, B5:9–10
data, A4:168; A5:91, 140–141; A7:110; B6:1–15
split cores
paleomagnetism, A5:106–118; A7:83–94, 95–102
physical properties, A4:26–27
sponge spicules
lithologic units, A7:6–10
vs. depth, B13:12
spores
Neogene, B28:1–22
photomicrograph, B28:19–20
taxonomy, B28:6–7
vs. depth, B28:13
See also resting spores
spreniten, photograph, A5:55
stable isotopes
foraminifers, B20:1–10
neoglacial, B34:7
sediments, B7:5–11
stable single domain behavior, magnetic minerals, B14:3
standard deviation, grain size, B24:23
statistical analysis, grain size, B24:18–27
Stratified Diamict Facies, lithofacies, A6:6
stratigraphic events, biocalcareous, calcareous nannofossils, B26:4–5, 21

stratigraphy
magnetic polarity, A4:29
See also acoustic stratigraphy; biostratigraphy; chro-
nostratigraphy; lithostratigraphy; log units;
magnetostratigraphy; petrophysical units; seis-
mic units; seismostratigraphy
strength
vs. depth, A5:77
See also overburden strength
striations, photograph, A8:40
strontium
pore water, A4:22; A5:19; A6:14; A7:16; A8:14; A9:15
sediments, B4:1–12
vs. depth, A4:77; A5:70; A6:49; A7:52–53; A8:47
strontium isotopes
barnacle fragments, B27:1–8
vs. age, B27:5
Subbasin I, Holocene, A7:12; B34:3
Subbasin II, sediment traps, A7:8–10; B34:3
Subbasin III
Holocene, A7:12; B34:3
deposition, A5:1–8; B34:3
subduction
Cenozoic, B(synthesis):4–5
geology, B8:4–5
tectonics, A1:4; A2:7–9
subglacial environment, deposition, A6:7–8, 18
subglacial flux, deposition, A9:9
subglacial transport
 blocks, A9:10
pebbles, A8:40
subidence, continental margin, A1:4
sulfate
 pore water, A4:21; A5:18; A6:14; A9:15
 vs. depth, A4:77; A5:70; A6:49; A7:52–53; A8:47;
 B14:9
sulfate reduction
diagenesis, A5:19–20
organic matter, A7:13–14
paleoenvironment, A1:17
pore water, A9:15
processes, A4:21
suboxic diagenesis, A8:13
sulfur
 pore water, A5:19
 sediments, A5:128–130; A7:13, 106–107
synthetic pseudo-single domains, magnetic minerals, B14:3
synthetic seismograms
correlation, A5:32
density-velocity data, A4:35
field survey traces, A5:98–99
mid-basin reflector, A7:76
seismic models, A7:23
seismic stratigraphy, A5:32
vs. seismic profiles, A7:23
See also Model A; Model B
synthetic seismograms, far-field
vs. depth, A5:97
vs. two-way traveltime, A7:71
synthetic seismograms, Huntec Signal
filtered synthetic trace, A7:72
vs. two-way traveltime, A7:70–71
synthetic seismograms, seafloor reflector
vs. depth, A5:97
vs. two-way traveltime, A7:71
synthetic seismograms, unfiltered
Model A, A4:108
Model B, A4:109

T
tectonics
 continental margin, A1:4; A2:7–9
 maps, A1:30; A2:39
sedimentation, A2:8–9
temperature
 color, B3:7
 neoglacial, B34:7
 sea ice, B25:9
 stable isotopes, B20:3–4
 vs. depth, A4:93; A5:80, 87; A8:58
 vs. water depth, A2:34
temperature, downhole
 sediments, A5:25–26; A7:20
 split cores, A8:18–19
temperature logs
 sediments, A4:29–30; A5:29; A9:22
 vs. depth, A9:71
tephra, photograph, A6:37
terrigenous component
 coarse fraction, B15:11
 flux, B3:4–7
 lithologic units, A7:35, 39
 vs. depth, A4:49–50; A8:30
Terrigenous Facies
 deposition, A4:10–13; B25:10
 lithologic units, A4:5
Thalassionema, percentage in cores, B7:25–26
Thalassiosira antarctica, backscattered electron photomicrograph, B18:15–16
Thalassiothrix, percentage in cores, B7:25–26
thermal conductivity
 sediments, A5:24–25; A7:19–20
 split cores, A8:18
 vs. depth, A5:79; A7:60–61; A8:57
thorium/potassium ratio, mixed-layer clays, A5:28
thorium/potassium ratio logs
 vs. depth, A4:89; A5:84; A9:67; B32:33
 wavenumber, B32:30
thorium logs, vs. depth, A4:89; A9:67
tidewater glaciers, deglaciation, B34:4
till
 deposition, A9:6
 sediment transport, A1:2–3
See also deformation till
till deltas, deposition, A9:9
time sections, vs. depth sections, B19:30
time-depth functions, seismic stratigraphy, A5:31–32
time-depth models
 correlation, B16:24
 seismic models, A7:23
time-frequency analysis, physical properties, B32:7–15
titanium. See iron-titanium oxide
tomographic inversion
 reflectors, B17:14
 seismic units, B16:4, 12
 traveltime, B17:18
topography, sediments, B(synthesis):3–5
total magnetic field logs
 lithology, A9:21–22
 vs. depth, A9:70; B31:13, 15–16
total organic carbon accumulation rates, vs. age, B23:28
trace elements
 climate optimum, B34:6
 sediments, A4:23–24, 164; A5:21, 135; A6:15; B4:1–12
tauentime
 reflectors, B16:12, 14–16
tomographic inversion, B17:18
 vs. depth, B17:21, 25, 27
tauentime, one-way, vs. depth, A4:107; A5:96; A7:73
tauentime, two-way
depth sections vs. time sections, B19:30
depth to base of seismic units, A8:83
depth to seismic units, A5:144
vs. acoustic properties, A7:70–71
 vs. depth, A8:62; A9:74
 vs. final depth, B19:34
traveltime/depth function, seismic models, A4:34–35; A9:23
trough-mouth fans, sediment transport, A1:3
turbidite
 climate reversals, B34:5
deformation, A7:37
lithologic units, A1:6–7; A4:8; A5:5–6; A7:5–10
photograph, A7:40–41; A8:36
porosity, B30:6
turbidite, distal
 lithologic units, A4:5; A5:10–12
structure, A4:61
turbidite, muddy
 lithologic units, A5:7–8, 11–12
 photograph, A4:53; A5:49, 54
structure, A4:57
turbidite, thin-bedded, lithologic units, A5:7–8, 11–12
Turbidite Facies
 deposition, A4:61
 reflectance, B21:1–22
turbidity currents
 clay minerals, B8:10
 deposition, A4:12–13; A9:8–9
 grain size, B12:2–3
 lithologic units, A8:3–9
 photograph, A8:32
 sedimentation, A1:6
 See also debris flows; gravity flows

U
U-channels, sediments, B36:10–14; B37:1–61
unconformities
 sediments, A2:12–13
 Seismic Sequence Group S2, A9:24
 Seismic Sequence Group S3/S1 boundary, B19:9
 seismic units, B(synthesis):6–9; B16:13
 See also hiatuses
Unit I
 lithology, A5:45
 photograph, A5:46–47
Unit I/II boundary, lithology, A5:45
Unit II
 lithologic units, A1:6–8
 photograph, A4:54–56; A5:49–50, 52
Unit III
 lithologic units, A1:8
 photograph, A4:58–60; A5:54–55; A8:38–39
 uplifts, tectonics, A2:19
Upper Circumpolar Deep Water, currents, B7:2
upwelling, productivity, B23:13
uranium logs
 vs. depth, A4:89; A5:84; A9:67; B32:19
 wavenumber, B32:35, 37

V
variable-density stack sections, velocity, B16:13
varves, climate optimum, B34:5–6
velocity
 checkshot survey, A4:29
continental shelf, B16:1–25
core and downhole logs, B17:29–35
summary, B17:5–7
vs. depth, A4:104; A5:78, 95, 97; A6:54; A9:73;
 B17:13, 15, 17, 20; B19:18
vs. final depth, B19:34
vs. two-way traveltime, A7:70–71
 See also compressional wave velocity; density/velocity
 models
velocity, interval, vs. depth, B17:16, 18–19
velocity, sonic, vs. depth, B17:12
velocity, tomographic, vs. depth, B16:22
velocity fields, vs. depth, B16:17–21
velocity logs
 comparison with neutron porosity and bulk density
 logs, B19:29
data pools of categories, B19:32
data reduction, B19:25
vs. depth, A9:66; B19:10–13, 24–25, 27
 See also sonic velocity tool
velocity profiles
data categories, B19:21–22
digital coherency mapping, B19:23
velocity profiles, composite
 transects, B19:1–34
 vs. depth, B19:28
Verwey transition
 magnetic minerals, B14:2–4
saturation isothermal remanence, B14:6
volcanic ash, graded vitric, photograph, A8:31
volcanic ash, lithologic units, A8:3–4
volcanic clasts, argon isotopes, B22:1–26
volcanic glass
 backscattered electron photomicrograph, B22:16
electron microprobe data, B22:23
 vs. age, B15:12
volcanic groundmass, backscattered electron photomi-
crograph, B22:16
volcanic rocks, clay mineralogy, B8:8–9
volcanism, argon isotopes, B22:6–10

W
water content
 porosity, B30:5–7
 vs. depth, A4:84; A5:76
waveform analysis
 Morelet wavelet, B32:23
 See also Morelet wavelet
wavelet analysis, physical properties, B32:1–43
wavelet transform, physical properties, B32:6–7
wavenumber
 bioturbated intervals, B32:27
gamma-ray logs, B32:30
gamma rays, B32:34
insolation signal, B32:24–26, 36
magnetic susceptibility, B32:25–26
porosity, B32:34, 37
reflectance, B32:29
thorium/potassium ratio logs, B32:30
truncated insolation, B32:28, 36
uranium logs, B32:35, 37
Weddell Sea Deep Water currents, A2:7; B8:4
glacial/interglacial cycles, B8:10–12
well-logging
lithology, A5:27–28
magnetostratigraphy, B31:1–23; B37:9–12, 15, 35, 61
sediments, B(synthesis):12–13
summary, A1:51; A4:165; A5:81, 136; A9:19–22, 65, 83; B17:5–7; B19:1–13
West Antarctic Ice Sheet, ice-rafted debris, B25:9–10
winnowing. See current winnowing
X-ray diffraction data
clay minerals, A4:163; A5:134; A6:50
sediments, A4:23, 162; A5:133
X-ray radiography, bioturbation, B10:21
yield strength, sediments, A5:23–24
yttrium, sediments, A4:23
Z
zero field cooled curves, granulometry, B14:7
zinc, sediments, A4:23; B4:1–12
zirconium, sediments, A4:23
zonation
biostratigraphy, A8:41
diatoms, B29:5–9
Zoophycos
lithologic units, A4:6; A8:5
photograph, A5:55

TAXONOMIC INDEX

A

Actinocyclus australis, Zone 1095, A4:15–16; B13:1
Actinocyclus ingens Partial Range Zone
Site 1095, A4:13; B29:6
Site 1101, A8:9

Actinocyclus ingens var. *ovalis*
Site 1095, A4:14; B29:8; B33:3, 39
Site 1103, B(synthesis):7–8

Actinocyclus ingens var. *ovalis* Partial Range Zone
Site 1095, A4:14; B29:8
Site 1103, B22:9; B27:3

Actinocyclus karstenii
Site 1097, A6:9
Site 1100, B35:3, 48
Site 1101, B29:6
Site 1103, B35:3, 50–51

Actinocyclus octonarius, Site 1095, B35:3, 44

Actinocyclus sp. cf. *Actinocyclus* octonarius
Site 1095, B35:3, 45
Site 1097, B35:3, 57

Aculeata, Bulimina
Site 1098, B7:3–5, 7–8, 10–11, 22, 30–31
Site 1099, A7:11

Alata, Proboscia, Site 1095, B35:9, 29

Ammonoides

Amphora spp., Site 1095, B35:3, 30
Amphymenium australis Zone, Site 1095, B13:5
Amphymenium challengerae Zone, Site 1095, A4:15; B13:1, 5
Amphymenium labrata Zone, Site 1095, B13:5
angulata, Fragilariopsis, Site 1098, B7:6, 25–26
angulata, Nitzschia, Site 1095, B35:8, 27
antarctica, Ammolphiidella, Site 1097, A6:11
antarctica, Eucampia
Site 1095, B35:6, 31
Site 1098, A7:5, 10, 42; B7:6, 14, 36, B34:5–6
Site 1099, A7:7, 10, 42; B34:5–6
Site 1103, B35:6, 51
antarctica, Schimperiella, Site 1095, B35:10, 47
antarctica, Thalassiosira
Site 1098, A7:9–10, 42; B7:6; B18:15–16
Site 1099, A7:9–10, 42
Site 1100, B35:11, 48
antarctica, Thalassiothrix
Site 1095, B35:14, 29
Site 1103, B35:14, 48, 52
antarctica, Triceraspyris
Site 1095, A4:15
Site 1101, A8:10
antarcticus, Dactylosolen, Site 1095, B35:5, 42
antarcticus, Martinottiella, Site 1101, A8:11

Antarctissa cylindrica
Site 1095, A4:15
Site 1096, A5:13
Site 1101, A8:10

Antarctissa deflandrei, Site 1095, B13:4
Antarctissa denticulata, Site 1095, B13:4
Antarctissa sp., Site 1095, B13:16

Antarctissidae, Site 1095, B13:4

Arachnoidiscus ehrenbergii, Site 1097, A6:11
arcula, Fragilariopsis, Site 1095, B35:6, 28

Asa, *Milliammina*, Site 1098, B7:7–8, 27–29
asanoi, Reticulofenestra, Site 1101, B26:5, 19–20
Asteromphalus kennetii, Site 1095, A4:14; B29:4; B36:7
aurica, Fragilariaposi
Site 1095, B35:6–7, 28
Site 1097, A6:9
Site 1103, B35:6–7, 49
australiensis, Cicatricosporites, Site 1097, B28:6, 17, 19–20
australis, Acerospheara, Site 1095, A4:16
Azpettia enolii, Site 1095, B35:4, 45
Azpettia nodulifera
Site 1095, B35:4, 45
Site 1103, B35:4, 53
Azpettia tabularis, Site 1095, B35:4, 45

B
baldaufii, Thalassiosira, Site 1095, B35:11, 41
barbadiensis, Stephanopyxis, Site 1095, B35:11, 33
barronii, Fragilariaposi
Site 1095, A4:13–14; B29:6–7
Site 1096, A5:13; B29:7
Site 1097, A6:8–9
Site 1101, A8:9
Site 1103, A1:14; A9:11; B35:7, 49
barronii 1, Fragilariaposi aff., Site 1095, B35:7, 27
barronii 2, Fragilariaposi aff., Site 1095, B35:7, 28
Basilicostephanus? sp., Site 1103, B35:4, 52
biora, Globocassidulina, Site 1099, A7:11
Bolboforma spp., Site 1095, A5:14
Bolivinella pseudopunctata, Site 1098, B26:3
Braarudosphaera spp., Site 1101, B26:3
Brigantedinium sp. indet., Site 1095, B2:3
Brigantedinium spp.
Site 1095, B2:3–10
Site 1096, B2:3–10
Bulimina aculeata
Site 1098, B7:3–5, 7–8, 10–11, 22, 30–31
Site 1099, A7:11
bulloides, Globigerina
Site 1095, A4:16
Site 1096, A5:15
Site 1101, A1:10; B36:10

C
Calcidiscus leptoporus, Site 1098, B26:4
californica, Cocconeis, Site 1095, B35:4, 30
californica, Cocconeis sp. aff. Cocconeis
Site 1095, B35:4, 30
Site 1103, B35:4, 51
californica, Rouxia
Site 1095, B35:10, 29
Site 1103, A1:15; A9:11; B35:10, 52
calvertense, Eucyrtidium, Site 1101, A8:10
caribbeanica, Gephyrocapsa
Site 1096, B26:5, 14–18
Site 1101, B26:3, 5, 14, 19–20
Cassidulinoides parkeriensis
Site 1097, A6:10
Site 1103, A1:15; A9:12; B28:5
Chaetoceros sp. A, Site 1095, B35:4, 29
Chaetoceros spp.
costata var. A, Rhizosolenia, Site 1095 • Fragilariopsis barronii

D

Dactyliosolen antarcticus, Site 1095, B35:5, 42
davisiana, Cycladophora, Site 1096, A5:13
deflandrei, Antarctissa, Site 1095, B13:4
deliciata, Denticulopsis, Site 1097, A6:9
deliciata, Denticulopsis sp. cf. Denticulopsis, Site 1095, B35:5–6, 26
delphinis, Fragilariopsis, Site 1098, B7:6, 25–26
dendrospyris, Site 1095, B35:5, 30
Site 1093, B35:5, 53
dendrospyris rhodopyroides, Site 1095, B13:4
dendrospyris rhodopyroides/hasyi, Site 1095, B13:4
denticulata, Antarctissa, Site 1095, B13:4
denticulopsis cressa, Site 1095, B29:8; B35:5, 25
denticulopsis delicata, Site 1097, A6:8; B35:5, 52
denticulopsis dimorpha, Site 1095, A4:14; B29:4; B36:7
denticulopsis dimorpha var. areolata, Site 1095, A4:15; B29:4; B35:6, 25
denticulopsis husttedii, Site 1095, B35:6, 25
denticulopsis maccollumii, Site 1095, B35:6, 27
denticulopsis ovata, Site 1095, B35:6, 25
denticulopsis praedimorpha, Site 1095, A4:14; B29:4; B36:7
denticulopsis praehyalina, Site 1095, B35:6, 25
denticulopsis simonsenii, Site 1095, B35:6, 25
denticulopsis simonsenii s.l.
Site 1097, A6:8; B35:6, 52
Site 1103, A9:11
denticulopsis sp. cf. Denticulopsis delicata, Site 1095, B35:5–6, 26
denticulopsis spp., Site 1103, A1:15; A9:11
denticulopsis vulgaris, Site 1095, B35:6, 25
desmospyris spongiosa
Site 1095, A4:15
Site 1096, A5:13
Site 1101, A8:10

deuteraemmina glabra, Site 1098, B7:7–8, 10, 27–29
dictyococcites spp., Site 1103, B28:5
dictyocorne spp., Site 1096, A5:13
dimorpha, Denticulopsis, Site 1095, A4:14; B29:4; B36:7
dimorpha var. areolata, Denticulopsis, Site 1095, A4:15; B29:4; B35:6, 25
diploneides, Rouxia, Site 1095, B35:10, 29
donahuensis, Nitzschia, Site 1095, A4:14

e

ehrenbergii, Arachnoidiscus, Site 1097, A6:11
elegans, Coscinodiscus, Site 1095, B35:5, 46
elliptipora, Thalassiosira, Site 1095, A4:13; B29:6
ellitinae, Portatrochammina, Site 1098, B7:3, 7–8, 10, 13–14, 27–29
emiliania huxleyi
Site 1095, A5:14; B28:4; B36:7
Site 1096, B26:4, 15–18
Site 1098, B26:4
Site 1101, A8:10; B26:4, 19–20
endoi, Asperitella, Site 1095, B35:4, 45
epistominella exigua
Site 1096, A5:15
Site 1101, A8:11
eucampia antarctica
Site 1095, B35:6, 31
Site 1098, A7:5, 10, 42; B7:6, 14, 36; B34:5–6
Site 1099, A7:7, 10, 42; B34:5–6
Site 1103, B35:6, 51
Eucyrtidium calvertense, Site 1101, A8:10
exiguus, Epistominella
Site 1096, A5:15
Site 1101, A8:11
f

fasciculata, Thalassiosira
Site 1095, B29:6–7
Site 1097, A6:8–9
fasciculata, Cocconeis sp. aff. Cocconeis, Site 1095, B35:4, 30
flemingii, Nothofagidites, Site 1097, B28:7, 17, 21–22
Fontbotia wuellerstorfi, Site 1101, A8:11
foveotriletes spp.
Site 1097, B28:6, 17, 19–20
Site 1103, B28:5–6
fragilariopsis aff. barronii 1, Site 1095, B35:7, 27
fragilariopsis aff. barronii 2, Site 1095, B35:7, 28
fragilariopsis angulata, Site 1098, B7:6, 25–26
fragilariopsis arcula, Site 1095, B35:6, 28
fragilariopsis aurica
Site 1095, B35:6–7, 28
Site 1097, A6:9
Site 1103, B35:6–7, 49
fragilariopsis barronii
Site 1095, A4:13–14; B29:6–7
Site 1096, A5:13; B29:7
Site 1097, A6:8–9
Site 1101, A8:9
Site 1103, A1:14; A9:11; B35:7, 49
VOLUME 178 TAXONOMIC INDEX

Fragilariopsis barronii Partial Range Zone • hustedtii, Denticulopsis, Site 1095

Fragilariopsis barronii Partial Range Zone
Site 1095, A4:14; B29:7
Site 1096, A5:13; B29:7
Site 1097, A1:12

Fragilariopsis curta
Site 1098, A7:9–10, 42; B7:6, 12, 25–26
Site 1099, A7:9–10, 42

Fragilariopsis curta/Fragilariopsis cylindrus group, Site 1098, B7:6

Fragilariopsis cylindrus, Site 1098, B7:6, 25–26

Fragilariopsis interfrigidaria
Site 1095, A4:13–14; B29:6–7; B35:7, 27
Site 1096, A5:13; B29:6–7
Site 1097, A6:8
Site 1101, A8:9; B29:6–7

Fragilariopsis interfrigidaria Partial Range Zone
Site 1095, A4:14; B29:7; B35:7, 27
Site 1096, A5:13; B29:7
Site 1101, A8:9; B29:6–7

Fragilariopsis kerguelensis
Site 1095, B35:7, 27
Site 1096, A5:12; B29:4; B36:9
Site 1097, A6:8
Site 1098, A7:9–10, 42; B7:6, 12, 25–26
Site 1099, A7:9–10, 42
Site 1100, A9:11
Site 1103, A9:11; B35:7, 48

Fragilariopsis lacrima, Site 1095, B35:7, 28

Fragilariopsis obliquecostata, Site 1098, B7:6, 25–26

Fragilariopsis praecurta
Site 1095, B35:7, 28
Site 1097, A6:9
Site 1103, B35:7, 52

Fragilariopsis praefrigenaria
Site 1095, A4:14; B29:7; B35:7, 27
Site 1096, B29:7
Site 1097, A6:9

Fragilariopsis pseudonana, Site 1095, B35:8, 28

Fragilariopsis ritscheri
Site 1098, A7:10; B7:6, 25–26
Site 1099, A7:10

Fragilariopsis ritscheri/Fragilariopsis obliquecostata group, Site 1098, B7:6

Fragilariopsis sp. aff. Fragilariopsis kerguelensis, Site 1095, B35:7, 27

Fragilariopsis sp. cf. Fragilariopsis praefrigenaria praefrigenaria, Site 1095, B35:7, 27

Fragilariopsis spp.
Site 1097, A6:8
Site 1098, B18:15–16
Site 1103, A9:11

Fragilariopsis weaveri, Site 1095, B35:8, 27
frauenfeldii, Thalassionema, Site 1095, B35:11, 29
Fursenkoina spp., Site 1099, A7:11

Gephyrocapsa caribbeanica
Site 1096, B26:5, 14–18
Site 1101, B26:3, 5, 14, 19–20

Gephyrocapsa oceanica
Site 1096, B26:5, 14–18
Site 1101, B26:5, 14, 19–20

Gephyrocapsa spp.
Site 1095, A4:14; B28:4
Site 1096, A1:11; B26:3, 5–6, 14–18
Site 1097, B28:5
Site 1101, A8:10; B26:3, 5–6, 14, 19–20; B36:10

gersondei, Thalassiosira, Site 1095, B35:12, 46

glabra, Deuterammina, Site 1098, B7:7–8, 10, 27–29

glacialis, Spongotrochus, Site 1097, A6:9

Globigerina bulloides
Site 1095, A4:16
Site 1096, A5:15
Site 1101, A1:10; B36:10

Globocassidulina biora, Site 1099, A7:11

Globocassidulina subglobosa
Site 1096, A5:15
Site 1097, A6:10

Globorotalia scitula, Site 1095, A4:16

Globorotalia scitula Zone, Site 1095, A4:16

Globoturborotalita woodi
Site 1095, A4:16
Site 1096, A5:15
gracilis, Thalassiosira
Site 1098, A7:9
Site 1099, A7:9
Site 1103, B35:12, 48

gracilis, Thalassiosira sp. cf. Thalassiosira, Site 1095, B35:12, 36

Grammatophora spp.
Site 1095, B35:8, 30
Site 1097, A6:9
grande, Lychnocanium
Site 1095, A4:15; B13:4
Site 1096, A5:14
grunowii, Stephaniepus
Site 1095, B35:11, 33
Site 1103, A9:11

H

Haloragacidites? sp., Site 1103, B28:7, 17, 21–22
hebetata f. bidens, Rhizosolenia sp. aff. Rhizosolenia, Site 1095, B35:10, 31
hebetata f. hiemalis, Rhizosolenia
Site 1095, B35:10, 31
Site 1097, B35:10, 56
Helicosphaera selli, Site 1101, A8:10; B26:5, 19–20
Helotholus vema
Site 1095, A4:15
Site 1096, A5:13
Site 1097, A6:9
Site 1101, A8:10
Hemidiscus cuneiformis, Site 1095, B35:8, 45
Hemidiscus karstenii
Site 1095, A4:10; B25:7, 19; B29:5; B35:8, 45
Site 1096, A5:6; 12; B29:5; B36:9
Site 1101, A8:4; 9; B29:5
hustedtii, Denticulopsis, Site 1095, B35:6, 25
huxleyi, Emiliania
Site 1095, A5:14; B28:4; B36:7
Site 1096, B26:4, 15–18
Site 1098, B26:4
Site 1101, A8:10; B26:4, 19–20
Hyalodiscus spp., Site 1103, B35:8, 53
hystrix, Phormacantha, Site 1098, B26:4, 15–18
Site 1096, A5:12; B29:4; B36:9
Site 1101, A8:4, 9; B29:5
kennetii, Asteromphalus, Site 1095, A4:14; B29:4; B36:7
kerguelensis, Fragilariopsis
Site 1095, B35:7, 27
Site 1096, A5:12; B29:4; B36:9
Site 1097, A6:8
Site 1098, A7:9–10, 42; B7:6, 12, 25–26
Site 1099, A7:9–10, 42
Site 1100, A9:11
Site 1101, B35:7, 48
kerguelensis, Fragilariopsis sp. aff. Fragilariopsis, Site 1095, B35:7, 27
labrata, Acrosphaera?, Site 1095, A4:15; B36:7
lachinae, Nothofagidites, Site 1103, B28:5, 7
lachlanae, Nothofagidites, Site 1103, B28:7, 17, 21–22
lacrima, Fragilariopsis, Site 1095, B35:7, 40
lacunosa, Pseudoemiliania
Site 1095, B28:4; B36:7
Site 1096, B26:5–6, 15–18
Site 1101, A8:10; B26:5–6, 19–20
Laevigatosporites ovatus, Site 1097, B28:7, 18–20
lambimarginata, Thalassiosira, Site 1095, B35:13, 44
lentiginosa, Thalassiosira
Site 1095, B35:9, 26
Site 1097, B35:13, 40, 44
Site 1103, B35:13, 48
Lampromitra coronata
Site 1095, A4:15
Site 1096, A5:13; B36:13; B37:13
Site 1097, A6:9
Lejeunecysta cf. communis, Site 1095, B35:6
Lejeunecysta spp.
Site 1095, B2:3–10
Site 1096, B2:3–10
lentiginosa, Thalassiosira
Site 1095, B29:7
Site 1098, A7:9–10
Site 1099, A7:9–10
lentiginosa var. ovalis, Thalassiosira, Site 1095, B35:13, 44
leptoporus, Calcidiscus, Site 1098, B26:4
Lychnocanium grande
Site 1095, A4:15; B13:4
Site 1096, A5:14
karstenii, Hemidiscus
Site 1095, A4:10; B25:7, 19; B29:5; B35:8, 45
Site 1096, A5:6, 12; B29:5; B36:9
Site 1101, A8:4, 9; B29:5
kerguelensis, Fragilariopsis
Site 1095, B35:7, 27
Site 1096, A5:12; B29:4; B36:9
Site 1097, A6:8
Site 1098, A7:9–10, 42; B7:6, 12, 25–26
Site 1099, A7:9–10, 42
Site 1100, A9:11
Site 1101, A9:11; B35:7, 48
kerguelensis, Fragilariopsis sp. aff. Fragilariopsis, Site 1095, B35:7, 27
maccollumii, Denticulopsis, Site 1095, B35:6, 27
mahoodii, Thalassiosira, Site 1095, B29:8; B35:13, 39
marginatus, Coscinodiscus
Site 1097, B35:5, 55
Site 1103, B35:5, 54
marina, Nitzschia, Site 1095, B35:9, 26
Martinnottiella antarctica, Site 1101, A8:11
Martinnottiella nodulosa, Site 1096, A5:15
marujanica, Thalassiosira sp. aff. Thalassiosira, Site 1095, B35:13, 42
mawsonii, Phyllocladidites, Site 1103, B28:8, 18, 21–22
Melosira omma
 Site 1095, B35:8, 32
 Site 1097, B35:8, 55
Melosira? sp., Site 1095, B35:8, 32
 Site 1097, B35:8, 55
Milliammina arenacea, Site 1098, B7:7–8, 27–29
Milliammina spp., Site 1098, B7:3
 Site 1099, A7:11
millimina, Rhizosolenia, Site 1095, B35:10, 31
miocenica, Thalassiosira, Site 1095, B29:8
mundulus, Cibicidoides
 Site 1096, A5:15
 Site 1101, A8:11
murrhina, Pyrgo, Site 1101, A8:11

N
nativa, Thalassiosira, Site 1095, B35:13, 43
Navicula spp.
 Site 1095, A4:15; B29:4
 Site 1097, A6:9
 Site 1103, B35:8, 51
naviculoides, Rouxia, Site 1095, B35:10, 29
Neogloboquadrina continuosa
 Site 1095, A4:16
 Site 1096, A5:15
Neogloboquadrina pachyderma
 Site 1096, A1:9
 Site 1098, B7:41
 Site 1101, A1:10
 Site 1103, A1:15
Neogloboquadrina pachyderma dextral
 Site 1095, A4:16
 Site 1096, A5:15
 Site 1101, A8:11
Neogloboquadrina pachyderma sinistral
 Antarctic Peninsula, B(synthesis):14
 Site 1095, A4:16
 Site 1096, A5:14–15; B20:1–10; B36:9
 Site 1097, A6:10
 Site 1098, B7:7, 14
 Site 1099, A7:11
 Site 1100, A9:12
 Site 1101, A8:11; B20:1–10; B36:10
 Site 1102, A9:10
 Site 1103, A9:12
nephroides, Selenopemphix cf., Site 1095, B2:3
Nitzschia angulata, Site 1095, B35:8, 27
Nitzschia clementia, Site 1095, B35:8, 28
Nitzschia cylindrica, Site 1095, B35:8, 26
Nitzschia donahuensis, Site 1095, A4:14
Nitzschia januaria
 Site 1095, B35:9, 28
 Site 1103, A1:15; A9:11
Nitzschia marina, Site 1095, B35:9, 26
Nitzschia plicata, Site 1095, B35:9, 26
Nitzschia pusilla, Site 1103, B35:9, 52
Nitzschia reinholdii
 Site 1097, A6:9
 Site 1103, B35:9, 52
Nitzschia reinholdii Partial Range Zone, Site 1095, B29:8

Nitzschia sp. A sensu Gersonde, Site 1095, B35:9, 27
Nitzschia spp.
 Site 1095, B35:9, 27–28
 Site 1097, A6:8
 Site 1103, A9:11
nitzschioides, Thalassionema, Site 1095, B35:11, 29
nitzschioides var. parvum, Thalassionema, Site 1095, B35:11, 29
nodulifera, Azpelia
 Site 1095, B35:4, 45
 Site 1103, B35:4, 53
nodulosa, Martinottielia, Site 1096, A5:15
Nothofagidites flemingii, Site 1097, B28:7, 17, 21–22
Nothofagidites lachianae, Site 1103, B28:5, 7
Nothofagidites lachlanae, Site 1103, B28:7, 17, 21–22
Nothofagidites spp., Site 1103, B28:5, 7
Nothofagus spp., Site 1103, B28:5, 7
Nupharipollis? sp., Site 1103, B28:7, 18, 21–22
Nuttallilides umbonifer
 Site 1096, A5:15
 Site 1101, A8:11

O
oblìquecostata, Fragiliariopsis, Site 1098, B7:6, 25–26
oceanica, Gephyrocapsa
 Site 1096, B26:5, 14–18
 Site 1101, B26:5, 14, 19–20
octonarius, Actinocyclus, Site 1095, B35:3, 44
octonarius, Actinocyclus sp. cf. Actinocyclus
 Site 1095, B35:3, 45
 Site 1097, B35:3, 57
Odontella spp.
 Site 1098, A7:10
 Site 1099, A7:10
oestrupii, Thalassiosira
 Site 1095, A4:14; B29:7; B35:13, 40
 Site 1097, A6:8–9
 Site 1103, A1:14; A9:11
oestrupii, Thalassiosira sp. aff. Thalassiosira, Site 1103, B35:13, 50
oikiskos, Plectacantha, Site 1098, B33:2–3, 9, 11
oliverana, Thalassiosira
 Site 1095, A4:14; B29:8; B35:13, 48
 Site 1097, A6:8; B35:13, 57
oliverana, Thalassiosira aff., Site 1095, B35:13, 38
oliverana var. sparsa, Thalassiosira
 Site 1095, A4:14
 Site 1103, B35:13, 50
oliverana var. sparsa, Thalassiosira sp. aff. Thalassiosira,
 Site 1095, B35:13, 38
ommata, Melosira
 Site 1095, B35:8, 32
 Site 1097, B35:8, 55
Oridorsalis umbonatus
 Site 1096, A5:15
 Site 1101, A8:11
ovata, Denticulopsis, Site 1095, B35:6, 25
ovatus, Laevigatosporites, Site 1097, B28:7, 18–20
pachyderma, Neogloboquadrina

Site 1096, A1:9
Site 1098, B7:41
Site 1101, A1:10
Site 1103, A1:15

pachyderma dextral, Neogloboquadrina

Site 1095, A4:16
Site 1096, A5:15
Site 1101, A8:11

pachyderma sinistral, Neogloboquadrina

Antarctic Peninsula, B(synthesis):14
Site 1095, A4:16
Site 1096, A5:14–15; B20:1–10; B36:9
Site 1097, A6:10
Site 1098, B7:7, 14
Site 1099, A7:11
Site 1100, A9:12
Site 1101, A8:11; B20:1–10; B36:10
Site 1102, A9:10
Site 1103, A9:12

Paralia sulcata

Site 1095, A4:14–15; B(synthesis):12; B29:4; B35:9, 32
Site 1097, A6:8–9; B35:9, 56
Site 1103, B35:9, 53

parkeri anus, Cassidulinaoides

Site 1097, A6:10
Site 1103, A1:15; A9:12; B28:5

pelagicus, Coccolithus

Site 1095, A5:14
Site 1096, B26:5–8, 12, 15–18
Site 1101, A8:10; B26:5–8, 13, 19–20

peragalli, Rouxia, Site 1095, B35:10, 29

Phyllocadidites mawsonii, Site 1098, B33:2–3, 9, 11

Phyllocadidites spp., Site 1103, B28:8, 18, 21–22

Phyllocadidites spp., Site 1103, B28:5, 8

Pinnularia spp., Site 1095, A4:15; B29:4

Plectacantha okiskos, Site 1098, B33:2–3, 9, 11

pliocena, Nitzschia, Site 1095, B35:9, 26

pliocenica, Cycladophora

Site 1095, B13:4
Site 1101, A8:10; B36:13

Podocarpidites sp. 1, Site 1103, B28:8, 18, 21–22

Podocarpidites sp. 2, Site 1103, B28:8, 18, 21–22

Podocarpidites spp., Site 1103, B28:5, 8

Polyodiaporites radiatus, Site 1097, B28:7, 18–20

Polyodiaporites sp., Site 1097, B28:7, 18–20

Porodiscid spp., Site 1097, A6:9

Porospora? spp., Site 1105, B35:9, 42

Portatrochammina eltaninae, Site 1098, B7:3, 7–8, 10, 13–14, 27–29

praebarboi, Proboscia, Site 1095, B35:9, 29

praescarpa, Fragilariopsis

Site 1095, B35:7, 28
Site 1097, A6:9
Site 1103, B35:7, 52

praecacumiforma, Denticulopsis, Site 1095, A4:14; B29:4; B36:7

praecylindricala, Denticulopsis, Site 1095, B35:6, 25

praecinterfrigida, Fragilariopsis

Site 1095, A4:14; B29:7; B35:7, 27
Site 1096, B29:7
Site 1097, A6:9

praecinterfrigida, Fragilariopsis

Fragilariopsis sp. cf. Fragilariopsis, Site 1095, B35:7, 27

praenidulus, Thalassiosira, Site 1095, B35:13, 43

Proboscia alata, Site 1095, B35:9, 29

Proboscia praebarboi, Site 1095, B35:9, 29

Proboscia spp., Site 1098, B7:6

Proteacidites sp. 2, Site 1103, B28:8, 18, 21–22

Proteacidites spp., Site 1103, B28:5, 8

Ptychoderidium spp.

Site 1095, B2:3–4
Site 1096, B2:3–4

Prunapyle titan

Site 1095, A4:15; B13:4
Site 1096, A5:13
Site 1097, A6:9
Site 1101, A8:10

Pseudoemiliania lacunosa

Site 1095, B28:4; B36:7
Site 1096, B26:5–6, 15–18
Site 1101, A8:10; B26:5–6, 19–20

Pseudonana, Fragilariopsis, Site 1095, B35:8, 28

Pseudodinophyta, Bolivinella, Site 1098, B7:3–4, 7–8, 13–14

Pseudooumbilica, Reticulofenestra, Site 1095, B28:4

Psistriletes spp., Site 1103, B28:5

Pterocanium charybdeum trilobum, Site 1101, A8:10

pusilla, Nitzschia, Site 1103, B35:9, 52

Pygo murrhina, Site 1101, A8:11

R

radiatus, Coscinodiscus sp. cf. Coscinodiscus, Site 1095, B35:5, 46

radiatus, Polyodiaporites, Site 1097, B28:7, 18–20

reinholdii, Nitzschia

Site 1097, A6:9
Site 1103, B35:9, 52

Reticulofenestra asanoi, Site 1101, B26:5, 19–20

Reticulofenestra pseudoumbilicala, Site 1095, B28:4

Rhabdonema spp., Site 1095, B35:9, 30

Rhizosolenia costata, Site 1095, B35:9, 31

Rhizosolenia costata var. A, Site 1095, B35:9, 31

Rhizosolenia hebetata f. hiemalis

Site 1095, B35:10, 31
Site 1097, B35:10, 56

Rhizosolenia minima, Site 1095, B35:10, 31

Rhizosolenia setigera

Site 1095, B35:10, 31
Site 1097, B35:10, 56

Rhizosolenia sp. aff. Rhizosolenia hebetata f. bidens, Site 1095, B35:10, 31

Rhizosolenia sp. C, Site 1103, B35:10, 49

Rhizosolenia sp. D, Site 1095, B35:10, 31

Rhizosolenia spp.

Site 1098, A7:9–10; B7:6
Site 1099, A7:9–10

Rhizosolenia styliiformis

Site 1095, B35:10, 31
Site 1103, B35:10, 52
rhodospyroides, *Dendrospyris*, Site 1095, B13:4
rhodospyroides/haysi, *Dendrospyris*, Site 1095, B13:4
ritscheri, *Fragilariopsis*
 Site 1098, A7:10; B7:6, 25–26
 Site 1099, A7:10
Rouxia californica
 Site 1095, B35:10, 29
 Site 1103, A1:15; A9:11; B35:10, 29
Rouxia diploneides, Site 1095, B35:10, 29
Rouxia isopolica, Site 1095, B35:10, 29
Rouxia naviculoides, Site 1095, B35:10, 29
Rouxia peragalli, Site 1095, B35:10, 29
Rugulatisporites sp. 1, Site 1103, B28:6, 18–20
Rugulatisporites sp. 2, Site 1097, B28:6, 18–20
Rugulatisporites sp. 3, Site 1103, B28:6, 18–20
Saturnalis circularis, Site 1101, A8:10
Schimperiella antarctica, Site 1095, B35:10, 47
scitula, *Globorotalia*, Site 1095, A4:16
Selenopemphix cf. *nephroides*, Site 1095, B2:3
Selenopemphix spp., Site 1095, A5:14
Site 1101, B26:3
spongiosa, *Desmospyris*, Site 1095, A4:15
Site 1096, A5:13
Site 1101, A8:10
Siphonosphaera vesuvius, Site 1095, A4:15; B13:4; B36:7
Siphonosphaera vesuvius Zone, Site 1095, A4:15; B13:1, 5
Sphenolithus spp., Site 1095, A5:14
Site 1101, B26:3
Thalassiosira insigna
 Site 1095, A4:14; B29:7; B35:13, 39
 Site 1096, B29:7
 Site 1101, A8:9; B29:7
 Site 1103, B35:13, 51
Stylatractus universus
 Site 1095, A4:15; B25:3, 7, 19
 Site 1101, A8:10
Styliormis, Rhizosolenia
 Site 1095, B35:10, 31
 Site 1103, B35:10, 52
subglobosa, *Globocassidulina*
 Site 1096, A5:15
 Site 1097, A6:10
sulcata, *Paralia*
 Site 1095, A4:14–15; B(synthesis):12; B29:4; B35:9, 32
 Site 1097, A6:8–9; B35:9, 56
 Site 1103, B35:9, 53
superba, *Stephanopyxis*, Site 1095, B35:11, 33
Synedra spp., Site 1095, B35:11, 29
Stellarima spp., Site 1095, A4:13; B29:6
Site 1097, A6:8–9
Site 1103, B35:11–12, 50
Thalassiosira baldaufii, Site 1095, B35:11, 41
Thalassiosira complicata
 Site 1095, A4:14; B29:6–7; B35:11–12, 36
 Site 1096, B29:6
 Site 1097, A6:8–9
 Site 1103, B35:11–12, 50
Thalassiosira complicata Zone, Site 1095, B37:9
*Thalassiosira elongata, Site 1095, B35:12, 48
Thalassiosira insignis
 Site 1095, A4:13; B29:6
 Site 1096, A5:13; B29:6–7
 Site 1097, A6:8
 Site 1103, B35:12, 48
Thalassiosira insignis
Thalassiosira insigna Zone, Site 1095, B37:9

Thalassiosira insigna—Thalassiosira vulnifica Concurrent Range Zone
Site 1095, A4:13; B29:6–7
Site 1096, B29:6–7
Site 1101, A8:9; B29:6–7

Thalassiosira inura
Site 1095, A4:13–14; B29:6–7; B35:12, 36
Site 1096, A5:12–13; B29:6–7
Site 1097, A6:9; B(synthesis):7
Site 1103, A1:14; A9:11; B35:12, 50–51

Thalassiosira inura Partial Range Zone
Site 1095, A4:13; B29:6
Site 1096, A5:12; B29:6
Site 1097, A1:12; A6:9
Site 1103, A1:14

Thalassiosira kolbei
Site 1095, A4:13; B29:6
Site 1096, A5:12; B29:6
Site 1101, A8:9; B29:6
Site 1103, A9:11

Thalassiosira lentiginosa
Site 1095, B29:7
Site 1098, A7:9–10
Site 1099, A7:9–10

Thalassiosira lentiginosa Partial Range Zone
Antarctic Peninsula, A2:14; B29:5
Site 1098, A7:10
Site 1099, A7:10

Thalassiosira lentiginosa var. ovalis, Site 1095, B35:13, 44

Thalassiosira miocenica, Site 1095, B29:8; B35:13, 39

Thalassiosira nautica, Site 1095, B35:13, 43

Thalassiosira oestrupii
Site 1095, A4:14; B29:7; B35:13, 40
Site 1097, A6:8–9
Site 1103, A1:14; A9:11

Thalassiosira oestrupii Partial Range Zone
Site 1095, A4:14; B29:7
Site 1096, A5:13

Thalassiosira oliverana
Site 1095, A4:14; B29:8; B35:13, 48
Site 1097, A6:8; B35:13, 57

Thalassiosira oliverana var. sparsa
Site 1095, A4:14
Site 1103, B35:13, 50

Thalassiosira oliverana—Thalassiosira inura group, Site 1095, B35:13, 35

Thalassiosira praenidulus, Site 1095, B35:13, 43

Thalassiosira sp., Site 1095, B35:13, 32

Thalassiosira sp. aff. Thalassiosira marujanica, Site 1095, B35:13, 42

Thalassiosira sp. aff. Thalassiosira oestrupii, Site 1103, B35:13, 50

Thalassiosira sp. aff. Thalassiosira oliverana var. sparsa, Site 1095, B35:13, 38

Thalassiosira sp. cf. Thalassiosira gracilis, Site 1095, B35:12, 36

Thalassiosira sp. cf. Thalassiosira lambimarginata
Site 1095, B35:13, 40, 44
Site 1103, B35:13, 48

Thalassiosira sp. 1 aff. Thalassiosira inura, Site 1095, B35:12, 36

Thalassiosira sp. 2 aff. Thalassiosira inura, Site 1095, B35:12, 37

Thalassiosira spp.
Site 1095, B35:14, 38, 40–42
Site 1103, B35:14, 50, 54

Thalassiosira striata
Site 1095, A4:14; B29:7; B35:13, 39
Site 1096, B29:7
Site 1101, A8:9; B29:7
Site 1103, B35:13, 51

Thalassiosira tetraoestrupii, Site 1095, B29:7; B35:13, 40

Thalassiosira torokina
Site 1095, A4:14; B29:8; B35:13, 34, 39
Site 1096, A5:12
Site 1097, A6:8–9
Site 1101, A8:9
Site 1103, A1:14; A9:11; B35:13, 48

Thalassiosira torokina Partial Range Zone, Site 1095, B29:8; B37:9

Thalassiosira vulnifica
Site 1095, A4:13; B29:6–7; B35:14, 39
Site 1096, A5:12–13; B29:6–7
Site 1097, A6:8
Site 1101, A8:9; B29:6–7
Site 1103, B35:14, 51

Thalassiosira vulnifica Partial Range Zone
Site 1095, A4:13; B29:6
Site 1096, A5:12–13; B29:6
Site 1101, A8:9; B29:6

Thalassiothrix antarctica
Site 1095, B35:14, 29
Site 1103, B35:14, 48, 52

Thalassiothrix spp.
Site 1096, A5:12; B29:4; B36:9
Site 1098, A7:9–10; B7:6
Site 1099, A7:9–10
Site 1103, A9:11

Thoracosphaera spp., Site 1098, B26:4

Titan, Prunopyle
Site 1095, A4:15; B13:4
Site 1096, A5:13
Site 1097, A6:9
Site 1101, A8:10

Thoracosphaera spp., Site 1103, B28:5, 8

Trilocolpites spp., Site 1097, B28:8, 18, 21–22

Trilocoloropollenites spp., Site 1097, B35:14, 56

Turris, Stephanopyxis, Site 1097, B35:11, 55
VOLUME 178 TAXONOMIC INDEX

umbonatus, Oridorsalis • zones (with letter prefixes)

U

umbonatus, Oridorsalis
Site 1096, A5:15
Site 1101, A8:11

umbonifer, Nuttallides
Site 1096, A5:15
Site 1101, A8:11

universus, Stylatractus
Site 1095, A4:15; B25:3, 7, 19
Site 1101, A8:10

V

vema, Helotholus
Site 1095, A4:15
Site 1096, A5:13
Site 1097, A6:9
Site 1101, A8:10

vesuvius, Siphonosphaera, Site 1095, A4:15; B13:4–5; B36:7

vulgaris, Denticulopsis, Site 1095, B35:6, 25

vulnifica, Thalassiosira
Site 1095, A4:13; B29:6–7; B35:14, 39
Site 1096, A5:12–13; B29:6–7
Site 1097, A6:8
Site 1101, A8:9; B29:6–7
Site 1103, B35:14, 51

W

weaveri, Fragilariopsis, Site 1095, B35:8, 27
wiesneri, Textularia, Site 1098, B7:3, 8, 27–28
woodi, Globoturborotalita
Site 1095, A4:16
Site 1096, A5:15
wuellerstorfi, Fontbotia, Site 1101, A8:11

Z

zones (with letter prefixes)

Chi, A5:13; A8:10
CN11, Site 1095, B28:4
CN13, Site 1095, B28:4; B36:7
CN13b, B26:5; B28:4
CN13b/NN19, Site 1096, A5:14
CN14a/NN19, Site 1096, A5:14
CN14b/NN19, A5:14; A8:10
CN14b/NN20, Site 1101, B26:5
CN15, Site 1095, B28:4; B36:7
CN15/NN20, Site 1096, A5:14
CN15/NN21a, Site 1101, A8:10
Phi, A4:15; A5:13; A8:10
Psi, A5:13; A8:10; B36:9–10
Tau, A4:15; A5:13; A6:9; B13:1, 5–6; B36:7
Upsilon, A4:15; A5:13; A6:9; A8:10; A9:12; B13:1; B36:10