INDEX TO VOLUME 184

This index covers both the *Initial Reports* and *Scientific Results* portions of Volume 184 of the *Proceedings of the Ocean Drilling Program*. References to page numbers in the *Initial Reports* are preceded by “A” followed by the chapter number with a colon (A1:) and to those in the *Scientific Results* (this volume) by “B” followed by the chapter number with a colon (B1:).

The index was prepared by Earth Systems, under subcontract to the Ocean Drilling Program. The index contains two hierarchies of entries: (1) a main entry, defined as a keyword or concept followed by a reference to the page on which that word or concept appears, and (2) a subentry, defined as an elaboration on the main entry followed by a page reference.

The index covers volume text, figures, and tables but not core description forms (“barrel sheets”), core photographs, smear slide data, or thin section descriptions. Also excluded from the index are bibliographic references, names of individuals, and routine front matter.

The Subject Index follows a standard format. Geographical, geologic, and other terms are referenced only if they are subjects of discussion. A site chapter in the *Initial Reports* is considered the principal reference for that site and is indicated on the first line of the site's listing in the index. Such a reference to Site 1143, for example, is given as “Site 1143, A4:1–103.”

The Taxonomic Index is an index relating to significant findings and/or substantive discussions, not of species names *per se*. This index covers three varieties of information: (1) individual genera and species that have been erected or emended formally, (2) biostratigraphic zones, and (3) fossils depicted in illustrations. A taxonomic entry consisting of both genus and species is listed alphabetically by genus and also by species. Biostratigraphic zones are listed alphabetically by genus; zones with letter prefixes are listed under “zones.”

SUBJECT INDEX

A	alkenones, long-chain
	sediments, B18:5
	vs. depth, B18:13, 15
	alkyl diols
	sediments, B18:5
	vs. depth, B18:13, 15
	alkyl keto-ols
	sediments, B18:5
	vs. depth, B18:13, 15
	Allerød. See Bølling/Allerød level
	aluminum. See arsenic/aluminum ratio; barium/aluminum ratio; cobalt/aluminum ratio; magnesium/aluminum ratio; manganese/aluminum ratio; nickel/aluminum ratio; phosphorus/aluminum ratio; potassium/aluminum ratio; rubidium/aluminum ratio; silicon/aluminum ratio; titanium/aluminum ratio; vanadium/aluminum ratio; zirconium/aluminum ratio
	aluminum/potassium ratio, nannofossil clay, B12:6
	aluminum oxide
	nannofossil clay, B12:1–25
	sediments, B19:6
	vs. age, B12:19–20, 22; B19:19
	vs. titanium oxide, B12:18

abundance, planktonic foraminifers, B11:1–21

Actinocyclus ellipticus, vs. depth, B6:7

age models

- biogenic opal, B21:2
- stable isotope stratigraphy, B3:3

age vs. depth

- magnetic polarity, A6:58; A7:88; A8:40; A9:108
- sedimentation rates, A6:59; A7:89; A8:41; A9:109

Site 1143, A4:50, 56; B8:33

Site 1144, A5:43, 51; B19:14

Site 1145, A6:32, 36

Site 1146, A7:49, 53; B8:34

Site 1147, A8:17, 21

Site 1148, A9:61, 64

age vs. depth models

- sedimentation rates, A4:94; A5:83; B21:6

South China Sea, A1:70

alkalinity

- pore water, A4:21; A5:18; A6:13–14; A7:18; A8:8; A9:22
 - vs. depth, A4:59; A5:57; A6:38; A7:56; A8:23; A9:68

alkenones

- stratigraphy, B17:1–17
 - vs. age, B17:14
VOLUME 184 SUBJECT INDEX
aluminum oxide (continued) • carbon/nitrogen ratio

See also potassium oxide/aluminum oxide ratio; silica/aluminum oxide ratio
ammonium
pore water, A4:21; A5:18; A6:13–14; A7:18; A8:8; A9:22
vs. depth, A4:59; A5:57; A6:38; A7:56; A8:23; A9:68
Andaman Sea, paleoceanography, A1:9
Arabian Sea, monsoon, A1:13
aridification
lithologic units, A9:11
nannofossil clay, B14:2–3
arsenic, clay geochemistry, B12:10
arsenic/aluminum ratio, vs. age, B12:24
Asia E, global climate, A1:77
Asian monsoon system, global climate, A1:1–77
astronomical forcing, faunal responses to climate change, B11:8
Atlantic-type carbonate cycle, nannofossil clay, B12:5
atmospheric circulation, evolution, A1:4–7, 45
Australian Plate, collision, A1:4
authigenesis
lithologic units, A5:7–9
siderite, B13:5–6
Azpeitia nodulifer, vs. depth, B6:7
B
barium, green clay, B15:4
barium/aluminum ratio
biomediation, B12:8–10
vs. age, B12:23
Bashi Strait, tectonics, A1:4
basins
evolution, A1:13–14
sediments, A1:7–8
basins, margins, paleoclimatology, A1:14
Bay of Bengal, paleoceanography, A1:9
bicarbonate, vs. depth, A9:51
Big Lost Event, sediments, A1:23
biodegradation, green clay, B15:5–8
Biogenic Bloom Event, mass accumulation rates, B21:3
biogenic material, sediments, A1:8
biohorizons
biostratigraphy, A9:14
summary, A4:90; A5:80; A6:55; A7:82–83; A8:37; A9:98–99
biomarkers, lipids, B18:5–6
biomediation, clay geochemistry, B12:8–10
biostratigraphic datums, planktonic foraminifers, B2:29
biostratigraphy
sedimentation rates, A7:12; A8:7; B2:10–11
Site 1143, A4:11–14
Site 1144, A5:9–11
Site 1145, A6:7–8
Site 1146, A7:10–12
Site 1147, A8:4–5
Site 1148, A9:12–14
bioturbation
lithologic units, A4:8–10; A6:5; A7:6, 8–9; A8:4; A9:7–11
photograph, A4:48; A9:56
sediments, A1:27–28
Bølling/Allerød level, oxygen isotope chronostratigraphy, B2:5
Borneo, subduction, A1:4
Bouma sequence, lithologic units, A4:9–11; A9:8
Brunhes/Matuyama boundary
sediments, A1:21, 23; A4:16; A6:10; A7:13; A8:6; A9:15
stratigraphy, B2:9
bulk density logs
vs. bulk density, A4:76
vs. depth, A4:73–74; A7:69; A9:84–85
vs. porosity logs, A5:70
burrows
lithologic units, A6:5; A7:6, 8; A8:4; A9:7–11
photograph, A6:30
butane, sediments, A9:18, 110–112
C
calcareous sediment, green, photograph, A7:47
calcite
green clay, B15:4
nannofossil clay, B14:2
vs. depth, A5:40; A6:31; A7:44; A9:60; B14:5
calcium
pore water, A4:22; A5:18–19; A6:14; A7:18–19; A8:8; A9:22
vs. depth, A4:59; A5:57; A6:38; A7:56; A8:23; A9:68
vs. magnesium, A4:22, 59; A9:69
calcium oxide
sediments, B19:6
vs. age, B19:19
vs. carbonate carbon, B12:16
calcium oxide–quartz–clay minerals, ternary diagram, B12:17
caliper logs, vs. depth, A4:73–74; A5:68–69; A7:67; A9:80 carbon. See sulfur/carbon ratio
carbon, carbonate, vs. calcium oxide, B12:16
carbon, inorganic, sediments, A4:19, 96–99; A5:15, 85–87; A6:11, 60; A7:15–16, 92–94; A8:7, 42; A9:18–19, 113–115; B16:1–9
carbon, total, sediments, A4:96–99; A5:85–87; A6:60; A7:16, 92–94; A8:42; A9:113–115
carbon, total organic
organic matter, A9:20–21
Rock-Eval pyrolysis, A6:61; A7:95; A9:116
Rock-Eval pyrolysis vs. by difference, A5:54, 88
vs. age, B16:7
vs. chlorin, A5:56
vs. depth, A4:58; A5:53; A6:37; A7:55; A8:22; A9:65; B16:5–6
vs. total nitrogen, A5:55
carbon/nitrogen ratio
organic matter, A5:16; A6:12–13; A7:16; A8:7; A9:20–21
sediments, A4:19; A5:85–87; A7:92–94; A9:18, 113–115
vs. depth, A5:53; A6:37; A7:55; A8:22; A9:65
carbon dioxide
 evolution, A1:4–7
 sediments, A5:14–15

carbon isotopes
 chronostratigraphy, B2:11–15
 foraminifers, B3:1–8; B4:1–8
 Globigerinoides ruber, B2:1–29
 methane, B13:4, 15
 organic matter, B20:1–13
 vs. age, A1:48; B2:24; B3:6; B4:5; B5:6–7; B20:10–11
 vs. depth, B2:22; B3:5; B4:6; B5:5

carbon isotopes, methane, vs. methane/(ethane + propane) ratio, B13:13

carbon number predominance, sediments, B18:3, 10

carbon preference index, sediments, B18:3, 10

carbonate compensation depth
 foraminifer datums, B9:8–9
 nannofossil clay, B12:5

carbonate cycles. See Atlantic-type carbonate cycle

carbonates
 sedimentation, A1:34–35
 ternary diagram, B12:17
 vs. age, A1:73
 vs. depth, A4:57, 78
Cavolinia, lithologic units, A7:6

Cenozoic
 stratigraphy, A1:50
 tectonics, A1:4

chalcophile elements, clay geochemistry, B12:10

Changjiang River, paleoclimatology, A1:6–7

chemical index of alteration
 nannofossil clay, B12:6; B19:7–8
 vs. age, B19:20

China, monsoon stages, A1:49

chloride
 pore water, A4:20; A5:17–18; A6:13; A7:17–18; A8:8; A9:21–22; B13:3, 11
 vs. depth, A4:59; A5:57; A6:38; A7:56; A8:23; A9:68

color
 organic carbon, A5:16–17
 sediments, A5:89–91
 vs. depth, A5:56
 vs. total organic carbon, A5:56

cobalt, clay geochemistry
 See also kaolinite/chlorite ratio; smectite/(illite + chlorite) ratio

chlorite/quartz ratio
 nannofossil clay, B14:2
 vs. depth, B14:7

chlorite-smectite mixed minerals, green clay, B15:4, 14
Chondrites
 lithologic units, A4:9–10; A7:9; A9:8–11
 sediments, A1:27
 chromium/aluminum ratio, nannofossil clay, B12:6–7
 chronostratigraphy
 nannofossils, B10:16–17
 oxygen isotopes, B2:4–10
 sedimentation rates, A5:13
Cibicidoides wuellerstorfi, stable isotope stratigraphy,
 B3:1–8; B15:16; B17:15

clasts, mud, lithologic units, A9:8–9

clasts, rip-up, photograph, A9:57

clay
 lithologic units, A4:8–10; A5:6–9; A6:4–7; A7:5–9;
 A8:3–4; A9:6–11
 vs. depth, A9:51; B9:21
 clay, carbonate-rich
 lightness, A7:80; A8:35; A9:93–96
 lithologic units, A6:5–7; A7:6; A8:4

clay, green
 autocorrelogram of interval between clay layers, B15:17
 bulk density, B15:18–19
 clay mineralogy, B15:4
 depths and ages, B15:18
 diagenetic origin, B15:5–8
 geochemistry, B15:4–5, 22
 grain size, B15:4
 lithologic units, A6:5; A7:6; A8:3–4; A9:9–11
 paleoenvironment, A1:30–31; B15:1–23
 photograph, A4:46
 spatial and temporal distribution, B15:5, 15
 vs. depth, A4:45; A7:45; A8:15; A9:52

clay, nannofossil
 geochemistry, B12:1–25
 lithologic units, A7:5–9; A9:8–11
 mineralogy, B14:1–10
 photograph, A9:54

clay fraction, siliciclastics, B19:8–9

clay mineralogy
 green clay, B15:4
 paleoclimatic cyclicity, B22:1–10
 reflectance, B22:9
 sediments, B19:5
 See also calcium oxide–quartz–clay minerals

clay minerals
 lithologic units, A9:11
 ternary diagram, B12:17
 climate, evolution, A1:4–7
 climate change, faunal responses, B11:8
 coarse fraction
 sediments, B16:9
 vs. age, B16:7
 vs. depth, B11:14; B16:5–6

Cobalt, clay geochemistry, B12:10
cobalt/aluminum ratio, vs. age, B12:24

coccolithophores, alkenone stratigraphy, B17:1–17

coccoliths, vs. depth, A5:44

coccolithophores, alkenone stratigraphy, B17:1–17

coccoliths, vs. depth, A5:44

core
 coercivity
 hysteresis, B1:3–4
 vs. depth, B1:8
 coercivity ratio, vs. depth, B1:8
 coercivity remanence
 hysteresis, B1:3–4
 vs. depth, B1:8
 coercivity remanence/coercivity ratio
 hysteresis, B1:3–4
 vs. depth, B1:8

cold water. See warm/cold water ratio

collision, Philippine Sea Plate, A1:4

color changes
 lithologic units, A7:5–9; A9:6–11
 photograph, A9:56
 See also lightness; reflectance

composite depths
 Site 1143, A4:84
 Site 1144, A5:77
 Site 1145, A6:51
 Site 1146, A7:76–77
 Site 1147, A8:33
 Site 1148, A9:91

correlation
 composite section, A4:6–7
 Site 1143, A4:6–7
 Site 1144, A5:4–6
 Site 1145, A6:3–4
 Site 1146, A7:4–5
 Site 1147, A8:2–3
 Site 1148, A9:5

core
 compressional wave velocity
 sediments, A4:25–26; A5:21; A6:16
 vs. depth, A4:67; A6:44; A7:60; A8:29; A9:75
 vs. velocity logs, A4:76
 See also velocity logs
 concretions
 authigenic siderite, B13:1–15
 lithologic units, A9:6–7, 10–11
 continental slope, paleoenvironment, A1:29–37
 convoluted bedding, lithologic units, A9:8
 cooling, alkenone stratigraphy, B17:1–17
 coral reefs, tectonics, A1:4
 coring, summary, A1:76–77
 coring penetration, vs. age, A1:66
 correlation
 composite section, A4:6–7
 foraminifer datums, B9:6–7
 gamma-ray attenuation bulk density, A4:38–40;
 A5:33–35; A7:35–38; A8:13; A9:41–45
 gamma rays, A5:30–32; A7:31–34; A8:12; A9:36–40
 magnetic susceptibility, A4:32–34; A5:5, 27–29;
 A6:3–4; A7:4, 27–30; A8:3, 11; A9:5, 31–35
 reflectance, A4:41–43; A5:36–38; A7:39–42; A8:14;
 A9:46–50
 correlation between Site 1146 and Site 1148, B9:19
 Cretaceous–Paleogene sequence, topography, A1:3–4
 crust, oceanic, plate tectonics, A1:4
 cyclic sedimentation, clay geochemistry, B12:10–11

Cyclotella spp., vs. depth, B6:7

Dansgaard–Oeschger Events
 interstadials, B2:6–10
 paleoceanography, A1:9
 turbidite, A4:11
 deep resistivity logs, vs. depth, A5:68–69; A7:67;
 A9:80
 demagnetization
 overprints, A4:15–17; A6:35
 sediments, A5:12–13
 demagnetization, alternating-field sediments, A4:52;
 A5:49
 density. See bulk density logs
 density, bulk
 green clay, B15:20–21
 paleoceanographic proxies, A1:13
 sediments, A4:23–24; A5:20–21; A6:15–16
 vs. bulk density logs, A4:76
 vs. depth, A1:55–56, 58, 60–62, 64–65; A5:58; A6:39;
 A7:59; A9:72
 density, core log, vs. depth, A5:72
 density, dry, vs. depth, A5:62; A6:42; A7:61; A8:27;
 A9:73
 density, gamma-ray attenuation bulk
 correlation, A4:38–40; A5:33–35; A6:23–24; A7:35–38;
 A8:13; A9:41–45
 vs. moisture and density bulk density, A4:62; A5:61
 density, grain
 sediments, A4:23–24; A5:20–21; A6:15–16
 vs. depth, A4:60; A5:62; A6:42; A7:61; A8:27; A9:73
 density, log bulk, vs. depth, A5:72
 density, moisture and density bulk
 vs. gamma-ray attenuation bulk density, A4:62;
 A5:61; A8:26
 vs. thermal conductivity, A4:69
 density logs. See bulk density logs
 detrital component elements, vs. benthic foraminifer ele-
 ments, B12:22
 diagenesis
 geochemistry, B12:24
 green clay, B15:5–8
 lithologic units, A5:7–9
 pore water, A6:13–14
 diatom abundance, vs. depth, B6:8–9
 diatoms
 biostratigraphy, B6:1–9
 lithologic units, A6:5; A7:6
 zonation, B6:6
 dinoflagellates
 abundance, B7:24–25
 biostratigraphy, B7:1–29
 comparison, B7:8–9
 range chart, B7:26–27
 zonation, B7:5–9
 dissolution
 foraminifer datums, B9:7–8
 lithologic units, A7:9
 vs. depth, B11:14
 dolomite
 lithologic units, A7:8–9; A9:10
Earth’s orbit, evolution, A1:4–7
East China Sea Shelf, paleoceanography, A1:8–10
Eocene, paleoclimatology, A1:6–7
eolian transport, sediments, A1:13
Equatorial Warm Current, paleoclimatology, A1:14
erosion, uplifts, A1:11
ethane
carbon isotopes, B13:15
vs. depth, B13:12
See also methane/ethane ratio; methane/(ethane + propane) ratio
ethene, sediments, A9:18, 110–112
ethyl ketones, sediments, B18:5, 9

fatty acids, long-chain, sediments, B18:4, 9
faults, lithologic units, A9:10–11
faults, normal, photograph, A9:58
ferromagnetism, magnetic susceptibility, B1:2–3, 6
flaser bedding, photograph, A9:59
foraminifer datums
distribution, B8:42–43; B9:24, 26; B21:9
geochronology, B11:3–4
zonation, B9:5–6, 14
foraminiferal fragmentation, vs. depth, A5:45; A6:33; B11:14
foraminifers
lithologic units, A5:8–9; A7:5–9; A8:3–4; A9:8
paleoenvironment, A1:30–31
vs. depth, A5:45
foraminifers, benthic
biomediaiton, B12:9, 19, 22–23
biostratigraphy, A4:14; A5:10–11; A6:8; A7:11; A8:5; A9:14
stable isotope stratigraphy, B3:1–8; B4:1–8; B5:1–12
vs. depth, A5:45
foraminifers, cold water, abundance vs. depth, B11:16
foraminifers, deep water, abundance vs. depth, B11:17
foraminifers, planktonic
biostratigraphy, A4:13–14; A5:10; A6:7–8; A7:10–11; A8:5; A9:13–14; B8:1–43; B9:1–26
checklist, A4:93; A5:82; A6:57; A7:86–87; A8:39; A9:105–107
cyclic abundance spectrum, B11:19
distribution, B8:38–41
first and last occurrences, B8:35
middle Pleistocene, B11:1–21
monsoon, A1:12
stable isotope stratigraphy, B2:1–29; B4:1–8; B5:1–12; B19:14–15, 18–21
zonation, B8:3–7
See also pteropods/planktonic foraminifers ratio
foraminifers, warm water, abundance vs. depth, B11:15
forcing, precession, A1:11
Formation MicroScanner imagery
resistivity, A5:73; A7:71; A9:86
turbidite, A4:80
vs. lightness, A4:79
fractures, lithologic units, A9:10–11
gamma-ray logs
vs. depth, A1:74; A4:75, 77–78; A5:68–69, 71; A7:68, 70; A9:81–83
vs. gamma rays, A4:77
gamma rays, correlation, A5:30–32; A6:21–22; A7:31–34; A8:12; A9:36–40
paleoceanographic proxies, A1:13
sediments, A4:25
vs. depth, A4:35–37, 65; A5:56, 59; A6:41; A7:58; A8:25; A9:71
vs. gamma-ray logs, A4:77
gas hydrates, geochemistry, B13:5–6
gases, headspace, geochemistry, B13:4
gases, sediments, A9:17–18
Gauss/Matuyama boundary, sediments, A6:9
geochemistry
changes in time, B12:4–5
sediments, B12:1–25
geochemistry, inorganic
Site 1143, A4:20–23
Site 1144, A5:17–19
Site 1145, A6:13–15
Site 1146, A7:17–19
Site 1147, A8:7–9
Site 1148, A9:21–23
upper Pliocene, B12:25
geochemistry, organic
Site 1143, A4:18–20
Site 1144, A5:13–17
Site 1145, A6:11–13
Site 1146, A7:14–17
Site 1147, A8:7
Site 1148, A9:16–21
geochronology, foraminifer datums, B11:3–4
global climate, Asian monsoon system, A1:1–77
Globigerina bulloides, vs. age, A1:48
Globigerinoides ruber, stable isotope stratigraphy, B2:1–29; B3:1–8; B19:14–15, 18–21
Globorotalia inflata. See Globorotalia menardii/Globorotalia inflata ratio
Globorotalia menardii/Globorotalia inflata ratio, vs. depth
A5:45

Grain size
coercivity remanence/coercivity ratio, B1:4
green clay, B15:4, 20–21
sediments, B19:4–5
siliciclastics, B19:8–9
standard deviation values vs. grain size class, B19:17
volume percent of each grain size class of interglacial and glacial samples, B19:16
vs. age, B19:15
grain size, mean, vs. age, B19:21
Great Asian Bank, paleoceanography, A1:8–10
Great Australian Bank, paleoceanography, A1:8–10
Greenland ice core GISP2, oxygen isotopes, B2:23
gypsum, paleoceanology, A1:6–7

H
halite, paleoclimatology, A1:6–7
haplophyte algae, sediments, B18:5
heat flow, sediments, A4:26; A5:22; A6:17; A7:22; A9:26
Heinrich events, stratigraphy, B2:6–10
hemipelagic material
paleoenvironment, A1:30–31
sediments, A1:8
hiatuses, stratigraphy, B2:9–10
Himalayan–Tibetan orography, evolution, A1:4–7
Holocene
oxygen isotope chronostratigraphy, B2:5
See also Miocene–Holocene interval
Holocene/Preboreal summer monsoon maximum, paleoceanography, A1:9
humic material, carbon isotopes, B20:6–7, 13
hydrocarbons
geothermal gradient, A1:32
sediments, A5:14–15; A7:14–15; A9:17–18
vs. depth, A9:66
hydrocarbons, headspace, vs. depth, A7:54
hydrocarbons, volatile, sediments, A4:18
hydrogen index
organic matter, A5:16; A9:20–21
sediments, A5:88; A6:61; A7:95; A9:116
vs. oxygen index, A9:67
hydrogen isotopes, pore water, B13:11
hysteresis, saturation magnetization, B1:3–4

I
illite
nannofossil clay, B14:2
paleoclimatic cyclicity, B22:3–4
paleoceanography, B19:6–7
reflectance, B22:9
sediments, B19:5
vs. age, B19:18
vs. depth, A5:40; A6:31; A7:44; A9:60; B14:5–6
See also smectite–illite mixed minerals; smectite/(illite + chlorite) ratio

illite/quartz ratio
nannofossil clay, B14:2
vs. depth, B14:7
impedance, acoustical reflectors, A2:3
vs. seismic stratigraphy, A2:16, 21, 29, 35
iron, ferric, green clay, B15:4–5, 20–21
iron oxide
clay geochemistry, B12:10
sediments, B19:6
vs. age, B12:24; B19:19
iron sulfide
green clay, B15:4–7
lithologic units, A9:6–7
vs. depth, A7:45; A8:15; A9:52
iron sulfide, dispersed, vs. depth, A5:41

J
Jaramillo Subchron, sediments, A1:23; A6:10; A7:13; A8:6; A9:15

K
kaolinite
lithologic units, A7:10
nannofossil clay, B14:2
paleoclimatic cyclicity, B22:3–4
paleoceanography, B19:7
reflectance, B22:9
sediments, B19:5
vs. age, B19:18
vs. depth, A7:44; A9:60; B14:5–6
kaolinite/chlorite ratio
nannofossil clay, B14:2
vs. depth, B14:7
kaolinite/quartz ratio, vs. depth, B14:7
kerogen, sediments, A4:96–99
Kuroshio Current
paleoceanography, A1:9
paleoceanography, A1:14

L
laminations
lithologic units, A4:10; A9:8
photograph, A9:59
Laschamp Event, sediments, A1:19
Last Glacial Maximum
oxygen isotope chronostratigraphy, B2:5
paleoceanography, A1:8–10
leaf wax, sediments, B18:4
lightness
carbonate-rich clay, A6:6–7; A7:80; A8:35; A9:93–96; B9:21
lithologic units, A7:9
vs. age, B19:21
vs. depth, A4:41–43, 66; A6:27, 43; A7:43, 62; A8:15; A9:51, 53
vs. Formation MicroScanner imagery, A4:79
See also reflectance
lipids, biomarkers, B18:5–6
lipids, marine and terrigenous, sediments, B18:1–16
lithium
pore water, A4:22–23; A5:19; A6:14; A7:19; A8:8–9; A9:23; B13:3, 11
vs. depth, A4:59; A5:57; A6:38; A7:56; A8:23; A9:68
lithologic units
Site 1143, A4:8–11
Site 1144, A5:6–9
Site 1145, A6:4
Site 1146, A7:5–10
Site 1147, A8:3–4
Site 1148, A9:5–11
Unit I, A4:8–10; A5:6–7; A6:4–7; A7:5–7; A8:3–4; A9:6–7
Unit II, A7:7–8; A9:7
Unit III, A7:8–9; A9:8
Unit IV, A9:8
Unit V, A9:8–9
Unit VI, A9:9–10
Unit VII, A9:10–11
vs. age, A1:66
lithology
paleoenvironment, A1:30–31
vs. depth, A1:55–56, 58, 60, 62, 64–65; A4:44; A5:39; A6:27; A7:43; A8:15; A9:52
lithostratigraphy
Site 1143, A4:8–11
Site 1144, A5:6–9
Site 1145, A6:4–7
Site 1146, A7:5–10
Site 1147, A8:3–4
Site 1148, A9:5–12; B9:22
Liyue Bank, sediments, A1:7–8
Luzon Arc, tectonics, A1:4
magnesium
pore water, A4:22; A5:18; A6:14; A7:18–19; A8:8; A9:22
vs. calcium, A4:22, 59; A9:69
vs. depth, A4:59; A5:57; A6:38; A7:56; A8:23; A9:68
magnesium/aluminum ratio, nannofossil clay, B12:6–7
magnesium oxide
sediments, B19:6
vs. age, B19:19
magnetic anomalies, plate tectonics, A1:4
magnetic declination
sediments, A4:51
vs. depth, A4:53–54; A5:47–48; A6:34; A7:50–52; A8:18–20; A9:62–63
magnetic field, vs. depth, A5:70; A7:70; A9:82–83
magnetic inclination, vs. depth, A4:53–55; A5:47–48; A6:34; A7:50–52; A8:18–20; A9:62–63
magnetic intensity, vs. depth, A5:46
magnetic intensity/magnetic susceptibility ratio, vs. depth, A5:50
magnetic polarity
age vs. depth, A6:58; A7:88; A8:40; A9:108
remanent magnetization, A5:11–13
magnetic properties, sediments, B1:1–8
magnetic reversals, remanent magnetization, A5:11–13
magnetic susceptibility
paleoceanographic proxies, A1:13
sediments, A4:25; B1:2–3
vs. depth, A1:55–56, 58, 60, 62, 64–65; A4:64; A5:46, 60; A6:40; A7:57; A8:24
See also magnetic intensity/magnetic susceptibility ratio
magnetic susceptibility logs, vs. depth, A1:75; A5:72; A7:67, 69; A9:82, 84–85
magnetization, normalized, sediments, A5:12–13
major elements
sediments, B19:6
vs. age, B12:20–21; B19:19
manganese, clay geochemistry, B12:10
manganese/aluminum ratio
clay geochemistry, B12:10
vs. age, B12:24
marine isotope stages
foraminifers, B9:8–9
oxygen isotope chronostratigraphy, B2:5–10; B19:14–15, 18–21
position, B11:20
marine isotope Stages 2–5, oxygen isotope chronostratigraphy, B2:5–8
marine isotope Stages 6–11, oxygen isotope chronostratigraphy, B2:8–9
marine isotope Stages 12–25, oxygen isotope chronostratigraphy, B2:9
marine isotope Stages 26–(?)34, oxygen isotope chronostratigraphy, B2:9–10
“maritime continent,” paleoceanography, A1:8–10
mass accumulation rates
age vs. depth models, A5:83
biogenic opal, B21:2–3
planktonic foraminifers, B8:7–8
sedimentation, A1:37–38
Site 1143, A4:17–18
Site 1144, A5:13
Site 1145, A6:10
Site 1146, A7:13–14
Site 1147, A8:7
Site 1148, A9:16
vs. age, B8:36–37; B16:8; B19:14; B21:7
vs. depth, A1:6, 55–56, 58, 60, 62, 64–65; A9:70; B1:6
vs. linear sedimentation rates, A4:56; A5:51; A6:36; A7:53; A8:21; A9:64
mass accumulation rates, carbonate
vs. age, B21:7
vs. linear sedimentation rates, A1:71–72
mass accumulation rates, total
vs. age, A1:71–72
vs. linear sedimentation rates, A1:71–72
mass flows, lithologic units, A9:11
Matuyama Chron. See Brunhes/Matuyama boundary; Gauss/Matuyama boundary
medium resistivity logs, vs. depth, A4:74, 78; A5:68–69; A7:67; A9:80
Mekong River, sediments, A1:8
methane
 carbon isotopes, B13:4, 15
 vs. depth, A1:69; A5:52; B13:12
methane/ethane ratio
 vs. depth, A7:54; A9:66
methane/(ethane + propane) ratio, vs. carbon isotopes of methane, B13:4
methyl ketones, sediments, B18:5, 9
microalgae, sediments, B18:3–5
microfaults, lithologic units, A4:10
microtektites, stratigraphy, B2:9
Mid-Pleistocene Revolution, foraminifer datums, B11:4–5
millenial variations
 monsoon, A1:12
 stratigraphy, B2:6–7
Mindanao Warm Current, paleoclimatology, A1:14
mineralogy, bulk
 green clay, B15:20–21
 lithologic units, A5:7–9
 sediments, B19:5
 vs. depth, A5:40; A7:44; A9:60
mineralogy, nannofossil clay, B14:1–10
Miocene
 biostratigraphy, A7:10–12; A9:12–14
 mass accumulation rates, B8:7–8
 nannofossil biostratigraphy, B10:7–8
 paleoecology, A1:7, 15–18
 planktonic foraminifer distribution, B9:23
 planktonic foraminifer ranges, B9:16
 planktonic foraminiferal biostratigraphy, B8:1–43; B9:1–26
 sedimentation rates, A7:14; A9:16; B10:10
 zonal boundaries, B9:25
 See also Oligocene/Miocene boundary; Oligocene–Miocene interval; Oligocene–Miocene transition
Miocene, lower
 dinoflagellate biostratigraphy, B7:1–29
 green clay layers, B7:1–29
 lithologic units, A7:8–9; A9:9–10
 sedimentation, A1:34–35
 siderite concretions, B13:5
Miocene, middle
 lithologic units, A7:7–9; A9:7–8
 sedimentation, A1:35
Miocene, upper
 biogenic opal, B21:1–12
 lithologic units, A4:8–10; A9:6–7
 nannofossils, A4:11–13
 sediment mineralogy, B14:1–10
 sedimentation, A1:35–36
Miocene/Pliocene boundary
 foraminifer datums, B9:6
 nannofossils, B10:9
Miocene–Holocene interval, summary, A1:15–18
Miocene–Pliocene interval, reticulofenestrids, A1:12
mixed-layer clays, vs. depth, A9:60
monsoon
 evolution, A1:4–7, 45, 51; B2:23
 global climate, A1:1–77
 millenial-scale variability, A1:12
 nannofossil clay, B12:4–11
 Neogene, A1:12
 paleoceanographic proxies, A1:13
 stages, A1:49
 monsoon, summer, evolution, A1:10
 monsoon, winter, evolution, A1:10–11
 Monterey carbon positive excursion, stable isotope stratigraphy, B5:2
mottling
 carbonate-rich clay, A6:6–7
 lithologic units, A4:9–10; A5:7–9; A8:4
 mudline, lithologic units, A6:4
 muscovite, iron-rich, green clay, B15:14

N
n-alcohols, long-chain
 sediments, B18:9, 9
 vs. depth, B18:11–12
n-alkanes, long-chain
 sediments, B18:9, 9–10
 vs. depth, B18:11–12
n-fatty acids, long-chain, vs. depth, B18:11–12
nannofossil events, depths and ages, B10:23–24
nannofossils
 abundance around NP25/NN1 zonal boundary, B10:19
 chronostratigraphy, B10:16–17
 lithologic units, A4:8–10; A5:6–9; A7:5–9; A8:3–4; A9:6–11; B10:1–24
 paleoenvironment, A1:30–31
 photograph, A9:59
 vs. depth, A5:41, 44; A8:16
 zonal correlation, B10:18
nannofossils, calcareous
 biostratigraphy, A4:11–13; A5:9–10; A6:7; A7:10; A8:4–5; A9:12
 checklist, A4:91–92; A5:81; A6:56; A7:84–85; A8:38; A9:100–104
Nansha Terrain, tectonics, A1:4
Neogene
 alkenone stratigraphy, B17:1–17
 diatoms, B6:1–9
 monsoon, A1:12
 paleoclimatology, A1:7
 sediments, A1:24–25
 stable isotope stratigraphy, B3:3; B4:1–8; B5:1–12
neotectonics, green clay, B15:16
nickel
 clay geochemistry, B12:10
 green clay, B15:6–7
nickel/aluminum ratio, vs. age, B12:24
nitrogen. See carbon/nitrogen ratio
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>nitrogen, total</td>
<td>A4:96–99; A5:85–87; A6:60; A7:92–94; A8:7; A9:19–20, 113–115</td>
</tr>
<tr>
<td>vs. total organic carbon, A5:55</td>
<td></td>
</tr>
<tr>
<td>North Atlantic climate change, paleoceanography</td>
<td>A1:9</td>
</tr>
</tbody>
</table>

Oeschger Events. See Dansgaard–Oeschger Events

Olduvai Subchron, sediments, A1:23; A6:9; A7:13; A9:15

Oligocene

- biostratigraphy, A9:12–14
- dinoflagellate biostratigraphy, B7:1–29
- paleoclimatology, A1:6–7
- planktonic foraminifer distribution, B9:15
- planktonic foraminifer ranges, B9:17
- planktonic foraminiferal biostratigraphy, B9:1–26
- sedimentation, A1:33–34
- sedimentation rates, A9:16; B10:10
- unconformities, B9:18

Oligocene, lower

- lithologic units, A9:10–11
- nannofossil biostratigraphy, B10:5–7

Oligocene, upper, lithologic units, A9:9–10

Oligocene/Miocene boundary

- dinoflagellates, B7:7–8
- nannofossil biostratigraphy, B10:6–7
- nannofossil marker species, B10:20
- sedimentation, A1:34

Oligocene–Miocene interval, paleoceanography, B9:8–9

Oligocene–Miocene transition, unconformities, B10:10

ooze, bluish green pyrite-rich nannofossil, lithologic units, A7:8

ooze, clayey nannofossil, lithologic units, A7:5–9

ooze, foraminifer, lithologic units, A4:8–10

ooze, lithologic units, A6:4–5

ooze, nannofossil, lithologic units, A9:8

opal, biogenic

- mass accumulation rates, B21:2–3, 7
- upper Miocene–Quaternary, B21:1–12
- vs. age, B21:7

opal, sediments, A1:8

organic matter

- carbon isotopes, B20:1–13
- carbon/nitrogen ratio, A5:16; A6:12–13; A7:16; A9:20–21
- green clay, B15:5–8
- paleoenvironment, A1:31

overprints, magnetization, A4:17

oxygen index

- organic matter, A5:16
- sediments, A5:88; A6:61; A7:95; A9:116
- vs. hydrogen index, A9:67

oxygen isotope stage boundary 2/1, organic carbon, A5:15

oxygen isotope stage boundary 6/5e, organic carbon, A5:15

phosphorus/aluminum ratio

- foraminifers, B3:1–8; B4:1–8
- Globigerinoides ruber, B2:1–29
- pore water, B13:4
- vs. age, B2:23–24; B3:6; B4:5; B5:6–7; B11:14, 18; B12:19, 22–23; B15:16; B17:15; B19:14–15
- vs. depth, B2:21; B3:5; B4:6; B5:5; B9:21; B13:11

paleoceanographic proxies, monsoon, A1:13

paleoproduction

- mass accumulation rates, B21:3
- sediments, B18:5–6

See also productivity

Paralia sulcata, vs. depth, B6:7

paramagnetic minerals, magnetic susceptibility, B1:2–3

Pearl River, sediments, A1:8; B19:6

Pearl River Mouth Basin

- sediments, A1:7–8
- stratigraphy, A1:50

pellets, fecal, photograph, A6:28

pentane, sediments, A9:18, 110–112

petroleum, organic matter, A9:20–21

pH

- pore water, A4:21; A5:18; A6:13–14; A7:18; A8:8; A9:22
- vs. depth, A7:56

Philippine Sea Plate, collision, A1:4

phosphate

- pore water, A4:21; A5:18; A6:13–14; A7:18; A8:8; A9:22
- vs. depth, A4:59; A5:57; A6:38; A7:56; A8:23; A9:68

phosphorus, authigenic, green clay, B15:4–5, 20–21

phosphorus, detrital, green clay, B15:4–5

phosphorus, iron-bound, green clay, B15:4–5

phosphorus, organic-bound, green clay, B15:4–5

phosphorus/aluminum ratio

biomediation, B12:9–10

vs. age, B12:23
photoelectric effect logs, vs. depth, A1:75; A4:78; A5:72; A7:69; A9:84–85

physical properties
- Site 1143, A4:23–26
- Site 1144, A5:19–22
- Site 1145, A6:15–17
- Site 1146, A7:19–22
- Site 1147, A8:9
- Site 1148, A9:23–26

physical properties unit interval 1, sediments, A7:20; A9:24

physical properties unit interval 2, sediments, A7:20; A9:24

physical properties unit interval 3, sediments, A7:20–21; A9:24–25

physical properties unit interval 4, sediments, A7:21; A9:25

physical properties unit interval 5, sediments, A7:21–22; A9:25

physical properties unit interval 6, sediments, A9:25

physical properties unit interval 7, sediments, A9:25

physical properties unit interval 8, sediments, A9:25

plagioclase
- green clay, B15:4
- lithologic units, A9:11
- nannofossil clay, B14:2
 vs. depth, A5:40; A6:31; A7:44; A9:60; B14:5–6

Planolites, lithologic units, A9:8–11

plate tectonics, seafloor spreading, A1:4

plateaus, evolution, A1:5–7

Pleistocene
- biostratigraphy, A5:9–11; A8:4–5; A9:12–14
- green clay layers, B15:1–23
- lithologic units, A4:8–10; A5:6–9; A7:5–7; A8:3–4; A9:6–7
- nannofossil biostratigraphy, B10:9–10
- paleoclimatic cyclicity, B22:1–10
- sediment mineralogy, B14:1–10
- sedimentation, A1:36–37
- sedimentation rates, A5:13; A7:14; A9:16; B10:10
- sediments, A1:18–20; B19:1–21
- stable isotope stratigraphy, B2:13–15
 See also Mid-Pleistocene Revolution; Miocene–Holocene interval; Miocene–Pleistocene interval; Pliocene/Pleistocene boundary

Pleistocene, middle, paleoclimatology, B11:1–21

Pliocene
- biogenic opal, B21:1–12
- biostratigraphy, A7:10–12; A9:12–14
- lithologic units, A4:8–10; A9:6–7
- nannofossil biostratigraphy, B10:8–9
- nannofossils, A4:11–13
- sediment mineralogy, B14:1–10
- sedimentation, A1:36–37
- sedimentation rates, A7:14; A9:16; B10:10
- sediments, A1:21; B12:1–25
 See also Miocene–Holocene interval; Miocene–Pleistocene interval; Miocene/Pliocene boundary; Miocene–Pliocene interval

Pliocene, upper
- biostratigraphy, A6:7–8

<table>
<thead>
<tr>
<th>Pseudoemiliania lacunosa, vs. depth</th>
<th>A5:44</th>
</tr>
</thead>
<tbody>
<tr>
<td>potassium</td>
<td></td>
</tr>
<tr>
<td>pore water</td>
<td></td>
</tr>
<tr>
<td>vs. depth</td>
<td></td>
</tr>
<tr>
<td>salinity</td>
<td></td>
</tr>
<tr>
<td>vs. age</td>
<td></td>
</tr>
<tr>
<td>porosity</td>
<td></td>
</tr>
<tr>
<td>vs. bulk density logs</td>
<td></td>
</tr>
<tr>
<td>vs. vs. depth</td>
<td></td>
</tr>
<tr>
<td>vs. A7:73–74, A5:68–69, A7:67, 70</td>
<td></td>
</tr>
<tr>
<td>vs. A9:80, 82–83</td>
<td></td>
</tr>
<tr>
<td>potassium oxide</td>
<td></td>
</tr>
<tr>
<td>vs. age</td>
<td></td>
</tr>
<tr>
<td>vs. A12:20</td>
<td></td>
</tr>
<tr>
<td>vs. A12:20</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>silica/potassium oxide ratio</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>silica/potassium oxide ratio</td>
<td></td>
</tr>
<tr>
<td>vs. age</td>
<td></td>
</tr>
<tr>
<td>vs. A12:20</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>paleoclimatic cyclicity</td>
<td></td>
</tr>
<tr>
<td>vs. depth</td>
<td></td>
</tr>
<tr>
<td>vs. A8:16</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>planktonic foraminifers</td>
<td></td>
</tr>
<tr>
<td>vs. depth</td>
<td></td>
</tr>
<tr>
<td>vs. A9:116</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>paleoproductivity</td>
<td></td>
</tr>
<tr>
<td>vs. depth</td>
<td></td>
</tr>
<tr>
<td>vs. A9:116</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>methane/(ethane + propane) ratio</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>nannofossil clay</td>
<td></td>
</tr>
<tr>
<td>vs. bulk density logs</td>
<td></td>
</tr>
<tr>
<td>vs. A5:44</td>
<td></td>
</tr>
<tr>
<td>vs. A9:14</td>
<td></td>
</tr>
<tr>
<td>vs. A9:23</td>
<td></td>
</tr>
<tr>
<td>vs. A9:38</td>
<td></td>
</tr>
<tr>
<td>vs. A7:56</td>
<td></td>
</tr>
<tr>
<td>vs. A8:23</td>
<td></td>
</tr>
<tr>
<td>vs. A9:68</td>
<td></td>
</tr>
<tr>
<td>potassium</td>
<td></td>
</tr>
<tr>
<td>pore water</td>
<td></td>
</tr>
<tr>
<td>vs. depth</td>
<td></td>
</tr>
<tr>
<td>vs. A7:73–74, A5:68–69, A7:67, 70</td>
<td></td>
</tr>
<tr>
<td>vs. A9:80, 82–83</td>
<td></td>
</tr>
<tr>
<td>potassium oxide</td>
<td></td>
</tr>
<tr>
<td>vs. age</td>
<td></td>
</tr>
<tr>
<td>vs. A12:20</td>
<td></td>
</tr>
<tr>
<td>vs. A12:20</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>silica/potassium oxide ratio</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>silica/potassium oxide ratio</td>
<td></td>
</tr>
<tr>
<td>vs. age</td>
<td></td>
</tr>
<tr>
<td>vs. A12:20</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>Miocene–Pleistocene boundary</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>paleoclimatic cyclicity</td>
<td></td>
</tr>
<tr>
<td>vs. depth</td>
<td></td>
</tr>
<tr>
<td>vs. A8:16</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>planktonic foraminifers</td>
<td></td>
</tr>
<tr>
<td>vs. depth</td>
<td></td>
</tr>
<tr>
<td>vs. A9:116</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>paleoproductivity</td>
<td></td>
</tr>
<tr>
<td>vs. depth</td>
<td></td>
</tr>
<tr>
<td>vs. A9:116</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>methane/(ethane + propane) ratio</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>nannofossil clay</td>
<td></td>
</tr>
<tr>
<td>vs. bulk density logs</td>
<td></td>
</tr>
<tr>
<td>vs. A5:44</td>
<td></td>
</tr>
<tr>
<td>vs. A9:14</td>
<td></td>
</tr>
<tr>
<td>vs. A9:23</td>
<td></td>
</tr>
<tr>
<td>vs. A9:38</td>
<td></td>
</tr>
<tr>
<td>vs. A7:56</td>
<td></td>
</tr>
<tr>
<td>vs. A8:23</td>
<td></td>
</tr>
<tr>
<td>vs. A9:68</td>
<td></td>
</tr>
<tr>
<td>potassium</td>
<td></td>
</tr>
<tr>
<td>pore water</td>
<td></td>
</tr>
<tr>
<td>vs. depth</td>
<td></td>
</tr>
<tr>
<td>vs. A7:73–74, A5:68–69, A7:67, 70</td>
<td></td>
</tr>
<tr>
<td>vs. A9:80, 82–83</td>
<td></td>
</tr>
<tr>
<td>potassium oxide</td>
<td></td>
</tr>
<tr>
<td>vs. age</td>
<td></td>
</tr>
<tr>
<td>vs. A12:20</td>
<td></td>
</tr>
<tr>
<td>vs. A12:20</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>silica/potassium oxide ratio</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>silica/potassium oxide ratio</td>
<td></td>
</tr>
<tr>
<td>vs. age</td>
<td></td>
</tr>
<tr>
<td>vs. A12:20</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>Miocene–Pleistocene boundary</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>paleoclimatic cyclicity</td>
<td></td>
</tr>
<tr>
<td>vs. depth</td>
<td></td>
</tr>
<tr>
<td>vs. A8:16</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>planktonic foraminifers</td>
<td></td>
</tr>
<tr>
<td>vs. depth</td>
<td></td>
</tr>
<tr>
<td>vs. A9:116</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>paleoproductivity</td>
<td></td>
</tr>
<tr>
<td>vs. depth</td>
<td></td>
</tr>
<tr>
<td>vs. A9:116</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>methane/(ethane + propane) ratio</td>
<td></td>
</tr>
<tr>
<td>See also</td>
<td></td>
</tr>
<tr>
<td>nannofossil clay</td>
<td></td>
</tr>
<tr>
<td>vs. bulk density logs</td>
<td></td>
</tr>
<tr>
<td>vs. A5:44</td>
<td></td>
</tr>
<tr>
<td>vs. A9:14</td>
<td></td>
</tr>
<tr>
<td>vs. A9:23</td>
<td></td>
</tr>
<tr>
<td>vs. A9:38</td>
<td></td>
</tr>
<tr>
<td>vs. A7:56</td>
<td></td>
</tr>
<tr>
<td>vs. A8:23</td>
<td></td>
</tr>
<tr>
<td>vs. A9:68</td>
<td></td>
</tr>
</tbody>
</table>
pteropods, lithologic units, A6:5; A7:5–9
pteropods/planktonic foraminifers ratio, vs. depth, A5:45; A6:33
pyrite
 green clay, B15:4–7
 lithologic units, A5:7–9; A6:5; A7:6, 8; A8:4; A9:6–7, 10–11
 photograph, A6:28; A7:47
 vs. depth, A7:45; A8:15; A9:52
pyrite, macrocrystalline, vs. depth, A5:41

Q
quartz
 chemical index of alteration, B19:7–8
 green clay, B15:4
 lithologic units, A8:3–4; A9:6–7, 11
 nannofossil clay, A4:11–13
 paleoclimate, B19:6–7
 sediments, B19:5
 vs. age, B19:18, 21
 vs. depth, A5:40; A6:31; A7:44; A9:60; B14:5–6
See also calcium oxide–quartz–clay minerals; chlorite/quartz ratio; illite/quartz ratio; kaolinite/quartz ratio; smectite/quartz ratio

Quaternary
 biogenic opal, B21:1–12
 biostratigraphy, A6:7–8; A7:10–12
 diatoms, B6:1–9
 lithologic units, A6:4–7
 nannofossil clay, A4:11–13
 paleoceanography, A1:9
 paleoecology, B2:13–15
 sediments, A1:20–22
See also Miocene–Holocene interval

R
radiolarians, lithologic units, A6:4; A7:6
red parameter, vs. depth, A6:27; A7:43; A8:15; A9:51; B9:21
Red River, sediments, A1:8
Red River fault zone, tectonics, A1:4
redox, clay geochemistry, B12:10, 24
reduction
 green clay, B15:5–8
 pore water, A6:13–14
Reed Bank
 sediments, A1:7–8
See also Liyue Bank
reflectance
 clay mineralogy, B22:9
 correlation, A4:41–43; A5:36–38; A6:25–26; A7:39–42; A8:14; A9:46–50; B22:9
 intervals of lighter colored sediments, A6:53
 paleoceanographic proxies, A1:13
 sediments, A4:25; A5:21; A6:16
 vs. depth, A1:55–56, 58, 60, 62, 64–65; A4:66; A5:63; A6:43; A7:62; A8:28; A9:53, 74
See also lightness
reflections
 impedance, A2:3
 sediments, A1:7–8; A2:1–37
remanence ratio, vs. depth, B1:7
remanent magnetization, anhysteretic sediments, B1:3
 vs. depth, B1:6
remanent magnetization, natural, sediments, A4:15–17; A5:11–13; A6:8–10; A7:12–13; A8:5–6; A9:15
remanent magnetization, saturation, vs. depth, B1:7
remanent magnetization, saturation/saturation magnetization ratio, vs. depth, B1:7
resistivity, Formation MicroScanner imagery, A5:73; A7:71; A9:86
resistivity logs
 vs. depth, A4:73–74; A5:68–69; A7:67; A9:80
See also deep resistivity logs; medium resistivity logs
Reticulofenestra asanoi, vs. depth, A5:44
reticulofenestrids, Miocene/Pliocene sequence, A1:12
reworking, green clay, B15:7–8
rifting, lithologic units, A9:11
rubidium/aluminum ratio
 nannofossil clay, B12:7
 vs. age, B12:21
runoff
 nannofossil clay, B12:7
 vs. age, A1:48
Rupelian, dinoflagellates, B7:7–8

S
Sahul Bank, paleoceanography, A1:8–10
salinity
 pore water, A4:20; A5:17–18; A6:13; A7:17–18; A8:8; A9:21–22; B13:4–6, 11
 vs. depth, A4:59; A5:57; A6:38; A7:56; A8:23; A9:68
sandstone, photograph, A9:59
saturation magnetization
 hysteresis, B1:3–4
 vs. depth, B1:7
seafloor spreading, plate tectonics, A1:4
sea-level changes
 clay geochemistry, B12:7
 green clay, B15:16
 lithologic units, A9:11
sediment flux, vs. age, A1:48
sedimentation
 history, A1:32–37
 paleoenvironment, A1:29–37
 summary, A1:25–29
sedimentation rates
 age vs. depth, A6:59; A7:89; A8:41; A9:109
 age vs. depth models, A4:94; A5:83
biogenic opal, B21:3
biostratigraphy, A4:17–18; A6:8; A7:12; A8:7; A9:14; B2:10–11
chronostratigraphy, A5:13
Miocene, B10:10
Oligocene, B10:10
planktonic foraminifers, B8:7–8
VOLUME 184 SUBJECT INDEX

sedimentation rates (continued) • Site 1144

Pleistocene, A5:13; B10:10
Pliocene, B10:10
Site 1143, A4:17–18
Site 1144, A5:13; B2:10–11, 25
Site 1145, A6:10
Site 1146, A7:13–14
Site 1147, A8:7
Site 1148, A9:16
vs. depth, B10:21
sedimentation rates, linear
vs. carbonate mass accumulation rates, A1:71–72
vs. mass accumulation rates, A4:56; A5:51; A6:36;
A7:53; A8:21; A9:64
vs. total mass accumulation rates, A1:71–72
sediments
basins, A1:7–8
clay and bulk mineralogy, B19:5
geochemistry, B12:1–25
magnetic properties, B1:1–8
mineralogy, B14:1–10
Pleistocene, B19:1–21
stable isotope stratigraphy, B4:1–8
thickness, A4:95
vs. depth, A4:44
seismic profiles
Site 1143, A1:54; A2:12–16
Site 1144, A1:57; A2:18–20
Site 1145, A1:59; A2:22–23
Site 1146, A1:61; A2:24–28
Site 1147, A1:63; A2:31–34
Site 1148, A1:63; A2:30–34
seismic reflection, summary, A2:1–37
seismic stratigraphy
Site 1143, A2:4–5
Site 1144, A2:5–6
Site 1145, A2:6–7
Site 1146, A2:7–8
Site 1147, A2:8–9
Site 1148, A2:8–9
summary, A2:1–37
vs. acoustical impedance, A2:16, 21, 29, 35
shelf basins, tectonics, A1:4
shell fragments, lithologic units, A6:5
siderite, authigenic, concretion geochemistry, B13:1–15
silica
nannofossil clay, B12:1–25
A7:19; A8:8–9; A9:23
sediments, B19:6
vs. age, B12:19–20; B19:19
vs. depth, A1:67; A4:59; A5:57; A6:38; A7:56; A8:23;
A9:68
silica, biogenic
lithologic units, A6:5
vs. depth, A9:51
silica, opaline, ternary diagram, B12:17
silica/aluminum oxide ratio
chemical index of alteration, B19:7–8
sediments, B19:6
vs. age, B19:20–21
silica/potassium oxide ratio
sediments, B19:6
vs. age, B19:20
siliceous microfossils, vs. depth, A5:45; A6:33
siliceous organisms, vs. depth, A5:41
siliciclastics
grain size, B19:8–9
lithologic units, A6:5–6
Pleistocene, B19:4–5
silicoflagellates, lithologic units, A6:5; A7:6
silicon/aluminum ratio
nannofossil clay, B12:5
vs. age, B12:20
silt, nodular, lithologic units, A6:6
silt, quartz, lithologic units, A5:6–9
silt fraction, siliciclastics, B19:8–9
Site 849, oxygen isotopes, B15:16
Site 1143, A4:1–103
background and objectives, A4:1–2
biogenic opal, B21:1–12
biostratigraphy, A4:11–14
carbonate and organic carbon, B16:1–9
composite depth, A4:84
composite section, A4:6–7
coring summary, A4:81–83
diatoms, B6:1–9
foraminiferal biostratigraphy, B8:1–43
inorganic geochemistry, A4:20–23
interval length between green clay events, B15:16
lithostratigraphy, A4:8–11
operations, A4:3–6
organic geochemistry, A4:18–20
organic matter carbon isotopes, B20:1–13
paleomagnetism, A4:15–17
physical properties, A4:23–26
sediment geochemistry, B12:1–25
sedimentation and accumulation rates, A4:17–18
seismic stratigraphy, A2:4–5
site description, A4:1–103
splice tie points, A4:85
summary, A1:15–18
wireline logging, A4:26–29
Site 1144, A5:1–97
background and objectives, A5:1–3
biostratigraphy, A5:9–11
composite depths, A5:77
composite section, A5:4–6
coring summary, A5:74–76
high-resolution stable isotope stratigraphy, B2:1–29
inorganic geochemistry, A5:17–19
lithostratigraphy, A5:6–9
magnetic properties, B1:1–8
operations, A5:3–4
organic geochemistry, A5:13–17
organic matter carbon isotopes, B20:1–13
paleomagnetism, A5:11–13
physical properties, A5:19–22
planktonic foraminifers, B11:1–21
sedimentation and accumulation rates, A5:13
sediments, B19:1–21
seismic stratigraphy, A2:5–6
site description, A5:1–97
splice tie points, A5:78
summary, A1:18–20
wireline logging, A5:22–24
Site 1145, A6:1–63
background and objectives, A6:1–2
biostratigraphy, A6:7–8
composite depths, A6:51
composite section, A6:3–4
coring summary, A6:48–50
inorganic geochemistry, A6:13–15
interval length between green clay events, B15:16
lithostratigraphy, A6:4–7
operations, A6:2–3
organic geochemistry, A6:11–13
paleomagnetism, A6:8–10
physical properties, A6:15–17
sedimentation and accumulation rates, A6:10
seismic stratigraphy, A2:6–7
site description, A6:1–63
splice tie points, A6:52
summary, A1:20–22
Site 1146, A7:1–101
background and objectives, A7:1–2
biostratigraphy, A7:10–12
calcareous nannofossil biostratigraphy, B10:1–24
carbonate and organic carbon, B16:1–9
composite depths, A7:76–77
composite section, A7:4–5
coring summary, A7:72–75
foraminiferal biostratigraphy, B8:1–43
inorganic geochemistry, A7:17–19
interval length between green clay events, B15:16
lithostratigraphy, A7:5–10
Miocene–Pleistocene sediment mineralogy, B14:1–10
operations, A7:3–4
organic geochemistry, A7:14–17
organic matter carbon isotopes, B20:1–13
paleomagnetism, A7:12–13
physical properties, A7:19–22
Pleistocene paleoclimatic cyclicity, B22:1–10
pore water geochemistry, B13:1–15
sedimentation and accumulation rates, A7:13–14
seismic stratigraphy, A2:7–8
site description, A7:1–101
splice tie points, A7:78–79
stable isotope stratigraphy, B3:1–8
summary, A1:22–25
wireline logging, A7:22–25
Site 1147, A8:1–43
alkenone stratigraphy, B17:1–17
background and objectives, A8:1
biostratigraphy, A8:4–5
calcareous nannofossil biostratigraphy, B10:1–24
composite depths, A8:33
composite section, A8:2–3
coring summary, A8:31–32
inorganic geochemistry, A8:7–9
lithostratigraphy, A8:3–4
operations, A8:2
organic geochemistry, A8:5–6
paleomagnetism, A8:7
physical properties, A8:9
sedimentation and accumulation rates, A8:7
seismic stratigraphy, A2:8–9
site description, A8:1–43
splice tie points, A8:34
stable isotope stratigraphy, B5:1–12
summary, A1:25–29
Site 1148, A9:1–122
alkenone stratigraphy, B17:1–17
background and objectives, A9:1–3
biostratigraphy, A9:12–14; B9:20
calcareous nannofossil biostratigraphy, B10:1–24
composite depths, A9:91
composite section, A9:5
coring summary, A9:87–90
dinoflagellate stratigraphy, B7:1–29
inorganic geochemistry, A9:21–23
interval length between green clay events, B15:16–17
lithostratigraphy, A9:5–12
marine and terrigenous lipids, B18:1–16
operations, A9:3–4
organic geochemistry, A9:16–21
organic matter carbon isotopes, B20:1–13
paleomagnetism, A9:15
physical properties, A9:23–26
planktonic foraminifer biostratigraphy, B9:1–26
sedimentation and accumulation rates, A9:16
seismic stratigraphy, A2:8–9
site description, A9:1–122
splice tie points, A9:92
stable isotope stratigraphy, B5:1–12
summary, A1:25–29
wireline logging, A9:26–29
slumps, lithologic units, A4:9; A9:11
smectite
green clay, B15:4
lithologic units, A7:9
nannofossil clay, B14:2
paleoclimatic cyclicity, B22:3–4
paleoclimatology, B19:7
reflectance, B22:9
sediments, B19:5
vs. age, B19:18
vs. depth, A5:40; A6:31; A7:44; A9:60; B14:5–6
See also chlorite–smectite mixed minerals
smectite/(illite + chlorite) ratio
paleoclimatology, B19:7
reflectance, B22:9
sediments, B19:5
vs. age, B19:18
smectite/quartz ratio, vs. depth, B14:7
smectite–illite mixed minerals
green clay, B15:4, 14
paleoclimatic cyclicity, B22:3–4
sodium, pore water, B13:4
sodium oxide
sediments, B19:6
vs. age, B19:19
soft sediment deformation, photograph, A9:57
solar radiation, evolution, A1:4–7
South China Sea
 global climate, A1:1–77
 green clay layers, B15:1–23
splice tie points
 Site 1143, A4:6–7, 85
 Site 1144, A5:78
 Site 1145, A6:52
 Site 1146, A7:78–79
 Site 1147, A8:34
 Site 1148, A9:92
sponge spicules, lithologic units, A5:8–9; A6:4; A7:6
stable isotope stratigraphy, sediments, B2:1–29; B3:1–8; B4:1–8; B5:1–12
stratification, water column, B11:89
stratigraphy
 Cenozoic, A1:50
 stable isotopes, B3:1–8
stratigraphy, marine, vs. terrestrial stratigraphy, A1:12–13, 48
stratigraphy, terrestrial, vs. marine stratigraphy, A1:12–13, 48
strontium
 clay geochemistry, B12:10
 green clay, B15:5
 pore water, A4:22–23; A5:19; A6:14; A7:19; A8:8–9; A9:23
 vs. depth, A4:59; A5:57; A6:38; A7:56; A8:23; A9:68
subduction, Borneo, A1:4
submillenial-scale variations, stratigraphy, B2:6–7
subtropical fauna, monsoon, A1:12
sulfate
 pore water, A1:31–32; A4:21; A5:17–18; A6:13; A7:18; A8:8; A9:22; B13:11
 vs. depth, A4:59; A5:57; A6:38; A7:56; A8:23; A9:68
sulfur, total, sediments, A4:19, 96–99; A5:15–16, 85–87; A6:11, 60; A7:16–17, 92–94; A8:7, 42; A9:20, 113–115
sulfur/carbon ratio, sediments, A9:113–115
Sunda Shelf, paleoceanography, A1:8–10

T
Taiwan Island, tectonics, A1:4
tectonics, Asia E, A1:3–4, 47
temperature
 alkenone stratigraphy, B17:1–17
 sediments, A8:9
 vs. depth, A1:68; A4:70–71; A5:65–66; A6:46–47; A7:64–65; A9:77–78
 vs. time, A8:30
temperature, sea-surface
 foraminifer datums, B11:4–5
 paleoceanography, A1:8–9; B17:11
 vs. age, B11:18; B17:13, 15
 vs. depth, B18:14
tephra, photograph, A9:54
Termination Event I, organic carbon, A5:15
Termination Event II, organic carbon, A5:15
terrigenous material
 composition, A6:6
geochemistry, B12:5–8, 20–21
sedimentation, A1:36–37
sediments, A1:8
Tethys, Cretaceous–Paleocene sequence, A1:3–4
Thalassionema nitzschioides, vs. depth, B6:7
thermal conductivity
 sediments, A4:26, 101–102; A5:21, 94–96; A6:16–17, 63; A7:22, 97–100; A9:26, 118–120
 vs. bulk density, A4:68
 vs. depth, A4:67; A5:64; A6:45; A7:63; A9:76
thermocline, foraminifer datums, B11:7
thorium logs, vs. depth, A4:75; A5:71–72; A7:68–69; A9:81, 84–85
Tibetan Plateau, uplift, A1:3–4
titanium/aluminum ratio
 nanofossil clay, B12:5
 vs. age, B12:21
titanium oxide
 nanofossil clay, B12:5–6
 sediments, B19:6
 vs. age, B12:20, 22; B19:19
 vs. aluminum oxide, B12:18
trace elements
 clay geochemistry, B12:10
 vs. age, B12:20–21
trans-Himalayan volcanic arc, Cretaceous–Paleocene sequence, A1:3–4
transgression, sedimentation, A1:34–35
tropical fauna, monsoon, A1:12
troposphere, evolution, A1:4–7
turbidite
 Formation MicroScanner imagery, A4:80
 lithologic units, A4:8–10; A9:8
 photograph, A4:49
 sedimentation rates, A4:17–18
 sediments, A4:87–89
turbidite, carbonate, photograph, A9:55
turbidite, foraminifer
 lithologic units, A6:6
 photograph, A7:46

U
unconformities
 foraminifer datums, B9:7–8
 Oligocene, B9:18
 Oligocene–Miocene transition, B10:10
 photograph, A4:47
uplifts
 erosion, A1:11
 Tibetan Plateau, A1:3–4
Upper Pacific Deep Water, paleoclimatology, B2:13
upper water stratification, foraminifer datums, B11:7
uranium logs, vs. depth, A4:75; A5:71; A7:68; A9:81
Uvigerina peregrina, stable isotope stratigraphy, B3:1–8; B17:15

V
vanadium/aluminum ratio, vs. age, B12:24
velocity logs
 vs. compressional wave velocity, A4:76
VOLUME 184 SUBJECT INDEX

vs. depth, A1:74; A4:73–74; A5:68–69; A7:67, 70; A9:80, 82–83
Vietnam, climate, A1:10
volcanic ash
green clay, B15:15
lithologic units, A4:9–10; A5:8; A7:7–8; A8:4; A9:7–8
paleoenvironment, A1:30
photograph, A4:48; A6:30; A7:46
sediments, A4:86; A5:79; A6:54; A7:81; A8:36; A9:97
vs. depth, A5:42
volcaniclastics
green clay, B15:5–8, 15
lithologic units, A6:5–6; A7:7; A8:4

W
warm/cold water ratio, vs. depth, B11:14
water/sediment interface, green clay, B15:6–7
water currents, nannofossil clay, B12:7–8
weathering
nannofossil clay, B12:6
uplifts, A1:11
weathering, chemical
nannofossil clay, B14:2–3
paleoclimatology, B19:7
well-log unit interval 1, sediments, A4:28–29; A7:23–24; A9:27–28
well-log unit interval 2, sediments, A4:29; A7:24; A9:28
well-log unit interval 3, sediments, A7:24; A9:28
well-log unit interval 4, sediments, A7:24–25; A9:28
well-log unit interval 5, sediments, A9:28
well-log unit interval 6, sediments, A9:28–29
well-logging, summary, A4:72, 103; A5:67, 97; A7:66, 101; A9:79, 121
Western Pacific Warm Pool
paleoceanography, A1:8

taxonomic index

A
abies, Sphenolithus
Site 1143, A4:12
Site 1146, A7:10
abies/neoabies, Sphenolithus
Site 1146, B10:9
Site 1148, B10:9
Achiomphora callosa, Site 1148, B7:7
Achiomphora crassipellis, Site 1148, B7:5
acostensis, Neogloborotalia
Site 1143, A4:14; B8:5
Site 1146, A7:11; B8:5
Site 1148, A9:13; B9:4–5
actinocoronata, Reticulofenestra, Site 1148, B7:5, 9, 11–12
Actinocyclus ellipticus, Site 1143, B6:7
Actinocyclus moronensis, Site 1143, B6:2
Actinomma sp., South China Sea, A1:48
aculeatum, Impagidinium, Site 1148, B7:11
acutus, Ceratolithus
Site 1143, A4:12, 14
Site 1146, B10:8–9

Paleoclimatology, A1:14
wind, evolution, A1:45
wireline logging
Site 1143, A4:26–29
Site 1144, A5:22–24
Site 1146, A7:22–25
Site 1148, A9:26–29
wood fragments
carbon isotopes, B20:6, 13
lithologic units, A6:5
photograph, A6:29

X
X-ray diffraction data, lithologic units, A9:11
xenophyophorians, lithologic units, A7:6
Xisha–Zongsha Terrain, tectonics, A1:4

Y
Yangtze River. See Changjiang River
Younger Dryas, oxygen isotope chronostatigraphy, B2:5

Z
zirconium/aluminum ratio, vs. age, B12:21
zonation
diatoms, B6:6
dinoflagellates, B7:5–9, 23
foraminifera datums, B9:5–6
planktonic foraminifers, B8:3–7, 32
Zone A, biostratigraphy, B7:5–7, 9–10, 26–27
Zone B, biostratigraphy, B7:7–8, 10–12, 23, 26, 28
Zoophycos
lithologic units, A4:9–10; A7:8–9; A9:8–11
photograph, A7:48
sediments, A1:27
ampliapertura, Helicosphaera (continued) • Cleistosphaeridium placacanthum, Site 1148

Site 1148, B10:7
ampliapertura, Turborotalia, Site 1148, A9:14
amplificus, Amaurolithus
Site 1143, A4:12
Site 1146, B10:8
Site 1148, B10:8
ancyreum, Cleistosphaeridium, Site 1148, B7:5–7, 9, 11–12
angulisuturalis, Globoturborotalia, Site 1148, A9:14
Apteodinium nanhaicum, Site 1148, B7:5
Apteodinium spiridoides, Site 1148, B7:11
arcuata, Enneadocysta, Site 1148, B7:5, 9–12
articulata, Wetzeliella, Site 1148, B7:5–6, 9, 12
asanoi, Reticulofenestra
Site 1144, A5:9, 44; B2:13
Site 1146, B10:9
Site 1148, B10:9
Ascostomocystis granosa, Site 1148, B7:11
aspinatum, Membranophoridium
Site 1143, A4:13
Site 1146, B10:9
Site 1148, B10:9
aubryae, Cousteaudinium, Site 1148, B7:11
Azpeitia nodulifer, Site 1143, B6:3, 7

B
Beella digitata, Site 1143, A4:13
belemnus, Sphenolithus
Site 1143, A4:13
Site 1146, A7:10; B10:7
Site 1148, B10:7
bergrenii, Discoaster
Site 1143, A4:13
Site 1146, B10:8
Site 1148, B10:8
bijugatus, Zygrhablithus, Site 1148, A9:12; B9:7; B10:6
binaensis, Globoquadrina
Site 1146, A7:11
Site 1148, B9:5
biscuit, Reticulofenestra, Site 1148, A9:12; B9:7; B10:6
brouweri, Discoaster
Site 1143, A4:12, 14
Site 1144, B2:5, 10
Site 1145, A6:7
Site 1146, A7:12; B10:9
Site 1148, A9:14; B10:9
bulloides, Globigerina
Site 1144, B1:6–7, 9
South China Sea, A1:48

C
Calcidiscus macintyrei
Site 1143, A4:12
Site 1145, A6:7
Site 1148, A9:14; B10:9
callosa, Achnomosphera, Site 1148, B7:7
calyculus, Catinaster
Site 1146, B10:8
Site 1148, B9:5; B10:8
coalitus, Catinaster
 Site 1146, B10:7–8
 Site 1148, B10:7–8
conglobatus, Globigerinoides
 Site 1143, A4:14
 Site 1146, A7:11
 Site 1148, A9:13; B9:4
conispinum, Xenicodinium, Site 1148, B7:6
Cordosphaeridium cantharellum, Site 1148, B7:5–6, 9, 11–12
Cordosphaeridium exilimurum, Site 1148, B7:5
Cordosphaeridium gracile, Site 1148, B7:5–6, 11
Cordosphaeridium inodes, Site 1148, B7:5–6, 9, 11
Coscinodiscus lewisianus, Site 1143, B6:2–3
Coscinodiscus yabei, Site 1143, B6:2–3
Cousteaudinium aubryae, Site 1148, B7:11
crasaformis, Globorotalia, Site 1145, A6:8
crassipellis, Achomosphaera, Site 1148, B7:5
cribroperidinium tenuitabulatum, Site 1148, B7:5, 11–12
cubensis, Chiloguembelina, Site 1148, B9:5–7
Cyclicargolithus floridanus, Site 1146, B10:7
Cyclotella spp., Site 1143, B6:3, 7

D
Dapsilidinium pseudocolligerum, Site 1148, B7:10–11
Deflandrea heterophycta assemblage Zone, Site 1148, B7:9–10
Deflandrea phosphoritica, Site 1148, B7:7, 11–12
dehiscens, Globoboquadrina, Site 1148, A9:13; B9:4–5, 9, 20
dehiscens, Sphaerooidinella
 Site 1143, A4:14; B8:4
 Site 1144, B11:7, 9
 Site 1146, A7:11; B8:4
 Site 1148, A9:13; B9:6
delphix, Sphenolithus, Site 1148, A9:12; B10:6–7, 10
denticulopsis punctata cf. husteltii, Site 1143, B6:2
digitata, Beella, Site 1143, A4:13
Discoaster asymmetricus
 Site 1143, A4:12
 Site 1146, B10:9
 Site 1148, B10:9
Discoaster berggrenii
 Site 1143, A4:13
 Site 1146, B10:8
 Site 1148, B10:8
Discoaster brouweri
 Site 1143, A4:12, 14
 Site 1144, B2:5, 10
 Site 1145, A6:7
 Site 1146, A7:12; B10:9
 Site 1148, A9:14; B10:9
Discoaster dragii, Site 1148, A9:12; B10:6–7
Discoaster hamatus
 Site 1143, A4:13
 Site 1146, B10:8
 Site 1148, B10:8
Discoaster kugleri
 Site 1146, B10:7–8
 Site 1148, B10:7–8
Discoaster loeblichii
 Site 1146, A7:10; B10:8
 Site 1148, B10:8
Discoaster neohamatus, Site 1143, A4:14, 17
Discoaster neorectus
 Site 1146, A7:10; B10:8
 Site 1148, B10:8
Discoaster pentaradiatus
 Site 1143, A4:12
 Site 1145, A6:7
 Site 1146, B10:9
 Site 1148, B10:9
Discoaster quinqueramus
 Site 1143, A4:12
 Site 1146, A7:10, 12; B10:8
 Site 1148, A9:14; B10:8
Discoaster spp., Site 1148, A9:12
Discoaster surculus
 Site 1145, A6:7
 Site 1146, B10:8–9
 Site 1148, B10:8–9
Discoaster tamalis
 Site 1145, A6:7
 Site 1146, B10:9
 Site 1148, B10:9
Discoaster triradiatus, Site 1144, B2:5, 10
disjuncta, Sphaerooidinellopsis, Site 1148, B9:4
disperitum, Impagidinium, Site 1148, B7:6
dissimilis, Catapsydrax
 Site 1146, B8:6–7
 Site 1148, B9:5
Distatodinium ellipticum, Site 1148, B7:5–6, 9, 12
distentus, Sphenolithus, Site 1148, A9:12; B9:7; B10:5–6, 10
diversispinosum, Cleistosphaeridium, Site 1148, B7:5–7, 10–12
doliolus, Pseudoemotia, Site 1143, B6:3
drugii, Discoaster, Site 1148, A9:12; B10:6–7
druryi, Globoturborotalita, Site 1148, B9:4
dutertrei, Neogloboquadrina, Site 1144, B11:3

E
ellipsoideus, Spiniferites, Site 1148, B7:11
ellipticum, Distatodinium, Site 1148, B7:5–6, 9, 12
ellipticus, Actinocyclus, Site 1143, B6:7
Emiliania formosa, Site 1148, B10:5
Emiliania huxleyi
 Site 1143, A4:11–12
 Site 1144, B2:12
 Site 1145, A6:7
 Site 1146, B10:10
 Site 1148, B10:10; B18:5
Enneadocysta arcuata, Site 1148, B7:5, 9–12
Enneadocysta multicornuta, Site 1148, B7:5–6, 10
Enneadocysta pectiniformis, Site 1148, B7:5–6, 9–10, 12
Enneadocysta pectiniformis Subzone, Site 1148, B7:6, 9–10
Evittosphaerula paratabulata, Site 1148, B7:11
exilimurum, Cordosphaeridium, Site 1148, B7:5
extremus, Globigerinoides
Site 1143, A4:14
Site 1148, B9:5

fistulosus, Globigerinoides
Site 1143, A4:13–14
Site 1144, A5:10
Site 1145, A6:8
Site 1146, A7:12
Site 1148, A9:13
floridanus, Cyclicargolithus
Site 1146, B10:7
Site 1148, B10:7
floridanus, Cyclicargolithus
Site 1146, B10:7
Site 1148, B10:7
Florisphaera profunda,
Site 1144, A5:9
Florschuetzia,
South China Sea, A1:12
fohsi, Globorotalia,
Site 1148, B9:5–6, 20
fohsi s.l., Globorotalia
Site 1143, B8:5–6, 8
Site 1146, B8:5–6, 8
Site 1148, B9:9
formosa, Emiliania,
Site 1148, B10:5
Gavelinopsis spp.
Site 1146, B10:7
Site 1148, B10:7
Florisphaera profunda,
Site 1144, A5:9
Florschuetzia,
South China Sea, A1:12
fohsi, Globorotalia,
Site 1148, B9:5–6, 20
fohsi s.l., Globorotalia
Site 1143, B8:5–6, 8
Site 1146, B8:5–6, 8
Site 1148, B9:9
formosa, Emiliania,
Site 1148, B10:5

G
Gavelinopsis spp.
Site 1146, A7:11
Site 1148, A1:29; A9:14
Gephyrocapsa carribeanica
Site 1143, A4:12
Site 1144, A5:9
Site 1146, B10:9
Site 1148, B10:9
Gephyrocapsa lumina, Site 1143, A4:12
Gephyrocapsa oceanica
Site 1143, A4:12
Site 1144, A5:9
Site 1146, B10:9–10
Site 1148, B10:9–10
Gephyrocapsa spp.
Site 1143, A4:12, 14
Site 1148, B10:9; B18:5
Gephyrocapsa spp. (medium)
Site 1143, A4:12, 14
Site 1146, A7:12
Gephyrocapsa spp. (small)
Site 1143, A4:12
Site 1144, A5:9–10
Gephyrocapsa spp. (small) acme zone
Site 1143, A4:12
Site 1144, A5:9–10; B2:5; B11:4
Site 1145, A6:7
Site 1147, A8:5
Globigerina bulloides
Site 1144, B11:6–7, 9
South China Sea, A1:48
Globigerina ciperoensis, Site 1148, A9:14; B9:5
Globigerina nepenthes, Site 1146, A7:11
Globigerinatella insueta
Site 1146, B8:7
Site 1148, B9:5, 9, 20
Globigerinoides altiapertura, Site 1148, B9:8
Globigerinoides bisphericus–Praeorbulina spp.–Orbulina spp. plexus, Site 1143, B8:9
Globigerinoides conglobatus
Site 1143, A4:14
Site 1146, A7:11
Site 1148, A9:13; B9:4
Globigerinoides extremus
Site 1143, A4:14
Site 1148, B9:5
Globigerinoides fistulosus
Site 1143, A4:13–14
Site 1144, A5:10
Site 1145, A6:8
Site 1146, A7:12
Site 1148, A9:13
Globigerinoides obliquus
Site 1143, B4:1–8
Site 1148, B9:4
Globigerinoides ruber
Site 1143, A4:13; B4:1–8
Site 1144, A5:10; B2:7, 12, 19, 21–22, 24, 29; B11:3–4, 7, 19; B19:14–15, 18–21
Site 1145, A6:8
Site 1146, A7:11; B3:1–8
Site 1147, A8:5; B5:1–12
Site 1148, A9:13; B5:1–12; B9:4
South China Sea, A1:9, 51
Globigerinoides sacculifer
Site 1144, B11:3, 19
Site 1147, B5:1–12
Site 1148, B5:1–12; B18:5
Globigerinoides sacculifer s.l., Site 1148, B9:4
Globigerinoides trilobus, Site 1148, A9:13
Globobulimina spp., Site 1148, A1:29; A9:14
Globocassidulina spp.
Site 1146, A7:11
Site 1148, A1:29; A9:14
Globoquadrina altispira
Site 1146, A7:11
Site 1148, B9:4–5
Globoquadrina altispira–Sphaeroidinellopsis seminulina–Orbulina assemblage, Site 1148, B9:4
Globoquadrina binaensis
Site 1146, A7:11
Site 1148, B9:5
Globoquadrina dehiscens, Site 1148, A9:13; B9:4–5, 9, 20
Globoquadrina globosa, Site 1148, B9:4
Globoquadrina globosa–Sphaeroidinellopsis kochi assemblage, Site 1148, B9:4
Globoquadrina sellii, Site 1148, B9:5
Globoquadrina tripartita, Site 1148, B9:5
Globoquadrina venezuelana, Site 1148, B9:4–5
Globoquadrina venezuelana–Paragloborotalia pseudokugleri assemblage, Site 1148, B9:5
Globorotalia archeomenardii–Globorotalia praemenardii–Globorotalia menardii plexus, Site 1143, B8:9
Globorotalia crassaformis, Site 1145, A6:8
Globorotalia fohsi, Site 1148, B9:5–6, 20
Globorotalia fohsi s.l.
Site 1143, B8:5–6, 8
Site 1146, B8:5–6, 8
Site 1148, B9:9
Globorotalia inflata, Site 1144, A5:10, 45; B11:3, 6–7, 9
Globorotalia margaritae, Site 1143, A4:14
Globorotalia mayeri, Site 1143, A4:14, 17; B8:5
Globorotalia menardii
Site 1144, A5:10, 45; B11:3, 6–7, 19
Site 1148, B9:4
Globorotalia merotumida–Globorotalia plesiotumida–Globorotalia tumida plexus, Site 1143, B8:9
Globorotalia multicamerata
Site 1143, A4:13
Site 1146, A7:11
Site 1148, A9:13
Globorotalia peripheroronda, Site 1146, B8:6
Globorotalia peripheroronda–Globorotalia fohsi lineage
Site 1148, B9:4
Globorotalia plesiotumida
Site 1143, A4:14; B8:4–5
Site 1148, A9:13
Globorotalia praefohsi, Site 1146, B8:6
Globorotalia praescitula–Globorotalia praemenardii lineage, Site 1148, B9:4
Globorotalia tosaensis
Site 1143, A4:13
Site 1145, A6:8
Site 1146, A7:11
Globorotalia truncatulinoides
Site 1143, A4:13
Site 1144, A5:10
Site 1145, A6:8
Site 1146, A7:11
Site 1147, A8:5
Site 1148, A9:13
Globorotalia tumida
Site 1143, A4:14; B8:4
Site 1144, B11:7, 9
Globorotalioides suteri, Site 1148, B9:5
globosa, Globoquadrina, Site 1148, B9:4
Globoturborotalita angulisuturalis, Site 1148, A9:14
Globoturborotalita druryi, Site 1148, B9:4
Globoturborotalita nepenthes
Site 1143, A4:14; B8:5
Site 1146, B8:5, 8
Site 1148, B9:4, 6
Globubulimina spp.
Site 1144, A5:10
Site 1145, A6:8
gochtii, Wetzeliella, Site 1148, B7:5–6, 9, 12
gracile, Cordosphaeridium, Site 1148, B7:5–6, 11
granosa, Ascostomocystis, Site 1148, B7:11

H
hamatus, Discoaster
Site 1143, A4:13

I
Impagidinium aculeatum, Site 1148, B7:11
Impagidinium dispertitum, Site 1148, B7:6
Impagidinium patulum, Site 1148, B7:11
inflata, Globorotalia, Site 1144, A5:10, 45; B11:3, 6–7, 9
inodes, Cordosphaeridium, Site 1148, B7:5–6, 9, 11
insula, Globigerinatella
Site 1146, B8:7
Site 1148, B9:5, 9, 20
israelianum, Operculodinium, Site 1148, B7:7
Isthmolithus recurvus, Site 1148, B10:5

K
kugleri, Discoaster
Site 1146, B10:7–8
Site 1148, B10:7–8
kugleri, Paragloborotalia
Site 1146, B8:7
Site 1148, A9:13; B9:6–8

L
lacunosa, Pseudoemiliania
Site 1143, A4:12
Site 1144, A5:9, 44; B2:12
Site 1145, A6:7
Site 1146, B10:9–10
Site 1148, B10:9–10
laticinctum, Pentadinium, Site 1148, B7:5–7, 9, 11–12
Lejeunezysta hyalina, Site 1148, B7:5
lewisianus, Coscinodiscus, Site 1143, B6:2–3
Lingulodinium machaerophorum, Site 1148, B7:5, 9, 11–12
loeblichii, Discoaster
Site 1146, A7:10; B10:8
Site 1148, B10:8
longispinigerum, Operculodinium, Site 1148, B7:8, 12
lumina, Gephyrocapsa, Site 1143, A4:12
M
machaerophorum, Lingulodinium, Site 1148, B7:5, 9, 11–12
macintyrei, Calcidiscus
Site 1143, A4:12
Site 1145, A6:7
Site 1148, A9:14; B10:9
margaritae, Globorotalia,
Site 1143, A4:14
mayeri, Paragloborotalia,
Site 1148, A9:13; B9:4
Melitasphaeridium choanophorum,
Site 1148, B7:7–8, 11–12
Membranilarnacia? picena,
Site 1148, B7:7–8, 12
Membranophoridium aspinatum,
Site 1148, B7:5–6, 12
menardii, Globorotalia
Site 1144, A5:10, 45; B11:3, 6–7, 19
Site 1148, B9:4
miocenica, Nitzschia,
Site 1143, B6:3
moronensis, Actinocyclus,
Site 1143, B6:2
multicamerata, Globorotalia
Site 1143, A4:13
Site 1146, A7:11
Site 1148, A9:13
multicornuta, Enneadocysta,
Site 1148, B7:5–6, 10
N
nana, Paragloborotalia, Site 1148, B9:5
nanhaicum, Apteodinium, Site 1148, B7:5
neoabies, Sphenolithus
Site 1143, A4:12
Site 1146, A7:10
Neogloboquadrina acostaensis
Site 1143, A4:14; B8:5
Site 1146, A7:11; B8:5
Site 1148, A9:13; B9:4–5
Neogloboquadrina dutertrei, Site 1144, B11:3
Neogloboquadrina humerosa, Site 1144, B11:4
Neogloboquadrina pachyderma, Site 1144, B11:7, 9
neohamatus, Discoaster, Site 1143, A4:14, 17
neorectus, Discoaster
Site 1146, A7:10; B10:8
Site 1148, B10:8
nepenthes, Globigerina, Site 1146, A7:11
nepenthes, Globoturborotalita
Site 1143, A4:14; B8:5
Site 1146, B8:5, 8
Site 1148, B9:4, 6
nephotoides, Selenopemphix, Site 1148, B7:5
Nitzschia marina,
Site 1143, B6:3
Nitzschia miocenica, Site 1143, B6:3
Nitzschia porteri B Subzone, Site 1143, B6:3
Nitzschia reinholdii Zone, Site 1143, B6:3
nitzschioides, Thalassionema, Site 1143, B6:3, 7
nodulifer, Azpetlia, Site 1143, B6:3, 7
O
obliquiloculata, Pulleniatina
Site 1144, A5:10, 45; B11:4, 7–8, 19
South China Sea, A1:12
obliquus, Globigerinoideas
Site 1143, B4:1–8
Site 1148, B9:4
obscura, Hystrichosphaeropsis, Site 1148, B7:7–8, 11–12
oceanaica, Gephyrocapsa
Site 1143, A4:12
Site 1144, A5:9
Site 1146, B10:9–10
Site 1148, B10:9–10
Opeculodinium centrocarpum, Site 1148, B7:5, 11
Opeculodinium israelianum, Site 1148, B7:7
Opeculodinium longispinigerum, Site 1148, B7:8, 12
Opeculodinium piassecii, Site 1148, B7:7–8, 12
opima, Paragloborotalia, Site 1148, B9:5, 7
opima nana, Paragloborotalia, Site 1148, A9:14
opima opima, Paragloborotalia, Site 1148, A9:14
Orbulina spp.
Site 1146, A7:11; B8:6
Site 1149, B9:4
Orbulina suturalis, Site 1146, B8:8
ovoidea, Chilostomella, Site 1144, A5:10
P
pachyderma, Neogloboquadrina, Site 1144, B11:7, 9
Paragloborotalia kugleri
Site 1146, B8:7
Site 1148, A9:13; B9:6–8
Paragloborotalia mayeri, Site 1148, A9:13; B9:4
Paragloborotalia nana, Site 1148, B9:5
Paragloborotalia opima, Site 1148, B9:5, 7
Paragloborotalia opima nana, Site 1148, A9:14
Paragloborotalia pseudokugleri, Site 1148, B9:7
Paragloborotalia siakensis, Site 1148, B9:4
Paralia sulcata, Site 1143, B6:7
paratabulata, Evittosphaerula, Site 1148, B7:11
patula, Thalassiophora, Site 1148, B7:5
patulum, Impagidinium, Site 1148, B7:11
pectiniformis, Enneadocysta, Site 1148, B7:5–6, 9–10, 12
pelagica, Thalassiophora, Site 1148, B7:5–6, 9, 12
pellitum, Tectatodinium, Site 1148, B7:11
Pentadinium latinctum, Site 1148, B7:5–7, 9, 11–12
Pentadinium taenigerum, Site 1148, B7:7
pentaradiatus, Discoaster
Site 1143, A4:12
Site 1145, A6:7
Site 1146, B10:9
Site 1148, B10:9
peregrina, Uvigerina
Site 1144, A5:10
quinqueramus, Discaster
Site 1143, A:4:12
Site 1146, A:7:10, 12; B:10:8

Q

Ramosus subsp. angustus, Spiniferites, Site 1148, B:7:7
Recutulofenestra asanoi
Site 1144, A:5:9; A:4:2; B:12:13
Site 1146, B:10:9
Site 1148, B:10:9
Recutulofenestra bisectus, Site 1148, A:9:12; B:9:7; B:10:6
Recutulofenestra hilar, Site 1148, B:9:6; B:10:5
Recutulofenestra pseudoumbilicus
Site 1143, A:4:12
Site 1146, B:10:9
Site 1148, B:10:9
Recutulofenestra umbilicus
Site 1143, A:4:13
Site 1148, A:9:12; B:9:6; B:10:5
Recutulosa pharcinocoronata, Site 1148, B:7:5, 9, 11–12
Rigaudiae, Hystrichokolpoma, Site 1148, B:7:5, 7, 12
rubra, Globigerinoides
Site 1143, A:4:13; B:4:1–8
Site 1144, A:5:10; B:2:7, 12, 19, 21–22, 24, 29; B:11:3–4, 7, 19; B:19:14–15, 18–21
Site 1145, A:6:8
Site 1146, A:7:11; B:3:1–8
Site 1147, A:8:5; B:5:1–12
Site 1148, A:9:13; B:5:1–12; B:9:4
South China Sea, A:1:9, 51
rugosus, Ceratolithus
Site 1143, A:4:12
Site 1146, B:10:9
Site 1148, B:10:9
rugosus, Triquetrorhabdulus
Site 1143, A:4:12
Site 1146, A:7:10; B:10:8
Site 1148, A:9:14; B:10:8

S

sacculifer, Globigerinoides
Site 1144, B:11:3, 19
Site 1147, B:5:1–12
Site 1148, B:5:1–12; B:8:5
sacculifer s.l., Globigerinoides, Site 1148, B:9:4
salacia, Hystrichokolpoma, Site 1148, B:7:5
satchelliae, Cerebrocysa, Site 1148, B:7:5, 7–8, 11–12
Schematophora speciosa, Site 1148, B:7:7–8
Selenopemphix nephroides, Site 1148, B:7:5
sellii, Globoquadrina, Site 1148, B:9:5
seminulina, Sphaeroidinellopsis
Site 1143, A:4:12
Site 1146, B:10:9
Site 1148, B:10:9
siakensis, Paraglobozororia, Site 1148, B:9:4
sicka, Praeorbulina
Site 1146, A:7:11; B:8:6
Site 1148, A:9:13; B:9:6
Sigmoidlopsis spp., Site 1148, A:1:29; A:9:14
soucouyantiae, Sumatradinium, Site 1148, A:1:29; A:9:14

Site 1145, A:6:8
Site 1146, B:3:1–8; B:17:15
peripheroacuta, Globorotalia, Site 1146, B:8:6
phosphoritica, Deflandrea, Site 1148, B:7:7, 11–12
Phthiantheridium amon, Site 1148, B:7:5–6, 9, 12
piaseckii, Operculodinium, Site 1148, B:7:7–8, 12
picena, Membranilarnacia?, Site 1148, B:7:7–8, 12
placacanthum, Cleistosphaeridium, Site 1148, B:7:5, 7, 9, 11–12
plectilum, Homotrybium, Site 1148, B:7:5–6, 9–12
plesiotumida, Globorotalia
Site 1143, A:4:14; B:8:4–5
Site 1148, A:9:13
Polysphaeridium zoharyi, Site 1148, B:7:5, 7–8, 11–12
Polysphaeridium zoharyi Assemblage Zone, Site 1148, B:7:7–8, 10–12, 28
praefohsi, Globorotalia, Site 1146, B:8:6
Praeorbulina sicana
Site 1143, A:4:14; B:8:4–5
Site 1146, A:7:11; B:8:4
Site 1148, A:9:13
predistentus, Sphenolithus, Site 1148, B:10:6
primalis, Pulleniatina
Site 1143, A:4:14; B:8:4–5
Site 1146, A:7:11; B:8:4
Site 1148, A:9:13
primus, Amaurolithus
Site 1143, A:4:12
Site 1146, B:10:8
Site 1148, B:10:8
profunda, Florisphaera, Site 1144, A:5:9
pseudocolligerum, Dapsilidinium, Site 1148, B:7:10–11
Pseudoemiliama lacunosa
Site 1143, A:4:12
Site 1144, A:5:9, 44; B:2:12
Site 1145, A:6:7
Site 1146, B:10:9–10
Site 1148, B:10:9–10
Pseudoemmitia dololus, Site 1143, B:6:3
Pseudoemmitia dololus Zone, Site 1143, B:6:3
pseudofurcatus, Spiniferites, Site 1148, B:7:9, 12
Pseudohastigerina spp., Site 1148, A:9:14
pseudokugleri, Paraglobozororia, Site 1148, B:9:7
pseudoumbilicus, Reticulofenestra
Site 1143, A:4:12
Site 1146, B:10:9
Site 1148, B:10:9
Pulleniatina obliquiloculata
Site 1144, A:5:10, 45; B:11:4, 7–8, 19
South China Sea, A:1:12
Pulleniatina primalis
Site 1143, A:4:14; B:8:4
Site 1146, A:7:11; B:8:4
Site 1148, A:9:13
punctata cf. hustedtii, Denticulopsis, Site 1143, B:6:2

Site 1148, A:9:14; B:10:8
speciosa, Schematophora, Site 1148, B7:7–8
Sphaeroidinella dehiscens
 Site 1143, A4:14; B8:4
 Site 1144, B11:7, 9
 Site 1146, A7:11; B8:4
 Site 1148, A9:13; B9:6
Sphaeroidinellopsis disjuncta, Site 1148, B9:4
Sphaeroidinellopsis seminulina
 Site 1143, A4:14; B8:4
 Site 1146, A7:11; B8:4
 Site 1148, B10:9
Sphaeroidinellopsis seminulina–Globoturborotalita nepenthes
 Site 1148, B9:4
Sphenolithus abies
 Site 1143, A4:12
 Site 1146, A7:10
Sphenolithus abies/neobies
 Site 1146, B10:9
 Site 1148, B10:9
Sphenolithus aff. ciperoensis, Site 1148, B10:6
Sphenolithus belemnos
 Site 1143, A4:13
 Site 1146, A7:10; B10:7
 Site 1148, B10:7
Sphenolithus capricornutus, Site 1148, B10:6–7, 10
Sphenolithus ciperoensis
 Site 1143, A4:13
 Site 1146, A7:10; B10:7
 Site 1148, B10:7
Sphenolithus distentus, Site 1148, A9:12; B9:7; B10:5–6, 10
Sphenolithus heteromorphus
 Site 1143, A4:13
 Site 1146, A7:10; B10:7
 Site 1148, B10:7
Sphenolithus neoabies
 Site 1143, A4:12
 Site 1146, A7:10
Sphenolithus predistentus, Site 1148, B10:6
Sphenolithus spp., Site 1146, A7:10
Spiniferites ellipsoideus, Site 1148, B7:11
Spiniferites pseudofurcatus, Site 1148, B7:9, 12
Spiniferites ramosus subsp. angustus, Site 1148, B7:7
Spirdoides, Apteodinium, Site 1148, B7:11
Stilostomella spp.
 Site 1143, A4:14
 Site 1144, A5:11; B11:4
 Site 1145, A6:8
 Site 1146, A7:11
 Site 1148, A9:14
Sulcata, Paralia, Site 1143, B6:7
Sumatradinium soucouyantiae, Site 1148, B7:8, 11
Surculus, Discoaster
 Site 1145, A6:7
 Site 1146, B10:8–9
 Site 1148, B10:8–9
Suteri, Globorotaloides, Site 1148, B9:5
Suturalis, Orbulina, Site 1146, B8:8
Symmetrica, Wetzeliella, Site 1148, B7:5–6, 12
Taenigerum, Pentadinium, Site 1148, B7:7
Tamalis, Discoaster
 Site 1145, A6:7
 Site 1146, B10:9
 Site 1148, B10:9
Tectatodinium pellitum, Site 1148, B7:11
Tenuispinosus, Homotrebyum, Site 1148, B7:5–6, 10, 12
Tenuitabulatum, Cribroperidinium, Site 1148, B7:5, 11–12
Textularia spp., Site 1148, A1:29; A9:14
Thalassionema nitzschioides, Site 1143, B6:3, 7
Thalassiophora patula, Site 1148, B7:5
Thalassiophora pelagica, Site 1148, B7:5–6, 9, 12
tosaensis, Globorotalia
 Site 1143, A4:13
 Site 1145, A6:8
 Site 1146, A7:11
Tricorniculatus, Amaurolithus
 Site 1146, B10:9
Trilobus, Globigerinoides, Site 1148, A9:13
Tripartita, Globoquadrina, Site 1148, B9:5
Triquitrorhabdulus carinatus, Site 1148, B10:7
Triquitrorhabdulus rugosus
 Site 1143, A4:12
 Site 1146, A7:10; B10:8
 Site 1148, A9:14; B10:8
Triradiatus, Discoaster, Site 1144, B2:5, 10
truncatulinoides, Globorotalia
 Site 1143, A4:13
 Site 1144, A5:10
 Site 1145, A6:8
 Site 1146, A7:11
 Site 1147, A8:5
 Site 1148, A9:13
Tuberculodinium vancampoae, Site 1148, B7:7–8, 11–12
Tumida, Globorotalia
 Site 1143, A4:14; B8:4
 Site 1144, B11:7, 9
Turborotalia ampliapertura, Site 1148, A9:14
Umbilicus, Reticulofenestra
 Site 1143, A4:13
 Site 1148, A9:12; B9:6; B10:5
Uvigerina peregrina
 Site 1144, A5:10
 Site 1145, A6:8
 Site 1146, B3:1–8; B17:15
Uvigerina spp.
 Site 1146, A7:11
 Site 1148, A1:29; A9:14
Vancampoae, Tuberculodinium, Site 1148, B7:7–8, 11–12
Venezuelana, Globoquadrina, Site 1148, B9:4–5
W
Wetziellia articulata, Site 1148, B7:5–6, 9, 12
Wetziellia gochtii, Site 1148, B7:5–6, 9, 12
Wetziellia symmetrica, Site 1148, B7:5–6, 12

wuellerstorfi, Cibicidoides
Site 849, B15:16
Site 1143, B6:2–3
Site 1148, B5:1–12

X
Xenicodinium conispinum, Site 1148, B7:6

Y
Yabei, Coscinodiscus, Site 1143, B6:2–3

Z
zoharyi, Polysphaeridium, Site 1148, B7:5, 7–8, 11–12
zones (with letter prefixes)
A, Site 1148, B7:5–6, 9–10, 27
A-1, Site 1148, B7:6, 9–10
A-2, Site 1148, B7:6–7, 10
B, Site 1148, B7:7–8, 10–12, 28
CN1/CN2 boundary, Site 1148, B10:7
CN1c, Site 1148, B10:7
CN2/CN3 boundary, Site 1148, B10:7
CN3/CN4 boundary, B10:7
CN4/CN5a boundary, B10:7
CN5/CN6 boundary, B10:8
CN5a/CN5b boundary, B10:7
CN6, A7:10; B10:8
CN6/CN7 boundary, B10:8
CN7, Site 1146, A7:10
CN8, A4:13; A7:10
CN8/CN9 boundary, Site 1148, B10:8
CN8a, B10:8
CN8b, B10:8
CN9, Site 1143, A4:13
CN9/CN10 boundary, Site 1146, B10:8
CN10, Site 1146, B10:9
CN10a, B10:9
CN10b, B10:9
CN12/CN13 boundary, Site 1148, B10:9
CN12a, Site 1146, B10:9
CN12b, Site 1146, B10:9
CN13a, Site 1146, B10:9
CN13b, Site 1146, B10:9
CN14a, Site 1146, B10:9
CN14b, B10:10
CN15, B10:10
CP16b/CP16c boundary, Site 1148, B10:5
CP16c, Site 1148, B10:5
CP19, Site 1148, A9:12
CP19b, Site 1148, A9:12
CP19b/CN1a boundary, Site 1148, B10:6
D14, Site 1148, B7:5–6, 10
D15, Site 1148, B7:5–6
D16, Site 1148, B7:8
DM1, Site 1148, B7:8
DN2, Site 1148, B7:8
N4, A1:34; A9:13; B7:8; B9:4, 6
N4–N18, Site 1148, B9:9
N5, A7:11; B8:7; B9:4, 6
N6, B8:7; B9:4, 6, 8
N7, B8:6–7; B9:4, 6
N8, A7:11; A9:13; B8:6; B9:4, 6
N9, A7:11; B8:6, 8; B9:4, 6
N10, B8:6; B9:4, 6, 8
N10/N11 boundary, Site 1148, B9:6
N11, B8:6; B9:4, 6
N12, B8:5–6; B9:4
N13, B8:5, 8; B9:6
N14, A4:14; A7:11; B8:5, 7–8; B9:4, 6
N15, A7:11; B8:5, 7; B9:4, 6
N15–N16, A4:14; A9:13
N16, B8:5, 7; B9:4, 6
N17, Site 1148, B9:4, 6
N17a, A4:14; A7:11; A9:13; B8:4
N17b, A4:14; A7:11; A9:13; B8:4, 7
N18, A4:14; B8:4, 7; B9:4, 6
N18–N19, Site 1143, A4:14
N19, A4:14; B8:4, 7
N20, A4:14; A7:11; A9:13
N21, A4:13; A6:8; A7:11
N22, A4:13; A5:10; A6:8; A7:11; A8:5; A9:13
NN1, Site 1148, B10:7, 10
NN2, A1:34; A9:12; B7:8
NN2/N4, A1:29; B7:8
NN2/NN1 boundary, Site 1148, B10:7
NN2/NN3 boundary, Site 1148, B10:7
NN3, Site 1146, A7:10
NN3/NN4 boundary, Site 1148, B10:7
NN4/NN5 boundary, B10:7
NN5/NN6 boundary, B10:7
NN6/NN7 boundary, B10:7
NN7, B10:8
NN7/NN8 boundary, B10:8
NN8, B10:8
NN8/NN9 boundary, B10:8
NN9, A4:13; B10:8
NN9/CN7, Site 1143, A4:13
NN9/NN10 boundary, B10:8
NN10, A4:13; B10:8
NN10/NN11 boundary, B10:8
NN11, A4:13; B10:8
NN11/CN9d, Site 1143, A4:12
NN11/NN12 boundary, B10:8
NN12, B10:9
NN13/CN11a, Site 1143, A4:12
NN14, B10:9
NN14/CN11b, Site 1143, A4:12
NN16, B10:9
NN16/NN17 boundary, B10:9
NN17, B10:9
NN19, B10:9
NN19a, Site 1143, A4:12
NN19b/CN14a, Site 1143, A4:12
NN20, B10:10
VOLUME 184 TAXONOMIC INDEX
zones (with letter prefixes) (continued) • Zygrhablithus bijugatus

NN20/CN14b, Site 1143, A4:12
NN21, B10:10
NN21/CN15, Site 1143, A4:11
NN22, Site 1148, B10:5
NP21, Site 1148, B7:5
NP21/NP22 boundary, Site 1148, B10:5
NP21–NP24, Site 1148, B7:5
NP22/NP23 boundary, Site 1148, B10:5
NP23, Site 1148, A9:12
NP23–NP24, Site 1148, B7:5
NP23/P19, Site 1148, A1:29
NP24, Site 1148, A9:12; B10:6

NP24/NP25 boundary, Site 1148, B10:6
NP25, A1:34–35; A9:12; B10:10
NP25–NN1, Site 1148, B7:8
NP25/NN1 boundary, Site 1148, B10:6, 19
NP25/P22, Site 1148, A1:29
P18–P22, Site 1148, B9:9
P19, Site 1148, A9:14
P19–P21, Site 1148, B7:5
P20, Site 1148, A9:14
P21b, Site 1148, A9:14; B9:5
P22, Site 1148, B7:6, 8; B9:5

Zygrhablithus bijugatus, Site 1148, A9:12; B9:7; B10:6