INDEX TO VOLUME 185

This index covers both the *Initial Reports* and *Scientific Results* portions of Volume 185 of the *Proceedings of the Ocean Drilling Program*. References to page numbers in the *Initial Reports* are preceded by “A” followed by the chapter number with a colon (A1:) and to those in the *Scientific Results* (this volume) by “B” followed by the chapter number with a colon (B1:).

The index was prepared by Earth Systems, under subcontract to the Ocean Drilling Program. The index contains two hierarchies of entries: (1) a main entry, defined as a keyword or concept followed by a reference to the page on which that word or concept appears, and (2) a subentry, defined as an elaboration on the main entry followed by a page reference.

The index covers volume text, figures, and tables but not core-description forms (“barrel sheets”), core photographs, smear slide data, or thin section descriptions. Also excluded from the index are bibliographic references, names of individuals, and routine front matter.

The Subject Index follows a standard format. Geographical, geologic, and other terms are referenced only if they are subjects of discussion. A site chapter in the *Initial Reports* is considered the principal reference for that site and is indicated on the first line of the site’s listing in the index. Such a reference to Site 801, for example, is given as “Site 801, A3:1–128.”

The Taxonomic Index is an index relating to significant findings and/or substantive discussions, not of species names *per se*. This index covers three varieties of information: (1) individual genera and species that have been erected or emended formally, (2) biostratigraphic zones, and (3) fossils depicted in illustrations. A taxonomic entry consisting of both genus and species is listed alphabetically by genus and also by species. Biostratigraphic zones are listed alphabetically by genus; zones with letter prefixes are listed under “zones.”

SUBJECT INDEX

A

accr eletion
- crust, B1:5–6
- sediments, A1:5
acetate
- manganese reduction, B3:7
- vs. depth, B1:31; B3:11
age, argon isotopes, A3:67
age controls, deep-sea sediments, B7:1–21
age spectra, argon isotopes, B13:3–6, 10, 12
age vs. depth, argon isotopes, B13:14–16
Albian, radiolarians, B6:4
alkalinity, vs. depth, A4:113
Alps Southern, Cretaceous, B5:13
alteration
- basalt, A3:25–31
- chemical composition, A3:124
- deep-sea sediments, B7:1–21
- geochemistry, A3:27–28
- Jurassic basement, A1:18
- photograph, A1:47
- photomicrograph, A1:57–58; A4:83–84
- sediment/basement boundary, A1:25–26
- volcanic ash, A4:28–29

See also authigenesis; hydrothermal alteration; microbial alteration; silicification
alteration, gray-green
- basalt, A3:26
- photograph, A1:47
- vs. depth, A3:120–121
alteration, green, vs. depth, A3:120–121
alteration intensity, photograph, A4:110
alteration, pale green
- basalt, A3:26
- vs. depth, A3:120–121
alteration types, vs. depth, A3:120
aluminum
- deep-sea sediments, B7:5
See also barium/aluminum ratio; iron/aluminum ratio; manganese/aluminum ratio; niobium/aluminum ratio; silica/aluminum oxide ratio; strontium/aluminum ratio
aluminum/titania nium ratio, vs. depth, A4:124
aluminum logs
- lithologic units, A4:46
- vs. depth, A4:140–141
aluminum oxide
- basalt alteration, A3:17
- vs. magnesium oxide, A3:108
See also magnesium oxide/aluminum oxide ratio;
phosphorus oxide/aluminum oxide ratio; potassium oxide/aluminum oxide ratio; sodium oxide/aluminum oxide ratio

ammonium
organic matter, B3:5
redox, A4:27
vs. depth, A4:113; B1:31; B3:11
vs. magnesium, A4:118

anisotropy
microfabrics, B9:6–7, 29
vs. depth, B9:17
anisotropy, compressional wave velocity, vs. depth, A4:137

anoxic events
Jurassic basement, A1:18
Valanginian, B1:10
Aptian, radiolarians, B6:4
arc basalts, barium/sodium ratio, A1:39
argon isotopes
age, A3:67
volcanic ash, B13:1–20
Asseni–Verbeeki Zones, radiolarians, B6:4
augite phenocrysts, basalt alteration, A3:25–26
authigenesis, volcanic ash, A4:28–29

backarcs, sediments, A1:7, 26–27
bacteria
depth water, B3:1–11
photograph, A1:56
sediments, A1:5–6, 56
vs. depth, B1:31
Bajocian, lithologic units, A3:8
barite, photograph, A4:86
barium, sediment flux, A1:39
barium/aluminum ratio
sediments, A1:24
vs. depth, A1:55; A4:122
barium/sodium ratio, arc basalts, A1:39
Barremian
radiolarians, B6:3–4
sedimentation rates, A1:53
basalt
alteration, A3:25–31; A4:25–26
geochemistry, A3:15–18; A4:24
ion concentration, B11:11
magnetic inclination, A3:32–35
permeability, B11:6
petrology, A3:14–15
vs. depth, A1:48
wet and dry resistivity, B12:15–16
basalt, altered, photograph, A3:79–85
basalt, brecciated, photograph, A4:98–100
basalt/sediment contacts, alteration, A3:24–25
basalt alteration intensity, photograph, A4:110
basalt clasts, photograph, A3:87; A4:100
basalt flows, aphyric
lithologic units, A3:11–12; A4:22–23
photograph, A3:82–89

basement
age, A3:67
age and nature, B1:4–5
Jurassic, A1:15–19
lithologic units, A3:10–12; A4:22–23

See also sediment/basement boundary
Bathonian, lithologic units, A3:7
bathymetry, maps, A1:37; A3:65; A4:53, 58
bedding planes
lithologic units, A4:15–16
photograph, A4:80
Berriasian, nanofossils, A4:21
beryllium isotopes, lithologic units, B1:13
biochronology, radiolarians, B6:1–17
bioevents
nanofossils, B5:5
silicoflagellates, B4:15
biosphere
sediments, A1:5–6, 26–27, 29–30
volcanism, B1:17
biostratigraphy
diatoms, B2:1–31
nanofossils, B5:1–21
sedimentation rates, A1:53
silicoflagellates, A3:7–9; B4:1–18
Site 1149, A4:19–21
bioturbation
lithologic units, A4:15–16
photograph, A4:67, 69–70
boron, oceanic crust age, B1:15
breccia
alteration, A3:19–23, 29–31
basalt alteration, A4:25–26
composition vs. depth, A3:111
distribution, A3:77
lithologic units, A3:13
photograph, A3:114
vs. depth, A1:54; A3:110; A4:23, 111
breccia, hyaloclastite, photograph, A3:86
breccia, interpillow, photograph, A3:79, 82–83, 86–87
breccia alteration intensity, photograph, A4:110
breccia density, vs. depth, A3:22–23
Brunhes Chron, deep-sea sediments, B7:7
Brunhes/Matuyama boundary, deep-sea sediments, B7:7–9
bulk density logs, vs. depth, A4:139
burrows
lithologic units, A4:15–16
photograph, A4:80–82

calcispheres, photomicrograph, A3:118

calcite
basalt alteration, A3:25–26; A4:25–26
interpillow material, A3:24–25
Jurassic basement, A1:18
calcite (continued) • chronostratigraphy, volcanic ash

photograph, A3:113
photomicrograph, A1:47; A3:117–118; A4:83–84
vesicles, A4:24
X-ray diffraction data, A4:85, 92
calcite cement, photograph, A4:98–100
calcite veins, alteration, A3:20, 29–31
calcium
basement alteration, A4:29–30
vs. depth, A4:117
vs. magnesium, A4:118
See also potassium/calcium ratio
calcium logs
lithologic units, A4:46
vs. depth, A4:140–141
calcium oxide
deep-sea sediments, B7:6
lithologic units, B1:11
vs. age, B7:20
vs. depth, B1:26
vs. isothermal remanent magnetization, B7:14
vs. volcanic ash, B7:14
caliper logs, vs. depth, A1:48, 54; A4:138–141; B8:12
Callovian, lithologic units, A3:7
Campanian, lithologic units, A3:6
Capriolo, Cretaceous, B5:13
carbon dioxide
alteration, A3:27–28
basalt alteration, A3:16–18
Jurassic basement, A1:18
vs. depth, A3:123
carbon isotopes
lithologic units, B1:12
stratigraphy, B6:1–17
carbonate cement, photograph, A3:87
carbonate compensation depth
limestone, A3:9
sediment alteration, A4:32
carbonate content, sediments, A4:159
carbonate groundmass, photomicrograph, A4:83
carbonate matrix, photograph, A3:86
carbonate veins, vs. depth, A4:112
carbonates
diagenesis, A4:27–28
interpillow material, A3:116
vs. depth, A3:111–112
carbonates, core, vs. depth, A4:112
celadonite
basalt alteration, A4:25–26
interpillow material, A3:116
photograph, A3:87, 113, 114
photomicrograph, A3:117
vesicles, A4:24
vs. depth, A3:111
celadonite veins, alteration, A3:20–21, 29–31
Cenozoic
lithologic units, A3:6
sedimentation rates, A1:53
stratigraphy, A1:9–10
Cenozoic, upper, silicoflagellates, B4:15
Central American Seaway, closure, B4:1, 9
cerium, lithologic units, B1:13
chalcedony
crystallinity index, B10:2
interpillow material, A3:24–25
photomicrograph, A1:47; A3:117–118; B10:6, 8–9
chalcedony veins, alteration, A3:21
chalk
ion concentration, B11:10
permeability, B11:6
Upper Cretaceous, A4:17–19
chalk, radiolarian
lithologic units, A4:15–16
photograph, A4:88–91
photomicrograph, A4:83–84
chert
ion concentration, B11:11
lithologic units, A3:7
permeability, B11:6
photograph, A3:78, 82; A4:87
photomicrograph, A3:117
recrystallization, B10:1–11
seismic stratigraphy, A4:4–6
stratigraphy, A1:9–10
Upper Cretaceous, A4:17–19
X-ray diffraction data, A4:85
chert, pink, photograph, A4:78
chert, radiolarian
deposition, A3:9
lithologic units, A3:7; A4:14–16
photograph, A4:80
chilled contacts
lithologic units, A3:12; A4:96
photograph, A3:114; A4:96–97
photomicrograph, A3:94, 99–100
chloride
basement alteration, A4:29–30
vs. depth, A4:119
vs. magnesium, A4:118
chloride logs
lithologic units, A4:46–47
vs. depth, A4:140–141
chlorite, X-ray diffraction data, A4:66; B9:20
chromium
basalt alteration, A3:17
deep-sea sediments, B7:5
vs. age, B7:20
vs. depth, A3:107
Chron C1r.2r, diatoms, B2:4
Chron C1r.2r.1r, silicoflagellates, B4:8
Chron C1r.2r.2r, silicoflagellates, B4:8
Chron C2An.1n, silicoflagellates, B4:8–9
Chron C2An.1r, diatoms, B2:3
Chron C2An.2n, diatoms, B2:3
Chron C2r.2r, diatoms, B2:4
Chron C3Ar, tectonics, A4:36
Chron M4, radiolarians, B6:3
Chron M11, carbon isotopes, B6:4–5
Chron M12, carbon isotopes, B6:4–5
chronostratigraphy, volcanic ash, B13:6–7, 20
VOLUME 185 SUBJECT INDEX

chrons, magnetostratigraphy, A1:52; A4:130
clasts
- lithologic units, A3:13
- photograph, A3:83, 87
clay
- ion concentration, B11:10
- microfabrics, B9:7–9
- photograph, A4:64, 72–74
- sediments, A1:25
 - Upper Cretaceous–Paleogene, A4:18
 - X-ray computed tomography images, B12:12
 - X-ray diffraction data, A4:66, 71, 79, 85
clay, ash-bearing, lithologic units, A4:12–14
clay, ash-bearing siliceous, lithologic units, A4:11–14
clay, ashy, lithologic units, A4:11–14
clay, authigenic, volcanic ash, A4:28–29, 32
clay, biogenic silica-bearing, lithologic units, A4:11–14
clay, diatomaceous, lithologic units, A4:11–14
clay, green, alteration, A3:21
clay, pelagic
- lithologic units, A3:6; A4:12–14
- permeability, B11:6
clay, pelagic brown, deposition, A3:9
clay, silt-bearing, lithologic units, A4:11–14
clay, silty
- permeability, B11:6
- petrography, B7:4–5
clay, terrigenous + volcanic ash, vs. depth, A4:124
clay, zeolitic
- lithologic units, A4:14–15
- photograph, A4:74–75
clay minerals
- basalt alteration, A4:25–26
- deep-sea sediments, B7:4–5
- lithologic units, A4:12–17
- photomicrograph, A4:83
- ratios, B9:21
clay platelets
- electron microscopy, B9:16, 22–26
- microfabrics, B9:8–9
- origin, B9:9–12
clinoxytilolite, microfabrics, B9:7, 9
cobbles, photomicrograph, A4:65
coercivity
- deep-sea sediments, B7:6
- vs. depth, B7:13
color change
- lithologic units, A4:15–16
- photograph, A4:68–70, 88
compaction
- microfabrics, B9:11–12
- photograph, A4:81
compressional wave velocity
- basalt, A3:35–38
- lithologic units, A4:40
- vs. depth, A4:135, 137, 181–185
concentration-dependent parameters, deep-sea sediments, B7:6–7
connectors
- electron microscopy, B9:23
- microfabrics, B9:9–12
consolidation, vs. time, B11:8
cooling units
- basement, A3:10–12
- vs. depth, A1:48; A3:69–70
core–log correlation
- seismic data, B8:1–14
- well-logging, A3:39–41
correlation
- biochronology, B6:15
- nanofossils, B5:14–15
 - “cow model,” sediments, A1:7, 38
Cretaceous
- microfabrics, B9:7
- nanofossils, B5:1–21
- paleolatitude, A1:12
- radiolarians, B6:1–17
- seismic stratigraphy, A4:4–6
- stratigraphy, A1:9–10
Cretaceous, Lower
- nanofossils, B5:4–5
- paleolatitude, A4:37
- seafloor subduction, A1:20–28
- sedimentary rocks, B10:1–11
Cretaceous, mid-, stratigraphy, A1:11–12
Cretaceous, Upper, lithologic units, A4:17–19
crust
- Jurassic, A1:28–29, 60; B1:1–35
- magnetic properties, B1:6–8
- Mesozoic, A1:30
- recycling, A1:28–29
- structure and accretion, B1:5–6
- subduction zones, A1:1–63
- volcanism, B1:25
crust, oceanic
- petrology, B1:8
- seismic stratigraphy, B8:6–8
crust, oldest, ocean basins, B1:35
crystallinity index
- silica, B10:2
- vs. porosity, B10:10
crystallization, silica, B10:1–11
Curie temperature, deep-sea sediments, B7:6
cyclic sedimentation, deep-sea sediments, B7:8
D
deepwater, bacteria, B3:1–11
deformation, photograph, A4:72–73
demagnetization, alternating-field, lithology, A4:127–128
density
- basalt, A3:35–36
- core–log correlation, B8:3–8
- vs. depth, B8:11–12; B11:14
- density, GRAPE
 - basalt, A3:36
 - lithologic units, A4:39
-density, wet bulk
 - vs. average velocity, A4:134
 - vs. depth, A4:132–133, 135–136, 181
 - vs. porosity, A4:134
VOLUME 185 SUBJECT INDEX

density, wet bulk (continued) • halite, X-ray diffraction data

vs. X-ray computed tomography, B12:14
density logs
 basalt, A3:43; B1:24
 lithologic units, A4:45
See also bulk density logs
deposition, lithologic units, A3:9; A4:17–19
diabase, photograph, A3:115
diagenesis
 biogenic silica, A4:27–28
carbonates, A4:27–28
 deep-sea sediments, B7:5
 photomicrograph, A4:83–84
diatom Event C, Pliocene–Pleistocene, B2:3, 5
diatom Event D, Pliocene–Pleistocene, B2:3, 5
diatom frustules, lithologic units, A4:11–12
diatoms
 abundance, B2:3, 18–22
 biostratigraphy, B2:1–31
 lithologic units, A4:15–16
 photomicrograph, A4:83
 stratigraphic ranges, B2:15
 vs. age, B2:14
 vs. depth, B2:14
diffusivity
 mass transfer, B11:2–4, 14
 vs. porosity, B11:12
dipmeter analysis, vs. depth, A4:142–144
dissolution seams
 lithologic units, A4:15–16
 photograph, A4:89
 dolomite, photograph, A4:86
downhole measurements
 Site 801, A3:38–47
 Site 1149, A4:41–47

E
East Mariana Basin, stratigraphy, A1:9–10
eccentricity
 deep-sea sediments, B7:8
 volcanic ash, B7:19
Eocene, paleolatitude, A4:36
Eocene, upper, magnetic polarity, A4:36
eolian dust
 deep-sea sediments, B7:6–8
 geochemistry, B1:16
 Pleistocene, B1:10
 vs. terrigenous material, B7:14

F
faults, normal, photograph, A4:72–73
fecal pellets, microfabrics, B9:8
feldspar
 deep-sea sediments, B7:4–5
 lithologic units, A4:12
 X-ray diffraction data, A4:66, 71; B9:20
 feldspar laths, photomicrograph, A1:57–58; A3:90
 ferrimagnetic minerals, microfabrics, B9:6–7
 filaments, interpillow material, A3:25
 fish remains, photograph, A4:86
flocculation, microfabrics, B9:9
fluid flux, basalt alteration, A3:30–31
fluid inclusions, photomicrograph, A3:106
foliation, vs. depth, B9:17
foraminifers, planktonic, photomicrograph, A4:65
Formation MicroScanner imaging
 basalt, A3:45–46; B1:24
 lithologic units, A4:43, 47
 vs. depth, A4:142–144
fractures
 alteration, A3:20–21
 lithologic units, A3:13
 photomicrograph, A1:57–58

G
gamma-ray logs
 basalt, A3:42; B1:24
 lithologic units, A4:44
 vs. depth, A1:45, 48, 54; A3:70; A4:138
gamma rays
 basalt, A3:36–37
 lithologic units, A4:39–40
 potassium budget, A3:55–60
 vs. depth, A4:135–136
gases, headspace
 geochemistry, A3:47; A4:26–30
 methane, A4:174
geochemical flux, sedimentation, B1:8–13
geochemical logs
 lithologic units, A4:46–47; B1:11–13
 vs. depth, A4:140–141
geochemical sinks, subduction zones, B1:13–17
geochemical stratigraphy, lithologic units, B1:11–13
geochemistry
 basement, A4:23–24
 deep-sea sediments, B7:5
 Jurassic basement, A1:16–19
 pore water, A3:47
 sediments, A1:24
 Site 801, A3:15–18
 subduction zones, A1:1–63
glaciochronology, argon isotopes, B13:1–20

H
halite, X-ray diffraction data, A4:66, 71, 79, 92
halos
alteration, A1:25–26, 29–31; A4:25–26
chemical composition, A3:126–127
photograph, A3:113, 115; A4:110
photomicrograph, A4:84
vein alteration, A3:26–27
vs. depth, A1:48, 54; A3:122; A4:111

Hauterivian
nannofossils, A4:21; B5:4–5
radiolarians, B6:3–6
sedimentation rates, A1:53
unconformities, B5:5

Hauterivian, upper, lithologic units, A4:15–16

hyaloclastite
alteration, A3:21–23
basalt alteration, A3:26; A4:25–26
lithologic units, A3:13
photograph, A3:114; A4:101–102
photomicrograph, A1:57–58

hyaloclastite, altered
chemical composition, A3:125
photograph, A3:84, 86

hyaloclastite breccia, photograph, A3:80, 86

hydrothermal alteration
Jurassic basement, A1:18; A3:30–31
photograph, A3:81
photomicrograph, A3:117
hydrothermal units, lithologic units, A3:13, 30–31

ichthyoliths
biostratigraphy, A3:7
sedimentation rates, A4:37

ichthyoliths, assemblages
round with line across, Site 801, A3:7
five peaks flared base, Site 801, A3:7
five peaks irregular base, Site 801, A3:7
flexed-triangle shallow in base, Site 801, A3:7
narrow triangle ragged base, Site 801, A3:7
plain ellipse, Site 801, A3:7
polygonal cavity, Site 801, A3:7
polygonal cavity long rays, Site 801, A3:7
rectangular saw-toothed, Site 801, A3:7
skewed four or five peaks, Site 801, A3:7
three narrow peaks, Site 801, A3:7
triangle with base angle, Site 801, A3:7
triangle with high inline apex, Site 801, A3:7
triangle with triangular projection, Site 801, A3:7
igneous petrology, basement, A3:14–15; A4:23–24
igneous rocks
microbiology, A4:48
petrology, A3:14–15; A4:23–24, 160–166
X-ray computed tomography, B12:1–18
illite
microfabrics, B9:7
X-ray diffraction data, A4:71; B9:20
inclusions, photomicrograph, A3:105
index properties
basalt, A3:36
lithologic units, A4:38–39; B12:18

iron
hydrothermal units, A3:13
Jurassic basement, A1:18
redox, A4:27
vs. depth, A4:114
iron/aluminum ratio
lithologic units, B1:12–13
oceanic crust age, B1:14–15
vs. depth, B1:27
iron logs
lithologic units, A4:46
vs. depth, A4:140–141
iron oxide
alteration, A1:25–26
basalt, A4:24
vs. magnesium oxide, A4:109
iron oxyhydroxide
deep-sea sediments, B7:5
interpillow material, A3:24–25, 116
photograph, A3:113
photomicrograph, A3:117–118
vesicles, A4:24
vs. depth, A3:111–112
iron oxyhydroxide veins
alteration, A3:21
vs. depth, A4:112
Izu arc, stratigraphy, A1:28–29
Izu-Bonin-Mariana margin, geochemistry, B1:15–17
Izu-Bonin Trench
resistivity, B12:1–18
stratigraphy, A1:11–12, 28
Izu-Mariana subduction system, summary, A1:1–63

Jurassic
basement, A1:15–19
crust, B1:1–35
seismic stratigraphy, A4:4–6
stratigraphy, A1:9–10
Jurassic, Middle, lithologic units, A3:7
Jurassic Quiet Zone
geochemistry, A1:1–63
magnetic anomalies, A1:19–20
magnetic inclination, A3:34–35
magnetic properties, B1:6–8

K
kaolinite
microfabrics, B9:7
X-ray diffraction data, A4:66; B9:20
Kuroshio Current, silicoflagellates, B4:8–9

L
laminations, photograph, A4:74–75
laminations, calcareous, photomicrograph, B10:9
laminations, wavy discontinuous, photograph, A4:81, 86
lanthanum. See samarium/lanthanum ratio; thorium/lanthanum ratio
lava flows
Jurassic Quiet Zone, A1:19–20
See also sediment/lava interface
lead/uranium ratio, vs. thorium/uranium ratio, B1:28
lead isotopes
arc basalts, A1:39
sediment recycling, B1:29
vs. depth, B1:27
lepispheres, photomicrograph, B10:5, 7
limestone, radiolarian deposition, A3:9
lithologic units, A3:7
liithium
oceanic crust age, B1:15
volcanic ash, A4:28–29
vs. depth, A4:116
lithologic units
basement, A3:10–12; A4:11–17, 22–23, 93–95, 158
microfabrics, B9:7–9
Unit I, A1:22–23; A3:6; A4:11–12
Unit II, A1:23; A4:12–14
Unit III, A1:23; A4:14–15
Unit IV, A1:23; A4:15–16
Unit V, A4:16–17
Unit VI, A3:7
vs. depth, B8:11–12
wet and dry resistivity, B12:17
lithostratigraphy
seismic stratigraphy, A4:4–6
Site 801, A3:5–7
Site 1149, A4:11–17, 61

M
Maasstrichtian, lithologic units, A3:6
Magellan Seamounts, stratigraphy, A1:9–10
magnesium
basement alteration, A4:29–30
Jurassic basement, A1:18
vs. ammonium, A4:118
vs. calcium, A4:118
vs. chloride, A4:118
vs. depth, A4:117
vs. potassium, A4:118
vs. sodium, A4:118
vs. strontium, A4:118
magnesium oxide
basalt, A4:24
basalt alteration, A3:16–18
vs. aluminum oxide, A3:108
vs. depth, A1:46; A3:107
vs. iron oxide, A4:109
magnesium oxide/aluminum oxide ratio, vs. depth, A4:123
magnetic anomalies
Jurassic Quiet Zone, A1:19–20, 30
tectonics, A4:2–3, 58
magnetic Anomaly M11
Gondwana, A1:30
nannofossils, A4:21
paleolatitude, A4:37
tectonics, A4:3, 58
magnetic Anomaly M12, tectonics, A4:3, 54
magnetic Anomaly M13, tectonics, A4:3, 54
magnetic declination, vs. depth, A4:129; B7:17
magnetic fabric, microfabrics, B9:6–7
magnetic field logs, basalt, A3:44–45
magnetic inclination
basalt, A3:32–35
deep-sea sediments, B7:5–8
lithologic units, A4:34–37
microfabrics, B9:6–7
vs. depth, A1:5, 45; A4:126, 129–130; B7:17–18; B9:17
magnetic lineations, tectonics, A4:2–3, 57
magnetic logs, vs. depth, A1:45
magnetic polarity
deep-sea sediments, B7:7
tectonics, A4:35–37
vs. depth, B7:13
magnetic properties, crust, B1:6–8
magnetic reversals, stratigraphy, A1:52
magnetic signal, deep-sea sediments, B7:5–6
magnetic susceptibility
basalt, A3:31–32, 37
lithologic units, A4:39
microfabrics, B9:6–7, 29
vs. depth, A3:128; A4:135–136; B9:17
magnetic susceptibility, low, vs. depth, B9:18
magnetic susceptibility, volume temperature, B7:16
vs. anhysteretic remanent magnetization, B7:14
vs. depth, B7:13
magnetic susceptibility anisotropy. See anisotropy
magnetite
basalt, A3:14–15
deep-sea sediments, B7:5–6
photomicrograph, A4:104
magnetite, skeletal, photomicrograph, A3:91
magnetostratigraphy
chrons, A1:52
diatoms, B2:4
lithologic units, A4:35–37
lithology, A4:129–130

major elements
Jurassic basement, A1:18–19
sediments, A4:176–177

manganese
reduction, B3:1–11
vs. depth, A4:114; B1:31; B3:11
manganese/aluminum ratio, vs. depth, B7:13, 18
manganese/phosphorus ratio, lithologic units, B1:13
manganese micronodules, lithologic units, A3:6
manganese oxide, redox, A4:27
manganese oxide/aluminum oxide ratio
sediment alteration, A4:31
vs. depth, A4:120
manganese oxyhydroxide, deep-sea sediments, B7:5
marcasite, basalt alteration, A3:25–26
Mariana arc, stratigraphy, A1:28–29
Mariana Trench
Jurassic crust, B1:1–35
sediments, A1:9–10
marine isotope excursions, radiolarians, B6:6
marine sediments, bacteria, B3:1–11
marl
ion concentration, B11:10
permeability, B11:6
marl, calcareous, photograph, A4:89–91
marl, nannofossil, carbon isotopes, B6:4–5
marl, radiolarian, photograph, A4:81–82
marlstone, radiolarian, lithologic units, A4:15–16
marlstone, radiolarian-bearing calcareous
photograph, A4:86
photomicrograph, A4:83–84
marlstone, recrystallized calcareous, lithologic units,
A4:16–17
mass accumulation rates
carbonate compensation depth, A3:9
See also sedimentation rates
mass transfer, subduction, B11:1–14
Matuyama Chron
deep-sea sediments, B7:7
See also Brunhes/Matuyama boundary

Mesozoic
oceanic crust, B1:8
paleolatitude, A1:41
sediments, A1:6–7
metals, sediment alteration, A4:31
methane
headspace gases, A4:174
vs. depth, B1:31; B3:11
methanogenesis, bacteria, B3:5
microbial alteration, volcanic glass, A3:50–51
microbiology, A3:47–55; A4:47–49, 188
microbreccia, photograph, A4:100
microclinoptylholite, electron microscopy, B9:26
microcrystals, microfabrics, B9:9
microfabrics
changes, B9:1–29
electron microscopy, B9:16, 22–26
photomicrograph, B9:16, 18, 22–26

microlites
basalt alteration, A3:26
photomicrograph, A3:99
micronodules. See manganese micronodules
microplumes, microfabrics, B9:8–9
microspheres, fluorescence, vs. depth, A4:190
microstructures, microfabrics, B9:8–9
mineralogy, petrography, A4:168

Miocene
lithologic units, A3:6
paleoceanography, B1:10
paleolatitude, A4:36
sedimentation rates, A1:53; A4:37
silicoflagellates, B4:5
Miocene, upper, lithologic units, A4:11–12
Miocene–Pliocene interval, volcanic ash, B1:10
molding, electron microscopy, B9:24
motting, basalt alteration, A4:25–26

N
Nadezhda Basin
Jurassic crust, B1:1–35
silicoflagellate biostratigraphy, B4:1–18
site description, A4:1–190
stratigraphy, A1:9–10, 21–28
nannofossils
photomicrograph, A4:83
sedimentation rates, A1:53; A4:131
vs. depth, B5:13
zone correlation, B5:14
nannofossils, calcareous
biostratigraphy, A4:20–21; B5:1–21
distribution, B5:16–20
Neogene, terrigenous component, A4:18–19
niobium, basalt, A4:24
niobium/aluminum ratio
sediments, A1:24
vs. depth, A4:124
nitrogen isotopes
lithologic units, B1:12
vs. depth, B1:27
nontronite, basalt alteration, A3:26

O
obliquity, volcanic ash, B7:19
oceanic anoxic events, Valanginian, B1:10
Oligocene, lithologic units, A3:6
Oligocene, lower, magnetic polarity, A4:36
olivine
basalt, A3:14–15
photomicrograph, A3:92, 98
olivine, altered euhedral, photomicrograph, A3:105
olivine, euhedral, photomicrograph, A3:94
olivine, groundmass, vs. depth, A3:101
olivine glomerocrysts, basalt, A4:23–24
olivine phenocrysts
basalt, A4:24
basalt alteration, A3:25–26
photomicrograph, A3:106; A4:106, 108
P

Pacific Ocean NW, microfabrics, B9:1–29
Pacific Ocean W
chronostratigraphy, B13:6–7, 20
Jurassic crust, B1:1–35
stratigraphy, A1:9–10
Pacific plate
basement, B1:1–8
sediments, A1:7–8
palagonitization, basalt alteration, A3:26
paleoceanography
Mesozoic, B1:9–11
Miocene, B1:10
paleoclimatology
Mesozoic, B1:9–11
silicoflagellates, B4:1–11
paleoecology, silicoflagellates, B4:9
paleoenvironment, seismic stratigraphy, B1:9–11
paleooequator, Cretaceous, A1:12
paleolatitude
Cretaceous, A1:12
magnetic polarity, A4:36–37
Mesozoic, A1:41
paleomagnetism
deep-sea sediments, B7:7
Site 801, A3:31–35
Site 1149, A4:34–37
paleoredox
deep-sea sediments, B7:7
See also redox
palgyrskite, X-ray diffraction data, A4:14, 71, 79
palynomorphs
electron microscopy, B9:25
microfabrics, B9:8–9
paramagnetic minerals, microfabrics, B9:6–7
peds
electron microscopy, B9:23
microfabrics, B9:8–9
origin, B9:9–12
pellets, microfabrics, B9:9–12
perlforocarbon tracers, sediments, A4:145, 189
permeability
mass transfer, B11:2–4, 14
vs. depth, B11:13
vs. porosity, B11:12
petrography
deep-sea sediments, B7:4–5
mineralogy, A4:168
petrology, Mesozoic crust, A1:30
phacocysts
photomicrograph, A3:94, 106
size vs. depth, A4:105
plabsite
basalt alteration, A3:26
lithologic units, A3:6
phosphate
redux, A4:27
vs. depth, A4:113
phosphorus
See manganese/phosphorus ratio
phosphorus oxide/aluminum oxide ratio
sediment alteration, A4:31
vs. depth, A4:120
phyllosilicates, alteration, A3:19–23
physical properties
core-log correlation, B8:2–3
microfabrics, B9:6
Site 801, A3:35–38
Pigafetta Basin
geochemistry, A1:1–63
Jurassic crust, B1:1–35
site description, A3:1–128
pillow margins
basalt, A3:14–15
photograph, A3:79–84
photomicrograph, A1:57–58; A3:118
pillow rim/sediment contacts, alteration, A3:24–25
pillow rims
basalt alteration, A3:26; A4:25–26
lithologic units, A3:11–12
photograph, A3:80, 85; A4:96–97, 103
photomicrograph, A3:94, 96; A4:106
pillow zones, Jurassic basement, A1:17
plagioclase
basalt, A3:14–15
photomicrograph, A3:97
plagioclase, euhedral, photomicrograph, A4:106
plagioclase, groundmass, vs. depth, A3:101
plagioclase, twinned euhedral, photomicrograph, A3:103
plagioclase fibers, photomicrograph, A3:100
plagioclase glomerocrystals, photomicrograph, A3:96
plagioclase laths, photomicrograph, A3:90, 93, 98
plagioclase laths, skeletal, photomicrograph, A4:104
plagioclase microlites, photomicrograph, A3:99
plagioclase phenocrysts
basalt, A4:24
basalt alteration, A3:25–26
distribution in basalt, A3:104
photomicrograph, A3:94; A4:106–107
vs. depth, A3:102
platelets, electron microscopy, B9:23

Pleistocene
 - deep-sea sediments, B7:1–21
 - diatoms, B2:1–31
 - eolian dust, B1:10
 - sedimentation rates, A1:53; A4:37
 - See also Miocene–Pleistocene interval

Pleistocene, lower, silicoflagellates, B4:9

Pleistocene, upper, lithologic units, A4:11–12

Pliocene
 - diatoms, B2:1–31
 - lithologic units, A3:6; A4:11–12
 - sedimentation rates, A1:53; A4:37

Pliocene, lower, silicoflagellates, B4:1–18

Pliocene, middle, silicoflagellates, B4:9

Pliocene/Pleistocene boundary, silicoflagellates, B4:9

Pliocene–Quaternary interval, silicoflagellates, B1:10

porcellanite
 - ion concentration, B11:11
 - permeability, B11:6
 - recrystallization, B10:1–11
 - seismic stratigraphy, A4:4–6
 - stratigraphy, A1:9–10

porcellanite, porous, photograph, A4:78

porcellanite, radiolarian
 - lithologic units, A4:14–16
 - photograph, A4:74–77

pore water
 - microbial alteration, A3:53–54

porosity
 - basalt, A3:35–36
 - vs. average velocity, A4:134
 - vs. depth, A4:132–133, 181; B10:10
 - vs. diffusivity, B11:12
 - vs. permeability, B11:12
 - vs. silica crystallinity index, B10:10
 - vs. wet bulk density, A4:134

potassium
 - basement alteration, A4:29–30
 - Jurassic basement, A1:18
 - volcanic ash, A4:28–29
 - vs. depth, A4:116
 - vs. magnesium, A4:118
 - potassium/calcium ratio, volcanic ash, B13:4–6, 11, 13
 - potassium budget, natural gamma rays, A3:55–60

potassium logs
 - basalt, A3:42
 - vs. depth, A4:138

potassium oxide
 - alteration, A3:27–28, 31
 - basalt alteration, A3:16–18
 - Jurassic basement, A1:18–19
 - sediments, A1:24
 - vs. depth, A1:49; A3:123
 - potassium oxide/aluminum oxide ratio, vs. depth, A4:14, 123

precession, volcanic ash, B7:19

preferred orientation
 - electron microscopy, B9:24
 - microfabrics, B9:7–9

pressure solution, microfabrics, B9:9

provenance, deep-sea sediments, B7:1–21

pseudomorphs, photomicrograph, A3:117

pumice
 - lithologic units, A4:11–12
 - photograph, A4:64
 - pumice cobbles, photomicrograph, A4:65

pyrite
 - basalt alteration, A3:25–26
 - Jurassic basement, A1:18
 - vs. depth, A3:111–112

pyrite veins, alteration, A3:21

pyroxene, anhedral, photomicrograph, A4:104

pyroxene, groundmass, vs. depth, A3:101

pyroxene, photomicrograph, A3:97

pyroxene, subhedral, photomicrograph, A3:90, 98

pyroxene phenocrysts
 - basalt, A4:24
 - vs. depth, A3:102

Q

quartz
 - deep-sea sediments, B7:4–5
 - interpillow material, A3:24–25
 - lithologic units, A4:12
 - photograph, A3:114
 - photomicrograph, A4:83; B10:5–6, 8–9
 - recrystallization, B10:1–11
 - vs. depth, A3:111–112
 - X-ray diffraction data, A4:66, 71, 79, 85, 92; B9:20

quartz, crystalline, photomicrograph, A3:118

quartz veins, alteration, A3:21

Quaternary
 - lithologic units, A3:6
 - silicoflagellates, B4:1–18
 - See also Pliocene–Quaternary interval

quenched texture, photomicrograph, A3:100

R

radiolarian tests
 - electron microscopy, B9:22, 24
 - microfabrics, B9:9
 - photomicrograph, B10:5, 7–8

radiolarians
 - biochronology, B6:1–17
 - lithologic units, A4:15–16
 - occurrence, B6:16–17
 - photomicrograph, A3:68, 117; A4:83
 - radiolarite, seismic stratigraphy, A4:4–6
 - rare earth elements, lithologic units, B1:11
 - recrystallization
 - photograph, A3:78–83
 - photomicrograph, A4:84
 - silica, B10:1–11
 - recycling, crust, A1:28–29
 - redox
 - organic matter, A4:27
 - See also paleoredox

reduction, manganese, B3:1–11
reference site, Jurassic basement, A1:15–19
reflection, core-log correlation, B8:4–8
reflection coefficient, vs. depth, B8:11
remanent magnetization, anhysteretic
depth-sea sediments, B7:5–6
vs. age, B7:20
vs. depth, B7:13, 18
vs. volume magnetic susceptibility, B7:14
remanent magnetization, isothermal
acquisition, B7:15
depth-sea sediments, B7:5–6
vs. calcium oxide, B7:14
remanent magnetization, natural
basalt, A3:32–35
deep-sea sediments, B7:5–6
lithologic units, A4:34–37
vs. depth, B7:13, 17
resistivity, dry
basalt, B12:15–16
lithologic units, B12:17
resistivity, lithologic units, B12:1–18
resistivity, wet
basalt, B12:15–16
lithologic units, B12:17
vs. depth, B12:9
resistivity logs
basalt, A3:42–43; B1:24
lithologic units, A4:45
vs. depth, A1:45, 48, 54; A3:70; A4:139; B8:12
reworking, diatoms, B2:4
rhodochrosite, deep-sea sediments, B7:5, 8–9
Romanus–Missilis Zone, radiolarians, B6:4
rubidium
alteration, A3:27–29, 31
vs. depth, A3:123
S
salinity, vs. depth, A4:119
samarium/lanthanum ratio, vs. thorium/lanthanum ratio, B1:29
saponite
basalt alteration, A4:25–26
Jurassic basement, A1:18
photograph, A3:115
photomicrograph, A1:47; A3:92
vesicles, A4:24
vs. depth, A3:111–112
saponite, core, vs. depth, A4:112
saponite cement, photograph, A3:84, 114
saponite matrix, photograph, A3:86
saponite veins
alteration, A3:20, 29–31
vs. depth, A4:112
seafloor spreading, Mesozoic crust, A1:30
secondary minerals
alteration, A3:29–31
Jurassic basement, A1:18
photomicrograph, A1:47
sediment/basement boundary, alteration, A1:25–26;
A4:22–23, 30–34
sediment/lava interface, photograph, A3:119
sediment recycling, geochemistry, B1:15–17, 29
sedimentary rocks, siliceous/calcareous pelagic, silica
crystallization, B10:1–11
sedimentary rocks, X-ray computed tomography, B12:1–18
sedimentation
geochemical flux, B1:8–13
See also cyclic sedimentation
sedimentation, biogenic, sediment alteration, A4:31–32
sedimentation, pelagic, Upper Cretaceous, A4:17–19
sedimentation, siliceous, subsidence, A4:18
sedimentation rates
age vs. depth, B7:21
bacteria, B3:1–11
magnetostratigraphy, A1:53; A4:35, 37–38, 131
Site 1149, A4:37–38
See also mass accumulation rates
sedimentology, A3:5–9; A4:10–19
sediments
geochemistry, A1:1–63; A4:30–34, 176–177
interpillow material, A3:24–25
photograph, A3:78, 82–83
X-ray diffraction data, A4:66
X-ray fluorescence data, A4:175
See also basalt/sediment contacts; pillow rim/sediment contacts
sediments, deep-sea, Pleistocene, B7:1–21
sediments, hemipelagic, microfabrics, B9:1–29
sediments, pelagic, microfabrics, B9:1–29
sediments, recrystallized, photograph, A3:78–83
sediments, soft calcareous, photograph, A4:80
seismic data, core-log correlation, B8:1–14
seismic facies, seismic stratigraphy, B8:7–8
seismic profiles
core-log correlation, B8:2
Site 801, A1:42; A3:66
Site 1149, A1:42, 50; A4:55–56, 60; B8:13
seismic stratigraphy
core-log correlation, B8:6–8
crust, B1:9
lithostratigraphy, A4:4–6
seisograms, synthetic, core-log correlation, B8:4–8
selenium isotopes
lithologic units, B1:12
vs. depth, B1:27
shear strength
lithologic units, A4:41
vs. depth, A4:132, 187
shrinkage. See volume shrinkage
silica
crystallization, B10:1–11
deep-sea sediments, B7:5
hydrothermal units, A3:13, 29–31
interpillow material, A3:116
lithologic units, B1:11
photomicrograph, A4:83–84
vs. depth, A4:115, 121; B1:26
silica, biogenic, diagenesis, A4:27–28
silica/aluminum oxide ratio
sediment alteration, A4:31
volcanic ash, A4:32–34
vs. depth, A1:55; A4:121
siliceous cement, photograph, A3:81–82
siliceous microfossils
deep-sea sediments, B7:4–5
lithologic units, A4:11–12
mass accumulation rates, A3:9
photomicrograph, A4:83–84
silicification
photograph, A3:81
photomicrograph, A4:83–84
silicoflagellates
biostratigraphy, B4:1–18
distribution, B4:1–18
Pliocene–Quaternary interval, B1:10
silicon logs
lithologic units, A4:46
vs. depth, A4:140–141
sills, stratigraphy, A1:9–10
silt, clayey, petrography, B7:4–5
silt, clayey zeolitic, lithologic units, A4:14–15
Site 194, lithology, A1:40; A4:54
Site 195, lithology, A1:40; A4:54
Site 196, lithology, A1:40; A4:54
Site 197, lithology, A1:40; A4:54
Site 801, A3:1–128
background and objectives, A3:1–3
basement alteration, A3:18–31
basement stratigraphy, A3:10–14
bathymetry, A3:65
biostratigraphy, A3:7–9
downhole measurements, A3:38–47
electrical resistivity, B12:1–18
geochemical reference site, B1:13–15
headspace gas, A3:47
igneous petrology and geochemistry, A3:14–18
Jurassic crust, B1:1–35
lithology, A1:40
biostratigraphy, A1:44, 59; A3:5–7
microbiology, A3:47–55
operations, A3:3–5
paleomagnetism, A3:31–35
physical properties, A3:35–38
pore water chemistry, A3:47
potassium budget by natural gamma rays, A3:55–60
principal results, A1:15–20
sedimentology, A3:5–9
site description, A3:1–128
stratigraphy, A1:10–11
well-logging, A1:45
Site 1149, A4:1–190
background and objectives, A4:1–2
bacteria, B3:1–11
basement alteration, A4:25–26
basement stratigraphy, A4:21–23
biostratigraphy, A4:19–21
core-log correlation, B8:1–14
coriing summary, A4:146–157
diatom biostratigraphy, B2:1–31
downhole measurements, A4:41–47
Early Cretaceous seafloor subduction, A1:20–28
electrical resistivity, B12:1–18
geochemical reference site, B1:15–17
geochronology, B13:1–20
igneous petrology and geochemistry, A4:23–24
Jurassic crust, B1:1–35
lithologic units, A4:158
lithology, A1:40; A4:54
lithostratigraphy, A1:51, 59, 61; A4:11–17
mass transfer properties, B11:1–14
microbiology, A4:47–49
microfabric changes, B9:1–29
nannofossil biostratigraphy, B5:1–21
operations, A4:6–10
paleomagnetism, A4:34–37
physical properties, A4:38–41
Pleistocene deep-sea sediments, B7:1–21
pore water and headspace gas chemistry, A4:26–30
radiolunar biochronology, B6:1–17
sedimentary geochemistry, A4:30–34
sedimentation rates, A4:37–38
sedimentology, A4:10–19
silica crystallization, B10:1–11
silicoflagellate biostratigraphy, B4:1–18
site description, A4:1–190
site geophysics, A4:2–6
stratigraphy, A1:11–12
Site 1179, geochronology, B13:1–20
smectite
basalt alteration, A3:25–26, 29–31
microfabrics, B9:7
photomicrograph, A1:47; A3:117; A4:107
X-ray diffraction data, A4:92
sodium
basement alteration, A4:29–30
volcanic ash, A4:29
vs. depth, A4:116
vs. magnesium, A4:118
See also barium/sodium ratio
sodium oxide. See thorium/sodium oxide ratio
sodium oxide/aluminum oxide ratio, vs. depth, A4:123
spheres, photomicrograph, A4:83
spherules, interpillow material, A3:25
stratigraphy
basement, A3:10–14, 71–76; A4:21–23, 93–95
carbon isotopes, B6:1–17
Jurassic basement, A1:16–19
sediments, A1:9–10
strontium
diagenesis, A4:28
sediments, A1:24
volcanic ash, A4:28–29
vs. depth, A4:115
vs. magnesium, A4:118
strontium/aluminum ratio, vs. depth, A4:122
strontium isotopes, oceanic crust age, B1:14–15
“subduction factory,” models, A1:35; B1:33
subduction zones
geochemical sinks, B1:13–17
Izu-Mariana subduction system, A1:1–63
Lower Cretaceous, A1:20–28
mass transfer, B11:1–14
volcanism, B1:17–18
subsidence, sedimentation, A4:18
sulfate, vs. depth, A4:114; B1:31; B3:11
sulfide globules, basalt alteration, A3:25–26
sulfides, photomicrograph, A1:47

T
tectonics, magnetic anomalies, A4:2–3
tektites, lithologic units, A3:6
temperature
basalt, A3:45
microbial alteration, A3:52–53
terrigenous component
Neogene, A4:18–19
petrography, B7:4–5
vs. depth, B7:13
vs. eolian dust, B7:14
textures
photomicrograph, A1:57–58
silica crystallization, B10:1–11
thermal conductivity
basalt, A3:38
lithologic units, A4:40–41
vs. depth, A4:132–133, 186
tholeiite
basement, B1:4–5
Jurassic basement, A1:17–19
thorium
sediment flux, B1:30
vs. depth, B1:26
vs. thorium/sodium oxide ratio, B1:30
thorium/lanthanum ratio
lithologic units, B1:11
sediment recycling, B1:16
vs. depth, B1:27
vs. samarium/lanthanum ratio, B1:29
thorium/sodium oxide ratio, vs. thorium sediment flux, B1:30
thorium/uranium ratio, vs. lead/uranium ratio, B1:28
thorium logs
basalt, A3:42
vs. depth, A4:138
tin isotopes
lithologic units, B1:12
vs. depth, B1:27
titanite
basalt alteration, A3:26
photomicrograph, A1:47
titanium. See aluminum/titanium ratio
titanomagnhemite, basalt alteration, A3:25–26
titanomagnetite, basalt alteration, A3:25–26
trace elements
Jurassic basement, A1:18–19
sediments, A4:176–177
traveltime, seismic stratigraphy, B8:7–8
traveltime, two-way, vs. depth, B8:11
Turonian, nanofossils, B5:5

U
unconformities, Hauterivian, B5:5
Unitary Association Zones, radiolarians, B6:15
uranium
vs. depth, B1:28
See also lead/uranium ratio; thorium/uranium ratio
uranium isotopes, oceanic crust age, B1:14–15
uranium logs
basalt, A3:42
vs. depth, A4:138

V
Valanginian
anoxic events, B1:10
nanofossils, A4:21; B5:5–6
oceanic anoxic events, B1:10
radiolarians, B6:1–17
sedimentation rates, A1:53
Valanginian, upper, lithologic units, A4:15–17
variolitic texture, photomicrograph, A1:57–58
vein density, vs. depth, A3:22–23
vein width, vs. depth, A1:48, 54; A3:110; A4:111
veins
alteration, A3:19–23, 20–31
basalt alteration, A4:25–26
chemical composition, A3:126
composition vs. depth, A3:111–112
crosscutting relationships, A3:23
electron microscopy, B9:26
lithologic units, A3:12; A4:15–16
photograph, A3:79, 113, 115
photomicrograph, A4:84
types, A4:170–171
vs. depth, A1:48, 54; A3:110; A4:111
veins, chalcedony-filled, photograph, A4:78
veins/meter ratio, vs. depth, A3:110; A4:111
velocity
core-log correlation, B8:4
See also compressional wave velocity
velocity, average
vs. porosity, A4:134
vs. wet bulk density, A4:134
velocity logs
basalt, A3:43–44; B1:24
lithologic units, A4:45–46
vs. depth, A4:139; B8:11–12
vesicles
basalt, A4:24
basalt alteration, A3:25–26
lithologic units, A3:12
photograph, A3:88–89, 113
volcanic arcs, “subduction factory,” A1:35
volcanic ash
alteration, A4:28–29
argon isotopes, B1:3–20
deep-sea sediments, B7:4–5
lithologic units, A4:11–12
Miocene–Pleistocene interval, B1:10
photograph, A4:62–63, 69–70
sediment alteration, A4:32–34
sediments, A1:25
vs. calcium oxide, B7:14
vs. depth, B7:13
volcanic ash, dispersed
cycles, B7:19
vs. depth, A4:32–34, 125
volcanic ash, radiolarian-bearing clayey, lithologic units,
A4:11–14
volcanic glass
basalt alteration, A3:26
Jurassic Quiet Zone, A1:19–20
lithologic units, A3:12; A4:11–12
location, A4:167
microbial alteration, A3:50–51
photograph, A4:72
photomicrograph, A1:57–58
volcanic glass, altered, photograph, A3:80, 114
volcanic glass, devitrified
amount in chilled basalt, A3:95
photomicrograph, A3:93
volcanic glass, groundmass, vs. depth, A3:101
volcaniclastics
Jurassic basement, A1:16–19
Neogene, A4:18–19
sediments, A1:7–8
volcanism
crust, B1:25
sediment recycling, B1:16–17
stratigraphy, A1:9–10
subduction, B1:17–18
volume shrinkage, electron microscopy, B9:16, 22–26

water, microbiology, A4:48–49
water content
alteration, A3:27–28
basalt, A3:35–36
Jurassic basement, A1:18
vs. depth, A3:123; A4:132–133, 181; B11:14

angustiforatus, Cretarhabdus, Site 1149, B5:4–5
antiqua, Thalassiosira, Site 1149, B2:23
arachne, Asteromphalus, Site 1149, B2:27
Arachnoidiscus schmidtii, Site 1149, B2:27
aspera, Dictyocha, Site 1149, B4:4, 18
aspera aspera, Dictyocha, Site 1149, B4:4
Assipetra infracretacea, Site 1149, A4:21; B5:4–5, 21
Assipetra terebrodantarius, Site 1149, A4:21
assipseminae, Neodenticula, Site 1149, B2:5, 31
asteromphalus, Coscinodiscus, Site 1149, B2:25
Asteromphalus arachne, Site 1149, B2:27
Asteromphalus hepatis, Site 1149, B2:27
Aurisaturnalis carinatus, Site 1149, B6:3
Aurisaturnalis carinatus carinatus, Site 1149, B6:3
Azpeitia neocrenulata, Site 1149, B2:27
Azpeitia nodulifera, Site 1149, B2:4, 25
Azpeitia nodulifera var. cyclopus, Site 1149, B2:25

X-ray computed tomography
lithologic units, B1:1–18
vs. wet bulk density, B1:12
X-ray diffraction data, sediments, A4:66
X-ray fluorescence data
igneous rocks, A4:169
microfabrics, B9:7
sediments, A4:175

zeolite veins, electron microscopy, B9:26
zeolites
sediments, A1:24
X-ray diffraction data, A4:71, 79; B9:20
zirconium
basalt alteration, A3:16–18
vs. depth, A1:46; A3:67, 107; B1:24
vs. yttrium, A1:46; A3:109; A4:109
zirconium/yttrium ratio
basalt, A4:24
basalt alteration, A3:18
vs. depth, A3:107
Bacillaria spp., Site 1149, B2:4
Bacteriosira bathyomphala, Site 1149, B2:29
barboi, Simonseniella, Site 1149, B2:28
barnesae, Watznaueria, Site 1149, A1:23; A4:21; B5:6, 21
bathyomphala, Bacteriosira, Site 1149, B2:29
Biddulphia spp., Site 1149, B2:4
boliviensis, Distephanus, Site 1149, A4:21; B4:8–9, 18
bollii, Lithraphidites, Site 1149, A4:21; B5:5–6, 21
borealis, Kokia, Site 1149, B5:21
brevispina brevispina, Dictyochoa, Site 1149, B4:4, 17
britannica, Watznaueria, Site 1149, A4:21; B5:21
Calcicalathina oblongata, Site 1149, A4:21; B5:4–6, 21
Calcicalathina oblongata Zone, Site 1149, B5:4–6
calida ampliata, Dictyochoa, Site 1149, B4:5
calida calida, Dictyochoa, Site 1149, B4:5, 17
californica, Rouxia, Site 1149, B2:28
carinatus, Aurisaturnalitis, Site 1149, B6:3
carinatus carinatus, Aurisaturnalitis, Site 1149, B6:3
carniolensis, Lithraphidites, Site 1149, A4:21; B5:5
carpatica, Pseudodictyomitra, Site 1149, B6:4
Cecrops septemporatus, Site 1149, B6:3
chiastia, Helenea, Site 1149, A4:21
chica, Emiluvia, Site 1149, B6:3
cincta, Parvicingula? sp. aff. Parvicingula, Site 1149, B6:3
circulus, Mesocena, Site 1149, B4:18
Cocconeis cf. pseudomarginata, Site 1149, B2:29
cumbria, Eugyris, Site 1149, B6:3
columnarium, Svinzitium, Site 1149, B6:3
communis, Stichomitra, Site 1149, B6:4
conicus, Cretarhabdus, Site 1149, B5:5
cornexa, Thalassiosira, Site 1149, B2:23
Corbisema triacantha, Site 1149, B4:5, 18
Coscinodiscus asteromphalus, Site 1149, B2:25
Coscinodiscus curvatus, Site 1149, B2:25
Coscinodiscus endoi, Site 1149, B2:25
Coscinodiscus marginatus, Site 1149, B2:4, 25
Coscinodiscus radiatus, Site 1149, B2:25
Coscinodiscus tubularis, Site 1149, B2:25
Cretarhabdus angustiforatus, Site 1149, B5:4–5
Cretarhabdus conicus, Site 1149, B5:5
Cretarhabdus surirellus, Site 1149, B5:5
Crucella lipmanae, Site 1149, B6:3
Crucillipsis cuvillieri, Site 1149, A1:23; A4:21; B5:4–6, 21
crus, Distephanus, Site 1149, B4:18
crus s.l., Distephanus, Site 1149, B4:6
cubitus, Actinocyclus, Site 1149, B2:26
curvatulus, Actinocyclus, Site 1149, B2:26
curvatus, Coscinodiscus, Site 1149, B2:25
curvirostris, Simonseniella, Site 1149, B2:28
cuvillieri, Crucillipsis, Site 1149, A1:23; A4:21; B5:4–6, 21
Cyclagelosphaera margreelli, Site 1149, A4:21; B5:4, 6
Cyclicargolithus floridanus, Site 1149, A4:20
Cyclotella spp., Site 1149, B2:4
daviesii, Reticulofenestra, Site 1149, A4:20
decipiens, Thalassiosira, Site 1149, B2:4, 23
Delphineis simonsennii, Site 1149, B2:29
Delphineis spp., Site 1149, B2:4
Delphineis surirella, Site 1149, B2:29
Denticulopsis hyalina, Site 1149, B2:31
Denticulopsis simonsennii, Site 1149, B2:31
diamea minor, Mirifusus, Site 1149, B6:3
Diazomatolithus lehmanni, Site 1149, A4:21; B5:4–6, 13, 21
Diazomatolithus spp., Site 1149, B1:10
Dictyochoa aculeata aculeata, Site 1149, B4:7, 9, 17
Dictyochoa aculeata aculeata Zone, Site 1149, B4:7
Dictyochoa aculeata subaculeata, Site 1149, B4:17
Dictyochoa angulata Subzone, Site 1149, B4:4–5
Dictyochoa aspera, Site 1149, B4:4, 18
Dictyochoa aspera aspera, Site 1149, B4:4
Dictyochoa brevispinos brevispinosa, Site 1149, B4:4, 17
Dictyochoa calida ampliata, Site 1149, B4:5
Dictyochoa calida calida, Site 1149, B4:5, 17
Dictyochoa fibula, Site 1149, B4:4–5, 18
Dictyochoa fibula Zone, Site 1149, B4:4–5, 8–9
Dictyochoa lingii, Site 1149, B4:6–7, 17
Dictyochoa neoamautica, Site 1149, B4:4
Dictyochoa neoamautica Subzone, Site 1149, B4:4
Dictyochoa perlaevis delicata, Site 1149, B4:5, 17
Dictyochoa perlaevis delicata Subzone, Site 1149, B4:6, 8–9
Dictyochoa perlaevis flexatella, Site 1149, B4:5, 17
Dictyochoa perlaevis ornata, Site 1149, B4:5, 17
Dictyochoa perlaevis ornata Subzone, Site 1149, B4:6, 8–9
Dictyochoa perlaevis perlaevis, Site 1149, B4:4, 18
Dictyochoa pulchella, Site 1149, B4:4–5, 17
Dictyochoa pulchella Subzone, Site 1149, B4:4–5
Dictyochoa speculum speculum, Site 1149, B4:5, 18
Dictyochoa stapedia aspinosa, Site 1149, B4:4–5, 17
Dictyochoa stapedia stapedia, Site 1149, B4:4–5, 17
Dictyochoa stapedia stapedia Zone, Site 1149, B4:5–6, 8–9
Diploneis smithii, Site 1149, B2:29
Discaster spp., Site 1149, A4:20
Discorhabdus rotatorius, Site 1149, B5:4
dissimilis, Sphenolithus, Site 1149, A4:20
Distephanus boliviensis, Site 1149, A4:21; B4:8–9, 18
Distephanus crux, Site 1149, B4:18
Distephanus crux s.l., Site 1149, B4:6
Distephanus/Dictyochoa ratio, Site 1149, A4:21; B4:8–9
Distephanus speculum minutus, Site 1149, B4:18
doliolus, Pseudoeunotia, Site 1149, B2:4, 30
eccentrica, Thalassiosira, Site 1149, B2:4
elliptica, Mesocena, Site 1149, B4:5
efficius, Actinocyclus, Site 1149, B2:28
efficius var. elongatus, Actinocyclus, Site 1149, B2:26
emergeri, Parhabdolithus, Site 1149, B5:4, 21
emergeri, Zuegrhabdus, Site 1149, A4:21
Emiluvia cicah, Site 1149, B6:3
endoi, Coscinodiscus, Site 1149, B2:25
Epithemia sp. A, Site 1149, B2:29
Epithemia spp., Site 1149, B2:4
Eucyrtis columbaria, Site 1149, B6:3
Volume 185 Taxonomic Index

fibula, Dictyocha, Site 1149 • pemmatoida, Manivitella, Site 1149

F
- fibula, Dictyocha, Site 1149, B4:4-5, 18
- flanatica, Navicula cf., Site 1149, B2:29
- floridanus, Cyclicargolithus, Site 1149, A4:20
- fossilis, Nitzschia, Site 1149, B2:4, 30
- fusiformis, Trilococapsa (?) sp. aff. Trilococapsa, Site 801, A3:8

G
- Gomphonema cf. affine, Site 1149, B2:28
- Gomphonema spp., Site 1149, B2:4
- Grammatophora spp., Site 1149, B2:4
- gravida, Thalassiosira, Site 1149, B2:23
- Guexella nudata, Site 801, A3:8

H
- Helenea chiastia, Site 1149, A4:21
- hepatis, Asteromphalus, Site 1149, B2:27
- Hexasaturnalis tetraspinus, Site 801, A3:8
- Homeoparonaella peteri, Site 1149, B6:3
- hyalina, Denticulopsis, Site 1149, B2:31

I
- infracretacea, Assipetra, Site 1149, A4:21; B5:4-6, 21
- ingens, Actinocyclus, Site 1149, B2:26
- interruptestriata, Nitzschia, Site 1149, B2:4, 30

J
- jouseae, Nitzschia, Site 1149, B2:30
- jouseae, Thalassiosira, Site 1149, B2:23
- jurapelicus, Tubodiscus, Site 1149, A4:21; B5:4-5
- jurapelicus, Tubodiscus cf., Site 1149, B5:21

K
- kamtschatica, Neodenticula, Site 1149, B2:4
- koizumii, Neodenticula, Site 1149, B2:4, 31
- Kokia borealis, Site 1149, B5:21
- kolackzeckii, Nitzschia, Site 1149, B2:30

L
- lehmanii, Diazomatolithus, Site 1149, A4:21; B5:4-6, 13, 21
- leiostraca, Sethocapsa, Site 1149, B6:3
- leptopus, Thalassiosira, Site 1149, B2:23
- levis, Acanthocircus, Site 1149, B6:4
- lilyae, Pseudodictyomitra, Site 1149, B6:3
- lineata, Thalassiosira, Site 1149, B2:4, 24
- lingii, Dictyocha, Site 1149, B4:6-7, 17
- lipmanae, Crucella, Site 1149, B6:3
- Lithraphidites bollii, Site 1149, A4:21; B5:5-6, 21
- Lithraphidites bollii Zone, Site 1149, A1:23; A4:21; B5:5-6
- Lithraphidites carniolensis, Site 1149, A4:21; B5:5
- longissima, Thalassiothrix, Site 1149, B2:4
- lyrella, Navicula, Site 1149, B2:29
- Lyrella spp., Site 1149, B2:4

M
- Manivitella pemmatoida, Site 1149, A4:21
- margerelii, Cyclagelosphaera, Site 1149, A4:21; B5:4, 6
- marginatus, Coscinodiscus, Site 1149, B2:4, 25
- marina, Nitzschia, Site 1149, B2:4, 30
- Mesocena circulus, Site 1149, B4:18
- Mesocena elliptica, Site 1149, B4:5
- Mesocena quadrangula, Site 1149, B4:7, 9, 17
- Mirifusus daniae minor, Site 1149, B6:3
- Mirifusus petzholdti, Site 1149, B6:3
- moriformis, Sphenolithus, Site 1149, A4:20

N
- Nannoconus spp., Site 1149, A4:21
- Navicula cf. flanatica, Site 1149, B2:29
- Navicula lyrella, Site 1149, B2:29
- Navicula spp., Site 1149, B2:4
- neocrenulata, Azpeitia, Site 1149, B2:27
- Neodenticula assipseminae, Site 1149, B2:5, 31
- Neodenticula jouseae Zone, Site 1149, B2:5
- Neodenticula kamtschatica, Site 1149, B2:4
- Neodenticula kamtschatica Zone, Site 1149, B2:5
- Neodenticula koizumii, Site 1149, B2:4, 31
- Neodenticula seminae, Site 1149, B2:5, 31
- Neodenticula seminae Zone, Site 1149, B2:5
- neonautica, Dictyocha, Site 1149, B4:4
- Nitzschia cf. sicula, Site 1149, B2:30
- Nitzschia fossilis, Site 1149, B2:4, 30
- Nitzschia interruptestriata, Site 1149, B2:4, 30
- Nitzschia jouseae, Site 1149, B2:30
- Nitzschia kolackzeckii, Site 1149, B2:30
- Nitzschia marina, Site 1149, B2:4, 30
- Nitzschia plicacena, Site 1149, B2:30
- Nitzschia reinholdii, Site 1149, B2:4, 30
- nitzschioides, Thalassionema, Site 1149, B2:4
- nodulifera, Azpeitia, Site 1149, B2:4, 25
- nodulifera var. cyclops, Azpeitia, Site 1149, B2:25
- nudata, Guexella, Site 801, A3:8

O
- Obesacapsula verbana, Site 1149, B6:3
- oblongata, Calciicalathina, Site 1149, A4:21; B5:4-6, 21
- octonarius, Actinocyclus, Site 1149, B2:26
- oculatus, Actinocyclus, Site 1149, B2:26
- Odontella spp., Site 1149, B2:4
- oestripii, Thalassiosira, Site 1149, B2:4, 24
- Orbiculiforma (?) sp. X, Site 801, A3:8
- orthostylus, Tribrachiatus, Site 1149, A4:20
- ovada, Surirella cf., Site 1149, B2:29
- ovata, Watznaueria, Site 1149, B5:6

P
- Pantanellium squinabolii squinabolii, Site 1149, B6:5
- Parhabdolithus embergeri, Site 1149, B5:4, 21
- Paralia spp., Site 1149, B2:4
- Parvingula? sp. aff. Parvingula cincta, Site 1149, B6:3
- pemmatoida, Manivitella, Site 1149, A4:21
perampla, Spongocapsula, Site 801, A3:8
perlaevis delicata, Dictyocha, Site 1149, B4:5, 17
perlaevis flexatella, Dictyocha, Site 1149, B4:5, 17
perlaevis ornata, Dictyocha, Site 1149, B4:5, 17
perlaevis perlaevis, Dictyocha, Site 1149, B4:5, 18
dictyocha, Site 1149, B4:5, 18
peteri, Homeoparonaella, Site 1149, B6:3
petzholdti, Mirifusus, Site 1149, B2:4
plicata, Thalassiosira, Site 1149, B2:24
ploenia, Nitzschia, Site 1149, B2:30
praeberronii, Rhizosolenia, Site 1149, B2:28
Pseudodictyomitra carpatica, Site 1149, B6:4
Pseudodictyomitra liliae, Site 1149, B6:3
Pseudoemunonia dololus, Site 1149, B2:4, 30
Pseudoemunonia dololus Zone, Site 1149, B2:5
psedomarginata, Cocconeis cf., Site 1149, B2:29
pulchella, Dictyocha, Site 1149, B4:4–5, 17

Q
quadrangula, Mesocena, Site 1149, B4:7, 9, 17

R
radiatus, Coscinodiscus, Site 1149, B2:25
reinholdii, Nitzschia, Site 1149, B2:4, 30
Reticulofenestra daviesii, Site 1149, A4:20
Reticulofenestra spp., Site 1149, A4:20
Rhaphoneis spp., Site 1149, B2:4
Rhizosolenia praeberronii, Site 1149, B2:28
Ristola (?) tulpucula, Site 801, A3:8
robusta, Stichocapsa, Site 801, A3:8
Roperia tesselata, Site 1149, B2:4, 28
Rosiella cf. tatusonkuchiensis, Site 1149, B2:28
Rosiella tatusonkuchiensis, Site 1149, B2:28
rotatorius, Discorhabdus, Site 1149, B5:4
Rouxia california, Site 1149, B2:28
Rucinolithus terebrodentarius, Site 1149, B5:5–6, 21
Rucinolithus wisei, Site 1149, A1:23; A4:21; B5:4–6, 21

S
schmidtii, Arachnoidiscus, Site 1149, B2:27
Sciadiocapsa speciosa, Site 1149, B6:4
seminae, Neodenticula, Site 1149, B2:5, 31
senarius, Actinoptychus, Site 1149, B2:27
septemtorpus, Coccos, Site 1149, B6:3
Sethocapsa leiostraca, Site 1149, B6:3
Sethocapsa tricornis, Site 1149, B6:3
sicina, Nitzschia cf., Site 1149, B2:30
Simonseniella barboi, Site 1149, B2:28
Simonseniella curvirostris, Site 1149, B2:28
simonsenii, Delphineis, Site 1149, B2:29
simonsenii, Denticulopsis, Site 1149, B2:31
smithii, Diploneis, Site 1149, B2:29
speciosa, Sciadiocapsa, Site 1149, B6:4
speculum minutus, Distephanus, Site 1149, B4:18
speculum speculum, Dictyocha, Site 1149, B4:5, 18
Sphenolithus dissimilis, Site 1149, A4:20
Sphenolithus moriformis, Site 1149, A4:20
splendens, Actinoptychus, Site 1149, B2:27

Spongocapsula perampla, Site 801, A3:8
Spongocapsula? tripes, Site 1149, B6:3
squenaboli squenaboli, Pantoellium, Site 1149, B6:5
stapellia aspinosa, Dictyocha, Site 1149, B4:4–5, 17
stapellia stapellia, Dictyocha, Site 1149, B4:4–5, 17
Stichocapsa robusta, Site 801, A3:8
Stichomitra communis, Site 1149, B6:4
surirella, Delphineis, Site 1149, B2:29
Surirella cf. ovada, Site 1149, B2:29
surirellus, Cretorhabdus, Site 1149, B5:5
Svinitzium columnarium, Site 1149, B6:3
symbolophora, Thalassiosira, Site 1149, B2:24
symmetrica, Thalassiosira, Site 1149, B2:24

T
tabularis, Coscinodiscus, Site 1149, B2:25
tabulata, Thalassiosira, Site 1149, B2:4
tatusonkuchiensis, Rosiella, Site 1149, B2:28
tatusonkuchiensis, Rosiella cf., Site 1149, B2:28
terebrodentarius, Assipetra, Site 1149, A4:21
terebrodentarius, Rucinolithus, Site 1149, B5:5–6, 21
tesselata, Roperia, Site 1149, B2:4, 28
tetraspinus, Hexasaturnalis, Site 801, A3:8
Thalassionema nitzschioides, Site 1149, B2:4
Thalassiosira antiqua, Site 1149, B2:23
Thalassiosira convexa, Site 1149, B2:23
Thalassiosira decipiens, Site 1149, B2:4, 23
Thalassiosira eccentrica, Site 1149, B2:4
Thalassiosira gravida, Site 1149, B2:23
Thalassiosira jouseae, Site 1149, B2:23
Thalassiosira leptopus, Site 1149, B2:23
Thalassiosira lineata, Site 1149, B2:4, 24
Thalassiosira oestrupii, Site 1149, B2:4, 24
Thalassiosira plicata, Site 1149, B2:24
Thalassiosira sp. A, Site 1149, B2:24
Thalassiosira symbolophora, Site 1149, B2:24
Thalassiosira symmetrica, Site 1149, B2:24
Thalassiosira tabulata, Site 1149, B2:24
Thalassiosira trichlora, Site 1149, B2:4
Thalassiothrix longissima, Site 1149, B2:4
triacantha, Corbisena, Site 1149, B4:5, 18
Trichniachtus orthostylus, Site 1149, A4:20
Tricocolapsa (?) sp. aff. Tricocolapsa fusiformis, Site 801, A3:8

Tricocolapsa conexa Zone, Site 801, A3:8
tricornis, Sethocapsa, Site 1149, B6:3
triloba, Thalassiosira, Site 1149, B2:24
tripes, Spongocapsula?, Site 1149, B6:3
Tubodiscus cf. jurapelagicus, Site 1149, B5:21
Tubodiscus jurapelagicus, Site 1149, A4:21; B5:4–5
Tubodiscus spp., Site 1149, A1:23; A4:21
Tubodiscus verenae, Site 1149, A1:23, 30; A4:21; B5:4–6, 21
tupilca, Ristola (?), Site 801, A3:8

U
Unknown sp. A, Site 1149, B2:29
V
verbana, Obesacapsula, Site 1149, B6:3
verenae, Tubodiscus, Site 1149, A1:23, 30; A4:21; B5:4–6, 21

W
Watznaueria barnesae, Site 1149, A1:23; A4:21; B5:6, 21
Watznaueria britannica, Site 1149, A4:21; B5:21
Watznaueria ovata, Site 1149, B5:6
Watznaueria spp., Site 1149, B5:4–5
wisei, Rucinolithus, Site 1149, A1:23; A4:21; B5:4–6, 21

Z
zones (with letter prefixes)
M8–M4, Site 1149, B6:3
M9–M10, Site 1149, B6:3
M11, Site 1149, B6:3
M12, Site 1149, B6:3
M13, Site 1149, B6:3
M14, Site 1149, B6:3
NK3, Site 1149, B5:4–6
NK3a, Site 1149, B5:15
UA 1–3, Site 1149, B6:4
UA 11–12, Site 1149, B6:4
UAZ 19, Site 1149, B6:3–4
UAZ 95 16, Site 1149, B6:3, 5
UAZ 95 17, Site 1149, B6:5
UAZ 95 18, Site 1149, B6:3–5
UAZ 95 20, Site 1149, B6:3–5
UAZ 95 21–22, Site 1149, B6:4
Zuegrhabdotus embergeri, Site 1149, A4:21